
Stat 5303 (Oehlert): Confounding 1

> #
We will use some functions form the package conf.design, which should be loaded
along with Stat5303libs. This package does manipulations of design generators to get the
designs we need.

> gen1 <- t(c(1,1,0,1));gen1
We are going to need matrices with a column for each factor and a row for each generator.
1 means that the factor is in the generator, 0 means that the factor is not in. The row is for
ABD.

[,1] [,2] [,3] [,4]
[1,] 1 1 0 1
> gen2 <- matrix(c(1,0,1,0,0,1,1,1),nrow=2);gen2

Two generators, ABD and CD.

[,1] [,2] [,3] [,4]
[1,] 1 1 0 1
[2,] 0 0 1 1
> gen3 <- rbind(c(1,1,0,1),c(0,0,1,1));gen3

Same thing another way.

[,1] [,2] [,3] [,4]
[1,] 1 1 0 1
[2,] 0 0 1 1
> gen4 <- rbind(c(1,1,0,1),c(1,1,1,1));gen4

This one is for ABD and ABCD.

[,1] [,2] [,3] [,4]
[1,] 1 1 0 1
[2,] 1 1 1 1

> conf.design(gen1,2)
There is a column for our two blocks, and then we see the eight factor level combinations
in each block.
Note, for reasons I do not understand, this seems to throw an error occasionally. I have
been able to force it to work via as.data.frame(conf.design(gen1,2)). If you
get an error you can try this trick for other situations, too.

Blocks T1 T2 T3 T4
1 0 0 0 0 0
2 0 1 1 0 0
3 0 0 0 1 0
4 0 1 1 1 0
5 0 1 0 0 1
6 0 0 1 0 1
7 0 1 0 1 1
8 0 0 1 1 1
9 1 1 0 0 0
10 1 0 1 0 0
11 1 1 0 1 0
12 1 0 1 1 0
13 1 0 0 0 1
14 1 1 1 0 1
15 1 0 0 1 1
16 1 1 1 1 1
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> conf.design(c(1,1,1,1),2)
This is the usual blocking on ABCD. Note that one block has only even numbers of factors
at the high level, and the other block has only odd numbers at the high level.

Blocks T1 T2 T3 T4
1 0 0 0 0 0
2 0 1 1 0 0
3 0 1 0 1 0
4 0 0 1 1 0
5 0 1 0 0 1
6 0 0 1 0 1
7 0 0 0 1 1
8 0 1 1 1 1
9 1 1 0 0 0
10 1 0 1 0 0
11 1 0 0 1 0
12 1 1 1 1 0
13 1 0 0 0 1
14 1 1 1 0 1
15 1 1 0 1 1
16 1 0 1 1 1

> conf.design(gen4,2)
Now try with gen4, which had ABCD and ABD as generators. Blocks are now listed by a
pair of 0/1 variables. Note that factor C is high in blocks 2 and 3 and low in blocks 1 and
4: C is confounded with blocks.

Blocks T1 T2 T3 T4
1 00 0 0 0 0
2 00 1 1 0 0
3 00 1 0 0 1
4 00 0 1 0 1
5 01 0 0 1 0
6 01 1 1 1 0
7 01 1 0 1 1
8 01 0 1 1 1
9 10 1 0 1 0
10 10 0 1 1 0
11 10 0 0 1 1
12 10 1 1 1 1
13 11 1 0 0 0
14 11 0 1 0 0
15 11 0 0 0 1
16 11 1 1 0 1

> conf.set(gen4,2)
This function figures out the complete set of terms confounded with blocks. Here we see
that C is also confounded.

[,1] [,2] [,3] [,4]
[1,] 1 1 0 1
[2,] 1 1 1 1
[3,] 0 0 1 0
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> conf.set(gen2,2)
gen2 confounds ABD and CD, and thus ABC. That’s better than what we got from gen4.

[,1] [,2] [,3] [,4]
[1,] 1 1 0 1
[2,] 0 0 1 1
[3,] 1 1 1 0
> conf.design(gen2,2)

Here are the blocks for gen2.

