Statistics 5041

 9. Multivariate Normal Distribution

 9. Multivariate Normal Distribution}

Gary W. Oehlert

School of Statistics
313B Ford Hall
612-625-1557
gary@stat.umn.edu
The univariate normal distribution plays a key role in univariate statistics.

$$
x \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)
$$

means that x has normal distribution with mean μ and variance σ^{2}. Standardized x is $z=(x-\mu) / \sigma$. The density of x is

$$
\begin{aligned}
f\left(x ; \mu, \sigma^{2}\right) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}} \\
& =\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{\sigma^{2}}} e^{-\frac{1}{2}(x-\mu) \sigma^{-2}(x-\mu)} \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2} z^{2}}
\end{aligned}
$$

$z \sim \mathrm{~N}(0,1)$ follows a standard normal distribution.
$z^{2}=(x-\mu)^{2} / \sigma^{2}$ is χ_{1}^{2} (chi squared with 1 degree of freedom).
$E\left(z^{2}\right)=1 . \operatorname{Var}\left(z^{2}\right)=2 . P\left(z^{2}>k\right)=P(|z|>\sqrt{k})$, which we can get from a normal table. For example, $P\left(z^{2}>3.84\right)=P(|z|>1.96)=.05$.
Suppose that $x_{1}, x_{2}, \ldots, x_{p}$ are independent normals with expectations μ_{i} and variances σ_{i}^{2}.
Let x be the vector with elements x_{i}; let μ be the vector with elements μ_{i}; and let Σ be the diagonal matrix with elements $\sigma_{i}^{2}=\sigma_{i i}$.
What is the density of x ?

$$
\begin{aligned}
f(x ; \mu, \Sigma) & =f\left(x_{1}, x_{2}, \ldots, x_{p} ; \mu_{1}, \ldots, \mu_{p}, \sigma_{1}^{2}, \ldots, \sigma_{p}^{2}\right) \\
& =\prod_{i=1}^{p} \frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{\sigma_{i}^{2}}} e^{-\frac{1}{2}\left(x_{i}-\mu_{i}\right) \sigma_{i}^{-2}\left(x_{i}-\mu_{i}\right)} \\
& =\frac{1}{(2 \pi)^{p / 2}} \frac{1}{\sqrt{\prod_{i=1}^{p} \sigma_{i}^{2}}} e^{-\frac{1}{2} \sum_{i=1}^{p}\left(x_{i}-\mu_{i}\right) \sigma_{i}^{-2}\left(x_{i}-\mu_{i}\right)} \\
& =\frac{1}{(2 \pi)^{p / 2}} \frac{1}{|\Sigma| \cdot 5} e^{-\frac{1}{2}(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)}
\end{aligned}
$$

Multivariate normal distribution. Let x and μ be p-vectors, and let Σ be a symmetric, positive definite matrix.

$$
x \sim \mathrm{~N}_{p}(\mu, \Sigma)
$$

means that x follows the multivariate normal distribution with mean μ and variance Σ. The density is

$$
f(x ; \mu, \Sigma)=\frac{1}{(2 \pi)^{p / 2}} \frac{1}{|\Sigma|^{5}} e^{-\frac{1}{2}(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)}
$$

Standard multivariate normal has $\mu=0$ and $\Sigma=\mathbf{I}_{p}$.
Some facts:
$E[x]=\mu$
$\operatorname{Var}[x]=\Sigma$
$(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)=\operatorname{trace}\left(\Sigma^{-1}(x-\mu)(x-\mu)^{\prime}\right)$ has a χ_{p}^{2} distribution, with expected value p and variance $2 p$. Mode at μ; all level curves are ellipses centered at μ.
If q^{2} is the upper α percent point of a χ_{p}^{2}, then the ellipse $(x-\mu)^{\prime} \Sigma^{-1}(x-\mu) \leq q^{2}$ describes a region with probability $1-\alpha$.

$$
p=2, \mu=(1,1)^{\prime}, \Sigma=\left[\begin{array}{rr}
.16 & -.12 \\
-.12 & .16
\end{array}\right]
$$

Shown from $(4,4)$ direction.

$$
p=2, \mu=(1,1)^{\prime}, \Sigma=\left[\begin{array}{rr}
.16 & -.12 \\
-.12 & .16
\end{array}\right]
$$

Contours at $2^{2}, 1^{2}, .5^{2}$ (probabilities .865, .393, and .117).

