Two stage cluster sampling

Some proofs

Assume the population consists of N clusters each of size M.

We select n clusters using srs and within the select clusters use srs to select independent samples each of size m.

Let $\overline{\bar{y}}=\frac{1}{n} \sum_{i \in s m p} \bar{y}_{i}$. Then

$$
E(\overline{\bar{y}})=\overline{\bar{Y}} \quad \text { and } \quad V(\overline{\bar{y}})=\left(1-\frac{n}{N}\right) \frac{\sigma_{b}^{2}}{n}+\left(1-\frac{m}{M}\right) \frac{\sigma_{w}^{2}}{m n}
$$

Since an expectation can be written as the expectation of a conditional expectation we have

$$
E(\overline{\bar{y}})=E_{1}\left[E_{2}(\overline{\bar{y}})\right]
$$

Here E_{1} averages over all possible clusters that can appear in a first stage sample.
E_{2} is a conditional expectation which averages over all possible units that can appear in a second stage of sampling given the clusters that appear in the first stage of the sampling.

Proof of first part

$$
\begin{aligned}
E(\overline{\bar{y}}) & =E_{1}\left[E_{2}(\overline{\bar{y}})\right] \\
& =E_{1}\left[E_{2}\left(\frac{1}{n} \sum_{i \in s m p} \bar{y}_{i}\right)\right] \\
& =E_{1}\left[\frac{1}{n} \sum_{i \in s m p} E_{2}\left(\bar{y}_{i}\right)\right] \\
& =E_{1}\left[\frac{1}{n} \sum_{i \in s m p} \bar{Y}_{i}\right] \\
& =\overline{\bar{Y}}
\end{aligned}
$$

Proof of second part

$$
V(\overline{\bar{y}})=V_{1}\left(E_{2}(\overline{\bar{y}})\right)+E_{1}\left(V_{2}(\overline{\bar{y}})\right)
$$

Consider the first term on the RHS.

$$
V_{1}\left(E_{2}(\overline{\bar{y}})\right)=V_{1}\left(\frac{1}{n} \sum_{i \in s m p} \bar{Y}_{i}\right)=\left(1-\frac{n}{N}\right) \frac{\sigma_{b}^{2}}{n}
$$

Now consider the second term on the RHS.

$$
\begin{aligned}
E_{1}\left(V_{2}(\overline{\bar{y}})\right) & =E_{1}\left(\frac{1}{n^{2}}\left(1-\frac{m}{M}\right) \sum_{i \in s m p} \frac{\sigma_{i}^{2}}{m}\right) \\
& =\frac{1}{n m}\left(1-\frac{m}{M}\right) E_{1}\left(\sum_{i \in s m p} \frac{\sigma_{i}^{2}}{n}\right) \\
& =\frac{1}{n m}\left(1-\frac{m}{M}\right) \sum_{i=1}^{N} \frac{\sigma_{i}^{2}}{N}=\left(1-\frac{m}{M}\right) \frac{\sigma_{w}^{2}}{n m}
\end{aligned}
$$

The unbiased estimator of $V(\overline{\bar{y}})$ is

$$
\begin{aligned}
V(\overline{\bar{y}}) & \xlongequal{ }\left(1-\frac{n}{N}\right) \frac{s_{b}^{2}}{n}+\frac{n}{N}\left(1-\frac{m}{M}\right) \frac{s_{w}^{2}}{m n} \\
& =\left(1-f_{1}\right) \frac{s_{b}^{2}}{n}+f_{1}\left(1-f_{2}\right) \frac{s_{w}^{2}}{m n}
\end{aligned}
$$

where $f_{1}=n / N$ and $f_{2}=m / M$.

The factor f_{1} in the second term on the RHS is surprising.

It comes about because while s_{w}^{2} is an unbiased estimator of σ_{w}^{2} s_{b}^{2} is a biased estimator of σ_{b}^{2} and on average is an over estimate.

