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> section<-factor(rep(1:2,c(21,24)))

These data are grades on an inclass exam given in Stat 5301. I had given two different
exams, randomly intermixed through the students (though they looked pretty similar at a
glance!), and I was interested in any possible differences between the average scores for
the two exams. I was also interested in any possible effects of status (undergraduate versus
graduate student) and lab section (I had two different TAs). This is not a randomized
experiment, but it does illustrate some of the issues with ANOVA for unbalanced data.

> status<-factor(c(2,1,1,2,2,2,1,1,1,2,2,2,2,2,1,2,2,2,1,1,1,
1,1,2,1,1,2,1,1,2,2,2,2,2,1,2,2,1,2,2,2,1,1,2,2))

> exam<-factor(c(2,2,2,2,2,2,2,1,1,2,2,1,1,1,1,1,1,2,1,1,2,
2,1,2,2,1,2,1,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1))

> grades<-c(62,34,75,80,89,63,42,36,40,91,
79,72,62,70,76,70,90,91,18,49,37,
65,48,66,59,63,75,51,50,75,62,88,84,70,33,60,54,
58,42,87,90,70,72,71,81)

> tapply(grades,list(exam,section,status),length)
We see that the counts are not the same in the different groups (not that we expected them
to be the same). This means that we will need to consider the lack of balance when doing
ANOVA.
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> fit1 <- lm(grades˜status*exam*section);anova(fit1)
Here is a first ANOVA. By default, R rearranges into main effects, then second order in-
teractions, then third order, and so on. Also by default, R gives you sequential sums of
squares, that is, Type I sums of squares. In this output, all sums of squares are type I,
exam:section is also type II, and status:exam:section is Type I, II, and III.

Analysis of Variance Table

Response: grades
Df Sum Sq Mean Sq F value Pr(>F)

status 1 5622.7 5622.7 26.4818 8.976e-06 ***
exam 1 7.5 7.5 0.0352 0.85229
section 1 53.9 53.9 0.2537 0.61746
status:exam 1 143.1 143.1 0.6739 0.41694
status:section 1 725.2 725.2 3.4158 0.07258 .
exam:section 1 164.5 164.5 0.7748 0.38443 Type II
status:exam:section 1 32.3 32.3 0.1522 0.69871 Type II,III
Residuals 37 7855.9 212.3
---
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Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> plot(fit1,which=1)
There is a bit of decreasing variance. Box-Cox does not suggest a transformation. For
simplicity, we will analyze on the original scale, however, consider the following. Look at
a new response, which is lost = 100 - grades (ie, the number of points lost). With
that response, we see increasing rather than decreasing variance, and the square root looks
better than the original scale, although it is not quite significant via Box-Cox. Why do the
transformations work on lost but not on grades?
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> plot(fit1,which=2)
Normality is pretty good.
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> trms <- terms(grades˜exam*section+exam*status++status*exam*section,
keep.order=TRUE)

If we want to put our model terms in a specific order, then we need to use a terms() com-
mand to put them in that order. Otherwise, R will just reorder them as above.

> anova(lm(trms))
Analysis of Variance Table

Response: grades
Df Sum Sq Mean Sq F value Pr(>F)

exam 1 203.0 203.0 0.9561 0.3345
section 1 72.4 72.4 0.3410 0.5628
exam:section 1 239.0 239.0 1.1259 0.2955
status 1 5445.2 5445.2 25.6458 1.157e-05 *** Type II
exam:status 1 149.5 149.5 0.7042 0.4068
section:status 1 607.7 607.7 2.8622 0.0991 . Type II
exam:section:status 1 32.3 32.3 0.1522 0.6987 Type II,III
Residuals 37 7855.9 212.3
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> trms <- terms(grades˜section*status+section*exam++status*exam*section,
keep.order=TRUE)

Different orders give us different sums of squares.

> anova(lm(trms))
Analysis of Variance Table

Response: grades
Df Sum Sq Mean Sq F value Pr(>F)

section 1 66.7 66.7 0.3142 0.57851
status 1 5608.8 5608.8 26.4163 9.154e-06 ***
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section:status 1 741.9 741.9 3.4942 0.06952 .
exam 1 11.3 11.3 0.0533 0.81867 Type II
section:exam 1 158.5 158.5 0.7466 0.39312
status:exam 1 129.6 129.6 0.6105 0.43956 Type II
section:status:exam 1 32.3 32.3 0.1522 0.69871 Type II,III
Residuals 37 7855.9 212.3
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
> trms <- terms(grades˜status*exam+status*section++status*exam*section,

keep.order=TRUE)
> anova(lm(trms))
Analysis of Variance Table

Response: grades
Df Sum Sq Mean Sq F value Pr(>F)

