. Stat 5201, Spring 2011, Handout# 1

» Getting a random sample of units

3 Suppose I have a population of values, let’s suppose there are five of them:
>y <= c(19, 22, 20, 21, 24)

+ These might be a population of N = 5 ages, for example.
5 The R function sample can be used to get a SRS of size n. Here are random samples
s of size 2 and of size 3:

> set.seed(123)
> sample(y, 2)

[1] 22 21
> sample(y, 3)
[1] 20 21 24

7 T used the set.seed function so that I get the same sample every time—good for handout
s writing, but not always desirable. If I wanted a SRSWR, I could use

> sample(y, 2, replace = TRUE)
[1] 19 20
> sample(y, 3, replace = TRUE)

[1] 24 20 20

o Here is a few more complex ways to do the same thing. First, rather than sampling y, I
1 will sample the index vector 1:1length(y), and then get the indices:

> set.seed(123)
> sel <- sample(1:5, 2)
> ylsel]

(1] 22 21

> sel <- sample(1:5, 3)
> ylsel]

[1] 20 21 24

u If the sample function didn’t exist, I could get a sample by: (1) generating length(y)
12 uniform random numbers:

> (rnums <- runif (length(y)))

13

14

15

16

17

18

19

20

21

22

23

24

25

26

[1] 0.04556 0.52811 0.89242 0.55144 0.45661

(2) using order, which returns a permutation which rearranges its first argument into
ascending order

> (or <- order (rnums))
[11 15243

The smallest of the rnums is in location 1, and second smallest in location 5, and so
on. Using or to select the members of y that have the smallest corresponding random
numbers will give a SRS:

> ylor[1:2]]

[1] 19 24

All possible samples from an SRS

R is a functional language: you write functions, and then execute them with arguments
of your choice. Here is a very simple function:

> myadd <- function(a, b = 3) {

+ out <- a + b
+ out
+ F

The function in named myadd. It has two arguments, a and b. If you don’t set b, then it
is set to its default value of 3, but you must give a value for a. The left curly bracket {
opens the function, and the final right-curly bracket } ends it. The code in the function
uses the arguments to compute something. Variables like out that are computed inside
the function are generally not visible outside the function. The last line of the function
is the returned value, in this case the sum of the arguments:

> myadd (2, 6)

(1] 8

> myadd (2)

(11 &

> myadd(b = 6, a = 2)
[1] 8

> out

Error: object 'out' not found

27

28

29

30

31

32

33

34

35

36

37

Functions can be useful for organizing your work. For example, the function below
finds all possible SRSs of size n = 2 and computes summary statistics for each. It prints
them, and then computes and prints more summary statistics. After the printing is
done, I don’t what the function to return anything, so the last line of the function is
invisible().

> allsamp2 <- function(y) {

+ out <- NULL

+ N <- length(y)

+ Ybar <- mean(y)

+ S2 <- var(y)

+ for (i in 1:(N - 1)) {

+ for (j in (i + 1):N) {

+ samp <- ylc(i, j)]

+ ybar <- mean (samp)

+ sqerror <- (ybar - Ybar) 2
+ out <- rbind(out, c(i = i, j = j, ybar = ybar,
+ sqerror = sqerror))
+ }

+ F

+ print (out)

+ cat ("Average of the ybar =", mean(out[, 3]), "\n")
+ cat ("Population Ybar =" Ybar, "\n")

+ cat ("Mean Squared Error =", mean(out[, 4]), "\n")
+ cat("Population variance =", S2, "\n")

+ cat("S2/n * (1-f) =" (82/2) * (1 - 2/N),

+ "\n")

+ invisible()

+

}

This functions uses lots of built-in R functions, like 1ength to get the length of a vector,

mean to compute the mean, var for the variance (dividing by n — 1 by default). Inside

the for loops I computed each sample is mean and squared error from the true value of

VY. I used print to print these values. I used cat to do more printing. You can get

help for any of these function in R by typing, for example ?mean or help(mean).
Calling this function with the vector y defined previously,

> allsamp2(y)

i j ybar sqgerror
[1,] 1 2 20.5 0.49
[2,] 1 3 19.5 2.89
[3,1] 1 4 20.0 1.44
[4,] 1 521.5 0.09
[5,1] 2 321.0 0.04
[6,] 2 4 21.5 0.09
[7,] 2 5 23.0 3.24

[8,] 3 4 20.5 0.49
[9,] 35 22.0 0.64
[10,] 4 5 22.5 1.69

Average of the ybar = 21.2
Population Ybar =21.2
Mean Squared Error = 1.11
Population variance = 3.7
S2/n * (1-f) =1.11

To contrast this output, I have written a second function called allsamp3 that only
differs by taking samples of size 3. The only difference is in changing the for loops to
have three indices rather than 2. I've also computed a few additional quantities: the
value of s,, = y/s2/n)(1 — f), and an indicator of whether the Y € (§ — 28,,, 7 + 25,,,), to
be discussed in class.

