

 Extended R Examples for A First Course in Design and Analysis of Experiments, 2nd edition.

 Gary W. Oehlert

 2021-04-01

1 Preliminaries

1.1 Download and Install R

This book shows examples done in R, so you need to begin by installing R if you do not already have it. The home for R is http://r-project.org. There is a ton of stuff here, but I call your attention to the links on the left side. Toward the bottom there is a link for Manuals. If you click there you have a choice of several formats for the R manuals. An Introduction to R can be helpful if you are new to R. You probably don’t want any of the others unless you are a fairly advanced user of R. Some of the FAQs could be helpful, but you need to wade through a lot of material to find what you’re looking for.

CRAN is the “Comprehensive R Archive Network.” Basically it is a bunch of sites that mirror the main R program files for downloading. Back at the http://r-project.org home page, click on CRAN link on the left (it’s right at the top).

Now you get presented with a long list of places that mirror the R download material. I generally scroll down to the USA sites and pick (click on) Iowa State. I’m sure any of the others would work just as well, but ISU is first in the list USA site list. It might be fun to download R from Pamukkale University in Denizli, Turkey, but I just stay local. (Of course, if you are in Turkey …)

Once you get to the mirror site it will say “The Comprehensive R Archive Network” at the top. The very first thing is a set of links for downloading R for Linux, MacOS, or Windows. For Mac, you just want to get the “latest release”" (which as of July 3 is R-4.0.2.pkg)“. For Windows, first click on”base"; then you will have the opportunity to download the latest release of R.

In either case, get the installer for your system from CRAN, download it, and run it.

1.2 RStudio

RStudio is a wrapper for base R that adds lots of useful functionality. I use it, and I recommend that you use it too.

Go to http://rstudio.com/products/rstudio/download/ and click on the DOWNLOAD button for the free version of RStudio Desktop. This will scroll you down to another download button that is the version recommended for your system. (Further down the page it lets you can download the MacOS version to Windows and vice versa, but, really?)

So get your version of RStudio and install it.

1.3 Packages

Base R can be extended with packages (libraries) that contain additional functions and data. There are literally tens of thousands of R packages available; fortunately, we won’t need all of them.

	Start up RStudio.

	I believe the default will bring up a window with four panes. (You can change these around, so I don’t want to sound too definite.) My window looks like this: [image: RStudio Screen Shot] Within each pane are usually a handful of tabs.

	The lower left pane has a “Console” tab. This is where you type R commands, so you will do a lot of your work here.

	The upper right tab has a “History” pane that lets you quickly see your previous commands. You can also move commands from there to the Console window.

	The lower right pane has three tabs you will use a lot: “Plots,” “Packages,” and “Help.”

	Click on the Packages tab in the lower right pane.

	You should see an “Install” button in the Packages tab. Click on it.

	There should be a popup dialog box. You may be asked to choose a CRAN mirror/repository. If so, choose one.

	There should be a box where you can type in the name of a package, and there should be a check box for “Install dependencies.” Make sure that the check box is checked. Many packages will only work if you have other packages that they depend on, so clicking this will save you a lot of trouble.

	Type mvtnorm in the package name box; it should look something like this: [image: Package Install Screen Shot] Click the “Install” button, and watch the magic happen (we hope).

	You need to install the cfcdae package. It includes a few additional functions, but what you might really like is that it contains all the data sets from the text. cfcdae has quite a few dependencies, and some of them (rstan in particular) are quite large and will take a while.

	You will need a few additional packages as we go through the examples. You can install them later, but you might as well install them now while you are installing everything else:

	nlme

	lme4

	car

	perm

	effects

	tseries

	FrF2

	RLRsim

	rsm

	conf.design

	emmeans

	multcomp

	Advisory: if you update R to a new version, you may need to reinstall your packages.

1.4 Loading a package

Installing a package is like buying a book and putting on your bookshelf. You know it’s there, but you can’t read it when it’s on the shelf. Anytime you want to read the book you must pick it up and open it. For a package, we do something similar. If you want to use the cfcdae package, give the command in R

library(cfcdae)

Of course, this only works if you have previously installed the package (just like you can’t pick up and read a book that you don’t have on your bookshelf).