status 1 5622.7 5622.7 26.4818 8.976e-06 ***
exam 1 7.5 7.5 0.0352 0.85229
status:exam 1 145.9 145.9 0.6873 0.41240
section 1 51.0 51.0 0.2403 0.62685 Type II
status:section 1 725.2 725.2 3.4158 0.07258 .
exam:section 1 164.5 164.5 0.7748 0.38443 Type II
status:exam:section 1 32.3 32.3 0.1522 0.69871 Type II,III
Residuals 37 7855.9 212.3
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> #
We can now construct a Type II ANOVA by assembling the lines we need from the Type I
ANOVAs done in various orders.

DF SS MS P-value
section 1 51.03 51.03 0.6269
exam 1 11.32 11.32 0.8187
status 1 5445 5445 1.157e-05
exam.section 1 164.5 164.5 0.3844
section.status 1 607.7 607.7 0.09909
status.exam 1 129.6 129.6 0.4396
section.status.exam 1 32.31 32.31 0.6987
Error 37 7856 212.3

The three-factor interaction is not significant, so we can check the two-ways. None of them
is significant, so we can check the main effects. Only status is significant.

> Anova(fit1,type=2)
It’s important to know what Type II is and does: it compares hierarchical models where the
base model is the largest hierarchical model not including the term of interest. However, it
gets old really fast doing it by hand. This function (from the car package) gets the Type II
tests for you.

Anova Table (Type II tests)

Response: grades
Sum Sq Df F value Pr(>F)

status 5445.2 1 25.6458 1.157e-05 ***
exam 11.3 1 0.0533 0.8187
section 51.0 1 0.2403 0.6269
status:exam 129.6 1 0.6105 0.4396
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status:section 607.7 1 2.8622 0.0991 .
exam:section 164.5 1 0.7748 0.3844
status:exam:section 32.3 1 0.1522 0.6987
Residuals 7855.9 37
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> model.effects(fit1,"status")
Although I haven’t shown it, the estimated effects depend on which terms are in the model,
but not on the order in which the terms are entered.

1 2
-11.56696 11.56696

> linear.contrast(fit1,status,c(-1,1))
Let’s look at a contrast for status.

estimates se t-value p-value lower-ci upper-ci
1 23.13393 4.463302 5.183142 7.999982e-06 14.09042 32.17744

> 5.183142ˆ2
The square of the t is an F. Neither this F nor the p-value from the contrast match any of
the F’s or p-values we had in any of the ANOVAs.
The SS for a contrast is the increase in error SS that we would obtain if we removed the
contrast df from the model, leaving all the other terms in the model. Note that since we are
using a contrast in a main effect, we are taking the main effect of status out of the model, but
leaving in all of the interactions that include status. This is OK if you are really interested
in testing the corresponding equally weighted hypotheses about those parameters, but it
does violate model hierarchy. This SS is a Type III SS.

[1] 26.86496

> Anova(fit1,type=3)
lm() likes hierarchy so much that you need extreme measures to get something that is not
hierarchical. The Anova() function with type=3 will do that for you. These are sometimes
called marginal or full parametric tests.

Anova Table (Type III tests)

Response: grades
Sum Sq Df F value Pr(>F)

(Intercept) 165406 1 779.0286 <2e-16 ***
status 5704 1 26.8650 8e-06 ***
exam 5 1 0.0241 0.8776
section 105 1 0.4926 0.4871
status:exam 122 1 0.5748 0.4532
status:section 601 1 2.8304 0.1009
exam:section 184 1 0.8648 0.3584
status:exam:section 32 1 0.1522 0.6987
Residuals 7856 37
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> fit2 <- lm(grades˜status);summary(fit2)
For unbalanced data, the coefficients can change when you change the terms in the model.
Once you have determined which terms should be retained in your reduced model, refit the
model using just your selected terms to get the appropriate estimated effects.
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Call:
lm.default(formula = grades ˜ status)

Residuals:
Min 1Q Median 3Q Max

-33.368 -11.368 -1.368 13.000 24.632

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 62.684 2.181 28.740 < 2e-16 ***
status1 -11.316 2.181 -5.188 5.45e-06 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 14.45 on 43 degrees of freedom
Multiple R-squared: 0.385,Adjusted R-squared: 0.3707
F-statistic: 26.92 on 1 and 43 DF, p-value: 5.455e-06

> step(fit1,direction="backward")
Here is a more automated way to find a model. step() with direction backward does back-
ward elimination starting with the full model and keeping to hierarchical models. It finds
the model with the minimum AIC (Akaike Information Criterion). In general, AIC is a bit
more willing to keep variables than are F-tests at the usual significance levels. In this case,
the selected model has section*status, not just status.

