
Stat 8111 Final Exam December ’16

Eleven students took the exam, the scores were 92, 78, 4 in the 50’s, 1 in the 40’s, 1 in the 30’s
and 3 in the 20’s.

1. i) Let X1, X2, . . . , Xn be iid each Bernoulli(θ) where θ ∈ Θ = [0, 1]. What is the a complete
sufficient statistic for θ. What real valued functions γ(θ) have unbiased estimators? For such a γ(θ)
what is its best unbiased estimator?

ii) Suppose now n = 3 and Θ = {0, 1/2, 1}. What is the a complete sufficient statistic for this
problem? Justify your answer. What real valued functions γ(θ) have unbiased estimators? For
such a γ(θ) what is its best unbiased estimator?

2. Let X be a discrete random variable taking on values in the set of non-negative integers.
Suppose the probability functions fθ for 0 < θ < 1 have the form

fθ(x) = θxh(θ)λ(x) for x = 0, 1, . . .

Let 0 < θ0 < 1 be given and consider testing

H : θ ≤ θ0 against K : θ > θ0

Let d0 be the decision we accept H and d1 the decision we accept K. Let the loss function satisfy

L(d0, θ) = 0 for θ ≤ θ0

= θ − θ0 for θ > θ0

L(d1, θ) = 0 for θ ≥ θ0

= θ0 − θ for θ < θ0

If g is a prior density for θ and fg the corresponding marginal probability function for X. Show
that a Bayes test is given by

δg(x) = d1 when
λ(x)fg(x+ 1)

λ(x+ 1)fg(x)
> θ0

= d0 otherwise

3. Let 0 < a < b < ∞ be fixed real numbers. Consider a decision problem where D = [a, b] is
the space of possible decisions and Θ = [a, b] is the space of possible parameter values. For some
fixed λ > 0 consider the loss function

L(θ, d) =
2

λ(λ+ 1)
{d[(

d

θ
)λ − 1] + λ(θ − d)}

i) Show that L(θ, θ) = 0 and that for each fixed θ L(θ, ·) is strictly convex in d.
ii) If g is a prior density for θ find the no data Bayes estimator for g.

4. Suppose X is a discrete random variable taking on values 2, 3, 4, . . .. For θ ∈ Θ, a subset of
real numbers, let fθ(·) be a probability function for X. Assume that f(x|θ) > 0 for all x and all θ.
Assume that this family has the monotone likelihood ratio (MLR) property in T (X) = X.

Let Y = W (X) where

W (j) = j if j is odd

= j + 1 if j is even
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Show that the family of distributions for Y has the MLR property in T (Y ) = Y
5. Let X be a random variable with a family of possible distributions indexed by the real

parameter θ. Consider testing H : θ ≤ 0 against K : θ > 0. Let φ be a test and Eθφ(X) its power
function. Let g be a prior density for θ. Let

Pg(type i error of φ) =

∫
Eθφ(X)g(θ) dθ

Pg(type ii error of φ) =

∫
(1− Eθφ(X))g(θ) dθ

Let 0 < α < 1 be fixed. We say that a test is prior most powerful (PMP) at level α if

subject to Pg(type i error of φ) ≤ α it minimizes Pg(type ii error of φ)

i) Find the form of the PMP level α test.
ii) Suppose the prior g belongs to a class of possible prior densities, say G. We say that a test is
uniformly prior most powerful (UPMP) for the family G if

subject to Pg(type i error of φ) ≤ α for all g ∈ G

it minimizes Pg(type ii error of φ) uniformly for g ∈ G

For the rest of the problem assume that X is a normal random variable with mean θ and variance
one. For each g ∈ G let φg be the PMP level α test found in part i). Find the form of this test.

Show that if there exists a g∗ ∈ G such that

φg∗(x) = inf
g∈G

φg(x) for all x.

then φg∗ is a UPMP level α test.
iii) Now suppose G is the family of normal distributions with a known variance, σ2 but unknown

mean µ ∈ [a, b] where −∞ < a < b < ∞ are specified real numbers. Show that the φg∗ of part ii)
must exist.

iv) Show that the φg∗ of part ii) must exist when µ belongs to the set of real numbers.
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Answers

1. i) T (X,, . . . , Xn) =
∑n

i−1Xi is complete sufficient. Since Eθδ(T ) is a polynomial in θ of degree
≤ n and

Eθ(
T (T − 1) · · · (T − k + 1)

n(n− 1) · · · (n− k + 1)
) = θk

every such polynomial will have a best unbiased estimator.
ii) Let

T (x1, x2, x3) = 0 if
∑

xi = 0

= 1.5 if
∑

xi = 1 or 2

= 3 if
∑

xi = 3

Note for θ ∈ {0, 1/2, 1}

Pθ(T = 0) = (1− θ)3

Pθ(T = 1.5) = 3θ(1− θ)
Pθ(T = 3) = θ3

so by factorization theorem T is sufficient. Easy to check that T is complete. Eθ=0δ(T ) = 0 implies
that δ(0) = 0. In the same way Eθ=1δ(T ) = 0 implies that δ(3) = 0. So

