Data sets in R are either vectors or matrices. We begin by creating a vector and doing some elementary operations on it.

```
> w1 <- c(1, 2, 4)
> w1[3] <- 5
> w1
[1] 1 2 5
> w2 <- w1 + 4
> w2
[1] 56 9
> v <- c(w1, w2)
>v
[1] 1 2 5 5 6 9
> w1 * w2
[1] 5 12 45
```

Next we generate a random sample of size 50 from a normal population with mean 4 and standard deviation 7.

```
> x <- rnorm(50, 4, 7)
> x[1:4]
[1] 9.1785607 0.1166403 11.5567515 9.9926572
> x[c(1, 3)]
[1] 9.17856 11.55675
> sum(x)
[1] 198.434
>mean(x)
[1] 3.96868
> var(x)
[1] 51.07455
>min(x)
[1] -12.38789
```

Histogram of \mathbf{x}

$>\max (\mathrm{x})$
[1] 19.85385
> quantile (x)

0%	25%	50%	75%	100%
-12.3878933	-0.8600965	3.9775808	9.3459541	19.8538456

45\% 60\%
3.1410166 .040441

You can make lots of plots. For example, this histogram of the random sample of size 50 from the normal distribution was created by the command
> hist(x)

In the next bit of code we will generate observations from 5 independent binomial distributions and play around with some matrix notation.

```
> N <- c(10, 20, 30, 40, 50)
> p <- seq(0.1, 0.9, length = 5)
> y <- rbinom(5, N, p)
> M1 <- rbind(N, y)
> M1
\begin{tabular}{lrrrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} & {\([, 5]\)} \\
N & 10 & 20 & 30 & 40 & 50 \\
y & 1 & 5 & 21 & 28 & 41
\end{tabular}
> dim(M1)
```

[1] 25
> M1[2,]
[1] $1 \quad 5 \quad 212841$
> M1[2, 5]
y
41
> apply(M1, 1, mean)
N $\quad \mathrm{y}$
$30.0 \quad 19.2$

The function sample allows one to take random samples from a vector.

```
> sample(1:20, 5)
```

```
[1] }\begin{array}{lllll}{3}&{11}&{15}&{5}&{7}
```

Note the command ?sample will give you more information about how the function sample works.

One nice thing about R is that it is easy to write functions to compute quantities of interest. The following simple example extracts the last value of a vector and its maximum.

```
> foo <- function(x) {
+ n <- length(x)
+ ans1 <- x[n]
+ ans2 <- max(x)
+ ans <- c(ans1, ans2)
+ return(ans)
+ }
> x <- c(1, 2, 3, 4, 5, 17, 0)
foo(x)
```

[1] 017
As a final example we will write a function that allows you to take repeated random samples of size n from a population and calculate the mean of each sample.

```
> simmn <- function(y, n, W) {
+ ans <- rep(O, W)
+ for (i in 1:W) {
+ dum <- sample(y, n)
+ ans[i] <- mean(dum)
+ }
+ return(ans)
+ }
> y <- rgamma (500, 2)
> out <- simmn(y, 20, 10)
> out
```

[1] 2.2934802 .2290032 .0948422 .3232382 .0048281 .7239212 .2082571 .578589 [9] 1.9509211 .825869
> round (out, digits $=2$)
[1] 2.292 .232 .092 .322 .001 .722 .211 .581 .951 .83