Shown from $(4,4)$ direction.

$$
p=2, \mu=(1,1)^{\prime}, \Sigma=\left[\begin{array}{ll}
.16 & .12 \\
.12 & .16
\end{array}\right]
$$

Contours at $2^{2}, 1^{2}, .5^{2}$ (probabilities .865, .393, and .117).

Properties of the Multivariate Normal.

All marginal distributions are normal.
Divide x into its first p_{1} elements and its remaining $p_{2}=p-p_{1}$ elements: $x^{\prime}=\left[x_{1}^{\prime}, x_{2}^{\prime}\right]$ Partition μ and Σ in the same way (subscripts on x and μ now indicate the partition instead of the individual element)

$$
\mu=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right], \Sigma=\left[\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right]
$$

$x_{i} \sim \mathrm{~N}_{p_{i}}\left(\mu_{i}, \Sigma_{i i}\right)$
μ_{1} and x_{1} are p_{1} vectors.
μ_{2} and x_{2} are p_{2} vectors.
Σ_{11} is $p_{1} \times p_{1}$.
Σ_{12} is $p_{1} \times p_{2}$.
$\Sigma_{21}=\Sigma_{12}^{\prime}$ is $p_{2} \times p_{1}$.
Σ_{22} is $p_{2} \times p_{2}$.
x_{1} and x_{2} are independent if $\Sigma_{12}=0$.
All linear combinations are normal.
Let \mathbf{B} be $q \times p$, then

$$
\mathbf{B} x \sim \mathrm{~N}_{q}\left(\mathbf{B} \mu, \mathbf{B} \Sigma \mathbf{B}^{\prime}\right)
$$

If $\Sigma=\mathbf{U} \Lambda \mathbf{U}^{\prime}$ is the spectral decomposition of Σ, then $v=\mathbf{U}^{\prime} x$ has distribution

$$
\mathbf{U}^{\prime} x \sim \mathbf{N}_{p}\left(\mathbf{U}^{\prime} \mu, \mathbf{U}^{\prime} \Sigma \mathbf{U}\right)=\mathbf{N}_{p}\left(\mathbf{U}^{\prime} \mu, \Lambda\right)
$$

In particular, v has independent components.
All conditional distributions are normal.
$x_{2} \mid x_{1}$ is normal with mean

$$
\mu_{2 \bullet 1}=\mu_{2}-\Sigma_{21} \Sigma_{11}^{-1}\left(x_{1}-\mu_{1}\right)
$$

and variance

$$
\Sigma_{22 \bullet 1}=\Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}
$$

This is a linear regression of x_{2} on x_{1}
$\beta_{2 \bullet 1}=\Sigma_{21} \Sigma_{11}^{-1}$ is a $p_{2} \times p_{1}$ matrix of regression coefficients.
$\Sigma_{2 \bullet 1}$ does not depend on x_{1}.
Try these out with $p_{1}=p_{2}=1$ and compare with simple linear regression.

Cmd> Sigma $<-.5^{\wedge}\left(\operatorname{abs}\left(\right.\right.$ run (4)-run $\left.\left.(4)^{\prime}\right)\right)$				
Cmd> Sigma				
C				
$(1,1)$	1	0.5	0.25	0.125
$(2,1)$	0.5	1	0.5	0.25
$(3,1)$	0.25	0.5	1	0.5
$(4,1)$	0.125	0.25	0.5	1

```
Cmd> g1 <- vector(1,2); g2 <- vector(3,4)
Cmd> Sigma11 <- Sigma[g1,g1]
Cmd> Sigma12 <- Sigma[g1,g2]
```

Cmd> Sigma21 <- Sigma $[g 2, g 1]$
Cmd> Sigma22 <- Sigma $[g 2, g 2]$
Cmd> Sigma21\%*\%solve(Sigma11)