Eθ=1/2δ(T ) = (1/8)δ(0) + (3/4)δ(1.5) + (1/8)δ(3) = 0

implies that δ(1.5) = 0 and so T is complete.
If g is an arbitrary real valued function of θ then its best unbiased estimator is δ(0) = g(0),

δ(3) = g(3) and

δ(1.5) =
4

3
[g(1/2)− g(0)/8− g(1)/8]

2. For the no data problem we have

EgL(d0, θ) =

∫ 1

θ0

(θ − θo)g(θ) dθ

=

∫ 1

θ0

θg(θ) dθ − θ0Pg(θ > θ0)

In the same way

EgL(d1, θ) = θ0Pg(θ < θ0)−
∫ θ0

0

θg(θ) dθ

Then easy to check that EgL(d1, θ) < EgL(d0, θ) when
∫ 1

0
θg(θ) dθ > θ0

Since

fg(x) = λ(x)

∫ 1

0

θxh(θ)g(θ) dθ

we have ∫ 1

0

θpg(θ|x) =
λ(x)

∫ 1

0
θx+1h(θ)g(θ) dθ

fg(x)

=
λ(x)fg(x+ 1)

λ(x+ 1)fg(x)
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3. The first part of part i) is trivial for the second part we just need to differentiate the loss
function twice to see that it is convex and that its minimum value occurs when θ = d. When taking
the derivative it is enough to consider the function

f(d) =
dλ+1

θλ
− (λ+ 1)d+ λθ

and we see that

f ′(d) = (λ+ 1)(
d

θ
)λ − (λ+ 1)

and the results follow.
ii) Now for a fixed d we have∫

Θ

L(θ, d)g(θ) dθ =
2

λ(λ+ 1)

{
dλ+1E(1/θλ)− (λ+ 1)d+ λE(θ)

}
Now differentiating and setting it equal to zero we find the minimizing d is given by

d = (E(1/θλ))−1/λ

4. Let a1, b1, a2, b2 be positive real numbers with (b1/a1) ≤ (b2/a2) then

b1

a1

≤ b1 + b2

a1 + a2

≤ b2

a2

To prove the first inequality note that

b1

a1

≤ b1 + b2

a1 + a2

⇐⇒ a1b1 + a2b1 ≤ a1b1 + a1b2 ⇐⇒ a2b1 ≤ a1b2 ⇐⇒
b1

a1

≤ b2

a2

and the second is proved in the same way.
Let g(y|θ) be the probability function for Y . Let y1 < y2 be positive even integers and let θ1 < θ2

then we have

g(y1|θ2)

g(y1|θ1)
=
f(y1|θ2) + f(y1 + 1|θ2)

f(y1|θ1) + f(y1 + 1|θ1)

≤ f(y1 + 1|θ2)

f(y1 + 1|θ1)

≤ f(y2|θ2)

f(y1|θ1)

≤ f(y2|θ2) + f(y2 + 1|θ2)

f(y2|θ1) + f(y2 + 1|θ1)

=
g(y2|θ2)

g(y2|θ1)

Note the first and third inequality follow from the above remark and the second inequality from
the MLR property.
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5. i) Note

Pg(type i error of φ) = Pg(θ ≤ 0)

∫
φ(x)f0,g(x) dx

Pg(type ii error of φ) = Pg(θ > 0)

∫
(1− φ(X))f1,g dx

where f0,g and f1,g denote the conditional densities of X given θ ≤ 0 and θ > 0. So the NP Lemma
tells us to reject H when f1,g > kf0,g for some constant k.

ii) Consider tests of the form

φc(x) = 1 when x > c and φc(x) = 0 when x < c

The power function of such a test Eθφ
c(X) is a strictly increasing function of θ. Clearly every φg

must be a φc for some choice of c, say c(g). Note by assumption c(g∗) ≤ c(g) for every other g in
G. So for θ > 0

Pθ(type II error of φg∗) ≤ Pθ(type II error of φg)

and hence
Pg(type ii error of φg∗) ≤ Pg(type ii error of φg)

iii) For the prior g corresponding to µ let φµ be the PMP level α test. Then clearly c(µ) is a
continuous function of µ so it must achieve its minimum on a compact set.

iv) This follows since
lim
µ→∞

c(µ) = −∞ = lim
µ→−∞

c(µ)

The first equality is true since Pµ(θ ≤ 0) goes to 0 as µ approaches ∞. To prove the second it
is enough to show that for any real number a we have that Pµ(X ≥ a and θ ≤ 0) goes to 0 as µ
approaches −∞. But this follows since the marginal distribution of X is normal with mean µ and
variance 1 + σ2.
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