We will use some functions form the package conf. design, which should be loaded along with Stat5303libs. This package does manipulations of design generators to get the designs we need.

```
> gen1 <- t(c(1,1,0,1));gen1
```

We are going to need matrices with a column for each factor and a row for each generator. 1 means that the factor is in the generator, 0 means that the factor is not in. The row is for ABD.

```
    [1,] [,1] [,2] [,3] [,4]
> gen2 <- matrix(c(1,0,1,0,0,1,1,1) ,nrow=2); gen2
    Two generators, ABD and CD.
```

```
    [,1] [,2] [,3] [,4]
\([1] \quad 1 \quad 1 \quad 0 \quad\),
\([2] \quad 0 \quad 0 \quad 1 \quad\),
\(>\) gen 3 <- rbind \((c(1,1,0,1), c(0,0,1,1))\); gen 3
```

Same thing another way.

```
    [,1] [,2] [,3] [,4]
[1,] 1
[2,] 0
> gen4 <- rbind(c(1,1,0,1),c(1,1,1,1)); gen4
```

This one is for ABD and ABCD .

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	1	1	0	1
$[2]$,	1	1	1	1

> conf.design(gen1,2)
There is a column for our two blocks, and then we see the eight factor level combinations in each block.
Note, for reasons I do not understand, this seems to throw an error occasionally. I have been able to force it to work via as. data. frame (conf. design (gen1, 2)). If you get an error you can try this trick for other situations, too.
$\left.\begin{array}{rrrrr}\text { Blocks } & \text { T1 } & \text { T2 } & \text { T3 } & \text { T4 } \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ & 0 & 0 & 0 & 1 \\ 0 & 0 \\ & 0 & 1 & 1 & 1\end{array}\right) 0$

```
> conf.design(c(1, 1, 1, 1),2)
```

This is the usual blocking on ABCD . Note that one block has only even numbers of factors at the high level, and the other block has only odd numbers at the high level.

Blocks	T1	T2	T3	T4
0	0	0	0	0
0	1	1	0	0
0	1	0	1	0
0	0	1	1	0
0	1	0	0	1
0	0	1	0	1
0	0	0	1	1
0	1	1	1	1
1	1	0	0	0
1	0	1	0	0
1	0	0	1	0
1	1	1	1	0
1	0	0	0	1
1	1	1	0	1
1	1	0	1	1
1	0	1	1	1

conf.design (gen4, 2)

Now try with gen4, which had ABCD and ABD as generators. Blocks are now listed by a pair of $0 / 1$ variables. Note that factor C is high in blocks 2 and 3 and low in blocks 1 and 4: C is confounded with blocks.

Blocks	T1	T2	T3	T4
00	0	0	0	0
00	1	1	0	0
00	1	0	0	1
00	0	1	0	1
01	0	0	1	0
01	1	1	1	0
01	1	0	1	1
01	0	1	1	1
10	1	0	1	0
10	0	1	1	0
10	0	0	1	1
10	1	1	1	1
11	1	0	0	0
11	0	1	0	0
11	0	0	0	1
11	1	1	0	1

> conf.set (gen4, 2)

This function figures out the complete set of terms confounded with blocks. Here we see that C is also confounded.

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	1	1	0	1
$[2]$,	1	1	1	1
$[3]$,	0	0	1	0

```
> conf.set(gen2,2)
```

gen 2 confounds ABD and CD , and thus ABC . That's better than what we got from gen 4 .

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	1	1	0	1
$[2]$,	0	0	1	1
$[3]$,	1	1	1	0
$>$	conf.design(gen2,2)			

Here are the blocks for gen2.