You only need to buy the book once; then you can pick it up to read it multiple times. You only need to install a package once; but you need to load it into every R session where you want to use it. You may assume that the first command in virtually every one of the R examples given here will be library(cfcdae), although it might not always be explicit.

There is also a GUI way to load packages in RStudio. Go the the Packages tab in the lower right pane. This will show a list of all installed packages with a little check box to the left. Checking the box loads the package. In the image above, you can see that I have the base package loaded and a lot of unloaded packages.

1.5 Keeping Results

You often don’t want your R work to disappear when you exit R. You might want to turn in homework or report the results of an experiment, so you’ll need to keep some of the output. The simplest, easiest(?), old-fashioned way to do this is via copy and paste.

	Highlight and copy the text output from the R command window that you want to use and paste it into a MSWord or other editing document. Easy as pie. Remember to use a monospaced font such as Courier to show R output. That is so that columns line up.

	In the Plots tab, there is an Export drop down menu. One of the options is to copy the plot to the clipboard. From there you can paste it into a document (MSWord or whatever).

	Alternatively, the Export drop down also allows you to save a plot to a file (either pdf or png/jpg/tiff/etc image format). These can be viewed, embedded, or printed separately.

1.6 Keeping results the modern way

The modern way to save your results is using R Markdown. Markdown is a system for formatting documents (e.g., commands to start a section, change font, set up a table, etc.). R Markdown also allows you to embed R commands into the document. When you process the R Markdown file, it typesets the text, but it also runs the R commands and saves the output and plots into the finished document. Thus you have:

	No more cutting and pasting.

	No more accidentally copying the wrong analysis.

	No more worrying about changing the document if the data get updated.

	A good step toward reproducible research.

RMarkdown can output to several formats including html, MSWord, and LaTeX. This book was produced in a version of Rmarkdown called bookdown.

To learn R Markdown, start at http://rmarkdown.rstudio.com/lesson-1.html. There are also many helpful web pages out there that you can find with a simple search.

2 Getting your data

2.1 Variables in R

R supports several variable types including numeric (e.g., 1, -7, 3.14159), logical (e.g., TRUE or FALSE), and character (e.g., “Moe,” “Larry,” “Curly”), and we will see and use multiple types of variables. Most obviously, the responses we measure in experiments are generally numeric variables. (There could be contexts where the response is expressed in some other fashion, for example, “Success” or “Failure,” but these are often turned into numeric via 0 or 1.)

Perhaps the most common use for logical variables is subsetting other variables. For example, suppose we only want to use the data that were collected on a Tuesday. Then we might have an argument in a command like this: subset = DayOfWeek == "Tuesday". Or we might want to eliminate missing values via: newy <- y[!is.na(y)]. We will see this off and on in examples.

Character data most often arise as labels for kinds of treatments (called levels of treatments). Thus we might have results for different kinds of acids, and the variable AcidType records the type of acid used in a particular unit (“sulfuric,” “hydrochloric,” “hydrofluoric”).

Many kinds of data can be turned into factors. Factors indicate grouping. If you make a factor out of numeric data, for example factor(c(1,4,3,2,5,4)), the result is not numeric. That is, 1 in the factor we just made no longer represents a number. Instead, it represents a group that has the label 1. If you have data from multiple groups, say 3 groups, you can represent that as three different numeric variables, or you can represent that as one numeric variable holding all of the data and a factor with three levels indicating which group each value belongs to.

If you have multiple variables that all have the same length and the same type, you can collect them into a matrix format. We often think of that as cases (rows) by variables (columns). However, you cannot mix data types in a matrix or combine numeric and factor variables.

If you have multiple variables that all have the same length, you can generally collect them into data frame, which is sort of a pseudo-matrix. It still looks like cases (rows) by variables (columns), but the variables are allowed to have different types. For example, you could combine a numeric response variable and a factor variable indicating treatment type into a data frame.

2.2 Data Sets in cfcdae

All of the data from FCDAE are available in cfcdae as data frames. For example, if you want the runstitching data, you can give the commands:

library(cfcdae)
data(RunStitch)

You only need the library() command once each session, and we will not show library(cfcdae) in the future.

