
An Introduction to the Bayes approach in
survey sampling

Here we will consider some simple examples which demonstrate the basic calculations underlying
the Bayesian approach to survey sampling.

We begin by recalling the definition of conditional probability for two events A and B, i.e.

P (B | A) = P (A ∩B)/P (A) or P (A ∩B) = P (A)P (B | A)

In a finite sample space let A1, . . . , AK be a set of mutually exclusive events whose union is the
whole space. Let B be another event. Then we have

P (B) =
K∑
i=1

P (Ai ∩B)

=
K∑
i=1

P (Ai)P (B | Aj)

and

P (Aj | B) = P (Aj ∩B)/P (B)

=
P (Aj)P (B | Aj)∑K
i=1 P (Ai)P (B | Ai)

A two urn example

As an example, suppose we have two urns where the first contains 3 white balls and 7 blue balls and
the second contains 6 white balls and 4 blue balls. Consider the random experiment which selects
urn 1 with probability 1/3 and urn two with probability 2/3 and then a ball is selected at random
from the selected urn. Let w1 be the event that the selected ball was white, and I and II are the
events that urn 1 or urn 2 was selected. Then from the above we see that

P (w1) = P (I)P (w1 | I) + P (II)P (w1 | II)

= (
1

3
)(

3

10
) + (

2

3
)(

6

10
)

and

P (I | w1) =
p(I ∩ w1)

p(w1)

=
(1
3
)( 3

10
)

P (w1)

Suppose now instead of drawing just one ball from the selected urn we draw two balls using
srswr. Let w2 be the event that the second ball drawn was white. Then

P (w2 | w1) =
P (w1 ∩ w2)

P (w1)

=
1
3
( 3
10

)2 + 2
3
( 6
10

)2

P (w1)

=
(1
3
)( 3

10
)

P (w1)

3

10
+

(2
3
)( 6

10
)

P (w1)

6

10

= P (I | w1)P (w2 | I) + P (II | w1)P (w2 | II)
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Now suppose instead of sampling just 2 balls from the selected urn we sampled 5 balls using
srswr. Then the conditional probability of seeing a white ball on the 5th draw given that we have
seen two whites then a blue and another white is

P (w5 | w1, w2, b3, w4) =
P (w1, w2, b3, w4, w5)

P (w1, w2, b3, w4)

=
1
3
( 3
10

)4 7
10

+ 2
3
( 6
10

)4 4
10

1
3
( 3
10

)3 7
10

+ 2
3
( 6
10

)3 4
10

=
1
3
( 3
10

)3 7
10

P (w1, w2, b3, w4)

3

10
+

2
3
( 6
10

)3 4
10

P (w1, w2, b3, w4)

6

10

= P (I | w1, w2, b3, w4)
3

10
+ P (II | w1, w2, b3, w4)

6

10
= P (I | w1, w2, b3, w4)P (w5 | I) + P (II | w1, w2, b3, w4)P (w5 | II)

In the same way we have

P (w5, b6 | w1, w2, b3, w4) = P (I | w1, w2, b3, w4)(
3

10
)(

7

10
) + P (II | w1, w2, b3, w4)(

6

10
)(

4

10
)

= P (I | w1, w2, b3, w4)P (w5, b5 | I) + P (II | w1, w2, b3, w4)P (w5, b6 | II)

A K urn example

Suppose we have an urn which contains N balls which are labeled 1, 2, . . . , N . Each ball is either
white or blue. Let yj = 1 if the jth ball is white and equal 0 if the jth ball is blue. Assume the
colors were assigned to the balls using the following probability model. Let 0 < p < 1 be fixed.
Then the yj’s in the urn were iid Bernoulli(p). So for any choice of the yj’s we have

P (y1, . . . , yN) = p
∑N

j=1 yj(1− p)N−
∑N

j=1 yj

Suppose the value of p is not known but it was chosen randomly from a set of K possible values,
say {p1, . . . , pK} with probabilities {π1, . . . , πK}. Here both the pi’s and πi’s are assumed to be
known. Then under this two step random process for generating the colors of the balls in the urn
the marginal probability of a vector of the yj’s is given by

