
Stat 8111 Final Exam December ‘14

Twenty two people took the exam. The maximum possible score was 90. The highest score was
70. There were 7 in the 60’s, 9 in the 50’s, 3 in the 40’s and 2 in the 30’s.

You may use any fact or theorem proved in class. Please put the answer to each question on a
separate page with your name on it.

1. Let X1, . . . , Xn be independent and identically distributed each Bernoulli (exp−θ) where
θ ∈ Θ = (0,∞) is unknown.

i) Find the form of the UMP level α test of H: θ ≤ θ0 against K: θ > θ0 where θ0 is some known
positive number.

ii) Assuming the loss function is convex identify the class of functions of θ for which a best
unbiased estimator exists. For such a function what is its best unbiased estimator.

2. Let X be Normal(θ, σ2) where σ2 is known and θ ∈ Θ = {−1, 0, 1}. Let the decision space
D = Θ and the loss function be given by

L(θ, d) =

{
0 if θ = d
1 if θ 6= d

Find a Bayes rule against the prior which puts equal mass on the three points of Θ.
3. Let Θ = {0, 1}, D = [0, 1] and L(θ, d) = |θ − d|. For this no data problem draw the risk set.

Suppose now that given θ X1, X2 and X3 are independent and identically distributed each Bernoulli
((1 + θ)/3). Draw the lower boundary of the risk set for this second problem.

4. Let X1, . . . , Xn be independent and identically distributed with common density function
given by

f(x;µ, λ) =

√
λ

2πx3
exp
−λ(x− µ)2

2µ2x
for x > 0

where 0 < µ <∞ and 0 < λ <∞ are unknown parameters.
(Note: this density was misspecified on the exam.)
i) Find the complete sufficient statistic for θ = (µ, λ).
ii) Suppose µ is known and the prior density for λ is given by

g(λ) =
βα

Γ(α)
λα−1 exp−βλ for λ > 0

where α > 0 and β > 0 are known. Assuming squared error loss find the Bayes estimator of λ.
5. Let X1, . . . , Xn be independent and identically distributed where each is uniform(θ, θ + 1).

For testing H : θ <= θ0 against K : θ > θ0 at level α where 0 < α < 1 show that there exists a
UMP level α test and find its form.
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6. Let X be a vector valued random variable with a family of possible distributions {Pθ : θ ∈ Θ}
indexed by the parameter θ. Consider the problem of estimating some real valued function γ(θ)
with squared error loss. Let ∆, assumed to be nonempty, be the class of all unbiased estimators of
γ(θ) with finite variance. In what follows all integrals discussed are assumed to be finite.

Suppose now θ is no longer considered to be a parameter but an unobserved realization of a
probability distribution G on Θ. Suppose G is not known and assumed to belong to G some family
of distributions over Θ. Then {PG : G ∈ G} is the family of unknown distributions for X where

PG(A) =

∫
A

d

{∫
Θ

Pθ(x) dG(θ)

}
for a measurable set A in the sample space of X. The problem now is to estimate

γ(G) =

∫
Θ

γ(θ) dG(θ)

with squared error loss. Let ∆ be the class of all unbiased estimators of γ(G).
i) Show that if δ ∈ ∆ then δ ∈ ∆.
ii) Show that if δ is a minimum variance unbiased estimator (MVU) of γ(θ) and it has finite

variance for G ∈ G it is also a MVU estimator of γ(G) within the class of estimators ∆.
iii) Give a condition on G which implies that ∆ = ∆.
iv) Give an example where ∆ is a proper subset of ∆ and a MVU estimator of γ(G) for ∆ does

not belong to ∆.
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Solutions

1. i) For θ1 < θ2 we have fθ2(x1, . . . , xn)/fθ1(x1, . . . , xn) is decreasing in
∑
xi or it has monotone

likelihood property in −
∑
xi. So we reject when −

∑
xi > c or when

∑
xi < c′.

ii)
∑
Xi is a complete and sufficient statistic. Eθδ(X1, . . . , Xn) = γ(θ) implies that γ(θ) is a

polynomial of degree ≤ n in exp− θ. Just as in class all such functions will have a best unbiased
estimator.

