
Stat 5303 (Oehlert): Random effects 1

> #

Make sure that you have the latest version of Stat5303 (0.7-1).

> library(Stat5303);library(lme4)
We’re going to need lme4, so we may as well load it now. Warning: if you Google for
lme4 you may find a link to an “lme4 book.” It appears that some of the cooler functions
illustrated and used in that book are not in our version of lme4. The book uses an lme4a,
but it is not readily available.

> bulls <- read.table("kuehl1.dat.txt",header=TRUE)
These are the data from exercise 5-1 of Kuehl (1994, Duxbury). There are 5 bulls selected
at random, and we observe the birth weights of male calves. Sire is considered random,
and we make it a factor.

> bulls <- within(bulls,sire <- as.factor(sire))

> bulls
sire wts

1 1 61
2 1 100
3 1 56
4 1 113
5 1 99
6 1 103
7 1 75
8 1 62
9 2 75
10 2 102
11 2 95
12 2 103
13 2 98
14 2 115
15 2 98
16 2 94
17 3 58
18 3 60
19 3 60
20 3 57
21 3 57
22 3 59
23 3 54
24 3 100
25 4 57
26 4 56
27 4 67
28 4 59
29 4 58
30 4 121
31 4 101
32 4 101
33 5 59
34 5 46
35 5 120
36 5 115
37 5 115

Stat 5303 (Oehlert): Random effects 2

38 5 93
39 5 105
40 5 75

> #
OK, before jumping into REML, we will take just a little taste of the “old school” method
for random effects. This example is one of the situations where old school is just dead easy.
The old school basically takes the fixed effects approach, ANOVA, and tries to fix it up for
random effects. It works reasonably well in simple situations, but it doesn’t extend well.

> calves.lm <- lm(wts˜sire,data=bulls)

> anova(calves.lm)
This is the ordinary ANOVA. It doesn’t know anything about fixed or random effects. The
DF, SS, and MS are correct. Under the null hypothesis of no sire effect, the random effects
model and the fixed effects model are the same. Thus this F-test and p-value are valid.
Put another way, this is the old school way of analyzing the data.

Analysis of Variance Table

Response: wts
Df Sum Sq Mean Sq F value Pr(>F)

sire 4 5591.1 1397.8 3.0138 0.03087 *
Residuals 35 16232.8 463.8

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> plot(calves.lm,which=2)
Normality is pretty good.

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●●
●

●

●

●
●

●

●
●

●

● ●

●

●

●

● ●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(wts ~ sire)

Normal Q−Q

34

30

24

Stat 5303 (Oehlert): Random effects 3

> plot(calves.lm,which=1)
Constant variance is a little bit doubtful. If you do BoxCox, the optimum is near the log,
but leaving the data alone (power 1) is well within the confidence interval. (It takes a
pretty strong power family transformation to do much since the ratio of largest to smallest
response is only about 2.

65 70 75 80 85 90 95

−
40

−
20

0
20

40

Fitted values

R
es

id
ua

ls

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●
●●

●●
●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

lm(wts ~ sire)

Residuals vs Fitted

34

30

24

> (1397.79-463.79)/8
In the old school approach, we set the expected values of MS equal to their observed values
and then solve for the variance components. The EMS for MSE is σ2, and in this problem
the EMS for MSA is σ2 + 8σ2

α. Here we solve for an estimate of σ2
α.

[1] 116.75

> #
There are two main functions for doing REML. The first is lme from the nlme package,
and the second is lmer from the lme4 package. We will mostly use lmer, but we will
dabble with lme from time to time.

> calves.lmer <- lmer(wts ˜ 1 + (1|sire),data=bulls)
In lmer, the fixed effects terms are entered as usual. In our case, the only fixed effect term
is the overall mean. The random effects terms are entered inside parentheses. In this case,
the 1 in the 1|sire means give us an additive effect (which R will call an intercept), and
the |sire part means give us a separate, independent effect for each level of sire.

Stat 5303 (Oehlert): Random effects 4

> anova(calves.lmer)
The anova function applied to an lmer model gives test statistics for the fixed effects. How-
ever, it doesn’t give anything for the intercept, which is the only fixed effect in this model.
Thus, the anova output for this lmer model is a little unfulfilling.