RunStitch itself is a data frame with two columns named Standard and Ergonomic; here are the first few values:

head(RunStitch)

 Standard Ergonomic
1 4.90 3.87
2 4.50 4.54
3 4.86 4.60
4 5.57 5.27
5 4.62 5.59
6 4.65 4.61

You can access the data in Standard or Ergonomic in a number of ways including:

RunStitch$Standard # take the component named Standard

 [1] 4.90 4.50 4.86 5.57 4.62 4.65 4.62 6.39 4.36 4.91 4.70 4.77 4.75 4.60 5.06
[16] 5.51 4.66 4.95 4.75 4.67 5.06 4.44 4.46 5.43 4.83 5.05 5.78 5.10 4.68 6.06

RunStitch[,"Standard"] # take the column named Standard

 [1] 4.90 4.50 4.86 5.57 4.62 4.65 4.62 6.39 4.36 4.91 4.70 4.77 4.75 4.60 5.06
[16] 5.51 4.66 4.95 4.75 4.67 5.06 4.44 4.46 5.43 4.83 5.05 5.78 5.10 4.68 6.06

RunStitch[,1] # take the first column

 [1] 4.90 4.50 4.86 5.57 4.62 4.65 4.62 6.39 4.36 4.91 4.70 4.77 4.75 4.60 5.06
[16] 5.51 4.66 4.95 4.75 4.67 5.06 4.44 4.46 5.43 4.83 5.05 5.78 5.10 4.68 6.06

with(RunStitch, Standard) # look for Standard in RunStitch before looking elsewhere

 [1] 4.90 4.50 4.86 5.57 4.62 4.65 4.62 6.39 4.36 4.91 4.70 4.77 4.75 4.60 5.06
[16] 5.51 4.66 4.95 4.75 4.67 5.06 4.44 4.46 5.43 4.83 5.05 5.78 5.10 4.68 6.06

You can “attach” a data frame, and it will be automatically searched for variables.

attach(RunStitch)
Standard

 [1] 4.90 4.50 4.86 5.57 4.62 4.65 4.62 6.39 4.36 4.91 4.70 4.77 4.75 4.60 5.06
[16] 5.51 4.66 4.95 4.75 4.67 5.06 4.44 4.46 5.43 4.83 5.05 5.78 5.10 4.68 6.06

However, use “attach()” with care, as you can confuse yourself mightily. You could also have a variable called “Standard” that was outside of the data frame, and you have to keep track of which one you are using at any time.

The most common way to use data in a data frame is that many R functions have an optional “data=dataframename” argument. If you use that data=dataframe argument, then the variables inside the data frame are generally available without needing to reference the data frame.

2.3 Typing in data

You can type data into R if you need to, but try to avoid it if you can. Typing is an extremely easy way to introduce bad data.

R stores data as scalars (a single number), vectors (a list of numbers), matrices (a table of numbers), and other ways. The function c() takes its arguments and puts them together into a vector; I think of it as a shortcut for “combine” or “concatenate” or something like that.

The form <- is assignment; it means take whatever is on the right and assign it to the variable whose name is given on the left. We want to input phosphorus values for 15 day old plants. This command combines 4 numbers into a vector and then assigns that to a variable named day15.

day15 <- c(4.3,4.6,4.8,5.4)

You can also use an equals sign instead of the assignment arrow (this is standard in many programming languages, but it does lead to semantically correct statements like y=y+1). You can also extend a command over more than one line (but some GUI front ends can make it a bit challenging to do). You can make your lines as long as you like.

I recommend using the <- form of assignment, as the equals sign version is also used for setting function parameters.

These are the phosphorus values for the 28 day plants.

day28 <- c(5.3,5.7,6.0,
6.3)

If we wanted to make a matrix containing both the 15 and 28 day data with days as columns, we could first put the data in one long vector and then turn that vector into a matrix.

alldata <- c(4.3, 4.6, 4.8, 5.4, 5.3, 5.7, 6.0, 6.3)
alldata <- c(day15, day28) # gives the same thing
matrixdata <- matrix(alldata, nrow=4)
matrixdata

 [,1] [,2]
[1,] 4.3 5.3
[2,] 4.6 5.7
[3,] 4.8 6.0
[4,] 5.4 6.3

cbind(day15, day28) # bind columns if you already had columns

 day15 day28
[1,] 4.3 5.3
[2,] 4.6 5.7
[3,] 4.8 6.0
[4,] 5.4 6.3

By default, matrix() puts the data into the matrix down columns, but you can ask it to put data in by rows (note: you need to put the data in the correct order).

