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Definition and notation

As you recall a factor is an aspect of our treatment.

For example, my children used to take apple slices in their lunches.
We didn’t want the apples to brown, and various suggestions were
made about keeping the slices cold and/or lowering the surface pH.

I could experiment to test browning with four treatments: room
temperature, no lemon juice; room temperature, lemon juice rinse;
cool, no lemon juice; cool, lemon juice rinse.

I have four treatments, but these treatments are formed by
combining two factors (temperature and lemon juice) each at two
levels.



Factorial treatment structure is simply the case where treatments
are created by combining factors.

These could be Nisin and Vitamin E factors in potential
antimicrobials; water/rice ratio and cooking time in steamed rice
sensory properties; or intake temperature, intake pressure, injection
pressure, and injection timing in fuel efficiency of diesel engines.

In each case, the treatments are the combinations of factor levels.



We will often refer the the factors generically as A, B, C, and so
on. Factor A has a levels; factor B has b levels; and so on.

With two factors, there are g = ab treatments; with four factors, it
is g = abcd treatments.1

We are still using a completely randomized design with N units
applied to g treatments, and if you want to, you can ignore the
factorial nature when you analyze.

I will argue that you should never ignore the factorial nature when
you design.

1I once helped on an experiment with 24 factors—think about that for a
moment.



Consider a two-factor design. We have data

yijk = µij + εijk

where i = 1, . . . , a; j = 1, . . . , b; and k = 1, . . . , n.

Here i,j together index the treatment by factor levels, and k
indexes the replication within each treatment.

Notice that I wrote n and not nij . We begin with the case of
balanced designs where every treatment has the same number of
replications. Life is much easier under this assumption; we’ll get to
hard realities later.



For concreteness, consider a two-factor design with a=4, b=3, and
g=12. You can visualize this as a table of treatments:

11 12 13

21 22 23

31 32 33

41 42 43

We can do ANOVA on these 12 treatment groups, we can do
pairwise comparisons, we can do contrasts (with coefficients wij

summing to 0), and so on. Everything we’ve done to date just
carries through.



However, the factorial treatment structure lets us organize things
in another way.

For example, ignore B, and just do an ANOVA on the four groups
determined by A. This will have 3 df, and let SSA denote the
between levels of A sum of squares.

This looks at variation between levels of A that is consistent
(constant) across levels of B.

Denote the row means by µ+ αi with
∑
αi = 0.2 αi is called the

main effect of level i of factor A.

2Other restrictions can be used, but I like this one.



A somewhat less obvious way of exploring the same variation is to
look at contrasts in the g groups of the form:

w11 w11 w11

w21 w21 w21

w31 w31 w31

w41 w41 w41

The coefficients all add to zero (as is normal for a contrast), but
they are constant across levels of B. If we choose three orthogonal
contrasts (e.g., (-3,1,1,1), (0,-2,1,1), (0,0,-1,1)), then the SS for
those contrasts will add up to SSA.



Now do the same thing for B, ignoring the levels of A. We will
have 3 groups determined by B, with 2 df between them, and SSB

as the sum of squares.

This is variation between levels of B that is consistent (constant)
across levels of A.

Denote the column means by µ+ βj with
∑
βj = 0. βj is called

the main effect of level j of factor B.



As with A, look at contrasts in the g groups of the form:

w11 w12 w13

w11 w12 w13

w11 w12 w13

w11 w12 w13

The coefficients all add to zero (as is normal for a contrast), but
they are constant across levels of A. If we choose three orthogonal
contrasts (e.g., (-1,0,1), (1,-2,1)), then the SS for those contrasts
will add up to SSB .



There are 11 df between the 12 groups. We have 3 for factor A
and 2 for factor B. Looking at the contrasts shows that they are
orthogonal, so they are partitioning independent variation.

However, 3 + 2 = 5 < 11; there are 6 more df out there somewhere.

This variation is called the interaction variation, and it can only be
seen if we vary both the levels of A and B simultaneously.

Interaction describes how the effect of changing levels of factor A
varies by levels of factor B. Equivalently, it describes how the effect
of changing levels of factor B varies with levels of factor A.



In general, factor A has a-1 df; factor B has b-1 df; the AB
interaction has (a-1)(b-1) df. Moreover, there are contrasts

Coefs Term df

wi A a-1
wj B b-1
wij AB (a-1)(b-1)

The interaction contrasts wij satisfy
∑

i wij =
∑

j wij = 0.