Analysis of Variance Table
Df Sum Sq Mean Sq F value

> summary(calves.lmer)
The summary has three main parts. The first part is some statistics that give a measure of
how good the fit is. REMLdev is the REML deviance, which is computed as -2 times the
REML log likelihood. Differences in REMLdev are treated, kind of, sort of, like chisquare
statistics. AIC and BIC penalize the REML deviance by adding a multiple of the number
of parameters. For AIC, it is 2 times the number of parameters, for BIC it is log(n) times
the number of parameters. logLik is the REML log likelihood, and deviance is the ordinary
(likelihood, not REML) deviance. Models for a given set of data are preferred if they have
smaller AIC or BIC. AIC is fairly easily convinced that you need another term in the model;
BIC takes more convincing.
The next section is estimates of the random effects. We have two random effects here,
one for sire and one for error. The output gives the estimated variance, along with the
standard deviation (just the square root of the variance, not the variability of our estimate
of variance). Here the values of 116.75 for the sire variance and 463.79 for error variance
are exactly the same as what we obtained from the old school method. This is generally the
case in simple, balanced problems.
The final section is the fixed effects, their estimates and their standard errors. In this model
the only fixed effect is the intercept (grand mean). NOTE: standard errors for fixed effects
are usually a little too small. The reason is that they are computed assuming that we know
the random effects, but we don’t really know the random effects. Not knowing the random
effects introduces more variability.

Linear mixed model fit by REML
Formula: wts ˜ 1 + (1 | sire)

AIC BIC logLik deviance REMLdev
364.2 369.3 -179.1 363.6 358.2

Random effects:
Groups Name Variance Std.Dev.
sire (Intercept) 116.75 10.805
Residual 463.79 21.536

Number of obs: 40, groups: sire, 5

Fixed effects:
Estimate Std. Error t value

(Intercept) 82.550 5.911 13.97

Stat 5303 (Oehlert): Random effects 5

> 116.75+463.79/8
This is our estimate of the variance of ȳi•. We have one αi with variance σ2

α and we average
the 8 εijs within the treatment.
Note that this variance is simply the MS for sire from the fixed effects ANOVA divided by
8.

[1] 174.7237

> sqrt(174.7237/5)
We have 5 sires, so this should be the SE of the average of 5 treatment means. Evidently,
this matches what REML is producing.
However, when we do this simple case by hand, we note that we should be using t with 4 df
when forming confidence intervals, because this is really coming from the MS for sire with
4 df. Thus we should not think of this as estimate plus or minus two times standard error,
because we need a t multiplier. Sadly, REML does not let us know about the “degrees of
freedom.”

[1] 5.911408

> logLik(calves.lmer,REML=TRUE)
The standard measure of overall model fit is the log likelihood. We saw the log likelihood
in the model summary above.

’log Lik.’ -179.156 (df=3)

> logLik(lm(wts˜1,data=bulls),REML=TRUE)
When we want to compare two models that differ by a random effect, we take twice the
difference of the log likelihoods (this is the difference of the deviances) as a test statistic
and compare it to a chi-square distribution with degrees of freedom equal to the difference
in parameters. For a single random effect, this is just one df.
When we test random effects, we can regular or REML likelihoods. When we test fixed
effects, we must use regular likelihoods (i.e., REML=FALSE).

’log Lik.’ -180.5634 (df=2)

> 2*(-179.156- -180.5634)
[1] 2.8148

> pchisq(2.8148,1,lower.tail=FALSE)
The apparent p-value is about .09.

[1] 0.09339854

> #
Everyone should be a little queasy about the “apparent” in the previous annotation. Well,
there’s good news and bad news here. The good news is we can do a chi square test, but the
bad news is that the distribution of the chi square test when testing variance components
isn’t really chi square. Ouch.
The problem with the likelihood ratio tests of variance components is that they tend to be
conservative. That is, the p-values that you compute using the chi square distribution tend
to be bigger than they should be. I’ve seen recommendations to divide the nominal p-value
by 2, but I don’t know that anything is a sure bet.
Dividing by 2, our corrected p-value is about .045.

