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> library(Stat5303libs);library(cfcdae);library(lme4)

> nouns <- read.table("nouns.dat.txt",header=TRUE)

Data from Kirk (1982, Brooks/Cole). Adjective/noun pairs are presented on a computer
screen to subjects. The adjective is present for 100ms, followed by the noun for 20 ms. If
the subject does not recognize the noun, the pair is presented again with the presentation
time for the noun increased by 5 ms. This is repeated until the noun is recognized. Of inter-
est is whether the degree of association between the adjective and the noun influences how
quickly the subject recognizes the noun. For example, you might recognize “ice cream”
more quickly after “vanilla” than after “purple”.
Twenty-five subjects are used, and the subjects differ in their overall quickness to recognize
nouns, so the subjects are blocked into five blocks of size five based on how quick they
are. The experiment will be administered by five graduate students, who may have some
effect, so the subjects are also blocked by which student administers the test. The response
measured is the average time in ms taken to recognize 10 nouns of a given association
strength. They used a Latin square because of the two blocking factors.

> nouns
oquick student assocstr rtime

1 1 1 1 72
2 1 2 2 62
3 1 3 3 66
4 1 4 4 51
5 1 5 5 40
6 2 1 2 65
7 2 2 3 61
8 2 3 4 40
9 2 4 5 44
10 2 5 1 59
11 3 1 3 55
12 3 2 4 46
13 3 3 5 35
14 3 4 1 63
15 3 5 2 54
16 4 1 4 34
17 4 2 5 29
18 4 3 1 54
19 4 4 2 44
20 4 5 3 50
21 5 1 5 51
22 5 2 1 49
23 5 3 2 43
24 5 4 3 30
25 5 5 4 25

> nouns <- within(nouns,{oquick <- as.factor(oquick);student<-as.factor(student);
assocstr<-as.factor(assocstr)})
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> tapply(as.numeric(assocstr),list(oquick,student),mean)
Here is the acutal LS used. Rows are blocks for overall quickness, columns are blocks for
students, and matrix elements are the treatments (strength of association between adjective
and noun). There’s likely a cleaner, prettier way to get this table, but this works.

1 2 3 4 5
1 1 2 3 4 5
2 2 3 4 5 1
3 3 4 5 1 2
4 4 5 1 2 3
5 5 1 2 3 4

> fit1 <- lm(rtime˜oquick+student+assocstr,data=nouns)
> plot(fit1,which=1)

Look at the residuals. Looks like variance may decrease with mean?
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> plot(fit1,which=2)
Normal plot shows a possible possible outlier. It does not look too bad here using standard-
ized residuals, but as we’ll see, it has a large Studentized residual.



Stat 5303 (Oehlert): Latin Squares 3

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2
3

Theoretical Quantiles

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

lm.default(rtime ~ oquick + student + assocstr)

Normal Q−Q

21

24

20

> rstudent(fit1)
Check the Studentized residuals, and number 21 looks like an outlier.

1 2 3 4 5 6
-0.616552896 -0.270301185 1.095488929 0.966564315 -1.157193872 -0.007483573

7 8 9 10 11 12
0.600823238 -0.538284767 0.330911261 -0.384213682 -1.113012506 0.882831558

13 14 15 16 17 18
-1.026199973 0.841556863 0.368956162 -0.983513145 -0.899448405 0.484020874

19 20 21 22 23 24
-0.082344464 1.563712705 4.237490113 -0.308147176 -0.007483573 -2.488739562

25
-0.308147176

> odd <- rep(0,25);odd[21] <- 1
One thing that we can do with an outlier is to make a dummy variable that points just to the
outlier, and then include the dummy variable in the model. Then the other data get fit as if
the outlier weren’t even in the data set, and the coefficient of the dummy variable tells us
how far the outlier is from what would be predicted by the remainder of the data. This is a
slightly more informative approach than simply deleting an outlier.