Blocks T1 T2 T3 T4
1 00 0 0 0 0
2 00 1 1 0 0
3 00 1 0 1 1
4 00 0 1 1 1
5 01 0 0 1 0
6 01 1 1 1 0
7 01 1 0 0 1
8 01 0 1 0 1
9 10 1 0 0 0
10 10 0 1 0 0
11 10 0 0 1 1
12 10 1 1 1 1
13 11 1 0 1 0
14 11 0 1 1 0
15 11 0 0 0 1
16 11 1 1 0 1

> gen6 <- rbind(c(1,1,1,0,1,0,0,0),c(1,1,0,1,0,1,0,0),c(1,0,1,1,0,0,1,0),
c(0,1,1,1,0,0,0,1));gen6

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 1 1 1 0 1 0 0 0
[2,] 1 1 0 1 0 1 0 0
[3,] 1 0 1 1 0 0 1 0
[4,] 0 1 1 1 0 0 0 1
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> conf.set(gen6,2)
Suppose that you had to run a 28 design in 16 blocks of size 16. You would need four
generators. This set means that the smallest confounded effect is a four factor interaction.

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 1 1 1 0 1 0 0 0
[2,] 1 1 0 1 0 1 0 0
[3,] 0 0 1 1 1 1 0 0
[4,] 1 0 1 1 0 0 1 0
[5,] 0 1 0 1 1 0 1 0
[6,] 0 1 1 0 0 1 1 0
[7,] 1 0 0 0 1 1 1 0
[8,] 0 1 1 1 0 0 0 1
[9,] 1 0 0 1 1 0 0 1

[10,] 1 0 1 0 0 1 0 1
[11,] 0 1 0 0 1 1 0 1
[12,] 1 1 0 0 0 0 1 1
[13,] 0 0 1 0 1 0 1 1
[14,] 0 0 0 1 0 1 1 1
[15,] 1 1 1 1 1 1 1 1

> conf.design(gen6,2)
Blocks T1 T2 T3 T4 T5 T6 T7 T8

1 0000 0 0 0 0 0 0 0 0
2 0000 1 1 1 0 1 0 0 0
3 0000 1 1 0 1 0 1 0 0
4 0000 0 0 1 1 1 1 0 0
5 0000 1 0 1 1 0 0 1 0
6 0000 0 1 0 1 1 0 1 0
7 0000 0 1 1 0 0 1 1 0
8 0000 1 0 0 0 1 1 1 0
9 0000 0 1 1 1 0 0 0 1
10 0000 1 0 0 1 1 0 0 1
11 0000 1 0 1 0 0 1 0 1
12 0000 0 1 0 0 1 1 0 1
13 0000 1 1 0 0 0 0 1 1
14 0000 0 0 1 0 1 0 1 1
15 0000 0 0 0 1 0 1 1 1
16 0000 1 1 1 1 1 1 1 1
...
243 1111 0 0 1 0 0 1 0 0
244 1111 1 1 0 0 1 1 0 0
245 1111 0 1 0 0 0 0 1 0
246 1111 1 0 1 0 1 0 1 0
247 1111 1 0 0 1 0 1 1 0
248 1111 0 1 1 1 1 1 1 0
249 1111 1 0 0 0 0 0 0 1
250 1111 0 1 1 0 1 0 0 1
251 1111 0 1 0 1 0 1 0 1
252 1111 1 0 1 1 1 1 0 1
253 1111 0 0 1 1 0 0 1 1
254 1111 1 1 0 1 1 0 1 1
255 1111 1 1 1 0 0 1 1 1
256 1111 0 0 0 0 1 1 1 1
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>
> dnpk <- read.table("dnpk.dat.txt",header=TRUE);dnpk

These data are from a 24 design replicated twice, blocked into four blocks of size 8 with
dnpk confounded with blocks in both replicates. dnpk is thus completely confounded. Data
are from Cochran and Cox.
Notice that in the first block of each replication, there are always an odd number of factors
at the high level (either 1 or 3), whereas in block 2 of each replication there is always an
even number of factors at the high level (0, 2, or 4).