Stat 5303 (Oehlert): Random effects 6

> exactRLRT(calves.lmer)
If you have a model with a single variance component (other than error), then you can test
that component simply with exactRLRT() from the RLRsim package. As we can see, the
p-value is about .03, which is what the old school anova gave us.

simulated finite sample distribution of RLRT. (p-value based on 10000 simulated values)

data:
RLRT = 2.9099, p-value = 0.031

> #
The exactRLRT function is cool and gives us good p-values. However, what’s all this about
simulation?
What a function like exactRLRT does is simulate the real distribution. That is, it uses the
(restricted) likelihood ratio as a test statistic, but it simulates the real distribution to get a
p-value. It doesn’t compare it to a chi square distribution.

> lmer(wts ˜ 1 +(1|sire),REML=FALSE)
I mentioned that sometimes it is better to do ordinary likelihood instead of REML. You
get that by setting REML to FALSE in the lmer command. You can see that the estimated
variances tend to be smaller. In fact, the likelihood estimates of variance tend to be biased
downwards, which is why people like REML.

Linear mixed model fit by maximum likelihood
Formula: wts ˜ 1 + (1 | sire)

AIC BIC logLik deviance REMLdev
369.5 374.6 -181.7 363.5 358.3

Random effects:
Groups Name Variance Std.Dev.
sire (Intercept) 81.804 9.0446
Residual 463.793 21.5359

Number of obs: 40, groups: sire, 5

Fixed effects:
Estimate Std. Error t value

(Intercept) 82.550 5.287 15.61

> calves.mcmc <- lmer.mcmc(calves.lmer,10000)
This function allows us to do some Bayesian procedures and produces samples (tries to
anyway) from the posterior distribution of the parameters. Bayes methods are becoming
more popular, but they are still a little outre in applications.
The default prior distribution is assumed to be flat, but you can optionally add a very slightly
informative prior that just slightly prefers small variances.
Think of the posterior distribution as telling us where we think the parameters should be,
or how we should spread out our belief of where the parameters are. Posterior intervals are
not confidence intervals, but they are similar in usage and a heck of a lot easier to compute
in this case.
Here we compute 10,000 samples from the posterior for the fixed effects and random effects
variances. By default, the function saves every 10th value; you can change that.
I’m sorry, but this function is slow.
Note: the lme4 package includes an MCMC function of its own, but it does not appear to
be working quite right (and some of the package documentation agrees). So I wrote my
own; it’s dumb and it’s slow, but I think it is giving the right answers.

Stat 5303 (Oehlert): Random effects 7

> par(mfrow=c(3,2))
We’re going to draw six plots here in a moment, and this command lets us arrange them in
a 3x2 matrix and fill by rows.

> lmer.mcmc.plots(calves.mcmc)
Before we go do some inference, we want to make sure that the simulation has settled
down. We do this by plotting the values against run number. The trace should look like a
lot of blah nothing. If it doesn’t look like blah nothing, then we need to run the simulation
for more iterations. (A strong argument could be made that we may need to modify the
way that our MCMC simulation is done, but my function only does things one way, and
our only available “fix” is to do more runs.)
The trace plots are on the left. The traces for the intercept and for σ2 look fairly stable, but
we can’t say that for the sire variance. Note that this simulation does explore some exact
zero values for the sire variance.
Let’s try more runs.

0 200 400 600 800 1000

70
80

90
10

0

(Intercept)

Index

(Intercept)
F

re
qu

en
cy

70 80 90 100

0
20

40
60

80

0 200 400 600 800 1000

0
20

0
40

0
60

0

sire

Index

sire

F
re

qu
en

cy

0 100 200 300 400 500 600

0
10

0
20

0

0 200 400 600 800 1000

40
0

80
0

12
00

sigma2

Index

sigma2

F
re

qu
en

cy

200 400 600 800 1000 1200

0
20

40
60

80

> calves.mcmc2 <- lmer.mcmc(calves.lmer,50000)
Well, let’s up the iterations and see if it looks any better. Again, I have not had time to try
to make this function fast. This run took about 85 seconds on my laptop.

