Tables and Graphs

Gary W. Oehlert
School of Statistics
University of Minnesota

January 13, 2016

What we're up against

Getting information from a table is like extracting sunlight from a cucumber.

Farquhar and Farquhar, 1891, p55
Perhaps not that bad, but a challenge.

Our discussion follows Ehrenberg (1977, JRSSA) and Wainer (1997, JEBS).

Types of tables

Wainer lists four types of tables:

- Exploration
- Communication
- Storage
- Decoration

Most displays only do one thing well.

Exploration

Table of residuals from additive fit in unreplicated two-way design, rows and columns sorted by increasing marginal effects:

966	878	482	-74	-2251
871	790	320	-112	-1868
449	405	793	803	-2449
-2286	-2072	-1594	-617	6569

What does it tell us about data?
You might not know yet, but you will.

Communication

From Ehrenberg (1977 The Statistician)
Consumers' (C) and Retailers' (R) ratings of the nutritional and economic values of different foods

Foods	Nutritional		Economic	
	C	R	C	R
Meat	62	58	14	11
Milk	55	52	44	95
Eggs	49	48	85	61
Cheese	45	52	30	62
Fresh Veg.	42	24	25	18
Fish	33	52	20	10
Chicken	18	13	70	25
Bread	5	11	5	21

*In decreasing order of Consumers' Nutritional Ratings.

Archiving

From Wainer (1997 JEBS). Illegibility is practically the point.