$(1,1)$	0	0.5
$(2,1)$	0	0.25

Cmd> Sigma22-Sigma21\%*\%solve(Sigma11) \% * \% Sigma12

$(1,1)$	0.75	0.375

$\begin{array}{lll}(2,1) & 0.375 & 0.9375\end{array}$
Cmd> Sigma <- dmat $(4,1)+r e p(1,4) * r e p(1,4)$ '
Cmd> Sigma

$(1,1)$	2	1	1	1
$(2,1)$	1	2	1	1
$(3,1)$	1	1	2	1
$(4,1)$	1	1	1	2

Cmd> Sigma11 <- Sigma $[91, g 1]$
Cmd> Sigma12 <- Sigma $[91, g 2]$
Cmd> Sigma21 <- Sigma $[92, g 1]$

Cmd>	Sigma21\%*\%solve	
$(1$, Sigma11) $)$		
$(2,1)$	0.33333	0.33333
	0.33333	0.33333

Cmd> Sigma22-Sigma21\%*\%solve(Sigma11) \% * \% Sigma12

$(1,1)$	1.3333	0.33333
$(2,1)$	0.33333	1.3333

Let $\overrightarrow{\mathbf{X}}_{1}, \overrightarrow{\mathbf{X}}_{2}, \ldots, \overrightarrow{\mathbf{X}}_{n}$ be idependent with $\overrightarrow{\mathbf{X}}_{i}$ having distribution $\mathrm{N}_{p}\left(\mu_{i}, \Sigma\right)$. Then

$$
V_{1}=\sum_{i=1}^{n} c_{i} \overrightarrow{\mathbf{X}}_{i} \sim \mathrm{~N}\left(\sum_{i=1}^{n} c_{i} \mu_{i},\left(\sum_{i=1}^{n} c_{i}^{2}\right) \Sigma\right)
$$

If $V_{2}=\sum_{i=1}^{n} b_{i} \overrightarrow{\mathbf{X}}_{i}$, then V_{1} and V_{2} are jointly normal with covariance

$$
\sum_{i=1}^{n}\left(b_{i} c_{i}\right) \Sigma
$$

This is completely analogous to the univariate situation.
Sampling Distribution. Suppose that $\overrightarrow{\mathbf{X}}_{i}$ are iid $N_{p}(\mu, \Sigma)$. Then $\overline{\mathbf{x}}$ has distribution

$$
\mathrm{N}\left(\mu, \frac{1}{n} \Sigma\right)
$$

$\overline{\mathbf{x}}$ is an unbiased estimate of μ and is also the maximum likelihood estimate of μ. This is completely analogous to the univariate situation.

$$
\mathbf{S}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\overrightarrow{\mathbf{X}}_{i}-\overline{\mathbf{x}}\right)\left(\overrightarrow{\mathbf{X}}_{i}-\overline{\mathbf{x}}\right)^{\prime}
$$

is an unbiased estimate of Σ, and $\frac{n-1}{n} \mathbf{S}$ is the maximum likelihood estimate of Σ. $\overline{\mathbf{x}}$ and \mathbf{S} are independent.
This is completely analogous to the univariate situation.
If z_{i} are $i i d \mathrm{~N}\left(0, \sigma^{2}\right)$ (univariate), then

$$
\sum_{i=1}^{n} z_{i}^{2} \sim \sigma^{2} \chi_{n}^{2}
$$

If z_{i} are $i i d \mathrm{~N}(0, \Sigma)$ (p-variate), the

$$
\sum_{i=1}^{n} z_{i} z_{i}^{\prime} \sim W_{n}(\Sigma)
$$

which is a Wishart distribution with n degrees of freedom and parameter Σ.
$(n-1) \mathbf{S} \sim W_{n-1}(\Sigma)$
Wishart density only exists if degrees of freedom greater than dimension.
Let $\mathbf{V}_{1} \sim W_{n}(\Sigma)$ and $\mathbf{V}_{2} \sim W_{m}(\Sigma)$, then

$$
\mathbf{V}_{1}+\mathbf{V}_{2} \sim W_{n+m}(\Sigma)
$$

(df add if Σ matches).