Stat 5303 (Oehlert): Random effects 8

> lmer.mcmc.plots(calves.mcmc2)
I still would not go so far as to say that the sire component has really settled down, but it’s
better, at least. The histograms on the right are approximations to the posterior distribution.
Note that the simulation has really settled in on a small value for the sire variance.

0 1000 2000 3000 4000 5000

40
60

80
10

0

(Intercept)

Index

(Intercept)

F
re

qu
en

cy

40 60 80 100

0
20

0
60

0

0 1000 2000 3000 4000 5000

0
20

0
40

0
60

0

sire

Index

sire

F
re

qu
en

cy

0 100 200 300 400 500 600

0
10

00
30

00

0 1000 2000 3000 4000 5000

20
0

60
0

10
00

sigma2

Index

sigma2

F
re

qu
en

cy

200 400 600 800 1000 1200

0
10

0
20

0
30

0

Stat 5303 (Oehlert): Random effects 9

> lmer.mcmc.plots(calves.mcmc2,log=TRUE)
We can also plot variance components as the log of the ratio of the variance component
to the error variance. Here we can see that the sire effect is just keeps getting smaller and
smaller and smaller. That’s a good hint that it might really be 0. Also, the little gaps in the
sire trace are where the sire variance was simulated at 0 (and it can’t plot the log of 0).

0 1000 2000 3000 4000 5000

40
60

80
10

0

(Intercept)

Index

(Intercept)

F
re

qu
en

cy

40 60 80 100

0
20

0
60

0

0 1000 2000 3000 4000 5000

1e
−

05
1e

−
01

sire over sigma2

Index

1e−06 1e−04 1e−02 1e+00

0.
00

0.
04

0.
08

sire over sigma2

N = 5000 Bandwidth = 0.5006

D
en

si
ty

0 1000 2000 3000 4000 5000

20
0

60
0

10
00

sigma2

Index

sigma2

F
re

qu
en

cy

200 400 600 800 1000 1200

0
10

0
20

0
30

0

Stat 5303 (Oehlert): Random effects 10

> lmer.mcmc.intervals(calves.mcmc2)
So what can we do with this? We can get posterior intervals, which are analogous to
confidence intervals. By default, it’s 95%, but you can reset that if you like.
A few things to notice here. First, the SE we have for the intercept is larger than that we
saw from the summary of calves.lmer (5.911). That is typical, but not universal for fixed
effects.
Second, the median values for the random effects variances are not necessarily matched
closely with the REML estimates. In this problem, the REML estimates are not right in the
middle of the intervals.
Third, we don’t have a lot of information about sire to sire variability, and that shows up as
an interval that is a mile wide. That is often typical for variance components based on only
a few levels of the random effect (5 here); that’s just life in the big city.
We also need to realize that the intervals for variance components are rather sensitive to
non-normality. Well, actually they are very sensitive to non-normality. So exercise some
caution in using them.

lower median upper SE
(Intercept) 67.66784 82.47333 94.91444 6.632444
sire 0.00000 0.12923 136.99136 52.701548
sigma2 352.74659 548.25954 891.54205 137.033587

> lmer.mcmc.anova(calves.mcmc2)
We can get an “anova” for the fixed effects. The degrees of freedom given are the df for the
hypothesis, that is, the number of parameters being tested. The p-value is computed from
the variability present in the MCMC samples. This one is a little boring, but others will be
more interesting.

chisq Df MC p-value
(Intercept) 154.9127 1 0

> lmer.mcmc.vcov(calves.mcmc2)
We can obtain the posterior variance/covariance matrix for the fixed effects. Note that this
variance is just the square of the SE reported in the intervals output.

[1] 43.98931

> residuals(calves.lm)
Here are the usual residuals from the fixed effects model.

1 2 3 4 5 6 7 8 9
-22.625 16.375 -27.625 29.375 15.375 19.375 -8.625 -21.625 -22.500
...
> residuals(calves.lmer)

Here are the residuals for the random effects model. They are not the same! Similarly, the
estimated random level for the first sire is not the same as the estimated fixed effect for the
first sire. In general, the random effects are shrunk in a little bit toward zero.

[1] -22.268347 16.731653 -27.268347 29.731653 15.731653 19.731653
...