d n p k block rpl yield
1 1 1 2 1 1 1 45
2 1 1 1 2 1 1 55
3 2 1 1 1 1 1 53
4 1 2 2 2 1 1 36
5 2 2 1 2 1 1 41
6 2 2 2 1 1 1 48
7 2 1 2 2 1 1 55
8 1 2 1 1 1 1 42
9 2 1 2 1 2 1 50
10 1 2 1 2 2 1 44
11 2 1 1 2 2 1 43
12 1 1 2 2 2 1 51
13 2 2 2 2 2 1 44
14 1 1 1 1 2 1 58
15 2 2 1 1 2 1 41
16 1 2 2 1 2 1 50
17 1 1 2 1 1 2 39
18 1 1 1 2 1 2 50
19 2 1 1 1 1 2 42
20 1 2 2 2 1 2 43
21 2 2 1 2 1 2 34
22 2 2 2 1 1 2 52
23 2 1 2 2 1 2 44
24 1 2 1 1 1 2 47
25 2 1 2 1 2 2 52
26 1 2 1 2 2 2 43
27 2 1 1 2 2 2 52
28 1 1 2 2 2 2 56
29 2 2 2 2 2 2 54
30 1 1 1 1 2 2 57
31 2 2 1 1 2 2 42
32 1 2 2 1 2 2 39
> dnpk <- within(dnpk,{d <- as.factor(d);n <- as.factor(n);

p <- as.factor(p);k <- as.factor(k)}))
> dnpk <- within(dnpk,{block <- as.factor(block);rpl<-as.factor(rpl)})
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> fit1 <- lm(yield˜rpl:block+d*n*p*k,data=dnpk);anova(fit1)
Here is the basic ANOVA. These data were set up with blocks numbered 1 and 2 in each
replication, so the replication by block “interaction” actually enumerates all four blocks,
with 3 degrees of freedom between the four blocks. We want treatments adjusted for blocks,
and we did not quite get it here, because R wants to put two factor terms (in this case, all
blocks is a two factor term) after main effects. In this case is does not matter, but in some
strange cases it might. In those cases, we need to use the terms() function to get the terms
in the order we want, or we need to make a single factor to enumerate all of the blocks.
Note that the four factor interaction dnpk does not even show up in this table. That is
because it is confounded with blocks within each replication and has 0 degrees of freedom.
It cannot be estimated because it is completely confounded with blocks.

Analysis of Variance Table

Response: yield
Df Sum Sq Mean Sq F value Pr(>F)

d 1 2.00 2.00 0.0824 0.778258
n 1 325.12 325.12 13.3974 0.002572 **
p 1 6.12 6.12 0.2524 0.623205
k 1 4.50 4.50 0.1854 0.673303
rpl:block 3 126.38 42.13 1.7358 0.205538
d:n 1 32.00 32.00 1.3186 0.270083
d:p 1 242.00 242.00 9.9720 0.006982 **
n:p 1 78.13 78.13 3.2193 0.094393 .
d:k 1 6.13 6.13 0.2524 0.623205
n:k 1 32.00 32.00 1.3186 0.270083
p:k 1 24.50 24.50 1.0096 0.332058
d:n:p 1 2.00 2.00 0.0824 0.778258
d:n:k 1 10.13 10.13 0.4172 0.528774
d:p:k 1 15.13 15.13 0.6233 0.443007
n:p:k 1 32.00 32.00 1.3186 0.270083
Residuals 14 339.75 24.27
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> fit1
If you look at the coefficients you will see that we have missing for the four factor interac-
tion.