> fit2 <- update(fit1,˜odd+.);summary(fit2)
Update the model to include the dummy and look at what we got. This indicates that the
outlier is about 29 ms higher than the rest of the data would have predicted. Note that the
t-value for “odd” matches the studentized residual we had for response 21 in the previous
model.

Residuals:
Min 1Q Median 3Q Max

-7.1500 -2.1500 0.2333 2.2333 5.2500

Coefficients:
Estimate Std. Error t value Pr(>|t|)
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(Intercept) 47.7167 0.9898 48.206 3.75e-14 ***
odd 29.0833 6.8633 4.237 0.001395 **
oquick1 10.4833 1.9217 5.455 0.000199 ***
oquick2 6.0833 1.9217 3.166 0.008990 **
oquick3 2.8833 1.9217 1.500 0.161661
oquick4 -5.5167 1.9217 -2.871 0.015223 *
student1 1.8667 2.1963 0.850 0.413483
student2 1.6833 1.9217 0.876 0.399784
student3 -0.1167 1.9217 -0.061 0.952680
student4 -1.3167 1.9217 -0.685 0.507433
assocstr1 11.6833 1.9217 6.080 7.97e-05 ***
assocstr2 5.8833 1.9217 3.061 0.010824 *
assocstr3 4.6833 1.9217 2.437 0.032996 *
assocstr4 -8.5167 1.9217 -4.432 0.001009 **
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 4.755 on 11 degrees of freedom
Multiple R-squared: 0.9344,Adjusted R-squared: 0.8569
F-statistic: 12.06 on 13 and 11 DF, p-value: 0.0001094

> plot(fit2,which=1)
Residuals look somewhat better, although I still see a little bit of decreasing variance. Box-
Cox does not suggest any transformation, however.
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> plot(fit2,which=2)
Normality looks pretty good. Note that R recognizes that the outlier was fit perfectly and
skips it in the normal probability plot.

Warning message:
Not plotting observations with leverage one:

21
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> anova(fit2)
Things are unbalanced and messier when we remove outliers or fit them individually. In
particular, the SS and MS we get from anova() are sequential.

Analysis of Variance Table

Response: rtime
Df Sum Sq Mean Sq F value Pr(>F)

odd 1 4.68 4.68 0.2071 0.6579342
oquick 4 1381.61 345.40 15.2761 0.0001827 ***
student 4 181.40 45.35 2.0057 0.1632069
assocstr 4 1976.23 494.06 21.8507 3.435e-05 ***
Residuals 11 248.72 22.61
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> Anova(fit2)
We can use Type II SS. The result here for treatment is the same as in the preceding se-
quential anova, because treatment was entered last.

Anova Table (Type II tests)

Response: rtime
Sum Sq Df F value Pr(>F)

odd 406.00 1 17.9563 0.001395 **
oquick 1595.62 4 17.6424 9.431e-05 ***
student 57.28 4 0.6334 0.649113
assocstr 1976.23 4 21.8507 3.435e-05 ***
Residuals 248.72 11
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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> linear.contrast(fit2,assocstr,all=TRUE,jointF=TRUE)
Looking at the pairwise results, pairs 1 and 2, 2 and 3, and 4 and 5 cannot be distinguished
from each other. This is without any multiple comparisons correction (i.e., LSD).

$estimates
estimates se t-value p-value lower-ci upper-ci

1 - 2 5.800000 3.007365 1.9285988 7.997663e-02 -0.8191651 12.419165
1 - 3 7.000000 3.007365 2.3276193 4.003671e-02 0.3808349 13.619165
1 - 4 20.200000 3.007365 6.7168442 3.300680e-05 13.5808349 26.819165
1 - 5 25.416667 3.305822 7.6884557 9.510337e-06 18.1406013 32.692732
2 - 3 1.200000 3.007365 0.3990204 6.975153e-01 -5.4191651 7.819165
2 - 4 14.400000 3.007365 4.7882453 5.638912e-04 7.7808349 21.019165
2 - 5 19.616667 3.305822 5.9339753 9.816868e-05 12.3406013 26.892732
3 - 4 13.200000 3.007365 4.3892249 1.082391e-03 6.5808349 19.819165
3 - 5 18.416667 3.305822 5.5709794 1.674154e-04 11.1406013 25.692732
4 - 5 5.216667 3.305822 1.5780240 1.428648e-01 -2.0593987 12.492732

