
Git

Charles J. Geyer

School of Statistics
University of Minnesota

January, 24, 2020

http://users.stat.umn.edu/~geyer/git/

http://users.stat.umn.edu/~geyer/git/


Version Control

revision control
version control
version control system (VCS)
source code control
source code management (SCM)
content tracking

all the same thing



Version Control (cont.)

It isn’t just for source code. It’s for any “content”.

I use it for

classes (slides, handouts, homework assignments, tests,
solutions),

papers (versions of the paper, tech reports, data, R scripts for
data analysis),

R packages (the traditional source code control, although
there is a lot besides source code in an R package),

notes (long before they turn into papers, I put them under
version control).



Very Old Fashioned Version Control

asterLA.7-3-09.tex asterLA.10-3.tex

asterLA.7-16.tex asterLA.10-3c.tex

asterLA.7-16c.tex asterLA10-4.tex

asterLA.7-19.tex asterLA10-4c.tex

asterLA.7-19c.tex asterLA10-4d.tex

asterLA.7-19z.tex asterLA01-12.tex

asterLA8-19.tex asterLA01-12c.tex

asterLA8-19c.tex asterLA01-20.tex

asterLA.9-1.tex asterLA01-20c.tex

asterLA.9-1c.tex asterLA02-22.tex

asterLA.9-11.tex

A real example. The versions of Shaw and Geyer (2010, Evolution)



A Plethora of Version Control Systems

Ripped off from Wikipedia (under “Revision control”)

Local Only Client-Server Distributed

SCCS (1972) CVS (1986) BitKeeper (1998)
RCS (1982) ClearCase (1992) GNU arch (2001)

Perforce (1995) Darcs (2002)
Subversion (2000) Monotone (2003)

Bazaar (2005)
Git (2005)
Mercurial (2005)

There were more, but I’ve only kept the ones I’d heard of.

Don’t worry. We’re only going to talk about one (git).



Mindshare

Starting from nowhere in 2005, git has gotten dominant mindshare.

In Google Trends, the only searches that are trending up are for git
and github. Searches for competing version control systems are
trending down.

Many well known open-source projects are on git. The Linux kernel
(of course since Linus Torvalds wrote git to be the VCS for the
kernel), android (as in phones), Ruby on Rails, Gnome, Qt, KDE,
X, Perl, Go, Python, Vim, and GNU Emacs.

Some aren’t. R is still on Subversion. Firefox is still on Mercurial.



Why?

Section 28.1.1.1 of the GNU Emacs manual.

Version control systems provide you with three important
capabilities:

Reversibility: the ability to back up to a previous state if you
discover that some modification you did was a mistake or a
bad idea.

Concurrency: the ability to have many people modifying the
same collection of files knowing that conflicting modifications
can be detected and resolved.

History: the ability to attach historical data to your data, such
as explanatory comments about the intention behind each
change to it. Even for a programmer working solo, change
histories are an important aid to memory; for a multi-person
project, they are a vitally important form of communication
among developers.



Getting Git

Type “git” into Google and follow the first link it gives you

http://git-scm.com/

Under “downloads” it tells you how to get git for Windows and for
Mac OS X.

If you have Linux, it just comes with (use the installer for your
distribution).

E. g., on Ubuntu

sudo apt-get update

sudo apt-get install git



What?

(again from Wikipedia under “Git (software)”)

Torvalds has quipped about the name git, which is British English
slang meaning “unpleasant person”. Torvalds said: “I’m an
egotistical bastard, and I name all my projects after myself. First
‘Linux’, now ‘git’.” The man page describes Git as “the stupid
content tracker”.

(and from memory)

Linus has also said that it was a short name that hadn’t already
been used for a UNIX command.



Before Anything Else

Tell git who you are.

git config --global user.name "Charles J. Geyer"

git config --global user.email charlie@stat.umn.edu

Of course, replace my name and e-mail address with yours.



Cloning an Existing Project

git clone git://github.com/cjgeyer/foo.git

Or you can copy an actual repository if it is on the same computer

git clone /home/geyer/GitRepos/Git

Or you can do the same from another computer

git clone geyer@ssh.stat.umn.edu:/home/geyer/GitRepos/Git

via ssh (requires password or passphrase). The syntax is the same
as for remote files when using scp.



Starting a New Project

mkdir foo

cd foo

git init

As yet there are no files in the project, because you haven’t put
any there. But

ls -A

shows a directory named .git (the -A flag to the ls command is
needed to show a file or directory beginning with a dot) where git
will store all version control information.



Warning about Starting a New Project

If you are making an R package, put the package directory in your
git repo. Do not make it your git repo. I. e., if the package is foo,
then the directory foo which contains the package (has files
DESCRIPTION, NAMESPACE, etc. and directories R, data, man, etc.)
should not be the top level directory of the repo (the one the
directory .git is in).



