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What is a Covariate?

In our context, a covariate is a predictive response. A predictive
response is correlated with (predictive of) the primary response.

We cannot measure the predictive response ahead of time. This
means that we cannot block on it.

However, we can use the covariate to “model away” some of the
variance. This achieves variance reduction through modeling rather
than blocking or similar.



The only real design aspect of a covariate is that you must plan to
measure it.

Your experiment can be CRD or RCB or whatever, you just need
to measure the covariate and then use it in the model.



Example

Construal level theory says that you tend to think about distant
(space, time, etc) things in abstract/ general ways and close things
in concrete/ detailed ways.

The experiment asks subjects to rate an advertisement. They are
told they will be buying a camera either today or in one year. They
are then shown an advertisement, which either talks about the
LCD screen size (a secondary general feature) or the quality of the
lens (a primary specific feature).

All subjects are also asked to rate the importance of the lens on a
camera and the LCD screen on the camera.



People who know that the lens is important will likely react more
favorably to the information about the lens, whether it is near or
distant in time.

If we knew their feelings about lenses, we could have blocked on
that. But we don’t know their feelings about lenses until we run
the experiment.

We cannot block on belief in “lens importance,” but we can model
out some of the variability using a covariate (or two!).



Covariate Models

For simplicity, assume we have a single factor treatment and a
single covariate x . The basic covariate model is

yij = µ+ αi + βxij + εij

for i = 1, . . . , g and j = 1, . . . , ni .

The covariate model looks like an ordinary fixed effects model with
the addition of a regression-like term.



The model assumes a linear relationship, but assuming does not
make it true.

As with any regression, we need to check for a linear relationship.

A transformation of the covariate or the response could improve
linearity.

We can also consider higher polynomial terms in the covariate, but
that is less common.



Family of covariate models

Single line (no treatment effects): yij = µ+ βxij + εij

Parallel lines or separate intercepts model (treatments affect the
mean response or intercept but not the relationship with the
covariate): yij = µ+ αi + βxij + εij with

∑
αi = 0

Single intercept model (treatments affect the relationship with the
covariate but not the mean response or intercept):
yij = µ+ βxij + βixij + εij with

∑
βi = 0

Separate lines model (treatments affect slopes and intercepts):
yij = µ+ αi + βxij + βixij + εij with

∑
βi = 0 and

∑
αi = 0



The single line model is a special case of the parallel lines model,
which is in turn a special case of the separate lines model. We can
compare these three via anova.

The single line model is a special case of the separate slopes
model, which is in turn a special case of the separate lines model.
We can compare these three via anova.

Parallel lines model and separate slopes model can be compared
via AIC or BIC.

The separate slopes model depends delicately on how the covariate
is centered. That is, reexpressing xij by adding 10 to all the values
leads to a fundamentally different (and possibly worse or better
fitting) separate slopes model.



Note: Sometimes things are easier to understand with a central
value plus offset, and sometimes they’re easier to understand if you
just combine the central value and the offset into an individual
value.

Separate intercepts can be written using µ+ αi or using
α?

i = µ+ αi .

Separate slopes can be written using β + βi or using β?
i = β + βi .



ANCOVA

The classic analysis of covariance compares the single line model to
the parallel lines model.

It takes as base model the linear relationship of the response and
the covariate and then asks whether the treatments shift the mean
response up or down (do we need the αi s?).

This achieves variance reduction, because the linear relationship
models out some of the variability that would be residual variability
if we ignored the covariate and just did ANOVA.



Covariate Adjusted Means

In the parallel lines model, the covariate adjusted means are

µ̂+ α̂i + β̂x̄••

These are all evaluated at a common value of the covariate and
differ according to the α̂i s.

The covariate adjusted means are almost always different than the
treatment means because

y i• = µ̂+ α̂i + β̂x̄i•



Depending on the sign of β̂ the pattern of x̄i•, the covariate
adjusted means can move up or down and be closer together or
farther apart than the treatment means.

Most real world situations lie between the following two extremes.
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Here the treatment means are different, but the covariate adjusted
means will be very similar.
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Here the treatment means are similar, but the covariate adjusted
means will be very different.



Treatments affect covariates?

In ANCOVA situations, there is some variance that can only be
explained by treatment differences, some variance that can only be
explained by the covariate, and some variance that can be
explained by either.

(The overlapping bit combines the slope and the covariate
differences.)

The usual ANCOVA essentially assumes that any differences we
see between treatments in covariate means are just random noise.
This means that the overlapping variability should be attributed to
the covariate, not the treatment.

But what if the treatments affect the covariates?



A classic example. Looking at the effect of some treatments on
height growth of wheat plants. Experimental units are pots planted
with a fairly large number of wheat seeds and given a treatment.
Seeds sprout and grow, and then we measure height.

However, there is competition, so the more seeds sprout, the
shorter the plants will be.

What if the treatment affects germination?



Adjusted covariates are

x̃ij = xij − x i•

These are the residuals from a model fitting the covariate as
response to the treatments.

If we use adjusted covariates, then we get variance reduction, but
we do no get covariance adjustment of the means. That is, the
covariance adjusted means for this adjusted covariate are just the
y i•s.



Generalizations

More than one covariate.

Fancier designs for the treatments.