	Blocks	T1	T2	T3	T4
1	00	0	0	0	0
2	00	1	1	0	0
3	00	1	0	1	1
4	00	0	1	1	1
5	01	0	0	1	0
6	01	1	1	1	0
7	01	1	0	0	1
8	01	0	1	0	1
9	10	1	0	0	0
10	10	0	1	0	0
11	10	0	0	1	1
12	10	1	1	1	1
13	11	1	0	1	0
14	11	0	1	1	0
15	11	0	0	0	1
16	11	1	1	0	1

```
> gen6 <- rbind(c(1, 1, 1,0,1,0,0,0),c(1,1,0,1,0,1,0,0),c(1,0,1,1,0,0,1,0),
    c(0,1,1,1,0,0,0,1)); gen6
    [,1] [,2] [,3] [,4] [,5] [, 6] [,7] [,8]
[2,] 1
[3,]
[4,] 
```

```
> conf.set(gen6,2)
```

Suppose that you had to run a 2^{8} design in 16 blocks of size 16 . You would need four generators. This set means that the smallest confounded effect is a four factor interaction.

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$	$[, 6]$	$[, 7]$	$[, 8]$
$[1]$,	1	1	1	0	1	0	0	0
$[2]$,	1	1	0	1	0	1	0	0
$[3]$,	0	0	1	1	1	1	0	0
$[4]$,	1	0	1	1	0	0	1	0
$[5]$,	0	1	0	1	1	0	1	0
$[6]$,	0	1	1	0	0	1	1	0
$[7]$,	1	0	0	0	1	1	1	0
$[8]$,	0	1	1	1	0	0	0	1
$[9]$,	1	0	0	1	1	0	0	1
$[10]$,	1	0	1	0	0	1	0	1
$[11]$,	0	1	0	0	1	1	0	1
$[12]$,	1	1	0	0	0	0	1	1
$[13]$,	0	0	1	0	1	0	1	1
$[14]$,	0	0	0	1	0	1	1	1
$[15]$,	1	1	1	1	1	1	1	1


```
>
> dnpk <- read.table("dnpk.dat.txt",header=TRUE);dnpk
```

These data are from a 2^{4} design replicated twice, blocked into four blocks of size 8 with dnpk confounded with blocks in both replicates. dnpk is thus completely confounded. Data are from Cochran and Cox.
Notice that in the first block of each replication, there are always an odd number of factors at the high level (either 1 or 3), whereas in block 2 of each replication there is always an even number of factors at the high level (0,2 , or 4).


```
> fit1 <- lm(yield~ rpl:block+d*n*p*k,data=dnpk);anova(fit1)
```

Here is the basic ANOVA. These data were set up with blocks numbered 1 and 2 in each replication, so the replication by block "interaction" actually enumerates all four blocks, with 3 degrees of freedom between the four blocks. We want treatments adjusted for blocks, and we did not quite get it here, because R wants to put two factor terms (in this case, all blocks is a two factor term) after main effects. In this case is does not matter, but in some strange cases it might. In those cases, we need to use the terms() function to get the terms in the order we want, or we need to make a single factor to enumerate all of the blocks.
Note that the four factor interaction dnpk does not even show up in this table. That is because it is confounded with blocks within each replication and has 0 degrees of freedom. It cannot be estimated because it is completely confounded with blocks.

If you look at the coefficients you will see that we have missing for the four factor interaction.

Call:
lm.default (formula = yield ~ rpl:block + d * n * p * k)
Coefficients:

(Intercept)	d1	n1	p1	k1
49.3750	0.2500	3.1875	-0.4375	0.3750
rpl1:block1	rpl2:block1	rpl1:block2	rpl2:block2	d1:n1
-2.5000	-5.5000	-1.7500	NA	1.0000
d1:p1	n1:p1	d1: k1	n1:k1	p1:k1
2.7500	1.5625	-0.4375	-1.0000	0.8750
d1:n1:p1	d1:n1:k1	d1:p1:k1	n1:p1:k1	d1:n1:p1:k1
-0.2500	-0.5625	0.6875	1.0000	NA

Residuals don't look too bad. There is a bit of a tendency to decreasing errors, but no reasonable transformation helps.

Normality not bad either.

Here is how we get a significant interaction without significant main effects.