public SCHOOLS	Grade 8-1992									
	Graduated College		Some Education After High School		Graduated High Schoot		$\begin{aligned} & \text { Did Nol Finish High } \\ & \text { Schood } \end{aligned}$		1 Don't Know	
	Percentage of Students	$\begin{gathered} \text { Average } \\ \text { Proficiency } \end{gathered}$	Percentage of Students	Average	Percentage of Students	Average Proficiency	Percentage of Students	Proficiency	Percentage of Students	Average Proficiency
MATIOM	40 (1.4)	279 (1.4)	18 (0.6)	270 (1.2)	25 (0.8)	256 (1.4)	8 (0.6)	248 (1.8)	9 (0.5)	251 (1.7)
Northeast	38 (3.1)	282 (4.2)	18 (1.1)	267 (3.0)	26 (2.2)	259 (4.2)	8 (0.9)	246 (4.2)	10 (1.2)	250 (3.3)
Southeast	35 (1.9)	270 (1.9)	17 (0.8)	263 (2.0)	28 (1.4)	249 (1.9)	12 (1.6)	246 (4.2)	8 (1.0)	248 (4.3)
Centra!	42 (2.7)	283 (2.9)	20 (1.4)	273 (1.6)	26 (1.7)	264 (2.3)	4 (0.7)	\cdots (\cdots (${ }^{\text {a }}$	7 (0.8)	258 (3.8)
West STATES	43 (2.9)	279 (2.6)	18 (1.2)	274 (2.6)	19 (1.5)	252 (2.9)	9 (1.1)	248 (2.4)	11 (0.9)	248 (2.9)
Alabama	33 (1.6)	261 (2.5)	18 (0.7)	258 (2.0)	29 (1.1)	244 (1.8)	13 (0.9)	239 (2.0)	7 (0.6)	237 (2.9)
Arizona	36 (1.5)	277 (1.5)	22 (1.0)	270 (1.5)	21 (0.9,	256 (1.6)	10 (0.7)	245 (2.5)	12 (0.8)	248 (2.7)
Arkansas	30 (1.1)	264 (1.9)	20 (0.8)	264 (1.7)	31 (1.1)	248 (1.6)	11 (0.7)	246 (2.4)	8 (0.6)	245 (2.7)
Calitorna	39 (1.8)	275 (2.0)	18 (1.0)	266 (2.1)	17 (0.9)	251 (2.1)	10 (0.9)	241 (2.2)	16 (1.1)	240 (2.9)
Colorado	46 (1.2)	282 (1.3)	19 (0.9)	276 (1.6)	21 (0.9)	260 (1.5)>	6 (0.6)	250 (2.4)	7 (0.5)	252 (2.6)
Connecticut	47 (1.3)	288 (1.0)>	16 (0.8)	272 (1.8)	22 (0.9)	260 (1.8)	6 (0.6)	245 (3.3)	9 (0.6)	251 (2.4)
Delaware	39 (1.2)	274 (1.3)	18 (1.0)	268 (2.3)	30 (1.0)	251 (1.7)	6 (0.5)	248 (4.0)	8 (0.9)	248 (3.4)
Dist. Columbia	32 (1.0)	244 (1.7)	17 (0.8)	240 (1.9)	29 (0.8)	224 (1.6)	$9(0.7)$	225 (3.2)	12 (0.6)	229 (2.2)
Fiorida	39 (1.5)	268 (1.9)	19 (0.7)	266 (1.9)	24 (1.1)	251 (1.8)	8 (0.7)	244 (2.7)	10 (0.7)	244 (3.21)
Georgia	35 (1.7)	271 (2.1)	18 (0.7)	264 (1.7)	30 (1.2)	250 (1.3)	11 (0.8)	244 (2.2)	6 (0.6)	245 (2.6)
Hawall	38 (1.1)	267 (1.5)	15 (0.9) <	268 (1.9)	25 (1.0)	246 (1.8)	6 (0.5)	242 (3.5)	${ }^{+6}(0.8)$	246 (2.1) \geqslant
Idaho	48 (1.2)	281 (0.9)	20 (0.8)	278 (1.3)	19 (0.9)	268 (1.4)>	7 (0.5)	254 (2.3)	6 (0.5)	254 (2.8)
Indiana	33 (1.5)	283 (1.5)	$21(0.9)$	275 (1.9)	32 (1.1)	260 (1.6)	8 (0.6)	250 (2.6)	6 (0.5)	249 (3.3)
lowa	44 (1.4)	291 (1.2)>	21 (0.8)	285 (1.5)	25 (1.1)	273 (1.3)	4 (0.4)	262 (2.4)	5 (0.4)	266 (2.8)
Kentucky	28 (1.4)	278 (1.6)"	19 (0.8)	267 (1.6)	32 (0.9)	254 (1.6)	15 (0.9)	246 (1.7)	6 (0.4)	242 (2.8)
Louisiana	32 (1.4)	258 (2.5)	20 (0.9)	259 (1.8)	30 (1.3)	242 (1.6)	$10(0.7)$	237 (2.4)	$7(0.6)$	236 (3.7)
Maine	40 (1.5)	288 (1.4)	22 (1.0)	281 (1.5)	26 (1.1)	267 (1.1)	6 (0.5)	259 (2.7)	5 (0.5)	266 (2.6)
Maryland	44 (1.7)	278 (1.8)	18 (0.9)	266 (1.9)	25 (1.2)	250 (1.8)	6 (0.8)	240 (3.7)	7 (0.5)	245 (3.8)
Massachusetts	48 (1.5)	284 (1.3)	17 (0.8)	272 (1.8)	21 (1.0)	261 (1.4)	7 (0.6)	248 (3.2)	7 (0.6)	248 (2.6)
Michugan	38 (1.6)	277 (2.2)	23 (0.9)	271 (2.0)	26 (0.9)	257 (1.7)	6 (0.5)	249 (2.0)	7 (0.6)	248 (3.0)
Minnesota Mississippi	$48(1.3)>$ 36	290 (1.0) > 25	21 (0.9)	284 (1.8)	22 (0.9) <	270 (1.8) $>$	$3(0.4)$	256 (4.2)	7 (0.6)	268 (3.0)
Mississippi	36 (1.7)	254 (1.6)	16 (0.7)	256 (2.0)	29 (1.4)	239 (1.6)	13 (0.8)	234 (1.8)	7 (0.6)	231 (2.8)
Missourı Nebraska	36 (1.3)	280 (1.7)	22 (0.9)	275 (1.5)	29 (1.0)	264 (1.6)	8 (0.7)	254 (2.4)	6 (0.5)	252 (2.9)
Nebraska	46 (1.5)	287 (1.2)	20 (1.0)	280 (1.6)	24 (1.2)	267 (1.7)	4 (0.5)	247 (3.3)	6 (0.6)	256 (3.8)

Or computer files

\# Number of hawks responding to the "alarm" call \# Variables are year (1999 or 2000), season (courtship, \# nestling, fledgling), distance in meters between the \# alarm call and the nest, number of hawks responding, \# and number of.

year	season	distance	respond	trials
1	1	100	1	4
1	1	150	2	4
1	1	225	1	4
1	1	325	2	2
2	1	100	6	8

Should be labeled and annotated.