> allsamp3(y, z = 2)

i j k ybar sqgerror smean good
[1,] 1 2 3 20.33 0.75111 0.5578 1
[2,] 1 2 4 20.67 0.28444 0.5578 1
[3,] 1 25 21.67 0.21778 0.9189 1
[4,] 1 3 4 20.00 1.44000 0.3651 0
[5,] 1 3 5 21.00 0.04000 0.9661 1
[6,] 1 45 21.33 0.01778 0.9189 1
[7,] 2 3 4 21.00 0.04000 0.3651 1
[8,] 2 3 5 22.00 0.64000 0.7303 1
[9,] 2 4 5 22.33 1.28444 0.5578 0
[10,] 3 4 5 21.67 0.21778 0.7601 1

Average of the ybar = 21.2
Population Ybar 21.2
Mean Squared Error = 0.4933
Population variance = 3.7
S2/n x (1-f) 0.4933

» Distribution of the Mean in Large Samples

> mean.simulation <- function(data, sizes = c(2, 5, 10,

+ 25, 50), nsamp = 1000, replace = FALSE, ...) {
+ par (mfrow = c(2, 3))

+ hist(data, main = "Population", ...)

+ for (size in sizes) {

+ val <- rep(0, nsamp)

+ for (j in 1:nsamp) val[j] <- mean(sample(data,
+ size, replace = replace))

+ hist(val, main = paste("Size =", size))

+ }

+ invisible()

+ F

s The data for this example comes from the populations of the 100 largest US cities.

> data <- read.csv("http://tinyurl.com/4tea8js", header = TRUE)
> mean.simulation(data$Population/1000)

Population Size =2 Size =5
o
> [e<] > o >
[} o o o
=4 c wn f= o
[[[=)
& g s g «
g 2 8 o
w w N w
e S
° T T T T 1 ° e T T T

0 2000 4000 6000 8000 0 1000 3000 5000 500 1000 2000

data val val

Size = 10 Size = 25 Size =50

| b, B

T T T T 1 T T T T 1
200 600 1000 1400 200 400 600 800 1000 400 500 600 700 800

150

Frequency
0 100 200
Frequency
0 100 250
Frequency

val val val

> data <- read.csv("http://tinyurl.com/4tea8js", header = TRUE)
> mean.simulation(data$Population/1000, replace = TRUE,
+ sizes = ¢(2, 5, 10, 50, 200))

Population Size =2 Size =5
=3 8 Q
» © 2 3 > B
c f= f=
S o S g g
g v g g 8
iy i r «
© T T T T 1 ° e T T T 1
0 2000 4000 6000 8000 0 1000 3000 5000 0 1000 2000 3000 4000
data val val
Size = 10 Size =50 Size = 200
] - I
> ¥ > B M|~ >~ 3
[5) [9) — — [9) o~
=4 f= f=4
[o Q Q
= o 3 1 3
o N o o o
] s 2 s 9
* —I_l_l_\; £ 7 M 7
o o I o
T T T 1 T 1 T T T 1
500 1000 1500 2000 400 600 800 1000 400 500 600 700 800
val val val
> mean.simulation(logl0(data$Population))
Population Size =2 Size=5
o o
= © =~ 8 > B
2 o g o 2
[} N [(%)
z 3 8 S
o g o 2 g
w w w
o o o
T T T 1 T T T T T T 1 T T T T 1
55 6.0 6.5 7.0 5.4 5.8 6.2 6.6 54 56 58 60 6.2
data val val
Size = 10 Size = 25 Size =50
8 o
> N > o > g
j3) 1) 'Y 19
c f = N c
g g El E
g - g s g 8
- [-
© © T T T 1 © T T T — 1
54 55 56 57 58 59 6.0 55 5.6 5.7 5.8 5.55 5.60 5.65 5.70
val val val

