
Basic Blocking

Gary W. Oehlert

School of Statistics
University of Minnesota

October 16, 2014

Variance Reduction Design

We now begin a new phase of the course where we move away
from completely randomized designs.

Power increases and margin of error decreases if N is larger or if σ2

is smaller.

It costs resources to make N bigger.

This part of the course is about making σ2 smaller.

Blocking

The principal tool in variance reduction design is blocking.

A block is a homogeneous subset of units. Prior to running the
experiment, we know these units are similar in some way that we
expect will make them likely to have similar responses.

Similar soil, similar instrument calibration, similar batch of raw
material, similar operators, similar genetics, similar environmental
conditions, similar socio-economic background, similar something
or other.

Blocking will be some form of repeating the experiment (or part of
it) separately and independently in each block.

This restricts the randomization of treatments to units.

With apologies to Woodward, Bernstein, and Deep Throat:

Follow the randomization!

Different designs correspond to different randomizations, and
examining the randomization can allow you to discern the design.

Randomized Complete Block design

The RCB is the progenitor of all block designs.

We have:

g treatments

g units per block

r blocks

rg = N total units

Within each block, randomly and independently assign the g
treatments to the g units.

It’s like r single-replication CRDs glued together.

Notes:

This is a complete block design because every treatment
occurs in every block.

The treatments could have factorial structure.

Consider blocking when you can identify a source of variability
prior to experimentation.

Blocking is done at the time of randomization; it is not
imposed later.

The randomization in an experiment could identify it as RCB.

Model:
yij = µ = αi + βj + εij

i = 1, . . . , g ; j = 1, . . . , r

We think that units in some blocks might respond high, units in
others might respond low, but within a block units are more
homogeneous (less variable) than randomly chosen units from the
universe of units.

For a two-factor treatment design, we would use the model:

yijk = µ = αi + βj + αβij + γk + εijk

i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , r

The model assumes that treatments have the same effect in every
block, i.e., treatments and blocks are additive.

Assuming additivity does not make additivity true; transformation
of the response can sometimes improve additivity.

Because there is only a single observation for each treatment in
each block, we cannot distinguish between random error and any
potential interaction between treatments and blocks.

From a practical perspective, it doesn’t matter much whether we
think of blocks as fixed or random.

From a theoretical perspective, blocks are probably random in
most situations.

Why does RCB work? Here are a couple points of view.

Make comparisons within blocks (thus small variance), and then
combine across blocks.

Treatment totals all contain the same block totals, so block effects
cancel out when comparing treatment totals (and similarly for
treatment averages).

Block to block variability is still in the totality of variability in the
data, but we contrive to make it disappear when comparing
treatments.

Do not test blocks!

Note that blocks are in the nature of the units. There ought to be
big differences between blocks.

We did not assign blocks to units. Blocks were not randomly
assigned, so there is no randomization test for blocks.

The software does not know any better than to test blocks, but
now you do!

For unbalanced data, always look at treatments adjusted for blocks
(i.e., blocks are always in the base model for any treatment factor).
For balanced data, blocks and treatments are orthogonal.

Relative efficiency

How well did blocking work? Should we use blocking in our next
similar experiment?

“Testing” the block effect is not what matters. What matters is
how large the error variance would have been if we had not
blocked.

Relative efficiency answers the following question: using the same
universe of units, by what factor would we need to increase our
sample size to get the same power in a CRD that we would achieve
using the RCB?

This is mostly an issue of how the error variance changes, but
there is also a minor effect due to the fact that fitting blocks uses
up degrees of freedom for error.

(In CRD, bigger σ2 hurts, but larger dferror helps; usually the first
factor dominates.)

We first estimate what error variance would have been if we had
used a CRD instead of RCB, then we make a minor df adjustment.

We estimate σ2
RCB by MSE or residual variance in the RCB

analysis.

We estimate σ2
CRD via

σ̂2
CRD =

dfblocksMSblocks + [dfTrt + dferror]MSE

dfblocks + dfTrt + dferror

=
(r − 1)MSblocks + [(g − 1) + (r − 1)(g − 1)]MSE

(r − 1) + (g − 1) + (r − 1)(g − 1)

This is an average of MSE and MSBlock weighted by df, but we
use df error plus df treatments as the weight for MSE. Typically
this estimate is less than the MSE you would get if you just left
blocks out of the model.