Decoration

May have data, but also draws eye

PARTY PATROL CITATIONS
In fall 2006, the party patrol issued a total of 984 citations. Thefollowing is a breakdown of those citations:
CRIME NUMBER OF CITATIONS
Consumption of alcohol by minor 404
Noisy assembly 377
Noisy assembly and minor consumption 181
Loitering with open bottle 9
Disorderly conduct 4
Obstruction of law enforcement 2
Moving violation 2
Public urination 1
Flee from officer, obstruction and disconduct 1
Public urination and minor consumption 1
Littering and minor consumption 1
Loitering with open bottle and minor consumption 1
TOTAL CITATIONS 984

SOURCE: UMPD
(MN Daily, Jan 19, 2007)

Back to communication

A display for communication should

- Target an audience
- Have a goal (tell a story)
- Make the story obvious
- Be uncluttered
- Cause no pain

Rules for Communication

Ehrenberg, Wainer, and many others give rules/advice.
We illustrate with examples from their papers.
Remember, we want to communicate, to tell a story, which could be

- Big picture
- Trends
- Comparisons
- Typical values
- Atypical values

Ehrenberg's Criteria

Strong Criterion for Good Table

The patterns and exceptions in a table should be obvious at a glance.

Weak Criterion for Good Table

The patterns and exceptions in a table should be obvious at a glance once one has been told what they are.

Always meet the weak criterion.

Before (Ehrenberg)

UK Merchant Vessels in Service

	1962	1967	1973
Number			
\quad All vessels	2,689	2,181	1,776
Passenger	242	173	122
Dry cargo	1,847	1,527	1,165
\quad Tankers	600	481	489
Thousand deadweight tons			
\quad All vessels	26,577	27,488	46,763
Passenger	1,467	919	349
Dry cargo	13,990	14,362	20,115
\quad Tankers	11,120	12,167	26,299

After (Ehrenberg)

UK Merchant Vessels in Service

Vessels over 500 tons	1962	1967	1973
Number			
\quad Passenger	240	170	120
Tankers	600	480	490
Dry cargo	1,800	1,500	1,200
All vessels	2,700	2,200	1,800
Deadweight tons (thousands)			
\quad Passenger	1,500	920	350
Tankers	11,000	12,000	26,000
Dry cargo	14,000	14,000	20,000
All vessels	26,000	27,000	47,000

Before (Ehrenberg)

Correlation among TV audiences

		PrB	ThW	Tod	WoS	GrS	LnU	MoD	Pan	RgS	24 H
ITV	PrB	1.000	0.106	0.065	0.505	0.474	0.092	0.473	0.168	0.309	0.124
"	ThW	0.106	1.000	0.270	0.142	0.132	0.189	0.082	0.352	0.064	0.395
$"$	Tod	0.065	0.270	1.000	0.093	0.070	0.155	0.038	0.200	0.051	0.244
"	WoS	0.505	0.147	0.093	1.000	0.622	0.079	0.581	0.187	0.297	0.140
BBC	GrS	0.474	0.132	0.070	0.622	1.000	0.085	0.593	0.181	0.341	0.142
"	LnU	0.092	0.189	0.155	0.079	0.085	1.000	0.049	0.197	0.097	0.266
"	MoD	0.473	0.082	0.039	0.581	0.593	0.049	1.000	0.131	0.327	0.122
"	Pan	0.168	0.352	0.200	0.187	0.181	0.197	0.131	1.000	0.147	0.524
"	RgS	0.309	0.064	0.051	0.296	0.341	0.097	0.326	0.147	1.000	0.121
"	$24 H$	0.124	0.395	0.244	0.140	0.142	0.266	0.122	0.524	0.121	1.000

After (Ehrenberg)

Correlation among TV audiences

Programmes		WoS	MoD	GrS	PrB	RgS	24 H	Pan	ThW	Tod	LnU
World of Sport	ITV		.6	.6	.5	.3	.1	.2	.1	.1	.1
Match of the Day	BBC	.6		.6	.5	.3	.1	.1	.1	.0	.0
Grandstand	BBC	.6	.6		.5	.3	.1	.2	.1	.1	.1
Prof. Boxing	ITV	.5	.5	.5		.3	.1	.2	.1	.1	.1
Rugby Special	BBC	.3	.3	.3	.3		.1	.1	.1	.1	.1
24 Hours											
Pancrama	BBC	.1	.1	.1	.1	.1		.5	.4	.2	.2
This Week	ITV	.1	.1	.2	.2	.1	.5		.4	.2	.2
Today	ITV	.1	.0	.1	.1	.1	.4	.4		.3	.2
Line Up	BBC	.1	.0	.1	.1	.1	.2	.2	.3		.2

Round Drastically

Use two significant figures

- Don't usually understand more than two digits Budget is $\$ 27,329,681$ versus budget is 27 million dollars.
- Rarely justify more than two digits statistically God gave us $1 / \sqrt{n}$, but how big must n be for that third digit?
- We rarely care

Life expectance 67.14 years; . 01 year is about 4 days.