alldata2 <- c(4.3, 5.3, 4.6, 5.7, 4.8, 6.0, 5.4, 6.3)
rowmatrix <- matrix(alldata2, nrow=4, byrow=TRUE)
rowmatrix

 [,1] [,2]
[1,] 4.3 5.3
[2,] 4.6 5.7
[3,] 4.8 6.0
[4,] 5.4 6.3

2.4 Generating Data

Sometimes we can generate numbers programmatically. For example, if we want 100 random draws from a normal distribution with mean 10 and standard deviation 3, we can do

set.seed(12345)
y <- rnorm(100, mean=10, sd=3)

The set.seed() call sets the starting point (seed) of the random number generator. If you set the seed so, you get the same normals each time you call it. If the seed is something else, you will get different normals. There are corresponding functions for many other distributions (e.g., rbinom, rgamma, rt, etc.)

You can generate sequences using the seq() function.

seq(1, 6, by=1/3) # 1 to 6 in steps of 1/3

 [1] 1.000000 1.333333 1.666667 2.000000 2.333333 2.666667 3.000000 3.333333
 [9] 3.666667 4.000000 4.333333 4.666667 5.000000 5.333333 5.666667 6.000000

seq(1, 6) # steps of 1 is the default

[1] 1 2 3 4 5 6

1:6 # short cut

[1] 1 2 3 4 5 6

You can get repeats by using the rep() function.

rep(1:3, 2) # repeat the complete sequence twice

[1] 1 2 3 1 2 3

rep(1:3, c(2, 2, 4)) # repeat first two twice, last one four times

[1] 1 1 2 2 3 3 3 3

rep(1:3, each=3, length=18) # repeat each 3 times, then repeat all of that to length 18

 [1] 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3

This will be very useful when setting up variables to indicate grouping.

2.5 Reading data from files

We sometimes have data on external files that we would like to read in. Common formats include plain text, .csv, or .Rda. The RStudio file menu has an item to import from additional formats, including SAS, SPSS, Stata, and Excel formats.

	If you just have a bunch of numbers in a plain text file, you can use scan("filename") to read the data in. You will need to assign the output to a vector.

	If you have a plain text file that is formatted as a matrix, you can read the data in using read.table("filename"). The return value is a data frame. If the first line contains column names, you should use read.table("filename",header=TRUE).

	For a .csv file, the function read.csv("filename") does what you want. Again, this returns a data frame.

	For a .Rda file (one or more R variables saved in the R format), you can use load("filename"). This directly creates the saved variables.

3 Two-Sample Procedures

Two-sample procedures refer to making inference about two populations using samples from the two populations. Typically, we are making inference about the group means: Is there evidence that are not equal? Is there evidence one is greater? What is a range of values for the difference of means that is consistent with the data?

Consider the data on breaking strength for notched and unnotched boards data set NotchedBoards. We would like to investigate the null hypothesis that unnotched boards of thickness .625 inch have the same strength as notched boards of thickness .75 inch with a 1 inch wide notch cut in the center to thickness .625 inch.

First get the NotchedBoards data from cfcdae into your current work space.

data(NotchedBoards) # creates variable NotchedBoards

Now you have a choice. You can create two vectors for the two different groups, or you can work with the data frame directly.

unnotched <- NotchedBoards$strength[NotchedBoards$shape == "uniform"]
notched <- NotchedBoards$strength[NotchedBoards$shap == "notched"]
unnotched

 [1] 243 229 305 395 210 311 289 269 282 399 222 331 369

notched

 [1] 215 202 273 292 253 247 350 246 352 398 267 331 342

Before we do any inference, let’s just look at the data. Here we do boxplots of the two different groups. They are nearly the same with lots of overlap. This suggests that we will find no significant differences.

boxplot(notched, unnotched) # most obvious version
boxplot(list(Notched=notched, Unnotched=unnotched)) # provides better labels
boxplot(strength ~ shape, data=NotchedBoards) # formula version

 You can just give several data vectors as arguments to boxplot, you can give them better labels (capitals show the labels), or you can use a formula of the form response ~ groupings. The latter is easiest if you have many groups or your data comes in a data frame.