$Ftest
F df1 df2 p-value

21.85073 4 11 3.434593e-05

> lines(pairwise(fit2,assocstr))
HSD clears things up a bit: we can’t tell 4 from 5, and we can’t tell 1, 2, and 3 apart.

5 -13.73 |
4 -8.52 |
3 4.68 |
2 5.88 |
1 11.68 |

> ((12+4)*22.611+4*398.91)/(12+4+4)
Here we estimate the error variance that we would have incurred had we not blocked on
overall quickness. Note, I used degrees of freedom for the design without an outlier, and I
have used the estimate of SS and MS for overall quickness from the type II ANOVA table.

(1) 97.871

> (13/15)*(19/17)*97.871/22.611
Here is the relative efficiency of the LS design to an RCB with only student blocks. This is
very good.

(1) 4.193

> model.effects(fit2,"assocstr")
Let’s look at the treatment effects. They are basically monotone decreasing.

1 2 3 4 5
11.683333 5.883333 4.683333 -8.516667 -13.733333
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> plot(1:5,model.effects(fit2,"assocstr"))
If we plot them against 1 through 5 (this assumes that the five treatments are in some sense
equally spaced, which we don’t really know for sure), then it looks pretty linear.
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> cfs <- matrix(c(-2,-1,0,1,2, 2,-1,-2,-1,2, -1,2,0,-2,1, 1,-4,6,-4,1),nrow=5)

> cfs
Linear, quadratic, cubic, and quartic contrasts.

[,1] [,2] [,3] [,4]
[1,] -2 2 -1 1
[2,] -1 -1 2 -4
[3,] 0 -2 0 6
[4,] 1 -1 -2 -4
[5,] 2 2 1 1

> linear.contrast(fit2,assocstr,cfs,jointF=TRUE)
A contrast for the linear effect is highly significant, but not for the higher orders.

$estimates
estimates se t-value p-value lower-ci upper-ci

1 -65.233333 7.263476 -8.9810079 2.139925e-06 -81.220136 -49.246531
2 -10.833333 8.417040 -1.2870716 2.244931e-01 -29.359114 7.692447
3 3.383333 6.863340 0.4929573 6.317354e-01 -11.722775 18.489442
4 36.583333 17.844683 2.0500972 6.496480e-02 -2.692549 75.859215

$Ftest
F df1 df2 p-value

21.85073 4 11 3.434593e-05
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> anova(lm(rtime˜odd+oquick+student+as.numeric(assocstr)+assocstr,data=nouns))
Here we fit a model with a numeric form of the treatment (just 1 through 5) and put assocstr
in the model last. Since it is last in, it picks up anything nonlinear in the treatment effect.
That is nonsignificant, so we would conclude that there is no evidence that the treatment
effect is nonlinear.

Analysis of Variance Table

Response: rtime
Df Sum Sq Mean Sq F value Pr(>F)

odd 1 4.68 4.68 0.2071 0.6579342
oquick 4 1381.61 345.40 15.2761 0.0001827 ***
student 4 181.40 45.35 2.0057 0.1632069
as.numeric(assocstr) 1 1833.84 1833.84 81.1054 2.083e-06 ***
assocstr 3 142.39 47.46 2.0992 0.1584663
Residuals 11 248.72 22.61
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> milkdata <- read.table("milk.dat.txt",header=TRUE)
These data give the milk production (in pounds) for 18 cows for three consecutive five-
week periods. Each cow is given a different diet in each period. The diets are good hay,
poor hay, and straw. Data from John (1971 Wiley).
The experiment is arranged as a cross-over design – six Latin squares with cows as column
blocks and time periods as row blocks.