There are (a-1)(b-1) contrasts (6 in our example) in a set of
orthogonal contrast coefficients that describe the interaction
variation. A main effect contrasts, B main effect contrasts, and AB
interaction contrasts are all orthogonal to each other.



Recapping, factorial analysis with main effects and interactions is
an option for analyzing factorial designs.

Factorial analysis is not required, but it often provides insights,
particularly in cases where main effects are large and interactions
are small.

A model that includes only main effects but not interaction is
called additive.



An example where factorial analysis does more harm that good is
looking at a reaction where three separate catalysts must be
present for the reaction to go forward and produce the product.

We can do a three factor design with eight treatments
(combinations of each catalyst present or absent). Given the
above, we only get product when all three catalysts are present.
We learn that fact in the factorial experiment.

However, the main effects and interaction decomposition will just
disguise that simple result.



There are only two situations in which you should use factorial
design, i.e., factorial treatment structure:

1 When interaction is present.

2 When interaction is absent.

If interaction is present, a factorial will allow you to study,
estimate, and test it.

When interaction is absent, a factorial is more efficient than two
designs that study A and B separately. (In the factorial, each data
point tells you about A and about B.)



Remember

Our definition of interaction is based on statistical modeling, not
on scientific principles or considerations. In particular,

The need (or not) for interaction in modeling a data set depends
on the scale of the response.

This means that a data set could look interactive on the natural
scale, but look additive after transformation, or vice versa.

Interaction is always in the context of scale. Interaction as we use
it is a modeling concept, not a scientific concept.



Interaction plots

ANOVA will allow us to determine whether interaction terms in our
model are statistically significant, but it won’t help us understand
the interaction.

A tool I like for understanding interaction is the interaction plot.

This is a plot where we put points at (i , y ij•) for all i,j
combinations. Then we “connect-the-dots” between adjacent
(i , y ij•) that share the same j.

Alternatively, you can reverse the roles of i and j and plot the pairs
(j , y ij•) and then connect the dots between adjacent points that
share the same i.



The two directions of plotting often give very different impressions.

NOX emissions from duel fuel engine (diesel and something, either
gasoline or hydrogen) with the start of injection (SOI) varied
between 16 and 52 degrees before top of dead center.

Both plots show us a much greater effect of fuel at low SOI,
although I like the first one better.

The third plot uses the square root of NOX, which is what is
needed to stabilize the residual variance.

Variability in these data is tiny relative to mean differences;
everything is highly significant.
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Freezing time of small samples of ice cream mix using different
kinds of milk and different amounts of salt in the ice slurry.

Both main effects are significant, but interaction is not.

Response: freezingtime
Df Sum Sq Mean Sq F value Pr(>F)

milk 3 89966 29988.6 710.3151 < 2.2e-16 ***
salt 3 1104 368.1 8.7192 0.001169 **
milk:salt 9 501 55.6 1.3173 0.301901
Residuals 16 675 42.2

(This is a student project I can really appreciate!)
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Models and parameters

We begin with a two-factor model and then generalize.

When we just thought about g treatments and used an overall
mean plus treatment effects, we had an extra parameter. We
solved that via a constraint (e.g., α1 = 0 or

∑
i αi = 0).

The standard factorial model has an overall mean, main effects for
each factor and interaction effects. We will have a lot of extra
parameters and need quite a few constraints to settle things down.



Overall mean, main effects, interaction effects

yijk = µ+ αi + βj + αβij + εijk

i = 1, 2, . . . , a; j = 1, 2, . . . , b; k = 1, 2, . . . , n

a∑
i=1

αa =
b∑

j=1

βj =
a∑

i=1

αβij =
b∑

j=1

αβij = 0

g = ab; N = nab = Ng

dfA = a− 1; dfB = b − 1; dfAB = (a− 1)(b − 1)

dfE = ab(n − 1) = N − ab = N − g

Note that (a− 1) + (b − 1) + (a− 1)(b − 1) = ab − 1 = g − 1.



µ β1 β2 β3

α1 αβ11 αβ12 αβ13

α2 αβ21 αβ22 αβ23

α3 αβ31 αβ32 αβ33

α4 αβ41 αβ42 αβ43

Any particular treatment mean in the table is the interaction
effect, plus the effect for the row, plus the effect for the column,
plus the overall effect.