Call:
lm.default(formula = yield ˜ rpl:block + d * n * p * k)

Coefficients:
(Intercept) d1 n1 p1 k1

49.3750 0.2500 3.1875 -0.4375 0.3750
rpl1:block1 rpl2:block1 rpl1:block2 rpl2:block2 d1:n1

-2.5000 -5.5000 -1.7500 NA 1.0000
d1:p1 n1:p1 d1:k1 n1:k1 p1:k1

2.7500 1.5625 -0.4375 -1.0000 0.8750
d1:n1:p1 d1:n1:k1 d1:p1:k1 n1:p1:k1 d1:n1:p1:k1
-0.2500 -0.5625 0.6875 1.0000 NA
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> plot(fit1,which=1)
Residuals don’t look too bad. There is a bit of a tendency to decreasing errors, but no
reasonable transformation helps.
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> plot(fit1,which=2)
Normality not bad either.
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> with(dnpk,interactplot(d,p,yield))
Here is how we get a significant interaction without significant main effects.
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> john <- read.table("john.dat.txt",header=TRUE);john
Data from John (1971). A 23 replicated four times and run in 8 blocks of 4. ABC, AB, AC,
and BC are each confounded in one replication. Factors are sulfate of ammonia, sulfate of
potash, and nitrogen; response is yield of potatoes in pounds per plot.

a b c block yield
1 1 1 1 1 101
2 2 1 2 1 373
3 1 2 2 1 398
4 2 2 1 1 291
5 1 1 2 2 312
6 2 1 1 2 106
7 1 2 1 2 265
8 2 2 2 2 450
9 1 1 1 3 106
10 2 2 1 3 306
11 1 1 2 3 324
12 2 2 2 3 449
13 1 2 1 4 272
14 2 1 1 4 89
15 1 2 2 4 407
16 2 1 2 4 338
17 1 1 1 5 87
18 2 1 2 5 324
19 1 2 1 5 279
20 2 2 2 5 471
21 1 1 2 6 323
22 2 1 1 6 128
23 1 2 2 6 423
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24 2 2 1 6 334
25 1 1 1 7 131
26 2 1 1 7 103
27 1 2 2 7 445
28 2 2 2 7 437
29 1 1 2 8 324
30 2 1 2 8 361
31 1 2 1 8 302
32 2 2 1 8 272

> john<-within(john,{a <- factor(a);b <- factor(b);c <- factor(c);block <- factor(block)})

> fit3 <- lm(yield˜block+a*b*c,data=john)

> anova(fit3)
A, B, C and a couple of interactions are significant.

Analysis of Variance Table

Response: yield
Df Sum Sq Mean Sq F value Pr(>F)

block 7 4499 643 2.0147 0.112834
a 1 3465 3465 10.8624 0.004268 **
b 1 161170 161170 505.2090 4.404e-14 ***
c 1 278818 278818 873.9916 4.666e-16 ***
a:b 1 28 28 0.0883 0.769960
a:c 1 1803 1803 5.6507 0.029457 *
b:c 1 11528 11528 36.1366 1.402e-05 ***
a:b:c 1 45 45 0.1422 0.710737
Residuals 17 5423 319
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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> plot(fit3,which=1)
A bit of increasing variance, but 1 is well within the Box-Cox interval.
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> plot(fit3,which=2)
These are OK.
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> summary(fit3)
Note that the standard errors for the A and AB effects are not the same. They would be
the same in an RCB, for example. The difference is that A is never confounded, but AB is
confounded in one of the four replications.

Call:
lm.default(formula = yield ˜ block + a * b * c)

Residuals:
Min 1Q Median 3Q Max

-25.0938 -9.5469 0.5729 6.4531 28.2396

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 291.594 3.157 92.352 < 2e-16 ***
block1 -2.219 9.115 -0.243 0.81059
block2 -6.969 9.115 -0.765 0.45501
block3 3.573 9.115 0.392 0.69993
block4 -14.010 9.115 -1.537 0.14267
block5 -10.010 9.115 -1.098 0.28740
block6 19.073 9.115 2.093 0.05170 .
block7 9.323 9.115 1.023 0.32072
a1 -10.406 3.157 -3.296 0.00427 **
b1 -70.969 3.157 -22.477 4.40e-14 ***
c1 -93.344 3.157 -29.563 4.67e-16 ***
a1:b1 1.083 3.646 0.297 0.76996
a1:c1 8.667 3.646 2.377 0.02946 *
b1:c1 -21.917 3.646 -6.011 1.40e-05 ***
a1:b1:c1 1.375 3.646 0.377 0.71074
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 17.86 on 17 degrees of freedom
Multiple R-squared: 0.9884,Adjusted R-squared: 0.9788
F-statistic: 103.3 on 14 and 17 DF, p-value: 1.311e-13