> milkdata
cow period square diet allcows milk

1 1 1 1 1 1 768
2 1 2 1 2 1 600
3 1 3 1 3 1 411
4 2 1 1 2 2 662
5 2 2 1 3 2 515
6 2 3 1 1 2 506
7 3 1 1 3 3 731
8 3 2 1 1 3 680
9 3 3 1 2 3 525
10 1 1 2 1 4 669
11 1 2 2 3 4 550
12 1 3 2 2 4 416
13 2 1 2 2 5 459
14 2 2 2 1 5 409
15 2 3 2 3 5 222
16 3 1 2 3 6 624
17 3 2 2 2 6 462
18 3 3 2 1 6 426
19 1 1 3 1 7 1091
20 1 2 3 2 7 798
21 1 3 3 3 7 534
22 2 1 3 2 8 1234
23 2 2 3 3 8 902
24 2 3 3 1 8 869
25 3 1 3 3 9 1300
26 3 2 3 1 9 1297
27 3 3 3 2 9 962
28 1 1 4 1 10 1105
29 1 2 4 3 10 712
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30 1 3 4 2 10 453
31 2 1 4 2 11 891
32 2 2 4 1 11 830
33 2 3 4 3 11 629
34 3 1 4 3 12 859
35 3 2 4 2 12 617
36 3 3 4 1 12 597
37 1 1 5 1 13 941
38 1 2 5 2 13 718
39 1 3 5 3 13 548
40 2 1 5 2 14 794
41 2 2 5 3 14 603
42 2 3 5 1 14 613
43 3 1 5 3 15 779
44 3 2 5 1 15 718
45 3 3 5 2 15 515
46 1 1 6 1 16 933
47 1 2 6 3 16 658
48 1 3 6 2 16 576
49 2 1 6 2 17 724
50 2 2 6 1 17 649
51 2 3 6 3 17 496
52 3 1 6 3 18 749
53 3 2 6 2 18 594

54 3 3 6 1 18 612

> milkdata <- within(milkdata,{cow <- as.factor(cow);allcows <- as.factor(allcows);
period <- as.factor(period);square <- as.factor(square);diet <- as.factor(diet)})

> fit2 <- lm(milk˜allcows+period+diet,data=milkdata)
Fit the basic model. allcows enumerates all 18 cows, so that is our column factor.

> anova(fit2)
Analysis of Variance Table

Response: milk
Df Sum Sq Mean Sq F value Pr(>F)

allcows 17 1710775 100634 29.127 9.384e-15 ***
period 2 814222 407111 117.833 1.742e-15 ***
diet 2 121147 60573 17.532 7.220e-06 ***
Residuals 32 110560 3455
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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> fit1 <- lm(milk˜square/cow+period+diet,data=milkdata)
Here is an equivalent model another way. Here we have divided the between cows variation
into between square, and between cows within square. They have the same 17 degree of
freedom total for their SS. Note that square:cow is coming after diet (treatment) in the
anova(), even through square:cow is a block difference. If we want to maintain order, for
example, in the case of unbalanced data, we need to use terms() with keep.order=TRUE.

> anova(fit1)
Analysis of Variance Table

Response: milk
Df Sum Sq Mean Sq F value Pr(>F)

square 5 1392534 278507 80.6099 < 2.2e-16 ***
period 2 814222 407111 117.8326 1.742e-15 ***
diet 2 121147 60573 17.5321 7.220e-06 ***
square:cow 12 318241 26520 7.6759 1.941e-06 ***
Residuals 32 110560 3455
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> 1392534+318241
SS for square and cow within square add up to SS for allcows in the previous model.

