```
> library(Stat5303libs);library(cfcdae);library(lme4)
> immer
```

One early and famous example of a Randomized Complete Block analyzed by Fisher involves five varieties of barley grown at six locations (which included Crookston, Waseca, ..., data from Minnesota!). The original experiment had two years of data; we will only look at the second year. This data set is included in the MASS package, which Stat5303 automatically loads.

	Loc	Var	Y1	Y2
1	UF	M	81.0	80.7
2	UF	S	105.4	82.3
3	UF	V	119.7	80.4
4	UF	T	109.7	87.2
5	UF	P	98.3	84.2
6	W	M	146.6	100.4
7	W	S	142.0	115.5
8	W	V	150.7	112.2
9	W	T	191.5	147.7
10	W	P	145.7	108.1
11	M	M	82.3	103.1
12	M	S	77.3	105.1
13	M	V	78.4	116.5
14	M	T	131.3	139.9
15	M	P	89.6	129.6
16	C	M	119.8	98.9
17	C	S	121.4	61.9
18	C	V	124.0	96.2
19	C	T	140.8	125.5
20	C	P	124.8	75.7
21	GR	M	98.9	66.4
22	GR	S	89.0	49.9
23	GR	V	69.1	96.7
24	GR	T	89.3	61.9
25	GR	P	104.1	80.3
26	D	M	86.9	67.7
27	D	S	77.1	66.7
28	D	V	78.9	67.4
29	D	T	101.8	91.8
30	D	P	96.0	94.1

```
> boxplot(Y2 ~LOc,data=immer,main="Barley by location")
```

Here are the results separately by block. There are large block to block differences, so blocking should be a real help.

> boxplot(Y2~Var, data=immer,main="Barley by variety")
Here are the results separately by treatment. We can see some treatment differences, but we also see a lot of variation within each treatment. Much of this is block to block variability that would show up in our error if we hadn't blocked.


```
> fit1 <- lm(Y2~Loc+Var,data=immer)
```

Get into the habit of treatments after blocks.
> plot(fit1,which=1)
Residuals look pretty good, although there is just a hint of a dip in the middle.

Normality looks good.


```
> anova(fit1)
```

Here is the ANOVA, we just enter treatments after blocks. Variety effects are moderately significant. We do not test the block effects (even though R prints an F, it doesn't know about blocking factors).

```
Analysis of Variance Table
Response: Y2
            Df Sum Sq Mean Sq F value Pr(>F)
Loc 5 10285.0 2056.99 10.3901 5.049e-05 ***
Var 4 2845.2 711.29 3.5928 0.02306 *
Residuals 20 3959.5 197.98
--
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

> summary (fit1)

Varieties M and S have low yields, variety T has a high yield, and the others are in the middle. Again, ignore "testing" related to block effects.

Call:
lm.default (formula = Y2 ~ Loc + Var, data = immer)

Residuals:				
Min	12	Median	32	Max
-25.007	-8.665	-0.900	8.185	23.893

Coefficients:					
	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	93.133	2.569	36.254	< 2e-16	*
Loc1	-1.493	5.744	-0.260	0.797543	
Loc2	-15.593	5.744	-2.715	0.013344	*
Loc3	-22.093	5.744	-3.846	0.001008	**
Loc4	25.707	5.744	4.475	0.000232	***
Loc5	-10.173	5.744	-1.771	0.091790	
Var1	-6.933	5.138	-1.349	0.192261	
Var2	2.200	5.138	0.428	0.673081	
Var3	-12.900	5.138	-2.511	0.020748	*
Var4	15.867	5.138	3.088	0.005797	**
Signif. codes: 0 *** 0.001 ** $0.01 * 0.05 .0 .11$					
Residual standard error: 14.07 on 20 degrees of freedom					
Multiple R-squared: 0.7683,Adjusted R-squared: 0.664					
F-statistic: 7.369 on 9 and 20 DF, p-value: 0.0001069					

```
> pairwise(fit1,Var)
```

Using HDS, only S and T seem to differ, the others cannot be distinguished.

```
Pairwise comparisons ( hsd ) of Var
    estimate signif diff lower upper
    1 - 2 -9.1333333 24.30866 -33.441989 15.175322
    1-3 5.9666667 24.30866 -18.341989 30.275322
    1 - 4 -22.8000000 24.30866-47.108656 1.508656
    1 - 5 -8.7000000 24.30866 -33.008656 15.608656
    2 - 3 15.1000000 24.30866 -9.208656 39.408656
    2 - 4-13.6666667 24.30866-37.975322 10.641989
    2 - 5 0.4333333 24.30866-23.875322 24.741989
* 3-4 -28.7666667 24.30866 -53.075322 -4.458011
    3-5 -14.6666667 24.30866 -38.975322 9.641989
    4 - 5 14.1000000 24.30866 -10.208656 38.408656
```

> fit2 <- lmer (Y2~ (1|Loc) +Var, data=immer)
OK, so what if we thought that blocks should be random?
> summary (fit2)

We get the same estimates of variety effects and residual error as well as same SE for variety effects.

```
Linear mixed model fit by REML ['lmerMod']
Formula: Y2 ~ (1 | Loc) + Var
    Data: immer
REML criterion at convergence: 227
Scaled residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 32 & Max \\
-1.92838 & -0.49474 & -0.05208 & 0.72439 & 1.54701
\end{tabular}
Random effects:
    Groups Name Variance Std.Dev.
    Loc (Intercept) 371.8 19.28
    Residual 198.0 14.07
Number of obs: 30, groups: Loc, 6
Fixed effects:
            Estimate Std. Error t value
(Intercept) 93.133 8.280 11.247
Var1 -6.933 5.138 -1.349
Var2 2.200 5.138 0.428
Var3 -12.900 5.138 -2.511
Var4 15.867 5.138 3.088
Correlation of Fixed Effects:
        (Intr) Var1 Var2 Var3
Var1 0.000
Var2 0.000 -0.250
Var3 0.000 -0.250 -0.250
Var4 0.000 -0.250 -0.250 -0.250
```

```
> Anova(fit2,test="F")
```

Kenward and Roger agrees with fit1.

```
Analysis of Deviance Table (Type II Wald F tests with Kenward-Roger df)
Response: Y2
            F Df Df.res Pr (>F)
Var 3.5928 4 20 0.02306 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

> PBmodcomp (fit2, lmer (Y2~ (1|LOc), data=immer))

Parametric bootstrap agrees, too.

```
Parametric bootstrap test; time: 42.90 sec; samples: 1000 extremes: 26;
large : Y2 ~ (1 | Loc) + Var
small : Y2 ~ (1 | Loc)
    stat df p.value
LRT 13.073 4 0.01093 *
PBtest 13.073 0.02697 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

$>$ fit2.mcmc <- lmer.mcmc (fit2, 20000)

Let's be complete and use our MCMC method.

```
> lmer.mcmc.intervals(fit2.mcmc)
```

Both the intervals and the anova from MCMC match with the simple version we began with.

"Old school" estimate of block variation based on fit1, which agrees with REML.
[1] 371.802
$>(5 * 2056.99+24 * 197.98) / 29$
This is our estimate of what the error variance would be in a CRD from the same kind of data we used in our RCB.
[1] 518.499
$>(21 * 28 / 23 / 26) * 518.499 / 197.98$
Here is the estimate of relative efficiency. Mostly it is a ratio of the MSE in the CRD (estimated) to the MSE in the RCB. In addition, there is a degrees of freedom correction term that adjusts for the loss of degrees of freedom in the RCB. This term is usually pretty close to 1 . Here it is .98 .
[1] 2.575151

