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One of my pet peeves is an analysis where someone says “These
factors interact,” and then leaves it at that.

I suppose it’s worse if someone says “These factors have main
effects,” and then doesn’t examine them further, but that is a less
common case.

Let’s take a little time and look at a couple more ways of thinking
about interaction.



One cell interaction

Sometimes much or all of the interaction in a data set is due to a
single treatment (cell) being off the pattern predicted by lower
order terms.

For example, you can have data where all cells except one fit a
main effects only model, but all main effects and interactions will
look big.

Example 9.2 of the text is a 24 factorial with n = 2. Everything is
significant.



Df Sum Sq Mean Sq F value Pr(>F)
A 1 120.90 120.90 117.4511 8.871e-09 ***
B 1 204.02 204.02 198.1979 1.970e-10 ***
C 1 472.78 472.78 459.2896 3.288e-13 ***
D 1 335.40 335.40 325.8336 4.621e-12 ***
A:B 1 18.00 18.00 17.4863 0.0007050 ***
A:C 1 24.85 24.85 24.1421 0.0001559 ***
B:C 1 27.38 27.38 26.5987 9.541e-05 ***
A:D 1 15.12 15.12 14.6934 0.0014664 **
B:D 1 10.81 10.81 10.5027 0.0051192 **
C:D 1 6.48 6.48 6.2951 0.0232492 *
A:B:C 1 11.52 11.52 11.1913 0.0041075 **
A:B:D 1 34.03 34.03 33.0601 2.985e-05 ***
A:C:D 1 50.00 50.00 48.5732 3.161e-06 ***
B:C:D 1 22.11 22.11 21.4803 0.0002754 ***
A:B:C:D 1 13.78 13.78 13.3880 0.0021183 **
Residuals 16 16.47 1.03
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Everything looks parallel, except for the cell with all factors at the
low level. That cell seems to be higher than we would expect.

Looking at the residuals shows that it’s not an outlier issue; both
data points are higher than expected.

Refit with a dummy variable indicating the interacting cell.



Sum Sq Df F value Pr(>F)
Df Sum Sq Mean Sq F value Pr(>F)

A 1 120.90 120.90 117.4511 8.871e-09 ***
B 1 204.02 204.02 198.1979 1.970e-10 ***
C 1 472.78 472.78 459.2896 3.288e-13 ***
D 1 335.40 335.40 325.8336 4.621e-12 ***
alllow 1 217.35 217.35 211.1485 1.229e-10 ***
A:B 1 0.05 0.05 0.0438 0.83684
A:C 1 0.30 0.30 0.2916 0.59666
B:C 1 0.77 0.77 0.7438 0.40120
A:D 1 0.20 0.20 0.1916 0.66744
B:D 1 1.35 1.35 1.3117 0.26892
C:D 1 4.79 4.79 4.6517 0.04658 *
A:B:C 1 3.00 3.00 2.9120 0.10725
A:B:D 1 0.34 0.34 0.3288 0.57435
A:C:D 1 5.47 5.47 5.3115 0.03492 *
B:C:D 1 0.49 0.49 0.4760 0.50012
Residuals 16 16.47 1.03



Almost all of the interaction SS is in that one single cell, although
CD and ACD are still marginally significant. (Their p-values are
almost the same if you use Type II tests.)

Model 1: response ~ A + B + C + D + alllow
Model 2: response ~ A + B + C + D + alllow + C:D
Model 3: response ~ A + B + C + D + alllow + A:C:D
Model 4: response ~ A * B * C * D + alllow
Res.Df RSS Df Sum of Sq F Pr(>F)

1 26 33.210
2 25 29.241 1 3.9691 3.8558 0.06719 .
3 22 22.034 3 7.2076 2.3340 0.11262
4 16 16.470 6 5.5636 0.9008 0.51808

Anova goes with the additive plus alllow, but AIC or BIC would
add one or more interactions.



Clearly, we could also have a “few cell” interaction instead of a one
cell interaction.

One cell interactions are easier to understand than to find.

Few cell interactions are harder still to find (although still fairly
easy to understand).



Polynomial Models

We have seen that polynomial models (or more general functional
models) can be helpful when a factor is quantitative.