The df adjustment is less obvious. Let νRCB = (r − 1)(g − 1) be
the error df in the RCB analysis. Let νCRD = rg − g be the error
df if you had not blocked.

The estimated relative efficiency of RCB to CRD is

ERCB:CRD =
νRCB + 1

νRCB + 3

νCRD + 3

νCRD + 1

σ̂2
CRD

σ̂2
RCB

If this ratio is 1.7, then you would need 1.7 times as many units in
a CRD to achieve the same power as an RCB.

Latin Squares

An RCB is an effective way to block on one source of extraneous
variation; what if you have two sources of extraneous variation?

Light and drainage in garden flower trials; gender and blood
pressure in cardiac trials; driver and environmental conditions in
MPG trials

Think back to why RCB designs work; we want to get that
cancellation of block effects to happen simultaneously for two
blocking factors.

The Latin Square design is the classical design for blocking on two
sources of variation.

There are g2 units visualized as a square. Those units in the same
row are all in the same block based on the first extraneous source
of variation. Those units in the same column are all in the same
block based on the second extraneous source of variation.

The g treatments are randomized so that each treatment occurs
once in each row and once in each column.

Treatments are represented by Latin letters, thus Latin Squares.

A B C D

B A D C

C D A B

D C B A

If you ignore columns, a Latin Square is an RCB in rows. If you
ignore rows, a Latin Square is an RCB in columns.

Randomization is often done more like this. Take a square from a
table of squares (back of the book). Randomly permute the rows
and the columns. Randomly assign treatments to the letters. Not
as random as the ”randomize subject to” description, but generally
good enough and a lot simpler.

Model:
yijk = µ+ αi + βj + γk + εijk

i, j, and k all run from 1 to g.

Note: we only observe g2 of the g3 i, j, k combinations.

We are again assuming additivity in a major way, and we might
need to transform to achieve additivity.

For unbalanced data, treatments adjusted for all blocking factors.

What if we need more data to achieve acceptable power?

In addition, if you think of rows and columns as fixed effects, we
have (g − 1)(g − 2) degrees of freedom for error. That might not
be very many.

Latin Squares are often replicated, i.e., we use more than one
square with the same set of treatments.

However, we need to consider how the replication is done.

Suppose that we have r squares to study g treatments. All squares
will have row blocks and column blocks. The issue is whether the
squares have the same row blocks or different row blocks; similarly
for columns.

Example: three squares (r = 3) for g = 4 treatments; 48 total
units
Treatments: gasoline additives
Response: particulate emissions
Row blocks: drivers
Column blocks: cars

Option 1: every square uses different drivers and different cars.

yijk` = µ+ αi + βj + γk(j) + δ`(j) + εijk`

This is mean plus treatment plus square plus car-nested-in-square
plus driver-nested-in-square plus error.

There are (g-1) df for treatments, (r-1) df for squares, r(g-1) df for
cars within square, r(g-1) df for drivers within square.

Cars 1–4
D

ri
ve

rs
1–

4 A B C D

B A D C

C D A B

D C B A
Cars 5–8

D
ri

ve
rs

5–
8 A B C D

B C D A

C D A B

D A B C
Cars 9–12

D
ri

ve
rs

9–
12 D C A B

A B D C

C D B A

B A C D

Option 2: every square uses the same cars but different drivers.

yijk` = µ+ αi + βj + γk + δ`(j) + εijk`

This is mean plus treatment plus square plus car plus
driver-nested-in-square plus error.

There are (g-1) df for treatments, (r-1) df for squares, (g-1) df for
cars, r(g-1) df for drivers within square.

Cars 1–4
D

ri
ve

rs
1–

4 A B C D

B A D C

C D A B

D C B A

D
ri

ve
rs

5–
8 A B C D

B C D A

C D A B

D A B C

D
ri

ve
rs

9–
12 D C A B

A B D C

C D B A

B A C D

Option 3: every square uses the same drivers but different cars.

yijk` = µ+ αi + βj + γk(j) + δ` + εijk`

This is mean plus treatment plus square plus car nested in square
plus driver plus error.

There are (g-1) df for treatments, (r-1) df for squares, r(g-1) df for
cars within square, (g-1) df for drivers.