Stat 5303 (Oehlert): Random effects 11

> par(mfrow=c(2,2))
Some more plots coming, let’s set them up 2 by 2.

> lmer.plot(calves.lmer)
We need to try to check up on our model. We are assuming that all random effects are
normal, constant variance (at least within an effect group), and independent. We can make
the usual plots for residuals, subject to the consideration that they may be not quite what
we are expecting, but there are usually so few individual random effects that the best we
might hope for is a check of normality; constant variance seems beyond us.
Now the fact we just saw that residuals sort of mean something different in random effects
models will imply that our hard-won intuition about residuals from fixed effects models is
not always going to be correct in random effects models.
What the lmer.plot() function (from the Stat5303 package) does is a normal probability
plot for each random effect, and a probability plot and residuals versus predicted plot for
residuals.
Things look pretty good in this data set.

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
10

−
5

0
5

10

Normal QQ plot of sire effects

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●●

●●
●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

−2 −1 0 1 2

−
40

−
20

0
20

40

Normal QQ plot of Residuals

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●●
●●
●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

70 75 80 85 90

−
40

−
20

0
20

40

Predicted

R
es

id
ua

ls

Stat 5303 (Oehlert): Random effects 12

> detach(library:lme4);library(nlme)
We will briefly peek at the lme() function in the nlme library. lme4 and nlme seem to step
on each other’s toes occasionally, so I detach one before using the other.

> calves.lme <- lme(wts ˜ 1, random= ˜1|sire,data=bulls)
In lme(), you specify the random effects in a separate argument from the fixed effects.
For this example, there’s not much to choose between them. In general, lmer() can do
crossed random effects while that is very difficult in lme(). However, lme() can do some
very complicated special covariance structures for random effects that cannot be done in
lmer(). In addition, the non-crossed nature of the random effects in lme() makes estimating
“denominator” degrees of freedom simpler, so lme() is happier about doing an anova for
fixed effects.

> summary(calves.lme)
The presentation is different, but the information agrees.

Linear mixed-effects model fit by REML
Data: NULL

AIC BIC logLik
364.217 369.2077 -179.1085

Random effects:
Formula: ˜1 | sire

(Intercept) Residual
StdDev: 10.80530 21.53582

Fixed effects: wts ˜ 1
Value Std.Error DF t-value p-value

(Intercept) 82.55 5.911487 35 13.96434 0

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-1.9593563 -0.7458505 -0.1580621 0.8142560 1.9420875

Number of Observations: 40
Number of Groups: 5

> detach(package:nlme);library(lme4)
Back to lmer.

Stat 5303 (Oehlert): Random effects 13

> resistors <- read.table("hicksturner.dat.txt",header=TRUE);resistors
These are data from problem 6.18 of Hicks and Turner (1999 Oxford). Ten resistors are
chosen at random, and three operators are chosen at random. Each operator measures
the resistance of each resistor twice, with the 20 measurements made in random order.
Response is in milliohms.

part oper mohms
1 1 1 417
2 1 2 394
3 1 3 404
4 1 1 419
5 1 2 398
6 1 3 410
7 2 1 417
8 2 2 387
9 2 3 398
10 2 1 417
11 2 2 399
12 2 3 402
13 3 1 423
14 3 2 389
15 3 3 407
16 3 1 418
17 3 2 407
18 3 3 402
19 4 1 412
20 4 2 389
21 4 3 407
22 4 1 410
23 4 2 405
24 4 3 411
25 5 1 407
26 5 2 386
27 5 3 400
28 5 1 409
29 5 2 405
30 5 3 410
31 6 1 408
32 6 2 382
33 6 3 405
34 6 1 413
35 6 2 400
36 6 3 410
37 7 1 409
38 7 2 385
39 7 3 407
40 7 1 408
41 7 2 400
42 7 3 400
43 8 1 408
44 8 2 384
45 8 3 402
46 8 1 411
47 8 2 401

Stat 5303 (Oehlert): Random effects 14

48 8 3 405
49 9 1 412
50 9 2 387
51 9 3 412
52 9 1 408
53 9 2 401
54 9 3 405
55 10 1 410
56 10 2 386
57 10 3 418
58 10 1 404
59 10 2 407
60 10 3 404

> resistors <- within(resistors, {oper <- as.factor(oper);part <- as.factor(part)}))
Make factors.