Commits

Git remembers what you commit. Nothing else.

Git offers very precise control of what a commit remembers. It
remembers exactly the files you tell it to. Nothing else.

What it remembers in a commit is what you have put in the index,
also called the staging area.



Commits (cont.)

Another way to look at what git commit does is that it makes a
“snapshot” of the working tree (the contents of the directory in
which you ran git init or which was produced by git clone).

This is true in one sense and false in another.

If you clone a git repository, you get the entire history, all the
versions of files remembered in all commits, and the working tree
will contain the most recent version of each file. But it does not
contain versions never committed.



Git add

The command git add adds files to the index (staging area).

Shell file globbing is useful in conjunction with this.

git add [A-Z]*

git add R/*.R

git add src/*.{c,h,f,cc}

git add man/*.Rd

git add data/*.{R,tab,txt,csv,rda}

git add tests/*.{R,Rout.save}

git add vignettes/*.Rnw

adds most of what you might want to track in an R package.



Commits (cont.)

The command git commit does commits.

git commit -m "first commit"

does a commit. The argument of the -m flag is the commit
message. If the -m flag is omitted, then git drops you into your
default editor to compose the commit message.



Commits (cont.)

git commit -a

adds all files that are being tracked to the index (staging area) and
then does the commit. This is useful when you have made changes
to files that were already being tracked (were added in previous
commits).



Git status

The command git status (from the man page)

Displays paths that have differences between the index file
and the current HEAD commit, paths that have differences
between the working tree and the index file, and paths in
the working tree that are not tracked by git (and are not
ignored by gitignore(5)). The first are what you would
commit by running git commit; the second and third are
what you could commit by running git add before running
git commit.



Gitignore

The file .gitignore in the top-level directory of a repository tells
git what to ignore. This file for R package foo is

*.Rcheck

*.so

*.o

*.tar.gz

symbols.rds

Note that patterns recognized by the UNIX shell can be used.

You want git to track this file so it is part of every repository.



Git diff

The command

git diff

shows the differences between the working tree and the index
(staging area), the command

git diff --cached

between the index (staging area) and the previous commit. And
there are lots more possibilities.



Help

git status --help

man git-status

do the same thing (show the man page for git status) but

git --help

man git

are different (the first is terser).



Git log

The command git log describes all commits.



Halftime Summary

git init

git clone

git add

git commit

git diff

git status

git log

Are all you need to know to work on some projects.

But there is lots more (see git --help).



Branching and Merging

git branch dumbo

git checkout dumbo

switches to a new branch (named “dumbo”). Make changes and
commits on this branch.

git checkout master

switches to the original branch (named “master” by convention).
Make changes and commits on this branch.



Branching and Merging (cont.)

The two branches proceed independently from the point of the
branch until

git checkout master

git merge dumbo

merges them.



Branching and Merging (cont.)

The merge will complete (making a “merge commit”) or it may be
unable to resolve conflicts (where overlapping changes have been
made in the two branches). Then it stops, and you must resolve
the conflicts manually, that is, edit files removing the conflict
markers and leaving them in the form you want to commit. Then

git commit -a

does the merge commit (you do not need this step if there were no
conflicts).



Branching and Merging (cont.)

From get merge --help

Warning: Running git merge with uncommitted changes
is discouraged: while possible, it leaves you in a state that
is hard to back out of in the case of a conflict.

Never merge unless both branches have all changes committed
(git status says “nothing added to commit”).



Working with Others

Suppose you had a Github account, you had uploaded a public key
following the instructions at Github, and I had set the foo

repository at Github to allow you write permission.

Then

git clone git@github.com:cjgeyer/foo.git

is a different URL from which to clone the repository. If you had
already cloned from the read-only URL, then

git remote origin git@github.com:cjgeyer/foo.git

would change the “origin” to the read-write URL.



Working with Others (cont.)

Suppose you have made some changes and committed them to
your clone.

First get up-to-date with Github.

git pull origin master

This will do a merge and may require resolving merge conflicts
(and doing another commit when they are). Then upload your
commits to Github

git push origin master



Working with Others (cont.)

Never push changes to a project when you are not up-to-date. You
can do this using options to git push, but don’t. Your
collaborators will hate you if you do.



Working with Others (cont.)

Alternatively, suppose I don’t want you writing to my Github
repository without my knowledge and hence don’t give you write
permission.

You can clone my repository on Github (making your own Github
repository) upload your changes there, and either

you have “forked” my project (o. k., if it has a free software
license),

you can ask me to pull from you and merge the changes, in
which case the project is unified again.