> john <- read.table("john.dat.txt", header=TRUE); john
Data from John (1971). A 2^{3} replicated four times and run in 8 blocks of 4. ABC, AB, AC, and BC are each confounded in one replication. Factors are sulfate of ammonia, sulfate of potash, and nitrogen; response is yield of potatoes in pounds per plot.

	a	b	c	block	yield
1	1	1	1	1	101
2	2	1	2	1	373
3	1	2	2	1	398
4	2	2	1	1	291
5	1	1	2	2	312
6	2	1	1	2	106
7	1	2	1	2	265
8	2	2	2	2	450
9	1	1	1	3	106
10	2	2	1	3	306
11	1	1	2	3	324
12	2	2	2	3	449
13	1	2	1	4	272
14	2	1	1	4	89
15	1	2	2	4	407
16	2	1	2	4	338
17	1	1	1	5	87
18	2	1	2	5	324
19	1	2	1	5	279
20	2	2	2	5	471
21	1	1	2	6	323
22	2	1	1	6	128
23	1	2	2	6	423

24	2	2	1	6	334
25	1	1	1	7	131
26	2	1	1	7	103
27	1	2	2	7	445
28	2	2	2	7	437
29	1	1	2	8	324
30	2	1	2	8	361
31	1	2	1	8	302
32	2	2	1	8	272

```
> john<-within(john,{a <- factor(a);b <- factor(b);c <- factor(c);block <- factor(block)})
```

> fit3 <- lm(yield~block+a*b*c,data=john)
> anova(fit3)
$\mathrm{A}, \mathrm{B}, \mathrm{C}$ and a couple of interactions are significant.
Analysis of Variance Table
Response: yield

| | Df | Sum Sq | Mean Sq | F value | $\operatorname{Pr}(>F)$ | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :--- |
| block | 7 | 4499 | 643 | 2.0147 | 0.112834 | |
| a | 1 | 3465 | 3465 | 10.8624 | 0.004268 | $* *$ |
| b | 1 | 161170 | 161170 | 505.2090 | $4.404 e-14$ | $* * *$ |
| c | 1 | 278818 | 278818 | 873.9916 | $4.666 e-16$ | $* * *$ |
| a:b | 1 | 28 | 28 | 0.0883 | 0.769960 | |
| a:c | 1 | 1803 | 1803 | 5.6507 | 0.029457 | $*$ |
| b:c | 1 | 11528 | 11528 | 36.1366 | $1.402 e-05$ | $* * *$ |
| a:b:c | 1 | 45 | 45 | 0.1422 | 0.710737 | |
| Residuals | 17 | 5423 | 319 | | | |

Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. 0.11
> plot(fit3,which=1)
A bit of increasing variance, but 1 is well within the Box-Cox interval.

These are OK.


```
> summary(fit3)
```

Note that the standard errors for the A and AB effects are not the same. They would be the same in an RCB, for example. The difference is that A is never confounded, but $A B$ is confounded in one of the four replications.

```
Call:
lm.default(formula = yield ~ block + a * b * c)
Residuals:
\begin{tabular}{rrrrr} 
Min & 12 & Median & 32 & Max \\
-25.0938 & -9.5469 & 0.5729 & 6.4531 & 28.2396
\end{tabular}
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $291.594 \quad 3.15792 .352<2 e-16$ ***
block1 -2.219 9.115 -0.243 0.81059
$\begin{array}{lllll}\text { block2 } & -6.969 & 9.115 & -0.765 & 0.45501\end{array}$
$\begin{array}{lllll} & \text { block3 } & 3.573 & 9.115 & 0.392 \\ 0.69993\end{array}$
block 4 -14.010 9.115 -1.537 0.14267
$\begin{array}{lllll}\text { block5 } & -10.010 & 9.115 & -1.098 & 0.28740\end{array}$
block6 19.073 9.115 2.0930 .05170 .
$\begin{array}{lllll}\text { block } 7 & 9.323 & 9.115 & 1.023 & 0.32072\end{array}$
a1 -10.406 $3.157-3.296 \quad 0.00427$ **
b1 -70.969 $3.157-22.4774 .40 \mathrm{e}-14$ ***
c1 -93.344 $3.157-29.563 \quad 4.67 e-16$ ***
$\begin{array}{lllll}a 1: b 1 & 1.083 & 3.646 & 0.297 & 0.76996\end{array}$
a1:c1 8.667 $3.646 \quad 2.3770 .02946$ *
b1:c1 -21.917 $3.646-6.0111 .40 \mathrm{e}-05$ ***
$\begin{array}{lllll}a 1: b 1: c 1 & 1.375 & 3.646 & 0.377 & 0.71074\end{array}$

Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. 0.11
Residual standard error: 17.86 on 17 degrees of freedom
Multiple R-squared: 0.9884,Adjusted R-squared: 0.9788
F-statistic: 103.3 on 14 and 17 DF, p-value: $1.311 \mathrm{e}-13$
$>\operatorname{sqrt}(4 / 3) * 3.1574$

Because $A B$ is confounded in one of the replications, we have an effective samplesize of 3 instead of 4 when estimating AB effects. Thus the se for AB effects is a factor of $\sqrt{4 / 3}$ larger than that of the unconfounded effect.