P (y1, . . . , yN) =
K∑
i=1

πi p
∑N

j=1 yj
i (1− pi)N−

∑N
j=1 yj

Suppose after this two step process of generating the yj values in the urn we are allowed to take a
srswor of size n from the urn and observe the colors of the selected balls. For notational simplicity
we assume that (y1, . . . , yn) were the balls in the sample. Then it is easy to see that

P (y1, . . . , yn) =
K∑
i=1

πi p
∑n

j=1 yj
i (1− pi)n−

∑n
j=1 yj

Then arguing as in the previous section we have
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P (yn+1, . . . , yN | y1, . . . , yn) =
P (y1, . . . , yN)

P (y1, . . . , yn)

=

∑K
i=1 πi p

∑N
j=1 yj

i (1− pi)N−
∑N

j=1 yj

P (y1, . . . , yn)

=
K∑
i=1

(
p
∑N

j=n+1 yj
i (1− pi)N−n−

∑N
j=n+1 yj ×

πi p
∑n

j=1 yj
i (1− pi)n−

∑n
j=1 yj

P (y1, . . . , yn)

)
=

K∑
i=1

p
∑N

j=n+1 yj
i (1− pi)N−n−

∑N
j=n+1 yjP (pi | y1, . . . , yn)

Note the prior expectation of yi is
∑K

i=1 piπi while the posterior expectation given y1, . . . , yn for a

yj with j > n is
∑K

i=1 piP (pi | y1, . . . , yn).

Infinitely many urns

To handle this case we need to use some calculus.
The gamma function is defined as

Γ(α) =

∫ ∞
0

uα−1 exp−u du α > 0

This function has the following property

Γ(α) = (α− 1)Γ(α− 1) α > 0

A random variable p taking on values between 0 and 1 has a beta distribution with param-
eters α > 0 and β > 0 if its probability density function is

f(p | α, β) =
Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1 for 0 < p < 1

Its mean and variance are

E(p) =
α

α + β
and V (P ) =

αβ

(α + β)2(α + β + 1)

Consider the probability model

y1, . . . , yN | p ∼ iid Bernoulli(p)

p ∼ Beta with parameters α and β

then the marginal distribution of the yi’s is

P (y1, . . . , yN) =

∫ 1

0

p
∑N

i=1 yi(1− p)N−
∑N

i=1 yi f(p | α, β) dp
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Let n < N and suppose we have observed (y1, . . . , yn). Then

f(p | y1, . . . , yn) =
f(p, y1, . . . , yn)

f(y1, . . . , yn)

=
p
∑n

i=1 yi(1− p)n−
∑n

i=1 yif(p)

f(y1, . . . , yn)

∝ p
∑n

i=1 yi+α−1 (1− p)n−
∑n

i=1 yi+β−1

Hence if the prior distribution for p is Beta with parameters α and β then after the data has been
observed the posterior distribution for p is Beta with parameters α+

∑n
i=1 yi and β + n−

∑n
i=1 yi.

From this it follows that

P (yn+1 = 1 | y1, . . . , yn) =
P (y1, . . . , yn, yn+1 = 1)

P (y1, . . . , yn)

=

∫ 1

0
p p

∑n
i=1 yi(1− p)n−

∑n
i=1 yif(p) dp∫ 1

0
p
∑n

i=1 yi(1− p)n−
∑n

i=1 yif(p) dp

=

∫ 1

0

pf(p | y1, . . . , yn) dp

= E(p | y1, . . . , yn)

=
α +

∑n
i=1 yi

α + β + n

=
α + β

α + β + n

α

α + β
+

n

α + β + n
ȳn

= E(yn+1 | y1, . . . , yn)

More generally one finds that

P (yn+1, . . . , yN | y1, . . . , yn) =
P (y1, . . . , yN)

P (y1, . . . , yn)