Start: AIC=248.31
grades ˜ status * exam * section

Df Sum of Sq RSS AIC
- status:exam:section 1 32.309 7888.3 246.49
<none> 7855.9 248.31

Step: AIC=246.49
grades ˜ status + exam + section + status:exam + status:section +

exam:section

Df Sum of Sq RSS AIC
- status:exam 1 129.63 8017.9 245.22
- exam:section 1 164.50 8052.8 245.42
<none> 7888.3 246.49
- status:section 1 607.70 8496.0 247.83

Step: AIC=245.22
grades ˜ status + exam + section + status:section + exam:section

Df Sum of Sq RSS AIC
- exam:section 1 158.52 8176.4 244.11
<none> 8017.9 245.22
- status:section 1 627.58 8645.5 246.62

Step: AIC=244.11
grades ˜ status + exam + section + status:section
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Df Sum of Sq RSS AIC
- exam 1 11.32 8187.7 242.17
<none> 8176.4 244.11
- status:section 1 744.68 8921.1 246.03

Step: AIC=242.17
grades ˜ status + section + status:section

Df Sum of Sq RSS AIC
<none> 8187.7 242.17
- status:section 1 741.89 8929.6 244.07

Call:
lm.default(formula = grades ˜ status + section + status:section)

Coefficients:
(Intercept) status1 section1 status1:section1

62.623 -11.562 -1.720 -4.119

> muij<-rep(1:4,c(20,1,1,25))
Here are some cell means for a 2x2 factorial with unequal replication. The means are 1
larger in the second row than the first, and 2 larger in the second column than the first. The
means are additive.

> a<-factor(rep(c(1,2,1,2),c(20,1,1,25)))

> b<-factor(rep(c(1,1,2,2),c(20,1,1,25)))

> y<-muij+1.5*rnorm(47)
Our data will be the cell means plus random normal errors (the 47 because we need 47 data
values).

> fit3 <- lm(y˜a*b)

> Anova(fit3,type=3)
Neither a, nor b, nor a:b is significant using type II or Type III. What gives?

Anova Table (Type III tests)

Response: y
Sum Sq Df F value Pr(>F)

(Intercept) 39.501 1 15.5629 0.0002901 ***
a 7.938 1 3.1275 0.0840743 .
b 0.981 1 0.3864 0.5374917
a:b 0.505 1 0.1988 0.6579326
Residuals 109.140 43
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> Anova(fit3,type=2)
Anova Table (Type II tests)
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Response: y
Sum Sq Df F value Pr(>F)

a 7.957 1 3.1351 0.08371 .
b 0.987 1 0.3890 0.53610
a:b 0.505 1 0.1988 0.65793
Residuals 109.140 43
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> anova(lm(y˜a:b))
Here we lump all the df for the model together into one term; it is highly significant!
The reason this happens is that the data are structured so that either a or b could explain the
variation, but a is not needed if b is present, and b is not needed if a is present. Thus neither
a nor b looks significant when tested, but they are part of significant model.

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

a:b 3 85.898 28.6325 11.281 1.377e-05 ***
Residuals 43 109.140 2.5381
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> y<-c(1,2,2,3,3,4,4,4,4)+rnorm(9)
Now we are going to build some proportionally balanced data. This is a 2x2 with replication
1,2,2,4 and an additive mean structure.

> a<-factor(c(1,2,2,1,1,2,2,2,2))

> b<-factor(c(1,1,1,2,2,2,2,2,2))

> anova(lm(y˜a*b))
These data are not balanced, but they are proportionally balanced. It turns out that that is
good enough to make order not matter.

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

a 1 10.3507 10.3507 6.4621 0.05176 .
b 1 2.0149 2.0149 1.2579 0.31300
a:b 1 1.8662 1.8662 1.1651 0.32970
Residuals 5 8.0088 1.6018
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> Anova(lm(y˜a*b),type=2)
Anova Table (Type II tests)

Response: y
Sum Sq Df F value Pr(>F)

a 10.3507 1 6.4621 0.05176 .
b 2.0149 1 1.2579 0.31300
a:b 1.8662 1 1.1651 0.32970
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Residuals 8.0088 5
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> Anova(lm(y˜a*b),type=3)
Anova Table (Type III tests)

Response: y
Sum Sq Df F value Pr(>F)

(Intercept) 46.789 1 29.2109 0.002931 **
a 6.646 1 4.1489 0.097254 .
b 0.780 1 0.4867 0.516510
a:b 1.866 1 1.1651 0.329704
Residuals 8.009 5
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1


