Contrasts

Gary W. Oehlert

School of Statistics University of Minnesota

January 18, 2016

Definition

A contrast is a linear combination of treatment means or treatment effects where the coefficients add to 0.

$$\sum_{i=1}^g w_i \mu_i = \sum_{i=1}^g w_i \alpha_i \quad \text{where} \quad \sum_{i=1}^g w_i = 0$$

Contrasts do not depend on how you parameterize the effects α_i ! When we said that important things do not depend on parameterization, we meant contrasts.

Contrasts let us look at specific ways that treatment means differ.

Problem 3.2 had five treatments: no companions, one virgin companion, eight virgin companions, one pregnant companion, and eight pregnant companions. We could set up contrasts:

Question	coefficients
Companions vs no companions ¹	-1, .25, .25, .25, .25
One companion vs eight companions	0, .5,5, .5,5
Virgin companions vs pregnant companions	0,5,5, .5, .5

Choose contrast coefficients to answer a specific question.

¹(4,-1,-1,-1) works just as well

Estimation

We want to estimate

$$\sum_{i=1}^{g} w_i \mu_i = \sum_{i=1}^{g} w_i \alpha_i$$

We just use

$$\sum_{i=1}^{g} w_{i} \widehat{\mu}_{i} = \sum_{i=1}^{g} w_{i} \widehat{\alpha}_{i}$$

with

$$\widehat{\mu}_i = \overline{y}_{i\bullet}$$

or any of our parameterizations of the treatment effects.

The basic form of a confidence interval for a mean or mean-like parameter is

estimate \pm t-multiplier imes standard error of estimate

The standard deviation of the estimate is

$$\sqrt{\sigma^2 \sum_{i=1}^g \frac{w_i^2}{n_i}}$$

Use MS_E as an estimate of σ^2 to get the SE

$$\sqrt{MS_E \sum_{i=1}^g \frac{w_i^2}{n_i}}$$

The t-multiplier depends on a degrees of freedom, and we use the df of MS_E , our estimate of the error variance. In this case, df is N-g.

Putting it all together, our confidence interval is

$$\sum_{i=1}^{g} w_i \widehat{\mu}_i \pm t_{\mathcal{E}/2, N-g} \sqrt{MS_E \sum_{i=1}^{g} \frac{w_i^2}{n_i}}$$

where \mathcal{E} is the error rate of the confidence interval.

Testing

If you want to test $H_0: \sum_{i=1}^g w_i \mu_i = \delta$, then you can form a t-test via:

$$\frac{\sum_{i=1}^{g} w_i \widehat{\mu}_i - \delta}{\sqrt{MS_E \sum_{i=1}^{g} \frac{w_i^2}{n_i}}}$$

Compare this to a t-distribution with df from the MS_E (here N-g).

You can have one or two-sided alternatives depending on your question.

If you want to test $H_0: \sum_{i=1}^g w_i \mu_i = 0$ with a two-sided alternative, you can instead compute the SS for the contrast:

$$SS_w = \frac{\left(\sum_{i=1}^g w_i \widehat{\mu}_i\right)^2}{\sum_{i=1}^g \frac{w_i^2}{n_i}}$$

and then compute the F-test (note that this F is the square of the analogous t-test).

$$F = \frac{SS_w}{MS_E}$$

This has 1 and N-g df.

Contrasts always have one degree of freedom.

Orthogonal contrasts

Some pairs of contrasts have a special property called orthogonality. Two contrasts $\{w_i\}$ and $\{w_i^*\}$ are orthogonal if

$$\sum_{i=1}^g \frac{w_i w_i^*}{n_i} = 0$$

Assuming equal samples sizes, all of the P3.2 contrast examples shown above are orthogonal to each other.

Orthogonal contrast produce statistically independent results.

If you have g groups, you can find g-1 contrasts that are all orthogonal to each other, but you cannot find another contrast orthogonal to all of the others.

There are many sets of g-1 orthogonal contrasts.

This is <u>exactly</u> analogous to being able to find many sets of two perpendicular lines in a plane, but not being able to find a third line perpendicular to the other two.

If you have a complete set of g-1 orthogonal contrasts, then their SS partition the SS between treatments with g-1 df (Pythagorean theorem again).

Use contrasts that address the questions that you have.

If these contrasts happen to be orthogonal, lucky you, you get a couple of additional minor advantages.

It is much more important to answer your questions than to achieve orthogonality for orthogonality's sake.

Historical note

In days of yore, fitting polynomial models was an immense pain.

There is always a contrast that has a sum of squares equal to the "improvement" SS of a monomial in a polynomial model.

If the quantitative treatment values z_i are equally spaced and the sample sizes n_i are all the same, then the coefficients of these polynomial contrasts are simple. For example, they are tabulated in Table D.6 of the text.

Thus, when I was a lad, we would sometimes use these contrasts to test terms in polynomial models.

		cc			
(.	oe	tt	IC.	ıeı	nts

		Cocincients							
g	Order	1	2	3	4	5	6	7	
3	1	-1	0	1					
	2	1	-2	1					
4	1	-3	-1	1	3				
	2	1	-1	-1	1				
	3	-1	3	-3	1				
5	1	-2	-1	0	1	2			
	2	2	-1	-2	-1	2			
	3	-1	2	0	-2	1			
	4	1	-4	6	-4	1			