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The univariate normal distribution plays a key role in univariate statistics.
z ~ N(u,0?)

means that = has normal distribution with mean 1 and variance o2. Standardized = is z = (z — u) /0. The density
of zis
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z ~ N(0, 1) follows a standard normal distribution.

2? = (x — p)?/o? is x? (chi squared with 1 degree of freedom).

E(2?) = 1. Var(z?) = 2. P(2* > k) = P(|z] > vk), which we can get from a normal table. For example,
P(z% > 3.84) = P(|z| > 1.96) = .05.

Suppose that z;, xs, . . ., z,, are independent normals with expectations y; and variances 7.

Let = be the vector with elements z;; let 1 be the vector with elements 1;; and let X be the diagonal matrix with
elements o2 = oy;.

What is the density of z?
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Multivariate normal distribution. Let x and 1 be p-vectors, and let 32 be a symmetric, positive definite matrix.
T~ Np(:ua ¥)

means that x follows the multivariate normal distribution with mean p and variance .. The density is
R > L S SRPeS 1N oo e

[ p,¥) = (2m)P/2 |Z‘.5e :
Standard multivariate normal has . = 0 and ¥ = I,,.
Some facts:
Elz] = p
Var[z] =%
(z — p)S" (2 — p) = trace(X 7" (z — p)(« — p)’) has a x? distribution, with expected value p and variance 2p.
Mode at p; all level curves are ellipses centered at .
If ¢* is the upper o percent point of a x2, then the ellipse (z — 1)'S " (z — ) < ¢* describes a region with
probability 1 — «.
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Shown from (4,4) direction.
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Contours at 22, 12, .52 (probabilities .865, .393, and .117).
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Contours at 22, 12, .52 (probabilities .865, .393, and .117).
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Properties of the Multivariate Normal.

All marginal distributions are normal.

Divide z into its first p; elements and its remaining p, = p — p; elements: =/ = [z}, z}] Partition x and X in the
same way (subscripts on z and p now indicate the partition instead of the individual element)

1 Y1 Yo
n= l/@]’z_lzzl E22]
11 and x, are p; vectors.
1o and xo are py Vectors.
Y11 IS py X pr.
Y12 IS p1 X po.
Yo1 =Xy is p2 X p1.
Y90 IS Pa X po.
x1 and z- are independent if X5 = 0.
All linear combinations are normal.

Let B be ¢ x p, then
Bz ~ N,(Bu, BEB')

If X = UAU' is the spectral decomposition of X2, then v = U’x has distribution
U'z ~ Ny(U'p, U'EU) = N,(U', A)

In particular, v has independent components.
All conditional distributions are normal.
To|x1 is NOrmal with mean
Poer = fo — Sn Nt (w1 — 1)
and variance
Soge1 = Yoo — X011 E1e
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This is a linear regression of x5 on x

Bae1 = L1277 is @ py x p; matrix of regression coefficients.

Yoe1 dOEs not depend on x;.

Try these out with p; = p, = 1 and compare with simple linear regression.

Cmd> Sigma <- .57 (abs(run(4)-run(4)?))

Cmd> Sigma

(1,1 1 0.5 0.25 0.125
(2,1) 0.5 1 0.5 0.25
(3,1) 0.25 0.5 1 0.5
(4,1) 0.125 0.25 0.5 1

Cmd> g1 <- vector(l1,2); g2 <- vector(3,4)
Cmd> Sigmall <- Sigma[gl,gl]

Cmd> Sigmal2 <- Sigma[gl,g2]

Cmd> Sigma2l <- Sigma[g2,gl]
Cmd> Sigma22 <- Sigma[g2,g2]

Cmd> Sigma21%*%solve(Sigmall)

(1,1 0 0.5
(2,1) 0 0.25
Cmd> Sigma22-Sigma2l%*%solve(Sigmall)%*%Sigmal2
(1,1 0.75 0.375
2,1 0.375 0.9375

Cmd> Sigma <- dmat(4,1)+rep(1,4)*rep(1,4)’

