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Background

We have already defined type I and II errors.

Reality/State of nature
Decision Null correct Null false

Fail to reject , Type II error
Reject Type I error ,

The type I error rate E is easy to set, we just choose it.

Power is the probability of rejecting the null when the null is false.
Power is the probability of declaring a difference when the
difference is there (getting that lower right smiley).

Power is a much more difficult customer than E .



You should design your experiments to have “appropriate” power.

If the power is too low, then you’re just wasting your time and
resources running an experiment with no chance of finding
what you are looking for.

If the power is too high, then you are spending resources in
this experiment that might be better spent somewhere else.

Appropriate power is probably in the .7 to .95 range, but it is
situationally dependent.



Power for the F test comparing the separate means model with the
single mean model depends on practically everything:

The type I error rate E .

The numerator and denominator degrees of freedom for the F
test; these obviously depend on g and N.

The “non-centrality parameter ζ, which itself depends on the
sample sizes n1, . . . , ng , the non-null treatment means
µ1, . . . , µg , and the error variance σ2.



Under the null, the F statistic follows a (central) F distribution
with g-1 and N-g df.

Combine this with E and we get a critical value: reject for F
statistics larger than the critical value. (Equivalently, any F in that
range will have a p-value less than E .)

When the null is false, the F statistic follows a non-central F
distribution with g-1 and N-g df. The distribution is shifted to the
right, and ζ controls the amount of shift to the right.

Probability of being to the right of the critical value is the power.





As you decrease E , it becomes more difficult to reject the null (that
moves the critical value to the right so you need a bigger F statistic
to reject). For fixed g, N, and ζ, smaller E leads to lower power.

ζ is a measure of how far the alternative state of nature is from
the null. Replace the data with their respective means µi , then fit
the null model to these “data.” Get the residual SS and divide it
by σ2. That is ζ.

ζ increases if you increase the sample sizes.

ζ increases if the error variance is smaller.

ζ increases if the means µi are further apart.



A formula for ζ. Let µi = µ+ αi where we use the αi s with∑
i niαi = 0. Then

ζ =

∑g
i=1 niα

2
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σ2

Note: the expected value of the MSTrt is

E [MSTrt ] = σ2 +

∑g
i=1 niα

2
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g − 1

With E [MSE ] = σ2 you can start to see how these hook together
with ζ.



Excuse me, but . . .

The discerning student will remark that ζ depends on lots of stuff
we don’t know, like the µi s and σ2. If we knew the µi s, we
wouldn’t be doing the experiment in the first place! So what gives?

In practice, power analysis and sample size selection are a big
exercise in “Let’s pretend” or “What if?”

We can control E , and we can control n1, . . . , ng , but otherwise we
are plugging in some hypothesized means and error variance and
asking what the power would be for that state of nature.



To make power analysis useful, you must be able to specify some
scientifically or practically meaningful set of alternative means µi ,
and you must be able to make a guess as to how large the error
variance is.

(Some people like to think of effects αi as multiples of σ, and
while that is mathematically true, I think that is usually a cop out
when specifying alternatives.)

Find alternative means where you can say, “If this were true, I
would want to know about it,” and then design for those
interesting alternatives.



Examples might be

A doubling of the mutation rate is practically significant, so I
want to design for that.

An increase in MPG of 1 is relevant, so I will design for that.

A 20% reduction in the serum concentration of a hormone is
diagnostic, so I design for that.

Many (most?) granting agencies will require a power analysis
before funding a proposal.



OK, but what about σ2? Some possibilities include:

Variance from a pilot study.

Variance from similar experiments in your lab or in the
literature.

Theoretical variances (possible for binomial counts and some
other situations).

Analytical variance of equipment (generally an underestimate
of σ2).

It’s probably best to do multiple power analyses that cover a range
of plausible σ2 values.



Suppose that you have equal sample sizes n, and you think that
any configuration of means where two means are D or more units
apart is interesting.

The smallest value of ζ for that description is

ζ0 =
nD2

2σ2

Any ζ for two means D units apart with sample sizes n will be at
least as big as ζ0.

Thus the power for any of the other ζs will be at least as big as
what you compute for ζ0.



Sample size

You have chosen E , you have some interesting values for the µi s,
and you have a pretty good idea what σ2 is.

Sample size analysis takes those and finds the smallest sample sizes
ni that will achieve a specified level of power.

In principle this involves computing power for a lot of different
sample sizes and finding the one that is just big enough. In
practice, we just use R.



Confidence intervals

Another approach to sample sizes picks n so that confidence
intervals are short enough.

For a contrast, we use the CI

g∑
i=1

wiy i• ± tE/2,ν

√√√√MSE
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The margin of error is thus

MOE = tE/2,ν

√√√√MSE

g∑
i=1

w2
i

ni

where ν is the df for MSE. The width of the interval is
W = 2×MOE .



If we assume that the ni s are all equal, we can solve to get:

n ≈
t2
E/2,νMSE

∑g
i=1 w2

i

MOE 2

We haven’t done the experiment yet, so we don’t know MSE , and
we will instead use a guess of σ2 as we did in power analysis.



We know our desired MOE, we know the wi s, we have a guess for
σ2 which we use as a guess for MSE .

Compute n0 by substituting a normal percent point for the
t-percent point.

n0 ≈
(Φ−1(1− E/2))2σ2

∑g
i=1 w2

i

MOE 2

This gives you a starting point. Now start n at n0 and increment it
until

n ≥
t2
E/2,g(n−1)σ

2
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