[1] 1710775

> plot(fit1,which=1)
However, we did all that work before checking residuals, and now we have the flopping
fish, so we really need to do a transformation.
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> boxCox(fit1)
Box Cox suggest something on the order of power .3
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> fit3 <- lm(milkˆ.25˜allcows+period+diet,data=milkdata)
> plot(fit3,which=1)

Now it looks like we could have an outlier.
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> rstudent(fit3)
Yes, it looks like observation 30 is an outlier.

1 2 3 4 5 6 7
-0.64692010 1.29061190 -0.61845953 -0.36470412 -0.19829362 0.56497868 -0.51603149
. . .

29 30 31 32 33 34 35
0.90391154 -4.13415097 -0.76515328 -0.41671444 1.20055351 1.31414506 -1.13157533

. . .

> odd30 <- rep(0,54);odd30[30] <- 1
Set up a dummy variable.

> fit4 <- update(fit3,˜odd30+.)
Add the dummy variable indicating the outlier to the model.

> rstudent(fit4)
OK, no additional outliers. Values not shown.

> plot(fit4,which=1)
That looks better, although there is one value sitting all by itself that might bear some
scrutiny.
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> summary(fit4)
OK, this model seems to fit pretty well. Diet 1 is better than diet 2, and diet 3 must be worse
still. Milk production is consistently decreasing over time, so that was a useful block.
The outlier is about .41 low (one the .25 scale), which is a long way from where it should
be. Number 30 is cow 10, period 3, treatment 2. We need to check this to see if there is
some reason that it is different.

Call:
lm.default(formula = milk25 ˜ allcows + period + diet + odd30)

Residuals:
Min 1Q Median 3Q Max

-0.132524 -0.035098 -0.005765 0.049114 0.124407
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.09285 0.01057 481.862 < 2e-16 ***
allcows1 -0.18749 0.04295 -4.365 0.000131 ***
allcows2 -0.23318 0.04295 -5.429 6.28e-06 ***
...
period1 0.27635 0.01483 18.630 < 2e-16 ***
period2 -0.01140 0.01483 -0.769 0.447814
diet1 0.11449 0.01483 7.718 1.05e-08 ***
diet2 -0.02932 0.01517 -1.933 0.062476 .
odd30 -0.41073 0.09935 -4.134 0.000251 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.07648 on 31 degrees of freedom
Multiple R-squared: 0.9801,Adjusted R-squared: 0.966
F-statistic: 69.46 on 22 and 31 DF, p-value: < 2.2e-16

> model.effects(fit4,"diet")
1 2 3

0.11448965 -0.02931986 -0.08516979

> linear.contrast(fit4,diet,all=TRUE)
Treatment 1 (good hay) is far above treatments 2 and 3, which are just barely distinguish-
able from each other.

estimates se t-value p-value lower-ci upper-ci
1 - 2 0.14380950 0.02608430 5.513260 4.929294e-06 0.090610227 0.1970088
1 - 3 0.19965943 0.02549363 7.831737 7.726867e-09 0.147664827 0.2516540
2 - 3 0.05584993 0.02608430 2.141132 4.023466e-02 0.002650656 0.1090492

> Anova(fit4)
Let’s estimate relative efficiency, so we need to get estimates adjusted for other terms.

Anova Table (Type II tests)

Response: milk25
Sum Sq Df F value Pr(>F)

odd30 0.1000 1 17.091 0.0002513 ***
allcows 5.6374 17 56.692 < 2.2e-16 ***
period 2.5290 2 216.181 < 2.2e-16 ***
diet 0.3806 2 32.535 2.432e-08 ***
Residuals 0.1813 31

> ((31+2)*(.1813/31)+2.5290)/(31+2+2)
Estimate the error variance if we hadn’t blocked on period.

[1] 0.07777134

> .0778/.00585
This is 13 times the error variance we did have, so blocking was very beneficial!

[1] 13.29915
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> fit5 <- lmer(milkˆ.25˜period+diet+odd30+(1|allcows),data=milkdata)
Try it again thinking of cows as random; that is, these cows are a sample of all cows and
we’re drawing inference to all cows.