> sqrt(4/3)*3.1574
Because AB is confounded in one of the replications, we have an effective samplesize of
3 instead of 4 when estimating AB effects. Thus the se for AB effects is a factor of

√
4/3

larger than that of the unconfounded effect.

(1) 3.6459
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> lm(yield˜block+a*b*c,data=john,subset=as.numeric(block) < 3)
The this model and the next one are not part of a standard analysis. They are merely pre-
sented to show that different terms are confounded in different replications. We confound
ABC in the first replication (blocks 1 and 2).

Call:
lm.default(formula = yield ˜ block + a * b * c, data = john,

subset = as.numeric(block) < 3)

Coefficients:
(Intercept) block1 a1 b1 c1 a1:b1 a1:c1

287.00 3.75 -18.00 -64.00 -96.25 1.50 10.25
b1:c1 a1:b1:c1

-23.25 NA

> lm(yield˜block+a*b*c,data=john,subset=as.numeric(block) > 6)
And we confound BC in the last replication (blocks 7 and 8).

Call:
lm.default(formula = yield ˜ block + a * b * c, data = john,

subset = as.numeric(block) > 6)

Coefficients:
(Intercept) block1 a1 b1 c1 a1:b1 a1:c1

296.875 -17.875 3.625 -67.125 -94.875 -5.875 10.875
b1:c1 a1:b1:c1

NA 5.375

> lm(yield˜block+a*b*c,data=john,subset=as.numeric(block) > 2)
This model is fit to everything but the first replication. ABC is confounded in the first
replication but not in the others. The estimate of ABC in the last three replications is the
same as the estimate of ABC in the full model.

Call:
lm.default(formula = yield ˜ block + a * b * c, data = john,

subset = as.numeric(block) > 2)

Coefficients:
(Intercept) block1 block2 block3 block4 block5 a1

293.125 2.250 -15.750 -10.750 16.750 7.125 -7.875
b1 c1 a1:b1 a1:c1 b1:c1 a1:b1:c1

-73.292 -92.375 0.875 7.875 -21.250 1.375
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> conf.design(c(1,1),3)
We can also use conf.design to confound a three series. Here we confound a 32 on A1B2.

Blocks T1 T2
1 0 0 0
2 0 2 1
3 0 1 2
4 1 1 0
5 1 0 1
6 1 2 2
7 2 2 0
8 2 1 1
9 2 0 2

> gen9 <- rbind(c(1,0,2),c(1,1,0));gen9
Something a little bigger. Here we confound a 33 on A1C2 and A1B1.

[,1] [,2] [,3]
[1,] 1 0 2
[2,] 1 1 0
> conf.set(gen9,3)

Full set of confounded effects.

[,1] [,2] [,3]
[1,] 1 0 2
[2,] 1 1 0
[3,] 0 1 1
[4,] 1 2 1
> as.data.frame(conf.design(gen9,3))

Full design.

Blocks T1 T2 T3
1 00 0 0 0
2 00 1 2 1
3 00 2 1 2
4 01 0 1 0
5 01 1 0 1
6 01 2 2 2
7 02 0 2 0
8 02 1 1 1
9 02 2 0 2
10 10 1 2 0
11 10 2 1 1
12 10 0 0 2
13 11 1 0 0
14 11 2 2 1
. . .
21 20 1 2 2
22 21 2 2 0
23 21 0 1 1
24 21 1 0 2
25 22 2 0 0
26 22 0 2 1
27 22 1 1 2


