
More on calibration in R

Let the wt be a vector of design based weights which could have been ad-
justed for non-response and which may or may not sum to the population size
N . Let n be the the length of wt. Let mxv be matrix with n rows where each
column is a variable for which we want to use to calibrate our weights. Let totv
be the vector of population totals for the columns of mxv. We assume that totv
is known.

Our goal is to find a new set of weights say γ = (γ1, γ2. . . . , γn) which is is a
solution to the problem

min
γ
f(γ) =

n∑
i=1

(zi/wti)(γi − wti)
2

subject to the constraints
γ ∗mxv = totv

where the vector z needs to be specfied. Often a good choice for z is just a
vector of one’s.

This is a standard quadratic programing problem and the R package quad-
prog, as we have seen, will find the solution. The R function, gencalibrate given
just below does this. This is a more general version of the R function calibrate
give in the handout “Calibration using quadprog”.

The function can be written so that when the constraints are not consistent
and there is no solution the function returns NULL. One may also include the
additional constraints so that no weight gets too big but the following code does
not do that.

> set.seed(33445566)

> library(quadprog)

> gencalibrate<-function(wt,z,mxv,totv)

+ {

+ dvec<-sqrt(wt*z)

+ cvec<-sqrt(wt/z)

+ n<-length(wt)

+ bvec<-c(totv,rep(1,n)) #rep(1,n) is lower bd for final weights .

+ nc<-ncol(mxv)

+ mxcnst<-NULL

+ for(i in 1:nc){

+ mxcnst<-cbind(mxcnst,cvec*mxv[,i])

+ }

+ Dmat<-diag(n)

+ Amat<-cbind(mxcnst,diag(n))

+ meq<-nc #this makes everything an equality constraint

+ # Use the next four lines when debugging so you can see the error message.

+ # out<-solve.QP(Dmat,dvec,Amat,bvec=bvec,meq)

+ # return(out)

1

+ # ans<-out$solution*sqrt(wt/x)

+ # return(ans)

+ out<-try(solve.QP(Dmat,dvec,Amat,bvec=bvec,meq),silent=TRUE)

+ if(inherits(out,"try-error")){return(NULL)}

+ else{

+ nwt<-out$solution*sqrt(wt/z)

+ return(nwt)

+ }

+ }

> #wt<-c(15,10,8,9,12,6,4,4)

> #mxv<-cbind(rep(1,8),c(rep(1,3),rep(0,5)),c(10:17))

> #totv<-c(75,46,135)

> wt<-rep(5,8)

> mxv<-cbind(rep(1,8),c(rep(1,4),rep(0,4)),1:8)

> wt%*%mxv

[,1] [,2] [,3]

[1,] 40 20 180

> totv<-c(42,18,177)

> z<-rep(1,8)

> ans<- gencalibrate(wt,z,mxv,totv)

> ans%*%mxv

[,1] [,2] [,3]

[1,] 42 18 177

> round(ans,digits=2)

[1] 8.24 5.25 2.27 2.24 10.24 7.25 4.27 2.24

2

In class we discussed another way to adjust a set of weights so that they
satisfy a set of known equality constraints. This involved using the function
hitrun in the R package “polyapost”. More information about this package is
found in the handout “Using polyapost”. The next bit of code does this for the
setup given here.

> library(polyapost)

> N<-42

> n<-length(wt)

> da2<-t(mxv[,-1])

> db2<-totv[-1]/N

> da1<-NULL

> db1<-NULL

> alpha<-n*wt/sum(wt)

> dum<-hitrun(alpha,a1=da1,b1=db1,a2=da2,b2=db2,nbatch=1,blen=2000)

> out<-colMeans(dum$batch) # nbatch=1 so just getting the overall mean

> weights<-N*out

> weights%*%mxv

[,1] [,2] [,3]

[1,] 42 18 177

> round(weights,digits=2)

[1] 6.78 5.07 3.54 2.60 13.02 5.50 2.90 2.58

3