Ehrenberg original

Unemployment in Great Britain (thousands)				
	1966	1968	1970	1973
Total unemployed	330.9	549.4	582.2	597.9
Males	259.6	460.7	495.3	499.4
Females	71.3	88.8	86.9	98.5

Ehrenberg after rounding

Unemployment in Great Britain (thousands)				
	1966	1968	1970	1973
Total unemployed	330	550	580	600
Males	260	460	500	500
Females	71	89	87	98

Order Rows/Columns Sensibly

Helps organize and facilitate comparison

- Alphabetical (Alabama first!) almost never correct
- Could be by size
- Could be a natural order, such as time
- By interest (rows or columns to compare should be adjacent)

Wainer before ordering

Battery Life in Hours

Battery Brand	Cassette Player	Radio	Flashlight	Portable Computer
Constant Charge	5	19	10	3
Electro-Blaster	10	26	15	4
Never Die	8	28	16	6
PowerBat	7	24	13	5
Servo-Cell	4	21	12	2

Wainer after ordering

Battery Life in Hours

Battery Brand	Radio	Flashlight	Cassette Player	Portable Computer
Never Die	28	16	8	6
Electro-Blaster	26	15	10	4
PowerBat	24	13	7	5
Servo-Cell	21	12	4	2
Constant Charge	19	10	5	3

Row/Column Summaries

Give a standard for comparison

- Could be mean/median/total/etc
- Give a visual focus
- Provide a standard of "usual"
- An overall summary can also help
- Can highlight for emphasis

Wainer with Summaries

Battery Life in Hours

Battery	Radio	Flash.	Cass. Player	Port. Comp.	Brand Averages
Brand	28	16	8	6	$\mathbf{1 5}$
Never Die	26	15	10	4	$\mathbf{1 4}$
Electro-Blaster	24	13	7	5	$\mathbf{1 2}$
PowerBat	21	12	4	2	$\mathbf{1 0}$
Servo-Cell	19	10	5	3	$\mathbf{9}$
Constant Charge	19	$\mathbf{1 3}$			
Usage averages	$\mathbf{2 4}$	$\mathbf{1 3}$	$\mathbf{7}$	$\mathbf{4}$	$\mathbf{1 2}$

Down Columns

It's easier to compare numbers down columns.

- Numbers are closer
- Digits line up

Ehrenberg after Transposition

Unemployme	in Gre	Britain	ou
Year	Male	Female	Total
1966	260	71	330
1968	460	89	550
1970	500	87	580
1973	500	99	600
Average	430	86	520

Layout/Spacing

- Remove excess lines/boxing
- Use space to emphasize groups/gaps
- Excess space breaks adjacency

What is a stem and leaf plot, but a severely rounded table with meaningful spacing?

Wainer with Summaries

Battery Life in Hours

Battery Brand	Radio	Flash.	Cass. Player	Port. Comp.	Brand Averages
Never Die	28	16	8	6	$\mathbf{1 5}$
Electro-Blaster	26	15	10	4	$\mathbf{1 4}$
PowerBat	24	13	7	5	$\mathbf{1 2}$
Servo-Cell	21	12	4	2	$\mathbf{1 0}$
Constant Charge	19	10	5	3	$\mathbf{9}$
Usage averages	$\mathbf{2 4}$	$\mathbf{1 3}$	$\mathbf{7}$	$\mathbf{4}$	$\mathbf{1 2}$

Wainer's Grades

Student	Score
A	88
B	65
C	91
D	36
E	72
F	57
G	50
H	85
I	62
J	48

Student Score

C	91
A	88
H	85

E	72
B	65
I	62
F	57
G	50
J	48

D 36

Try to avoid

- Multidimensional tables
- Multivariate tables
- Too many rows or columns

Add

- Labels
- Good titles and explanatory text

Exceptions

Point out unusual values

Good Graphics

Fundamental Principal of Statistical Graphics

Above all else show the data.

Graphics can be

- powerful
- beautiful
- efficient
- misleading

We must use them well.

Learn from the best

Ed Tufte is at the top of the pantheon of statistical graphics gods.
We shall listen and obey.
Tufte has three extremely influential books on graphics.
Not everyone agrees with Tufte, but no one can ignore him.

Everyone else

Other important sources:

- Lee Wilkenson (The Grammar of Graphics)
- Bill Cleveland (The Elements of Graphing Data)
- Howard Wainer (lots of articles)

We follow Tufte, Wainer, and Cabrera and McDougall.

Tufte's Goals for Graphics

(1) Show the data.
(2) Substance not graphic design or technology.
(3) Do not distort what the data have to say.
(1) Present much data in a small space.
(3) Make large data sets coherent.
(0) Encourage comparison of different pieces of data.
(0) Reveal data at several levels of detail.
(8) Serve a clear purpose (description, exploration, tabulation or decoration)
(0) Be integrated with statistical/verbal descriptions.