Cars 1–4

D
ri

ve
rs

1–
4 A B C D

B A D C

C D A B

D C B A

Cars 5–8
A B C D

B C D A

C D A B

D A B C

Cars 9–12
D C A B

A B D C

C D B A

B A C D

Option 4: every square uses the same drivers and the same cars.

yijk` = µ+ αi + βj + γk + δ` + εijk`

This is mean plus treatment plus square plus car plus driver plus
error.

There are (g-1) df for treatments, (r-1) df for squares, (g-1) df for
cars, (g-1) df for drivers.

Cars 1–4
D

ri
ve

rs
1–

4

A very common example is the cross over design.

In a cross over, one of the blocking factors is time period, and the
other blocking factor is subject. Each subject has each treatment,
but some get one treatment first, others have another treatment
first, and so on.

To replicate these designs, we generally get a new set of subjects,
but the period effects are assumed to be the same for all squares.

We can also compute the relative efficiency of a Latin Square
relative to an RCB should we consider not using one of the
blocking factors. For example, if we consider not using rows, then

We estimate σ2
LS by MSE in the Latin Square analysis.

We estimate σ2
RCB via

σ̂2
RCB =

dfrowsMSrows + [dfTrt + dferror]MSE

dfrows + dfTrt + dferror

Let νLS be the error df in the LS analysis. Let νRCB be the error df
if you had not blocked on rows.

The estimated relative efficiency of LS to RCB is

ELS :CRD =
νLS + 1

νLS + 3

νRCB + 3

νRCB + 1

σ̂2
RCB

σ̂2
LS

If this ratio is 1.7, then you would need 1.7 times as many units if
you had run a RCB instead of an LS.

Generalizations

There are many possible generalizations of these blocking designs.

The Generalized Randomized Complete Block design is analogous
to an RCB except each block has 2g or 3g etc. units and each
treatment is assigned to 2 or 3 etc. units within each block.

In this case, the standard approach is to model blocks as random
and include a random block by treatment interaction term.

The carry over design, or design balanced for residual effects, is a
Latin Square where, in addition to the usual requirements, we also
have that each treatment follows each other treatment exactly
once.

This is useful when one of the blocking factors is time period, and
the effect of one treatment could carry over into the next time
period.

For example, a toxic drug might not only suppress the response in
the period where it is given, it could also suppress the response in
the following period.

The model contains an additional factor with g+1 levels “follows
treatment 1” up to “follows treatment g” and the final level of
“used first.”

If you have three blocking factors, then you can use a Graeco-Latin
square.

Latin letters are treatments, Greek letters indicate third blocking
factor. Each treatment occurs once in each row, once in each
column, and once with each Greek letter.

A α B γ C δ D β

B β A δ D γ C α

C γ D α A β B δ

D δ C β B α A γ

No 6 by 6 GL square.

Model has additive treatment and (three) blocking factors.

Incomplete Blocks

Complete block designs like RCB and LS are set up with every
treatment occurring in every block.

Sometimes, there are only k units in a block, and k < g . Then we
must use an incomplete block design.

Three different eye drops to study relief from irritation. There is
large subject to subject variability, so block on subject, but only
two eyes per subject.

Six different processes for extracting avocado oil. There is large
fruit to fruit variability, so block on fruit, but each fruit is only
large enough to test four processes.

Incomplete block designs are inherently less efficient than complete
block designs on a per unit basis with equal variances. Example:

A
B

A
C

C
B

versus
A
B
C

A
B
C

In the complete block, unit 1 - unit 2 and unit 4 - unit 5 both
estimate A - B and both have variance 2σ2

comp.

In the incomplete block, unit 1 - unit 2 and unit 3 - unit 4 + unit
5 - unit 6 both estimate A - B and have variances 2σ2

incomp and

4σ2
incomp

We prefer complete blocks if σ2
comp = σ2

incomp, but often

σ2
comp > σ2

incomp, and that can be where incomplete blocks are
preferred.

For example, suppose fruit to fruit variance in oil concentration is
10, but quarter to quarter within a fruit variance is 1.

The relative efficiency of a BIBD with six treatments in blocks of
size four is .9.

Without blocking, variance of a pairwise difference in means is
10(1

n + 1
n) = 20

n .

With a BIBD, variance of a pairwise difference in means is
1(1

.9n + 1
.9n) = 2.22

n .