2. For the no data problem the Bayes rule takes d to be the member of the parameter space
with the largest prior probability. Hence for the data problem a Bayes rule selects the d with the
largest posterior probability. Now P{θ = 0 |x} > P{θ = −1 |x} if and only if

exp{−x2/2σ2} > exp{−(x+ 1)2/2σ2}

which occurs if and only if x > −0.5. In the same way P{θ = 0 |x} > P{θ = 1 |x} in and only if
x < 0.5. So the Bayes rule will select -1 when x < 0.5, 0 when −0.5 < x < 0.5 and 1 when x > 0.5.
When x = −0.5 or x = 0.5 it can be either of the two appropriate values.

3. For the no data problem for a given d its risk vector is just (d, 1− d). So the risk set is just
the line segment joining (0,1) and (1,0).

Let π be the prior probability that θ = 0. Then the Bayes risk of d against π is just πd + (1−
π)(1− d) = 1− π + d(2π − 1). So a Bayes rule against π is to take d = 0 when π ≥ 0.5 and d = 1
when π < 0.5.

For the data problem reduce to a sufficient statistic Y =
∑
Xi. A non-randomized rule δ can

be characterized by the vector (δ(0), δ(1), δ(2), δ(3)). By the previous paragraph we only need to
consider cases where δ(y) is either 0 or 1 for each value of y. There are five obvious sensible rules
which are (0,0,0,0), (0,0,0,1), (0,0,1,1), (0,1,1,1) and (1,1,1,1). Their respective risk vectors are
easily found to be (0,1), (1/27,19/27), (7/27,7/27), (19/27,1/27) and (1,0). The piece wise linear
path you get by joining these five points gives you the lower boundary of the risk set because it is
easy to check that the other non-randomized rules give you risk vectors which are above this path.

4. i) Since we are in the exponential family and∑
i

−λ(xi − µ)2

2µ2
= − λ

2µ2

∑
i

xi +
λ

µ
− λ

2

∑
i

1

xi

we see that (
∑

iXi,
∑

i 1/xi) is complete sufficient,
ii) It is easy to check that the posterior is also a gamma distribution with parameters α′ = α+n/2

and

β′ = β +
∑
i

(xi − µ)2

2µ2xi

So the Bayes estimate of λ is α′/β′.
5. Consider testing θ = θ0 against θ = θ1 where θ0 < θ1. We need to consider two cases: where

θ1 ≥ θ0 and θ0 < θ1 < θ0 + 1.
For the first case any test which rejects H when maxxi > θ0 + 1 has power 1 and size 0 so it is

MP level α.
For the second case let r(x) = fθ1(x1, . . . , xn)/fθ0(x1, . . . , xn). We see that

r(x) =∞ when θ0 + 1 < maxxi < θ1 + 1

= 1 when θ1 < minxi ≤ maxxi < θ0 + 1

= 0 when θ0 < minxi < θ1 and maxxi < θ0 + 1
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Let c(α) be chosen to satisfy Pθ0(minXi > θ0 + c(α)) = α
It follows from the NP lemma that the test which rejects θ = θ0 when maxxi > θ0 + 1 or when

minxi > θ0 + c(α) is most powerful against θ1. In the NP lemma we use the cut off point k = 0
when θ1 > θ0 + c(α) and use k = 1 when θ1 ≤ θ0 + c(α).

6. i)

EGδ =

∫
δ(x) dPG(x) =

∫
δ(x) d

{∫
Θ

Pθ(x) dG(θ)

}

=

∫
Θ

{∫
δ(x) dPθ(x)

}
dG(θ) =

∫
Θ

γ(θ) dG(θ) = γ(G)

ii) For δ ∈ ∆ since E(δ(X)|θ) = θ we have

EG(δ(X)− γ(G))2 = E
(
δ(X)− E(δ(X)|θ) + E(δ(X)|θ)− γ(G)

)2

= E(δ(X)− γ(θ))2 + E(γ(θ)− γ(G))2

=

∫
Θ

V arθδ dG(θ) + E(γ(θ)− γ(G))2

Note the second term does not depend on δ. So if δ∗ is MVU for estimating γ(θ) it minimizes
the first term over all δ ∈ ∆.

Note that the above calculation is just the familiar formula

V arGδ = EG{V ar(δ|θ)}+ V arG{E(δ|θ)}

since δ is unbiased for γ(θ).
iii) One easy condition is that G contains all distributions which put probability one on a single

point of Θ.
iv) Let G = {G :

∫
Θ
γ(θ) dG(θ) = c} for some constant c. Then δ∗(X) ≡ c is MVU for estimating

γ(G) for G ∈ G but typically it will not belong to ∆.
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