3.1 Standard t-test

The two-sample t-test is the typical method used to do tests regarding the means of two groups. In R, this is the t.test(x,y) function. This command does a two-sample t-test between the sets of data in x and y. The confidence interval it generates is for the mean of x minus the mean of y.

There is also a “formula” version of t.test(). The formula takes the form of response ~ predictor, where in our case the predictor is a factor (grouping variable) with two levels. You get the same results, and it’s a little less fuss if your data come from a data frame.

t.test(unnotched, notched)

 Welch Two Sample t-test

data: unnotched and notched
t = 0.27353, df = 23.911, p-value = 0.7868
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -43.31049 56.54126
sample estimates:
mean of x mean of y
 296.4615 289.8462

t.test(strength ~ shape, data=NotchedBoards)

 Welch Two Sample t-test

data: strength by shape
t = -0.27353, df = 23.911, p-value = 0.7868
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -56.54126 43.31049
sample estimates:
mean in group notched mean in group uniform
 289.8462 296.4615

Note that by default R uses an unpooled estimate of variance (the Welch version with fractional degrees of freedom), a two-sided alternative, and produces a confidence interval with 95% coverage. You can also get a pooled estimate of variance and/or upper or lower alternatives (i.e., x has greater mean or lesser mean) and/or change the confidence level by using the appropriate optional arguments.

The unpooled (Welch) version is generally the better option in typical two-sample use, because it is almost as good as the pooled version when the population variances are equal and is much better when the population variances differ. However, Analysis of Variance, which generalizes the t test to multiple groups and to more complicated settings, is a generalization of the unpooled version.

Here we do the test with the option that forces the group variances to be equal and a 99.5% coverage level. Then we jump ahead to an Analysis of Variance approach just to show that for two groups its p-value agrees with the equal variances t-test (the F value is the square of the t). The p-values in both cases are large providing no evidence against the null of equal means.

t.test(unnotched, notched, var.equal=TRUE, conf.level=.995) # nearly identical for these data

 Two Sample t-test

data: unnotched and notched
t = 0.27353, df = 24, p-value = 0.7868
alternative hypothesis: true difference in means is not equal to 0
99.5 percent confidence interval:
 -68.12963 81.36040
sample estimates:
mean of x mean of y
 296.4615 289.8462

anova(lm(strength~shape, data=NotchedBoards)) # preview

Analysis of Variance Table

Response: strength
 Df Sum Sq Mean Sq F value Pr(>F)
shape 1 284 284.5 0.0748 0.7868
Residuals 24 91249 3802.0

One reasonable belief might be that the notched boards would be stronger than the unnotched boards, because while they have the same minimum thickness as the unnotched boards, their average thickness is greater. We can examine this using a one-sided test with the alternative that the unnotched mean is greater than the notched mean. The p-value is smaller than for the two-sided test, but it is still quite large.

t.test(unnotched, notched, alternative="greater")

 Welch Two Sample t-test

data: unnotched and notched
t = 0.27353, df = 23.911, p-value = 0.3934
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
 -34.76902 Inf
sample estimates:
mean of x mean of y
 296.4615 289.8462

3.2 Digresson on computing percent points and quantiles

pt() gives you the cumulative probability (area to the left) for Student’s t distribution; the lower.tail=FALSE option gives you the upper tail probability. The first argument is the t value, the second is the degrees of freedom. The lower tail and upper tail values are below, and of course they add to 1. The second line with twice the smaller tail gives the two-sided p-value.

pt(-.27353, 23.911); pt(-.27353, 23.911, lower.tail=FALSE)

[1] 0.3933973

[1] 0.6066027

2*pt(-abs(.27353), 23.911)

[1] 0.7867947

In general in R, pFOO(q,params) gives you the cumulative probability up to q for distribution FOO, qFOO(p,params) gives you the quantile that gives you cumulative probability p, and rFOO(n,parms) gives you a random sample of size n from distribution FOO. Thus, we have pt, pnorm, pf, pchisq, pbinom, and many others as well as their q and r forms.