> mohms.lmer <- lmer(mohms ˜ 1 + (1|part) + (1|oper) + (1|part:oper),data=resistors)
This model has the constant as the only fixed effect. We have an independent random level
for each part, for each operator, and for each part by operator combination.

> summary(mohms.lmer)
An interesting feature here is that two of the random effects (part and part by operator) are
estimated to have zero variance.

Linear mixed model fit by REML
Formula: mohms ˜ 1 + (1 | part) + (1 | oper) + (1 | part:oper)

AIC BIC logLik deviance REMLdev
406.9 417.4 -198.5 402 396.9

Random effects:
Groups Name Variance Std.Dev.
part:oper (Intercept) 0.000 0.0000
part (Intercept) 0.000 0.0000
oper (Intercept) 76.026 8.7193
Residual 40.311 6.3491

Number of obs: 60, groups: part:oper, 30; part, 10; oper, 3

Fixed effects:
Estimate Std. Error t value

(Intercept) 404.2 5.1 79.25

> par(mfrow=c(3,2))
Before going further, let’s look at the effects and residuals. We’ll have five plots (three
random effects and two residuals plots).

> lmer.plot(mohms.lmer)
Residuals look OK, although one of the operators may be a bit more variable than the
others. We only have three effects for operator, so we can’t really say much about their
distribution. The other two random effects are zero (or nearly so).

Stat 5303 (Oehlert): Random effects 15

● ● ● ● ● ● ●●●●●●●●●●●●●●●●●● ● ● ● ● ● ●

−2 −1 0 1 2

−
1.

0
0.

0
0.

5
1.

0

Normal QQ plot of part:oper effects

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s ●

●

●

●

● ●

●
●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
4e

−
12

2e
−

12

Normal QQ plot of part effects

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

●

−0.5 0.0 0.5

−
10

−
5

0
5

Normal QQ plot of oper effects

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●
●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

−2 −1 0 1 2

−
10

0
5

10

Normal QQ plot of Residuals

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●
●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

395 400 405 410

−
10

0
5

10

Predicted

R
es

id
ua

ls

> #
The exactRLRT() function is a little more complex when there is more than one random
effect. To test one random effect, call it A, we are going to need three fitted lmer models.
The first is a model with A as the only random effect; the second is the full alternative model
(with all random effects including A); the third is the null model, with all the random effects
except A. So let’s set this up.

> mohms.partonly.lmer <- lmer(mohms ˜ 1 + (1|part),data=resistors)
> mohms.operonly.lmer <- lmer(mohms ˜ 1 + (1|oper),data=resistors)
> mohms.intronly.lmer <- lmer(mohms ˜ 1 + (1|part:oper),data=resistors)
> mohms.nopart.lmer <- lmer(mohms ˜ 1 + (1 | oper) + (1 | part:oper),data=resistors)
> mohms.nooper.lmer <- lmer(mohms ˜ 1 + (1 | part) + (1 | part:oper),data=resistors)
> mohms.nointr.lmer <- lmer(mohms ˜ 1 + (1 | part) + (1 | oper),data=resistors)

Stat 5303 (Oehlert): Random effects 16

> exactRLRT(mohms.partonly.lmer,mohms.lmer,mohms.nopart.lmer)
To test part we need three models, the one with only part, the full model, and the one
without part. We’re not surprised to find a p-value of 1 for a random effect estimated to
have zero variance.

simulated finite sample distribution of RLRT. (p-value based on 10000
simulated values)

data:
RLRT = 0, p-value = 1

> exactRLRT(mohms.operonly.lmer,mohms.lmer,mohms.nooper.lmer)
For operator, we have a significant p-value.

simulated finite sample distribution of RLRT. (p-value based on 10000
simulated values)

data:
RLRT = 35.5323, p-value < 2.2e-16

> exactRLRT(mohms.intronly.lmer,mohms.lmer,mohms.nointr.lmer)
The interaction is not significant (it was also estimated at zero).