Cmd> Sigma

(1,1) 2 1 1 1
2,1 1 2 1 1
(3,1 1 1 2 1
(4,1) 1 1 1 2

Cmd> Sigmall <- Sigma[gl,gl]
Cmd> Sigmal2 <- Sigma[gl,g2]

Cmd> Sigma2l <- Sigma[g2,gl]



Cmd> Sigma22 <- Sigma[g2,92]

Cmd> Sigma21%*%solve(Sigmall)

(1,1) 0.33333 0.33333
(2,1) 0.33333 0.33333
Cmd> Sigma22-Sigma21%*%solve(Sigmall)%*%Sigmal2
(1,1 1.3333 0.33333
(2,1) 0.33333 1.3333

Let X, X,,..., X, be idependent with X; having distribution N, (1, Z). Then

n

Vi= ZCZXZ ~NQ i, (- E)E)
=1 i=1 i=1
IfVeo=3%", bi}?i, then V; and V5 are jointly normal with covariance

n

=1

This is completely analogous to the univariate situation.
Sampling Distribution. Suppose that X; are iid N,(u, X). Then X has distribution

X is an unbiased estimate of x and is also the maximum likelihood estimate of ..
This is completely analogous to the univariate situation.

is an unbiased estimate of 3, and 1S is the maximum likelihood estimate of X.
X and S are independent.

This is completely analogous to the univariate situation.

If z; are izd N(0, o%) (univariate), then

n

2 2.2
Zzi ~ O Xn
=1

If z; are iid N(0, %) (p-variate), the
> zizp ~ Wi (D)
=1

which is a Wishart distribution with n degrees of freedom and parameter 3.
(n—1)S ~W,_1(%)

Wishart density only exists if degrees of freedom greater than dimension.
Let V, ~ W,(X) and Vo ~ W,,(X), then

Vi+ Vo~ Wi (X)
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(df add if 32 matches).
CV.C' ~ W,(CxC')

Law of large numbers

x1,Za,.-.,T, are p-variate 7id from a population with mean .

Then x converges (in probability) to x4 as n tends to infinity.

If 3 exists, then S converges to X in probability as » tends to infinity.

x1,Zs,.-.,T, are p-variate 7id from a population with mean p and nonsingular variance 3. Then

V(X — ) = N(0, %)

and
V(X = p)'STHE = 1) = x;
as n — p goes to infinity.
Multivariate Standardization.
x has mean  and variance ..
We want C so that
z=C(x — p)

has mean 0 and variance I, and is standardized.
C(z — p) has mean 0 and variance CXC’, so we need C such that CXC' = I,,.
We want to write ¥ = BB’ for some nonsingular B. Then

B 'Y(B) =1,

so C = B! is what we need.
One choice derived from the spectral decomposition of X is

B = UASU’

This is a symmetric square root.
There are other choices, so the multivariate standardization is not unique.
Another common choice:

Y=LU=UU

where U is upper triangular.
This is called the Cholesky Decomposition of .
z is not unique, but

[2]* = 2"z = (2 —n)'C'Clz - p)
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isunique.

||2]|* = 3021 27 ~ xj, showing that (= — p)' 57! (2 — p) ~ x;.

Standarizing, or at least diagonalizing the covariance matrix, is often the beginning of understanding in multivari-
ate.



Cmd> Sigma <- matrix(vector(16,-12,-12,16),2)

Cmd> Sigma

1,1) 16 -12
(2,1) -12 16
Cmd> c¢ <- cholesky(Sigma);c
(1, 4 -3
2,1) 0 2.6458
Cmd> c”%*%c

(1,0 16 -12
(2,1) -12 16

Cmd> eigout <- eigen(Sigma);\
evec <- eigout$vectors;)\
eval <- eigout$values

Cmd> d <- evec¥W*%dmat(eval™ .5)%*%evec”

Cmd> d

(1,1) 3.6458 -1.6458
(2, -1.6458 3.6458
Cmd> d%*%d

(1,1) 16 -12
(2,1) -12 16