For example, for a single factor with quantitative levels zi , we
looked at models like

µi = β0 + β1zi + β2z
2
i + β3z

3
i + β4z

4
i

We can extend this to polynomial models in factorial designs and
polynomial models of interaction.



First, some notation. Suppose that we have a two-factor model
with factors A and B quantitative (like temperature and pressure).

Let wi be the quantitative levels associated with factor A.
Let zj be the quantitative levels associated with factor B.

µij = µ+

λ1,0wi + λ2,0w
2
i + · · ·+ λa−1,0w

a−1
i +

λ0,1zj + λ0,2z
2
j + · · ·+ λ0,b−1z

b−1
j +

λ1,1wizj + λ2,1w
2
i zj + λ1,2wiz

2
j + . . . λa−1,b−1w

a−1
i zb−1

j

Polynomial terms separately in each factor (main effects) plus all
their cross-product terms (interactions).



This polynomial model can describe all of the means that our usual
αi + βj + αβij sorts of models can.

However, we will frequently find that we do not need all of the
terms and can describe the means with a simpler model.

Use Hierarchical Models! That is, if you use the (r,s) term, you
should also use all terms with first subscript ≤ r and second
subscript ≤ s.

Don’t look at coefficients until you have selected your reduced
model.



Why am I happy to remove non-significant model terms here when
I usually don’t?

One major use for polynomial models is to predict at w and z
values that were not used in the experiment.

Leaving non-significant polynomial terms in the model makes
predictions worse, so we want to remove them in this situation.



Suppose now that we also have a categorical factor C. We can
interact categorial and polynomial factors.

The AC interaction could be modeled as:

λ1,0,kwi + λ2,0,kw2
i + · · ·+ λa−1,0,kwa−1

i

where
∑

k λi ,j ,k = 0.

We have an order a-1 polynomial in w for every level k of factor C,
but it’s a different polynomial (has different coefficients) for every
level of C.



Tukey and Mandel interactions

These models for interaction are most useful in cases where we
have a single replication and thus no estimate of pure error.

What these models do is use a few df from the overall interaction
to attempt to capture some particular kinds of interaction, with the
remainder of the df and SS of interaction used as surrogate error.

If this type of interaction is present and we model it, then the
surrogate error is a better surrogate error.



Remember how we said that interaction effects αβij were not the
same as αiβj?

The Tukey one degree of freedom for non-additivity assumes

αβij = λαiβj/µ

This is actually a very common kind of interaction.



To test for the presence of a Tukey one degree of freedom effect,
follow these steps:

1 Fit the additive model with terms A and B (rows and
columns).

2 Get the squared predicted values, divide them by 2, then
divide that by our estimate of µ.

3 Fit a new model that includes A, B, and the rescaled squared
predicted values (RSPV).

4 Testing whether we need the rescaled squared predicted values
tests for the need of the Tukey interaction.



Alternatively, one can produce α̂i β̂j/µ̂ directly from the results of
the lm, and then use that instead of the rescaled squared predicted
values.

m <- lm(y~A+B)
mA <- model.effects(m,"A")[A]
mB <- model.effects(m,"B")[B]
compval <- mA*mB/coef(m)[1]
m2 <- lm(y~A+B+compval)



Tukey interaction is also called transformable nonadditivity,
because it is a kind of interaction that you can decrease by a power
family transformation.

If λ̂ is the estimated coefficient for the RSPV (you get the same
thing using the comparison values), then 1− λ̂ is the estimated
power to transform the data.

The RSPV approach works for finding a transformation with more
factors and more complicated base models. The comparison value
approach can be generalized, but it is much more work.



Mandel generalized the Tukey model.

Row-model: µij = µ+ αi + βj + ζjαi

Column-model: µij = µ+ αi + βj + ξiβj

Slopes-model: µij = µ+ αi + βj + ζjαi + ξiβj .

Row model says every mean is a linear function of row effects, but
slope and intercept differ by column, and vice versa for column
model. Slopes puts everything in.



Recalling mA and mB from above

row.model <- lm(y~A+B+B:mA)
column.model <- lm(y~A+B+A:mB)
slopes.model <- lm(y~A+B+B:mA+A:mB)