Note: αβij does not mean αi × βj .



Decomposing the data

yijk = y••• + µ̂
(y i•• − y•••) + α̂i

(y•j• − y•••) + β̂j

(y ij• − y i•• − y•j• + y•••) + α̂βij

(yijk − y ij•) rijk

yijk = y••• + µ̂
(y i•• − µ̂) + α̂i

(y•j• − µ̂) + β̂j

(y ij• − [µ̂+ α̂i + β̂j ]) + α̂βij

(yijk − [µ̂+ α̂i + β̂j + α̂βij ]) rijk



For balanced data, the SS decomposition is also easy.∑
ijk y2

ijk =
∑

ijk(µ̂+ α̂i + β̂j + α̂βij + rijk)2

=
∑

ijk µ̂
2 +

∑
ijk α̂i

2 +
∑

ijk β̂j
2

+
∑

ijk α̂βij

2
+

∑
ijk r2

ijk

= Nµ̂2 +
∑

i nb α̂i
2 +

∑
j na β̂j

2
+

∑
ij n α̂βij

2
+

∑
ijk r2

ijk

= SSConst + SSA + SSB + SSAB + SSE

Balance lets us go from the first line of the decomposition to the
second, because all the cross products add to 0 in the balanced
case. Without balance, life is much harder.

SSConst is usually ignored.



ANOVA

Source df SS MS F

A a-1
∑

i nb α̂i
2 SSA/(a− 1) MSA/MSE

B b-1
∑

j na β̂j
2

SSB/(b − 1) MSB/MSE

AB (a-1)(b-1)
∑

ij n α̂βij

2
SSAB/[(a− 1)(b − 1)] MSAB/MSE

Error N-ab
∑

ijk r2
ijk SSE/(N − ab)

If H0 : αi ≡ 0 is true, MSA/MSE is F with (a-1) and N-ab df.

If H0 : βj ≡ 0 is true, MSB/MSE is F with (b-1) and N-ab df.

If H0 : αβij ≡ 0 is true, MSAB/MSE is F with (a-1)(b-1) and N-ab
df.

Reject for big F, but still need to check assumptions.



The SS for various terms can also be considered as “improvement”
SS for model fit. With the model A + B + AB:

The SS for A is the improvement in adding A main effects to
a constant mean model.

The SS for B is the improvement in going from a model with
just A to an additive model with A and B.

The SS for AB is the improvement in going from an additive
model to the full model with g treatment means.



General factorials

Factorials with more than two factors are just like factorials with
two factors, only more so:

More factors, so more subscripts.

More factors usually means more data.

More terms; each additional factor doubles the number of
terms in the model.

More zero sum (or other) constraints on coefficients.

More confusion with higher order interactions.

and no doubt more where those came from.

But the ideas are just like for two-factor factorials.



Example: four factor model

yijk`m = µ +

αi + βj + γk + δ` +

αβij + αγik + αδi` + βγjk + βδj` + γδk` +

αβγijk + αβδij` + αγδik` + βγδjk` +

αβγδijk` +

εijk`m

βγjk : how B effects change across levels of C (or vice versa).
βγδjk`: how the BC interaction changes across levels of D (or
some other version of two in and one out).
αβγδijk`: how the BCD interaction changes across levels of A (or
some other version of three in and one out).



These terms add to zero across any subscript (32 total zero sum
constraints).

These terms are estimated by taking the mean in the data for the
corresponding subscripts and subtracting out estimates of any
“lower order” terms. So for α̂βγ ijk you would use

α̂βγ ijk = y ijk•• − [µ̂+ α̂i + β̂j + γ̂k + α̂βij + α̂γik + β̂γjk ]

SS are estimated effect squared, times number of units receiving

the effect, added over levels. SSBCD =
∑

jk` na β̂γδ
2

jk`.

DF are the product of the levels of factors appearing in the term,
each reduced by 1. BCD has (b-1)(c-1)(d-1) df.



ANOVA has usual columns with MS as SS over DF and F tests for
each term as the MS for the term over MS for error. (And you
need to be careful in your naming once you get to five factors!)

To test the null hypothesis that all parameters of a given term are
zero, compute the p-value for the F statistic from the F
distribution with corresponding df.