```
(1) 3.6459
```

```
> lm(yield~block+a*b*c,data=john,subset=as.numeric(block) < 3)
```

The this model and the next one are not part of a standard analysis. They are merely presented to show that different terms are confounded in different replications. We confound ABC in the first replication (blocks 1 and 2).

```
Call:
lm.default(formula = yield ~ block + a * b * c, data = john,
    subset = as.numeric(block) < 3)
Coefficients:
(Intercept) 
```



```
        -23.25 NA
> lm(yield~block+a*b*c,data=john, subset=as.numeric(block) > 6)
```

 And we confound BC in the last replication (blocks 7 and 8).
 Call:
lm.default (formula = yield \sim block $+a * b * c, ~ d a t a=j o h n$,
subset $=$ as.numeric(block) > 6)
Coefficients:
(Intercept) block1 a1 b1 \quad al \quad c1 \quad a1:b1 \quad a1:c1
$\begin{array}{lllllll}296.875 & -17.875 & 3.625 & -67.125 & -94.875 & -5.875 & 10.875\end{array}$
b1:c1 a1:b1:c1
NA 5.375
> lm(yield~block+a*b*c,data=john, subset=as.numeric (block) >2)

This model is fit to everything but the first replication. ABC is confounded in the first replication but not in the others. The estimate of ABC in the last three replications is the same as the estimate of ABC in the full model.

```
Call:
```

lm.default(formula = yield \sim block $+a * b * c$ data $=j o h n$,
subset $=$ as.numeric(block) > 2)
Coefficients:

(Intercept)	block1	block2	block3	block4	block5
293.125	2.250	-15.750	-10.750	16.750	7.125
b1	c 1	a1:b1	al:c1	b1:c1	a1:b1:c1
-73.292	-92.375	0.875	7.875	-21.250	1.375

```
> conf.design(c(1, 1),3)
```

We can also use conf.design to confound a three series. Here we confound a 3^{2} on $A^{1} B^{2}$.

	Blocks	T1	T2
1	0	0	0
2	0	2	1
3	0	1	2
4	1	1	0
5	1	0	1
6	1	2	2
7	2	2	0
8	2	1	1
9	2	0	2

```
gen9 <- rbind(c(1,0,2),c(1,1,0));gen9
```

Something a little bigger. Here we confound a 3^{3} on $A^{1} C^{2}$ and $A^{1} B^{1}$.

```
        [,1] [,2] [,3]
[1,] 1 0 2
[2,] 1 1 0
> conf.set(gen9,3)
```

Full set of confounded effects.

```
    [,1] [,2] [,3]
[1,] 1 0
[2,] 1
[3,] 0
[4,] 1 2 1
> as.data.frame(conf.design(gen9,3))
    Full design.
```

Blocks	T1	T2	T3
00	0	0	0
00	1	2	1
00	2	1	2
01	0	1	0
01	1	0	1
01	2	2	2
02	0	2	0
02	1	1	1
02	2	0	2
10	1	2	0
10	2	1	1
10	0	0	2
11	1	0	0
11	2	2	1
20	1	2	2
21	2	2	0
21	0	1	1
21	1	0	2
22	2	0	0
22	0	2	1
22	1	1	2