Showing the unbiasedness of s_{w}^{2}

$$
\begin{aligned}
E\left(s_{w}^{2}\right) & =E_{1}\left[E_{2}\left(s_{w}^{2}\right)\right] \\
& =E_{1}\left[E_{2}\left(\sum_{i \in s m p} \sum_{j \in s m p_{i}}\left(y_{i j}-\bar{y}_{i}\right)^{2} /(m-1) n\right)\right] \\
& =E_{1}\left[\frac{1}{n} \sum_{i \in s m p} E_{2}\left(\sum_{j \in s m p_{i}}\left(y_{i j}-\bar{y}_{i}\right)^{2} /(m-1)\right)\right] \\
& =E_{1}\left[\frac{1}{n} \sum_{i \in s m p} \sigma_{i}^{2}\right] \\
& =\sum_{i=1}^{N} \sigma_{i}^{2} / N \\
& =\sigma_{w}^{2}
\end{aligned}
$$

Showing that s_{b}^{2} is biased

Recall $E_{2}\left(\bar{y}_{i}^{2}\right)=\bar{Y}_{i}^{2}+\left(1-f_{2}\right) \sigma_{i}^{2} / m$ and

$$
\begin{aligned}
E_{2}\left(\overline{\bar{y}}^{2}\right) & =\left[E_{2}(\overline{\bar{y}})\right]^{2}+V_{2}(\overline{\bar{y}}) \\
& =\left[\sum_{i \in s m p} \bar{Y}_{i} / n\right]^{2}+\frac{1-f_{2}}{n^{2}} \sum_{i \in s m p} \sigma_{i}^{2} / m
\end{aligned}
$$

Let $\overline{\bar{Y}}_{n}=\sum_{i \in s m p} \bar{Y}_{i} / n$. Then

$$
\begin{aligned}
(n-1) E_{2}\left(s_{b}^{2}\right)= & E_{2}\left[\sum_{i \in s m p} \bar{y}_{i}^{2}-n \overline{\bar{y}}^{2}\right] \\
= & \sum_{i \in s m p} \bar{Y}_{i}^{2}+\frac{1-f_{2}}{m} \sum_{i \in s m p} \sigma_{i}^{2} \\
& -n \overline{\bar{Y}}_{n}^{2}-\frac{1-f_{2}}{n m} \sum_{i \in s m p} \sigma_{i}^{2} \\
= & \sum_{i \in s m p}\left(\bar{Y}_{i}^{2}-\overline{\bar{Y}}_{n}\right)^{2}+ \\
& \frac{(n-1)\left(1-f_{2}\right)}{n m} \sum_{i \in s m p} \sigma_{i}^{2}
\end{aligned}
$$

Next we multiple both sides by $\left(1-f_{1}\right) /(n(n-1))$ to get

$$
\begin{aligned}
& \frac{1-f_{1}}{n} E_{2}\left(s_{b}^{2}\right)= \frac{1-f_{1}}{n} \sum_{i \in s m p}\left(\bar{Y}_{i}^{2}-\overline{\bar{Y}}_{n}\right)^{2} /(n-1)+ \\
& \frac{\left(1-f_{1}\right)\left(1-f_{2}\right)}{n m} \sum_{i \in s m p} \sigma_{i}^{2} / n
\end{aligned}
$$

Next we apply E_{1} to both sides of the equation to get

$$
\frac{1-f_{1}}{n} E\left(s_{b}^{2}\right)=\frac{1-f_{1}}{n} \sigma_{b}^{2}+\frac{\left(1-f_{1}\right)\left(1-f_{2}\right)}{n m} \sigma_{w}^{2}
$$

and we see that on the average s_{b}^{2} will over estimate σ_{b}^{2}.
Since $\left(1-f_{1}\right)\left(1-f_{2}\right)+f_{1}\left(1-f_{2}\right)=1-f_{2}$ the proof is complete.