simulated finite sample distribution of RLRT. (p-value based on 10000
simulated values)

data:
RLRT = 0, p-value = 1

> BIC(mohms.lmer,mohms.partonly.lmer,mohms.operonly.lmer,mohms.intronly.lmer,
+ mohms.nopart.lmer,mohms.nooper.lmer,mohms.nointr.lmer)

BIC selects the operator-only model.

df BIC
mohms.lmer 5 417.4146
mohms.partonly.lmer 3 450.4996
mohms.operonly.lmer 3 409.2260
mohms.intronly.lmer 3 444.7582
mohms.nopart.lmer 4 413.3203
mohms.nooper.lmer 4 448.8526
mohms.nointr.lmer 4 413.3203

> AIC(mohms.lmer,mohms.partonly.lmer,mohms.operonly.lmer,mohms.intronly.lmer,
+ mohms.nopart.lmer,mohms.nooper.lmer,mohms.nointr.lmer)

AIC selects the same model.

df AIC
mohms.lmer 5 406.9429
mohms.partonly.lmer 3 444.2165
mohms.operonly.lmer 3 402.9429
mohms.intronly.lmer 3 438.4752
mohms.nopart.lmer 4 404.9429
mohms.nooper.lmer 4 440.4752
mohms.nointr.lmer 4 404.9429

Stat 5303 (Oehlert): Random effects 17

> mohms.mcmc <- lmer.mcmc(mohms.lmer,50000)
Let’s see what we get with the posterior samples. I’m just going straight to 50,000 samples,
although that might be overkill (162 seconds)

> par(mfrow=c(3,2))

> lmer.mcmc.plots(mohms.mcmc,log=TRUE)
We see a couple of unusual excursions for the intercept, the part and part:oper effects seem
to have settled down or are heading off to zero; operator and the error variance look OK.

0 1000 2000 3000 4000 5000

36
0

40
0

44
0

(Intercept)

Index

(Intercept)

F
re

qu
en

cy

360 380 400 420 440

0
20

0
40

0
60

0

0 1000 2000 3000 4000 5000

5e
−

05
5e

−
03

part:oper over sigma2

Index

1e−05 1e−04 1e−03 1e−02 1e−01

0.
00

0.
05

0.
10

0.
15

part:oper over sigma2

N = 5000 Bandwidth = 0.266

D
en

si
ty

0 1000 2000 3000 4000 5000

1e
−

05
1e

−
02

part over sigma2

Index

1e−06 1e−04 1e−02 1e+00

0.
00

0.
04

part over sigma2

N = 5000 Bandwidth = 0.4975

D
en

si
ty

Stat 5303 (Oehlert): Random effects 18

0 1000 2000 3000 4000 5000

5e
−

01
5e

+
01

oper over sigma2

Index

1e−01 1e+00 1e+01 1e+02 1e+03

0.
0

0.
1

0.
2

0.
3

oper over sigma2

N = 5000 Bandwidth = 0.1748

D
en

si
ty

0 1000 2000 3000 4000 5000

20
40

60
80

sigma2

Index

sigma2

F
re

qu
en

cy

20 30 40 50 60 70 80

0
10

0
20

0

> lmer.mcmc.intervals(mohms.mcmc)
These are about what you might expect except for operator. The part and part:oper vari-
ances are down near zero, and the error variance is between about 30 and 60. Operator, on
the other hand, is somewhere between 16.5 and 9,202, with 81.5 in the middle.
As a point of comparison, the “old style” estimates for the operator variance component
aren’t any tighter, with a 95% confidence interval running from 16.2 up to 6203.

lower median upper SE
(Intercept) 377.18066 404.18177 428.369991 10.5261268
part:oper 0.00000 0.00000 1.263120 0.3782880
part 0.00000 0.00000 1.314201 0.7630323
oper 16.54980 81.49098 9202.304403 2996.6920157
sigma2 28.96265 40.91059 60.939407 8.1788918

> #
So what do we conclude from all of this? There is very little variability between parts or
between parts separately by operator. On the other hand, there is some substantial variabil-
ity between operators, possibly much larger in size than error variability. However, we do
not have enough levels of operator to get a tight estimate of the operator variance.

