
Stat 5303 (Oehlert): Randomization Tests; January 2016 1

> x <- c(4.3,4.6,4.8,5.4)

Let’s start by putting some data into R. R stores data as scalars (a single number), vectors (a
list of numbers), matrices (a table of numbers), and other ways. The function c() takes its
arguments and puts them together into a vector; I think of it as a shortcut for “combine” or
“concatenate” or something like that. The form <- is assignment; it means take whatever
is on the right and assign it to the variable whose name is given on the left.
To summarize, this command combines 4 numbers into a vector and then assigns that to a
variable named x. These numbers are the phosporus values for the 15 day plants.

> y = c(5.3,5.7,6.0,
6.3)

You can also use an equals sign instead of the assignment arrow (this is standard in many
programing languages, but it does lead to semantically correct statements like y=y+1).
You can also extend a command over more than one line (but some GUI front ends can
make it a bit challenging to do). You can make your lines as long as you like.
These are the phosporus values for the 28 day plants.

> t.test(x,y)
You may enter this command to do a two-sample t-test. Note that by default R uses an
unpooled estimate of variance (the Welch version with fractional degrees of freedom) and
a two-sided alternative. You can also get a pooled estimate and upper or lower alternatives
(i.e., x has greater mean or lesser mean).
The unpooled (Welch) version is generally the better option, but ANOVA is a generalization
of the unpooled version.

Welch Two Sample t-test

data: x and y
t = -3.3273, df = 5.958, p-value = 0.01602
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.8234804 -0.2765196

sample estimates:
mean of x mean of y

4.775 5.825

> t.test(x,y,alternative="greater",var.equal=TRUE)
Do with x mean greater than y mean alternative and assume equal variances.

Two Sample t-test

data: x and y
t = -3.3273, df = 6, p-value = 0.992
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
-1.663206 Inf

sample estimates:
mean of x mean of y

4.775 5.825

Stat 5303 (Oehlert): Randomization Tests; January 2016 2

> pt(-3.3273,6,lower.tail=FALSE)
pt() gives you the cumulative probability (area to the left) for Student’s t distribution; the
lower.tail=FALSE option gives you the upper tail probability. The first argument is
the t value, the second is the degrees of freedom.
In general in R, pFOO(q,parms) gives you the cumulative probability up to q for dis-
tribution FOO, qFOO(p,parms) gives you the quantile that gives you cumulative prob-
ability p, and rFOO(n,parms) gives you a random sample of size n from distribution
FOO. Thus, we have pt, pnorm, pf, pchisq, pbinom, and many others as well as their
q and r forms.

[1] 0.99207

> #
We now need to install and load packages. These are two separate steps. The first step
(installing) gets the package onto your computer. The second step (loading) tells R that we
want to use the package now in the current session. In principle you only have to install a
package once, but you need to load it in each session where you need it.
The easiest way to install a standard package is to use the package installer from the menu
bar. The easiest way to load is to use the package manager from the menu bar.
The manual way to install is to use the install.packages() function. The manual
way to load is to use the library() function.
You saw how do do the installation in the first lab.

> library(cfcdae);library(Stat5303libs)
Loading the cfcdae and Stat5303liobs packages will automatically load several other pack-
ages, including one called “perm”. We now want to do some randomization tests, also
called permutation tests. The “perm” library in R does some of what we want, so load-
ing Stat5303libs should also make the functions in perm available to us. You can use the
package manager to load Stat5303libs, or you can do it with the library() function.

> permTS(x,y)
This function does the two-sample randomization (permutation) t-test. By default it does a
two-sided alternative.
We see that the x mean is less than the y mean, and that the probability that a randomization
leads to a difference of means as large or larger than 1.05 in absolute value is 5.7%. Note
that this is not identical to the t-test p-value.

Exact Permutation Test (network algorithm)

data: x and y
p-value = 0.05714
alternative hypothesis: true mean of x minus mean of y is not equal to 0
sample estimates:
mean of x minus mean of y

-1.05

Stat 5303 (Oehlert): Randomization Tests; January 2016 3

> permTS(x,y,alternative="greater")
We may also specify different alternatives.

Exact Permutation Test (network algorithm)

data: x and y
p-value = 0.9857
alternative hypothesis: true mean of x minus mean of y is greater than 0
sample estimates:
mean of x minus mean of y

-1.05

> #
OK, now we’re going to enter in the data from the runstitch times from Table 2.1. There
are a bunch of different ways to do it, and we’ll go through a few.

> runstitch <- read.table("http://www.stat.umn.edu/˜gary/book/fcdae.data/exmpl2.1",
header=TRUE)

I’m basically very lazy, so the easiest thing to do is to read data from a file. The data from
the book are all on files that you can access from the web as I have done. This is the data
for example 1 from chapter 2. Exercises are ex, problems are pr.
If you have downloaded the data files from the web page onto your computer, then you
can do the same thing, just leave off the “http://” bit and give a complete path the file.
Alternatively, you can just use the file name for any file in the current working directory
(which, again, can be changed using setwd().
The read.table function assumes that data are in columns, and every row has an equal
number of data values. The header=TRUE bit means that column labels are on the first data
row.

> runstitch
The data are read into a “data frame.” You can usually think of a data frame as a matrix
with named columns, but it is a little fancier than that.

std ergo
1 4.90 3.87
2 4.50 4.54
3 4.86 4.60
4 5.57 5.27
5 4.62 5.59
6 4.65 4.61
...