Check assumptions as usual. Remember that interaction depends
on scale.

Be glad you are children of a younger generation with easy access
to computers and statistical software.



Single replications

If n=1, then we have no df for estimating (pure) error. We need
some surrogate estimate of error to do inference.

The usual approach is to leave one or more high-order interaction
terms out of the model. Their SS and df then show up as
“residual” variation with a corresponding MS. If the effects for the
neglected terms are small, then this surrogate estimate of error will
work pretty well.

The expected value for a mean square is σ2 plus something
depending on the effects for the term. This makes our “MSE”
potentially too big, leading to conservative tests (reject too rarely).

Choose the terms to leave out before looking at the data. If you
cherry pick just the small MS to put accumulate into “error,” then
your surrogate MSE will tend to be too small, leading to too many
rejections.



A half-way version of dropping interaction terms out is to a
parametric model of interaction with fewer df than the full
(a-1)(b-1)(c-1) or whatever is in the term you would remove. This
lets you keep the “big” part of the interaction in the model but
allow the random/residual part of the interaction to serve as error.
More on this much later.

A less common approach is to use some external estimate of error,
perhaps from previous experiments or from the literature. This is a
risky, risky approach, as you are taking on faith that what you are
doing, how you are doing it, and what you are doing it with are
just like these other guys. Don’t forget to buy a lottery ticket.



Hierarchy

A hierarchical model (in our sense) in one where the presence of a
term implies the presence of all included terms. For example,
presence of ABC in the model would imply the presence of the
overall mean, A, B, C, AB, AC, and BC.

I always use hierarchical models unless I am very, very sure that it
makes sense to use a non-hierarchical model.

The issue is parameterizations.



Remember that the parameterization of the means in a factorial is
not unique. Here is a set of data with two different, equally valid,
decompositions into constant effect, row effect, column effect, and
interaction effect.

10 20
20 24
30 24

21.33 -1.33 1.33

-6.33 -3.67 3.67
0.67 -.67 .67
5.67 4.33 -4.33

23.33 0.0 0.0

-8.33 -5.0 5.0
-1.33 -2.0 2.0
3.67 3.0 -3.0

Do these data have zero column effects or not?

Tests to remove a lower-order term (i.e., to consider a
non-hierarchical model) are tests of parameters and depend
delicately on the parameterization you choose.



If you only consider and compare hierarchical models, then you do
not have to worry about the parameterization chosen.

The standard model and ANOVA tests assume that the correct
parameterization is the one that derives from looking at simple
averages wherever we take averages (rather than weighted
averages, which lead to other parameterizations).

If that is really and truly the correct weighting, then making
non-hierarchical tests is valid. If things are otherwise, or if you are
not sure, stick to hierarchical models.

In the second breakdown above, rows were weighted 1, 2, 3.



Pooling

Pooling (into error) refers to the practice of removing
non-significant terms from the model, thus “pooling” them into
the error or residual.

I discourage this practice in general and believe that there are only
a couple of situations where pooling is advantageous.

The principal problem with pooling is that you risk biasing your
MSE upward.



The first situation where pooling makes sense is when you have
very few df for error. In this case, the gain in error df often makes
up for the risk in biasing the MSE .

Consider pooling a term if

1 You have few df for error, say less than 10 or 12.

2 The term has a low F-ratio, F < 2.

3 You are still maintaining hierarchy.



We have been talking about balanced designs. The second
situation when you should use pooling is when you have an
unbalanced design and you wish to examine or use the coefficients.
You should

1 Select terms to retain in the model using MSE from the full
model.

2 Pool unselected terms into error before examining coefficients
of selected terms.

The issue is that coefficients for terms in unbalanced models can
depend on what other terms are in the model.



Unbalanced factorials

In every life, a little rain must fall. — Longfellow

The first time you deal with unbalanced factorials, they seem like a
downpour.

When factorial data are not balanced (i.e., when we do not have
nijk ≡ n), then

1 Row and column contrasts are not orthogonal.

2 The distinction between choosing a hierarchical model and
testing hypotheses about parameters becomes more than
philosophical.

3 Because of 2, there are multiple ways of building ANOVA
tables and test statistics, each appropriate for their own
purposes.



ANOVA still provides a comparison between a smaller model and
an including, larger model.