Good Examples from Tufte

Good Examples from Tufte

NEW YORK CITY'S WEATHER FOR 1980

Good Examples from Tufte

Tufte on Technique

- Good format and design

Aesthetics, elegance, and style difficult to prescribe.
Construct, revise, edit, try again

- Words/numbers/graphics together

Data graphics are paragraphs about numbers (Tufte, p 181).
Graphics better for trends, patterns, large data sets.
Tables better for small data sets and quantification.
Graphics and tables must always reinforce message and text.

Tufte continued

- Accessible friendly graphic

Friendly
Unfriendly
Words spelled out; no myste- Abbreviations forcing a derious abbreviations or codes code from the text

Words left to right
Words vertical or in different directions

Short explanatory text
Cryptic and obtuse graphic
No elaborate colors, shad- Obscure coding requires conings, cross hatching; label on stant reference to legend graph; no legend

Tufte continued

- Accessible friendly graphic continued

Friendly
Graph attractive, provokes ugly, and filled with curiosity

Colors chosen with color- Red and green used for esdeficient readers in mind sential contrast

Type is clear, precise, mod- type is overpowering, clunky est

Type is upper and lower case Type all capitals, sans serif with serifs

Tufte continued

- Balance, proportion, scale Wider than tall, say 1.6:1 Use thin lines, no thick
- Narrative quality
- Professional look
- No content-free decoration

Thin lines better

Content-free decoration

Other voices

Cabrera \& McDougall have practical advice on

- Aesthetics
- Annotation
- Contrasts
- Comprehension

Aesthetics

- Use plot region efficiently
- Span plot region
- Leave space in margins for explanatory text in large font (axis label size often too small)
- Must have title and axis labels; other text may add clutter
- Try out color, grey, line types, symbols, etc; revise until it works

Annotation

- Must have title and axis labels; can have legends, subtitles other text.
- Make axis labels simple but informative; include units.
- Use nice ticks.
- Legends add clutter; use carefully.
- Text annotation adds clutter; use carefully.

Contrasts

- Color may help, but
- Avoid yellow (projects poorly)
- Blue often works well
- Red/green color blind
- Difficult to get good colormap/greyscale for ranges
- Symbols OK for printing often too small for presentation
- Not too many lines, they can't be distinguished
- Dashed line types ok for horizontal or vertical; less good for curves.
- Avoid thick lines

Comprehension

- Suit graphics to audience
- Complex graphics require experience
- Don't mislead
- Don't use pie charts
- Connect points in time series; wrap periodic functions
- Be careful with x / y plot scaling and shape

Tufte's Data Ink

Definition (Data ink)

Data ink is the "ink" that displays non-redundant data information.

Definition (Data ink ratio)

Proportion of a graphic's ink devoted to the non-redundant display of data information.
(1) Maximize data ink ratio, within reason
(2) Erase non data ink, within reason
(3) Erase redundant data ink, within reason

Bad data-ink ratio

Good data-ink ratio

Erasable non-data ink

Improved non-data ink

Moiré patterns usually bad

Show data, not frames

MULTIWINDOW PLOT OF PARTICLE PHYSICS MOMENTUM DATA

WTF

Avoid puzzles

Try to figure this one out

Air pollution: small multiples can work

Do not lie with graphics

The size of the representation of a number should be proportional to the number

The number of information carrying dimensions should not exceed the dimension of the data.

Backward in time?

This line, representing 18 miles per gallon in 1978, is 0.6 inches long.

This line, representing 27.5 miles per
gallon in 1985, is 5.3 inches long.

Oil

IN THE BARREL...

Price per bbl. of
light crude, leaving
Saudi Arabia
on Jan. 1

Keep data in context

A few more data points add immensely to the account:

Use consistent graphic design (not like this)

The New York Times / Dec. 19, 1978

How to Display Data Badly (Wainer)

(1) Show as few data as possible.
(2) Hide what data you do show.
(3) Ignore the visual metaphor.
(9) Only order matters.
(0) Graph data out of context.
((Change scales in mid-axis.
(3) Emphasize the trivial, not the important.
(8) Jiggle the baseline.
(9) Austria first.
(10) Label illegibly, incompletely, inaccurately, and ambiguously.

Summary for Graphs

Many, many ways to do things badly.

- Show the data.
- Do not distort.
- Cause no pain.

Summary for Tables

- Design for purpose and audience
- Round!
- Organize
- Simplify
- Add summaries
- Good title/labels
- Clean layout/proper spacing