> d <- runstitch$std - runstitch$ergo
This computes the element by element difference of the two data vectors and assigns that
into a variable named d (for difference).

> d
Pairwise differences.

[1] 1.03 -0.04 0.26 0.30 -0.97 0.04 -0.57 1.75 0.01 0.42
0.45 -0.80 0.39 0.25 0.18 0.95 -0.18 0.71 0.42 0.43

[21] -0.48 -1.08 -0.57 1.10 0.27 -0.45 0.62 0.21 -0.21 0.82

Stat 5303 (Oehlert): Randomization Tests; January 2016 4

> summary(d)
Simple summary statistics.

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.0800 -0.2025 0.2550 0.1753 0.4450 1.7500

> stem(d)
Stem and leaf plot.

The decimal point is at the |

-1 | 10
-0 | 86655
-0 | 220
0 | 002233334444
0 | 5678
1 | 001
1 | 8

> hist(d,freq=FALSE)
Histogram. To R’s eternal shame, the default histogram is just a frequency bar chart. I want
the real density. You can change the number of bins by giving a desired number of bins
(e.g., hist(d,20)) or by giving a set of bin boundaries.

Histogram of d

d

D
en

si
ty

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

Stat 5303 (Oehlert): Randomization Tests; January 2016 5

> t.test(d,alt="great")
The paired t-test for the full data set. This p-value is smallish, but not what we usually call
significant.

One Sample t-test

data: d
t = 1.49, df = 29, p-value = 0.0735
alternative hypothesis: true mean is greater than 0
95 percent confidence interval:
-0.02460234 Inf

sample estimates:
mean of x
0.1753333

> permsign.test(d,plot=TRUE)
This does the randomization version of the paired t, by randomly changing signs of the
differences. (This was written by me, part of the Stat5303 package.) The p-values are
computed by a simulation, so they will vary a bit if you repeat the command. We note that
they are close to the t-test in this case.
The histogram plots all of the randomization outcomes, and the red line on the plot is at the
observed value.

$x0
[1] 5.26

$lower.p
[1] 0.93

$upper.p
[1] 0.0702

$twosided.p
[1] 0.1404

Randomization Distribution

sum of values

F
re

qu
en

cy

−15 −10 −5 0 5 10

0
20

0
40

0
60

0
80

0
10

00

Stat 5303 (Oehlert): Randomization Tests; January 2016 6

> #
That’s it for the randomization testing lesson per se, now we will mess about some with R.

> runstitch["std"]
You can access components of the runstitch data frame by name (within square brackets).
However, this gives you a new data frame that only has the requested column.

std
1 4.90
2 4.50
3 4.86

> is.data.frame(runstitch["std"])
[1] TRUE

> runstitch[,2]
You can also access the second column of something by using ,2 within the square brackets.
Note that when extracting this way, we get an ordinary vector, not a data frame.

[1] 3.87 4.54 4.60 5.27 5.59 4.61 5.19 4.64 ...

> is.data.frame(runstitch[,2])
[1] FALSE

> runstitch[,"ergo"]
We can also select using a named column. Note that this also produces a vector rather than
a data frame.

[1] 3.87 4.54 4.60 5.27 5.59 ...

> runstitch$ergo
Using the “dollar” is another way to extract a named component. Note that this also pro-
duces a vector rather than a data frame.

[1] 3.87 4.54 4.60 5.27 5.59 ...

> #install.packages("oehlert_1.02.tar.gz",repos=NULL,type="source")
Another way to get the book data is via an R package that you can download from the book
web page. Russ Lenth put together an R package that just has all the data in it. As usual, we
first need to install the package (just once). Because I have already installed this package, I
have put a sharp/pound sign in front of the command. This makes anything after the sharp
a comment, and R ignores it.

> library(oehlert)
Then we need to load the library (you could also do this with the package manager dialog).

> emp02.1
Then you can just give the data set name, and hey presto, Bob’s your uncle, there it is.
Note, Lenth used emp instead of exmpl for examples. You will also find that some of the
variables are given slightly different names, and some factor levels are coded differently
(usually in a more explanatory fashion). Lenth’s data sets also arrive as data frames.

Stat 5303 (Oehlert): Randomization Tests; January 2016 7

std ergon
1 4.90 3.87
2 4.50 4.54
3 4.86 4.60
4 5.57 5.27
...

> #
There are many other ways to get the data in. The simplest ways are to type it all in (yuck!)
using the c() function or to read it in from a file using the scan() function, which just
reads all the numbers into a big vector. In either case you may need to reshape into vectors,
matrix, etc. as needed.

> 1:10
The form a:b returns numbers from a up to, but not greater than b, by steps of 1. The
function seq() can do fancier sequences.

[1] 1 2 3 4 5 6 7 8 9 10

> df10 <- d[1:10];df10
We can subscript to get the first ten differences.

[1] 1.03 -0.04 0.26 0.30 -0.97 0.04 -0.57
[8] 1.75 0.01 0.42

> dl10 <- d[21:30];dl10
Or the last 10 differences. We will sometimes wish to work with subsets of the data.

[1] -0.48 -1.08 -0.57 1.10 0.27 -0.45 0.62
[8] 0.21 -0.21 0.82