Usually these models differ by a single term, and that is how we
compute the SS for the term. Our two models are a base model
and the base model plus the term of interest. This gives us an SS
for our term of interest, adjusted for the terms in the base model.

So the question boils down to this: in order to test a term X, what
terms should be in the base model?



Most software can provide a “sequential” ANOVA; this is often the
default. In SAS, this is called Type I.

Suppose you have the following model:

y ~ 1 + A + B + C + AC + BC + AB

Term Terms in base model

A 1
B 1, A
C 1, A, B
AC 1, A, B, C
BC 1, A, B, C, AC
AB 1, A, B, C, AC, BC

In sequential, each term is adjusted for those that precede it in the
model.



Sequential is simplest from a programming perspective, and that is
likely why it is the default.

Sequential has the advantage that the SS for the individual terms
will add up to the SS for the model as a whole.

However, with unbalanced data you will get a different
decomposition for terms in a different order. For example, B
adjusted for A is likely not the same as B adjusted for A and C.



In the context of unbalanced factorials, building a model means
selecting the main effects and interactions required to describe the
mean structure adequately.

Building models does not depend on the parameterization.

Building models is done by comparing hierarchical models.

For any term X, choose as base model the largest hierarchical
model that does not include X.



This choice of base model is called Type II in SAS. It has also been
called “the method of Yates’ fitting constants,” but Type II is
certainly quicker.

Suppose you have the following model:

y ~ 1 + A + B + C + AC + BC + AB + ABC

Then the Type II base models will be:
Term Terms in base model

A 1, B, C, BC
B 1, A, C, AC
C 1, A, B, AB
AC 1, A, B, C, AB, BC
BC 1, A, B, C, AB, AC
AB 1, A, B, C, AC, BC
ABC 1, A, B, C, AB ,AC, BC



It is possible to figure out what hypotheses about treatment means
are being tested in type II (and it is hypotheses and contrasts
between treatment means, not something about parameters).

However, these are technical and tedious, and it is easier to think
of this as “Does adding this term to my base model really improve
the fit?”



Seriously? You really want to see the hypotheses?

Consider a two-factor design. We have
weighted row means µi? =

∑
j nijµij/

∑
j nij

weighted column means µ?j =
∑

i nijµij/
∑

i nij

Now form weighted averages for columns, but use the row
weighted averages for cell means instead of the real cell means:
(µi?)?j =

∑
i nijµi?/

∑
i nij

The Type II hypothesis for B adjusted for A is

µ?j = (µi?)?j for all j

That is, the only reason column averages differ is because they are
different weighted averages of row weighted averages.



We will look at one more approach called “standard parametric.”
SAS calls this (wait for it . . . ) Type III.

The tests in Type III have great allure, for example, H0 : αi ≡ 0.

Testing in this fashion depends on the parameterization.
Specifically, this works for the basic
equally-weighted-effects-add-to-zero parameterization. If you really
believe that parameterization, then Type III is a possibility.

For standard parametric, the base model for term X is all terms
except term X. This base model will usually be a non-hierarchical
model.



You can construct Type II SS from Type I SS for several models in
several orders. In R, you cannot construct Type III from various
Type I analyses.

In R, the term A:B is going to force the modeling of the means for
all A and B combinations. If you already have A and B in the
model, then this will be the AB interaction. If A and/or B are not
in the model (ahead of A:B), then whatever was left out will get
added in with the pure interaction.

This in itself is a not-so-subtle commentary on non-hierarchical
models.



Sums of squares for contrasts are always Type III.

If your contrast is purpose-built for all g treatments, that is fine.

If your contrast is for row effects, or column effects, or some other
set of parameters, bear in mind that this implies equal weighting
across the factors not occurring in the contrast. This might, or
might not, be appropriate.



For balanced data, Types I, II, and III are all the same.

For balanced data, contrasts coming from different standard terms
in the model are orthogonal, so order does not matter.

The lack of balance breaks orthogonality, which is the root of the
problem.



Empty cells

Things really go pear shaped when one or more of the treatment
counts nijk is 0.

Even if you have chosen a parameterization and weighting scheme,
empty cells mean that your parameters are not well-defined.

Type I and Type II analyses are well-defined, but the typical Type
III analysis is hopeless.

Your best bet is to choose meaningful contrasts among the cells
where you do have data and work with them.