Here the reduced variance achievable with the BIBD overcomes the
loss due to relative efficiency of the BIBD to the RCB.

Balanced Incomplete Block design

The basic prototype of all incomplete block designs is the BIBD.
Here we have:

g treatments

b blocks

k units per block

each treatment used r times

bk total units

bk = rg

In addition, each pair of treatments occurs together in the same
number of blocks. λ = r(k − 1)/(g − 1).

A
B

A
C

C
B

versus
A
B

A
B

C
C

Both have g=3, k=2, r=2, b=3, but left side is BIBD and right
side is not.

Notes:

If λ = r(k − 1)/(g − 1) is not a whole number, then no BIBD
for that set of parameters.

Treatments could have factorial structure.

Also balanced in the sense that variance of α̂i − α̂j does not
depend on i,j.

A BIBD always exists for any g > k pair; simply take all
combinations. There are tables for smaller values of b and r.

Randomize by randomly assigning the treatments to the
treatment “numbers,” and then randomly assigning treatment
numbers to units within their blocks.

Model:
yij = µ+ αi + βj + εij

For RCB, it didn’t really matter if blocks were fixed or random.
For BIBD, it does matter.

If we assume blocks are fixed, we get the intrablock analysis. All
estimates are based on differences from within blocks.

If we assume blocks are random, then there is some information
about the treatments in block totals; this leads to the interblock
recovery analysis.

Interblock recovery provides slightly more precise estimates in cases
where it is appropriate (i.e., when blocks are random), but large
block variance relative to units-within-blocks variance means the
improvement is often negligible.

Interblock recovery used to be a complicated process (old school),
but with lmer(), interblock recovery is not much extra effort.

Intrablock is just treatments adjusted for fixed blocks; let R do the
work.

If you could do RCB with same variance as BIBD, then

EBIBD:RCB =
g(k − 1)

(g − 1)k

is the relative efficiency. The effective sample size is rE

Var(
∑

i

wi α̂i) = σ2
∑

i

w2
i

rE

SSTrt =
∑

i

rE α̂2
i

Interblock recovery is a combination of the intrablock estimates
with estimates based on regressing block totals on the treatments
appearing in blocks—the raw interblock estimates.

The error variance in this regression is a combination of σ2
incomp

plus the block to block variance (which is often much bigger than
σ2

incomp). Raw interblock estimates have greater variability than
intrablock estimates, often much greater.

Interblock recovery combines these two, but the combination is
usually pretty close to the intrablock estimates.

If you assume random blocks and use lmer, you get the interblock
recovery analysis.

Youden Squares

These are always amusing, because Youden squares are not square.

Consider a situation with two blocking factors, but one of the
factors can only have blocks of size g − 1 instead of g .

Take a Latin square and delete one row (or column) obtaining a g
by g-1 arrangement.

This is a Youden square. It is RCB for one blocking factor and
BIBD for the other blocking factor.

A B C D

B A D C

C D A B

Intrablock analysis is just treatments after both blocking factors.

You can do interblock recovery if the short (incomplete) blocks are
random.

Other incomplete block designs

There are many other kinds of incomplete block designs (including
only designs in text):

Partially balanced incomplete block designs

Cyclic designs

Lattice designs

Alpha designs

Most of these are motivated by trying to get good properties from
a smaller design than a BIBD. E.g., the smallest BIBD with g=12
and k=7 has 132 blocks.

Most of these have N=gr=bk but relax the equal pair occurrence
requirement of BIBD in some way.

PBIBD was an early competitor. Treatments are in associate
classes, e.g., 2 classes.

Pairs of treatments that are first associates occur together λ1

times; second associates occur together λ2 times. All treatments
have the same number of first associates and second associates.

In addition, pick a pair of ith associates and let ρi
jk be the number

of treatments that are jth associates of one member of the pair
and kth associates of the other member of the pair. This number
cannot depend on the original pair chosen.

Evidently, generating or verifying a PBIBD is a bit fiddly, and some
of the later designs are competitors based on ease of construction.

From a data analysis perspective, we still do intrablock as
treatments adjusted for fixed block effects, and we can get
interblock recovery if we have random block effects.

The difference is that there are “simple” formulae allowing hand
calculations for BIBD, and the formulae get progressively less
simple or non-existent as we move to more complex designs. In the
end, it’s all R anyway.