> fit5
Fixed effects are estimated just like in our previous model. Cow variance is estimated at
.11, or a standard deviation of .33, which is huge relative to the other effects we’re looking
at.

Linear mixed model fit by REML [’lmerMod’]
Formula: milkˆ0.25 ˜ period + diet + odd30 + (1 | allcows)

Data: milkdata

REML criterion at convergence: -24.5

Random effects:
Groups Name Variance Std.Dev.
allcows (Intercept) 0.109690 0.33119
Residual 0.005848 0.07647

Number of obs: 54, groups: allcows, 18

Fixed effects:
Estimate Std. Error t value

(Intercept) 5.09273 0.07878 64.65
period1 0.27647 0.01483 18.64
period2 -0.01128 0.01483 -0.76
diet1 0.11461 0.01483 7.73
diet2 -0.02956 0.01517 -1.95
odd30 -0.40415 0.09889 -4.09

> lmer.KR.anova(fit5)
In this case, results for fixed effects are a close match to doing everything as a fixed effect.

Analysis of Deviance Table (Type II Wald F tests with Kenward-Roger df)

Response: milkˆ0.25
F Df Df.res Pr(>F)

period 216.549 2 31.017 < 2.2e-16 ***
diet 32.572 2 31.017 2.394e-08 ***
odd30 16.648 1 31.573 0.0002847 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> fit6 <- lmer(milkˆ.25˜period+diet+odd30+(1|square)+(1|allcows),data=milkdata)
Another possibility is to model a random effect for square and then a random effect for cow
within square. This would be appropriate if the squares were randomly chosen herds, and
then the cows were chosen randomly from within each herd. This issue is that we might
see more variability between herds than between cows within herd.
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> summary(fit6)
Well, well, it looks like there could be square to square variability.

Linear mixed model fit by REML [’lmerMod’]
Formula: milkˆ0.25 ˜ period + diet + odd30 + (1 | square) + (1 | allcows)

Data: milkdata

REML criterion at convergence: -35.2

Random effects:
Groups Name Variance Std.Dev.
allcows (Intercept) 0.028088 0.16759
square (Intercept) 0.092446 0.30405
Residual 0.005847 0.07646

Number of obs: 54, groups: allcows, 18; square, 6

Fixed effects:
Estimate Std. Error t value

(Intercept) 5.09266 0.13069 38.97
period1 0.27654 0.01483 18.65
period2 -0.01122 0.01483 -0.76
diet1 0.11468 0.01483 7.73
diet2 -0.02970 0.01516 -1.96
odd30 -0.40055 0.09809 -4.08

> AIC(fit5,fit6)
AIC prefers the model with square effects.

df AIC
fit5 8 -8.533075
fit6 9 -17.216903

> fit7 <- lmer(milkˆ.25˜period+diet+odd30+(1|square),data=milkdata)
Fit with square only.

> exactRLRT(fit7,fit6,fit5)
Square if very significant.

simulated finite sample distribution of RLRT.

(p-value based on 10000 simulated values)

data:
RLRT = 10.6838, p-value = 9e-04
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> fit6.mcmc <- lmer.mcmc(fit6,20000)

> lmer.mcmc.intervals(fit6.mcmc)
Interval estimates for variance components (and fixed effects).

lower median upper SE
(Intercept) 4.808954407 5.092012486 5.397687414 0.147200639
period1 0.243562292 0.278054596 0.309481674 0.016462482
period2 -0.042089263 -0.011569385 0.019487441 0.015333610
diet1 0.084560697 0.114072309 0.145511699 0.015487300
diet2 -0.060720523 -0.029782972 0.001187014 0.015941976
odd30 -0.611429434 -0.401122401 -0.208841885 0.104102794
allcows 0.013632268 0.031228060 0.083301194 0.019311272
square 0.028051404 0.105584675 0.761573912 0.236000140
sigma2 0.003671444 0.005896938 0.010340862 0.001699295