=

∫ 1

0

p
∑N

i=n+1 yi(1− p)N−n−
∑N

i=n+1 yi
p
∑n

i=1 yi(1− p)n−
∑n

i=1 yi

P (y1, . . . , yn)
f(p) dp

=

∫ 1

0

p
∑N

i=n+1 yi(1− p)N−n−
∑N

i=n+1 yi f(p | y1, . . . , yn) dp

One can check that for any j > n we have

E(yj | y1, . . . , yn) = E(yn+1 | y1, . . . , yn)

=
α +

∑n
i=1 yi

α + β + n

So the Bayes estimate of the population total given y1, . . . , yn is

E(
N∑
i=1

yi | y1, . . . , yn) =
n∑
i=1

yi +
N∑

j=n+1

E(yj | yi, . . . , yn)

=
n∑
i=1

yi + (N − n)
α +

∑n
i=1 yi

α + β + n
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The store example

Consider the store example from the beginning of chapter 6 in the text.

Size Sales
Store ai yi yi/ai
1 100 11,000 110
2 200 20,000 100
3 300 24,000 80
4 1000 245,000 245

For the probability model we assume

(yi/ai)
′s | λ ∼ are independent r.v.’s with yi/ai ∼ Normal(λ, vi)

λ ∼ Normal(m′, v′)

where the vi’s, m
′ and v′ are constants that must be specified by the statistician. Under this model

the prior expectation of yi is

E(yi/ai) = E(E(yi/ai | λ)) = E(λ) = m′ or E(yi) = aim
′

From this we see that the prior expectation of the population total is (a1 + a2 + a3 + a4)×m′.
Suppose the statistician can select one store to observe its yi value and then must estimate∑4
i=1 yi. We now find the Bayes estimate of the population total under this model.
For ease of notation assume

y/a ∼ Normal(λ.v) and λ ∼ Normal(m′, v′)

where a is a fixed known constant. Now

f(λ | y) ∝ f(y | λ) f(λ)

which, as we shall see, is a normal distribution. For this reason we only need to look at the exponent
of the above when finding this posterior distribution. The exponent will be a quadratic function
of λ for which we will complete the square and thus identifying the particular normal distribution.
Note

exponent of f(y | λ) f(λ) = −1

2

{(λ− y/a)2

v
+

(λ−m′)2

v′

}
and then { }

=
λ2 − 2(y/a)λ+ (y/a)2

v
+
λ2 − 2m′λ+ (m′)2

v′

= (
1

v
+

1

v′
)λ2 − 2

(y/a
v

+
m′

v′
)

+ terms not depending on λ

=
v + v′

vv′
λ2 − 2

(v′(y/a) + vm′

vv′
)
λ+ terms not depending on λ

=
v + v′

vv′

(
λ2 − 2

v′(y/a) + vm′

v + v′
λ
)

+ terms not depending on λ

=
v + v′

vv′

(
λ− v′(y/a) + vm′

v + v′

)2
+ terms not depending on λ
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So we see that

λ | y ∼ Normal
(v′(y/a) + vm′

v + v′
,

v

v + v′
v′
)

If y4 is observed then the posterior mean of λ is

m′′ =
v′(y4/a4) + v4m

′

v4 + v′

Since

f(y1, y2, y3 | y4) =

∫ ∞
−∞

f(
y1
a1
,
y2
a2
,
y3
a3
| λ)f(λ | y4) dλ

we see for i = 1, 2, 3 the posterior expectation of yi is aim
′′ and the Bayes estimate of the population

total is
y4 + (a1 + a2 + a3)m

′′

Looking at the values of the yi/ai’s in the table (note that this would not be known in practice
but some prior information about sales could be available) one possible sensible choice for the
parameters are

vi = ai m′ = 150 v′ = 2500

With these values the prior expectation of the population’s total sales is 240,00 while the Bayes
estimate of total sales becomes 375,714.

If instead we had observed y3 then the posterior mean is

m′′ =
v′(y3/a3) + a3m

′

a3 + v′
= 87.5

and the Bayes estimate becomes

est = 24, 000 + (100 + 200 + 1, 000)× (87.5) = 150, 750
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