Two stage cluster sampling

Some proofs
Assume the population consists of N clusters each of size M.

We select n clusters using srs and within the select clusters use
srs to select independent samples each of size m.
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Since an expectation can be written as the expectation of a
conditional expectation we have

E(y) = E1[E2(y)]

Here Eq averages over all possible clusters that can appear in a
first stage sample.

E> is a conditional expectation which averages over all possible
units that can appear in a second stage of sampling given the
clusters that appear in the first stage of the sampling.



Proof of first part
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Proof of second part

V(y) = Vi(Ex(y)) + E1(Va(y))

Consider the first term on the RHS.
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Now consider the second term on the RHS.
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The unbiased estimator of V(y) is
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where f1 =n/N and fo =m/M.
The factor fq1 in the second term on the RHS is surprising.

It comes about because while s2, is an unbiased estimator of o2

sZ is a biased estimator of o7 and on average is an over estimate.



Showing the unbiasedness of s2,

E(s2) = E1[E2(s2)]
= E1[Ex( Y. > (wi — )%/ (m —1)n)]
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Showing that s? is biased

Recall Ex(y?2) = Y2+ (1 — f2)o?/m and
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Let YV, = > icsmp Y;/n. Then
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Next we multiple both sides by (1 — f1)/(n(n — 1)) to get
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and we see that on the average s? will over estimate o?.

Since (1—f1)(1—f)+ f1(1—f>) =1— f5 the proof is complete.



