## Contrasts

Gary W. Oehlert

School of Statistics
University of Minnesota
January 18, 2016

## Definition

A contrast is a linear combination of treatment means or treatment effects where the coefficients add to 0 .

$$
\sum_{i=1}^{g} w_{i} \mu_{i}=\sum_{i=1}^{g} w_{i} \alpha_{i} \quad \text { where } \sum_{i=1}^{g} w_{i}=0
$$

Contrasts do not depend on how you parameterize the effects $\alpha_{i}$ ! When we said that important things do not depend on parameterization, we meant contrasts.

Contrasts let us look at specific ways that treatment means differ.

Problem 3.2 had five treatments: no companions, one virgin companion, eight virgin companions, one pregnant companion, and eight pregnant companions. We could set up contrasts:
Question coefficients
Companions vs no companions ${ }^{1} \quad-1, .25, .25, .25, .25$

One companion vs eight companions $0, .5,-.5, .5,-.5$
Virgin companions vs pregnant companions $0,-.5,-.5, .5, .5$
Choose contrast coefficients to answer a specific question.

## Estimation

We want to estimate

$$
\sum_{i=1}^{g} w_{i} \mu_{i}=\sum_{i=1}^{g} w_{i} \alpha_{i}
$$

We just use

$$
\sum_{i=1}^{g} w_{i} \widehat{\mu}_{i}=\sum_{i=1}^{g} w_{i} \widehat{\alpha}_{i}
$$

with

$$
\widehat{\mu}_{i}=\bar{y}_{i \bullet}
$$

or any of our parameterizations of the treatment effects.

The basic form of a confidence interval for a mean or mean-like parameter is estimate $\pm \mathrm{t}$-multiplier $\times$ standard error of estimate

The standard deviation of the estimate is

$$
\sqrt{\sigma^{2} \sum_{i=1}^{g} \frac{w_{i}^{2}}{n_{i}}}
$$

Use $M S_{E}$ as an estimate of $\sigma^{2}$ to get the SE

$$
\sqrt{M S_{E} \sum_{i=1}^{g} \frac{w_{i}^{2}}{n_{i}}}
$$

The t-multiplier depends on a degrees of freedom, and we use the df of $M S_{E}$, our estimate of the error variance. In this case, df is $\mathrm{N}-\mathrm{g}$.

Putting it all together, our confidence interval is

$$
\sum_{i=1}^{g} w_{i} \widehat{\mu}_{i} \pm t_{\mathcal{E} / 2, N-g} \sqrt{M S_{E} \sum_{i=1}^{g} \frac{w_{i}^{2}}{n_{i}}}
$$

where $\mathcal{E}$ is the error rate of the confidence interval.

## Testing

If you want to test $H_{0}: \sum_{i=1}^{g} w_{i} \mu_{i}=\delta$, then you can form a t-test via:

$$
\frac{\sum_{i=1}^{g} w_{i} \widehat{\mu}_{i}-\delta}{\sqrt{M S_{E} \sum_{i=1}^{g} \frac{w_{i}^{2}}{n_{i}}}}
$$

Compare this to a t-distribution with df from the $M S_{E}$ (here $\mathrm{N}-\mathrm{g}$ ).
You can have one or two-sided alternatives depending on your question.

If you want to test $H_{0}: \sum_{i=1}^{g} w_{i} \mu_{i}=0$ with a two-sided alternative, you can instead compute the SS for the contrast:

$$
S S_{w}=\frac{\left(\sum_{i=1}^{g} w_{i} \widehat{\mu}_{i}\right)^{2}}{\sum_{i=1}^{g} \frac{w_{i}^{2}}{n_{i}}}
$$

and then compute the F -test (note that this F is the square of the analogous t -test).

$$
F=\frac{S S_{w}}{M S_{E}}
$$

This has 1 and $\mathrm{N}-\mathrm{g}$ df.
Contrasts always have one degree of freedom.

## Orthogonal contrasts

Some pairs of contrasts have a special property called orthogonality. Two contrasts $\left\{w_{i}\right\}$ and $\left\{w_{i}^{\star}\right\}$ are orthogonal if

$$
\sum_{i=1}^{g} \frac{w_{i} w_{i}^{\star}}{n_{i}}=0
$$

Assuming equal samples sizes, all of the P3.2 contrast examples shown above are orthogonal to each other.

Orthogonal contrast produce statistically independent results.

If you have $g$ groups, you can find $g-1$ contrasts that are all orthogonal to each other, but you cannot find another contrast orthogonal to all of the others.

There are many sets of $g-1$ orthogonal contrasts.
This is exactly analogous to being able to find many sets of two perpendicular lines in a plane, but not being able to find a third line perpendicular to the other two.

If you have a complete set of $g-1$ orthogonal contrasts, then their SS partition the SS between treatments with $g-1 \mathrm{df}$ (Pythagorean theorem again).

Use contrasts that address the questions that you have.

If these contrasts happen to be orthogonal, lucky you, you get a couple of additional minor advantages.

It is much more important to answer your questions than to achieve orthogonality for orthogonality's sake.

## Historical note

In days of yore, fitting polynomial models was an immense pain.
There is always a contrast that has a sum of squares equal to the "improvement" SS of a monomial in a polynomial model.

If the quantitative treatment values $z_{i}$ are equally spaced and the sample sizes $n_{i}$ are all the same, then the coefficients of these polynomial contrasts are simple. For example, they are tabulated in Table D. 6 of the text.

Thus, when I was a lad, we would sometimes use these contrasts to test terms in polynomial models.

Coefficients

| $g$ | Order | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | 1 | -1 | 0 | 1 |  |  |  |  |
|  | 2 | 1 | -2 | 1 |  |  |  |  |
| 4 | 1 | -3 | -1 | 1 | 3 |  |  |  |
|  | 2 | 1 | -1 | -1 | 1 |  |  |  |
|  | 3 | -1 | 3 | -3 | 1 |  |  |  |
| 5 | 1 | -2 | -1 | 0 | 1 | 2 |  |  |
|  | 2 | 2 | -1 | -2 | -1 | 2 |  |  |
|  | 3 | -1 | 2 | 0 | -2 | 1 |  |  |
|  | 4 | 1 | -4 | 6 | -4 | 1 |  |  |