$$
\mathbf{C V}_{1} \mathbf{C}^{\prime} \sim W_{n}\left(\mathbf{C} \Sigma \mathbf{C}^{\prime}\right)
$$

Law of large numbers

$x_{1}, x_{2}, \ldots, x_{n}$ are p-variate $i i d$ from a population with mean μ.
Then $\overline{\mathbf{x}}$ converges (in probability) to μ as n tends to infinity.
If Σ exists, then S converges to Σ in probability as n tends to infinity.
$x_{1}, x_{2}, \ldots, x_{n}$ are p-variate $i i d$ from a population with mean μ and nonsingular variance Σ. Then

$$
\sqrt{n}(\overline{\mathbf{x}}-\mu) \rightarrow \mathrm{N}(0, \Sigma)
$$

and

$$
\sqrt{n}(\overline{\mathbf{x}}-\mu)^{\prime} \mathbf{S}^{-1}(\overline{\mathbf{x}}-\mu) \rightarrow \chi_{p}^{2}
$$

as $n-p$ goes to infinity.
Multivariate Standardization.
x has mean μ and variance Σ.
We want \mathbf{C} so that

$$
z=\mathbf{C}(x-\mu)
$$

has mean 0 and variance \mathbf{I}_{p} and is standardized.
$\mathbf{C}(x-\mu)$ has mean 0 and variance $\mathbf{C} \Sigma \mathbf{C}^{\prime}$, so we need \mathbf{C} such that $\mathbf{C} \Sigma \mathbf{C}^{\prime}=\mathbf{I}_{p}$.
We want to write $\Sigma=\mathbf{B B}^{\prime}$ for some nonsingular \mathbf{B}. Then

$$
\mathbf{B}^{-1} \Sigma\left(\mathbf{B}^{\prime}\right)^{-1}=\mathbf{I}_{p}
$$

so $\mathbf{C}=\mathbf{B}^{-1}$ is what we need.
One choice derived from the spectral decomposition of Σ is

$$
\mathbf{B}=\mathbf{U} \Lambda^{.5} \mathbf{U}^{\prime}
$$

This is a symmetric square root.
There are other choices, so the multivariate standardization is not unique.
Another common choice:

$$
\Sigma=\mathbf{L} \mathbf{U}=\mathbf{U}^{\prime} \mathbf{U}
$$

where U is upper triangular.
This is called the Cholesky Decomposition of Σ.
z is not unique, but

$$
\begin{aligned}
\|z\|^{2} & =z^{\prime} z=(x-\mu)^{\prime} \mathbf{C}^{\prime} \mathbf{C}(x-\mu) \\
& =(x-\mu)^{\prime}\left(\mathbf{B}^{\prime}\right)^{-1} \mathbf{B}^{-1}(x-\mu) \\
& =(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)
\end{aligned}
$$

is unique.
$\|z\|^{2}=\sum_{i=1}^{p} z_{i}^{2} \sim \chi_{p}^{2}$, showing that $(x-\mu)^{\prime} \Sigma^{-1}(x-\mu) \sim \chi_{p}^{2}$.
Standarizing, or at least diagonalizing the covariance matrix, is often the beginning of understanding in multivariate.

Cmd> Sigma <- matrix(vector(16,-12,-12,16),2)
Cmd> Sigma

$(1,1)$	16	-12
$(2,1)$	-12	16

Cmd> c <- cholesky (Sigma) ; c		
$(1,1)$	4	-3
$(2,1)$	0	2.6458

Cmd> $c^{\prime} \% * \% c$		
$(1,1)$	16	-12
$(2,1)$	-12	16

Cmd> eigout <- eigen(Sigma); \backslash
evec <- eigout\$vectors; \}
eval <- eigout\$values
Cmd> d <- evec\%*\%dmat (eval^. 5) \%*\%evec'

Cmd> d

$(1,1)$	3.6458	-1.6458
$(2,1)$	-1.6458	3.6458

Cmd> d\%*\%d
$(1,1) \quad 16 \quad-12$
$(2,1)$
-12
16