3.3 Randomization (permutation) two-sample test

The randomization version of the two-sample t-test can be done with the function permTS(); this function comes from the perm package. To use it, you need to install the perm package onto your computer once (although you may need to redo this every time you update R), and then load it into every R session you want to use it in. You can use the functions as shown here (the first command does the install, and the second one is the one you need to do every time you want to use it), but it is usually easier to use the package menu commands in RStudio to do the install. Feel free to use a different CRAN repository.

install.packages("perm", repos="https://cloud.r-project.org")

Installing package into '/Users/gary/Library/R/4.0/library'
(as 'lib' is unspecified)

The downloaded binary packages are in
 /var/folders/_6/3018nw2s6x1_vm4fszmrz7t80000gp/T//RtmpjXoiWZ/downloaded_packages

library(perm)

We are going to do randomization tests, which rely on randomization. The “random” numbers in R are produced by an algorithm that starts with a “seed” value. If you want to be able to reproduce exact values, you need to seed (start) the random number generator in the same place. I do that here so that you can reproduce the results I get in the demo. In general, R will seed its own random numbers so that they’re different every time.

set.seed(654321)

The permTS() function does the two-sample randomization (permutation) t-test. By default it does a two-sided alternative. The main advantage of this procedure over the t test is that the permutation test does not assume or depend on normality.

We see that the x mean is less than the y mean, and that the probability that a randomization leads to a difference of means as large or larger than 6.62 in absolute value is 78%. Note that this is very close to the t-test p-value.

permTS(unnotched, notched)

 Permutation Test using Asymptotic Approximation

data: unnotched and notched
Z = 0.27874, p-value = 0.7804
alternative hypothesis: true mean unnotched - mean notched is not equal to 0
sample estimates:
mean unnotched - mean notched
 6.615385

set.seed(654321) # try again
permTS(strength~shape, data=NotchedBoards) # same results with formula

 Permutation Test using Asymptotic Approximation

data: strength by shape
Z = -0.27874, p-value = 0.7804
alternative hypothesis: true mean shape=notched - mean shape=uniform is not equal to 0
sample estimates:
mean shape=notched - mean shape=uniform
 -6.615385

We may also specify different alternatives, for example,

permTS(unnotched, notched, alternative="greater")

 Permutation Test using Asymptotic Approximation

data: unnotched and notched
Z = 0.27874, p-value = 0.3902
alternative hypothesis: true mean unnotched - mean notched is greater than 0
sample estimates:
mean unnotched - mean notched
 6.615385

4 Paired Procedures

Sometimes we get two measurements on a subject under different circumstances, or perhaps we treat every experimental unit with two different treatments and get the responses for the two treatments for each unit. These data are paired, because we expect that the two responses for the same subject or unit to both be high or both be low. They are correlated with each other because they share some aspect of the subject or unit that causes the responses to be similar.

When working with paired data you should take that correlation into account. (If you treat the data as unpaired, you get a very inefficient analysis. For example, you confidence intervals will typically be much wider than necessary.) Generally speaking, this can be done by taking the difference between the two measurements for each subject or unit and then doing your analysis on the differences. Because the mean of the differences is the same as the difference of the means, you get inference about the same thing: the difference of means under the two conditions.

Will will demonstrate using the data from the RunStitch example in cfcdae. Each worker run stitches collars using two different setups: the conventional setup and an ergonomic setup. The two runs are made in random order for each worker, and the interest is in any difference in average speed between the two setups.

Load the runstitch data from the package and look at the first few values.

data(RunStitch)
head(RunStitch)

 Standard Ergonomic
1 4.90 3.87
2 4.50 4.54
3 4.86 4.60
4 5.57 5.27
5 4.62 5.59
6 4.65 4.61

The columns are named Standard and Ergonomic. The most obvious way to work with these data is to compute differences and then work with the differences Standard minus Ergonomic.

differences <- RunStitch[,"Standard"] - RunStitch[,"Ergonomic"]
head(differences)

[1] 1.03 -0.04 0.26 0.30 -0.97 0.04

It’s almost always a good idea to begin with simple summary statistics. Data lean somewhat toward positive differences

summary(differences)

 Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.0800 -0.2025 0.2550 0.1753 0.4450 1.7500

stem(differences)

 The decimal point is at the |

 -1 | 10
 -0 | 86655
 -0 | 220
 0 | 002233334444
 0 | 5678
 1 | 001
 1 | 8

hist(differences, freq=FALSE)

[image: Histogram of runstitch differences]

Figure 4.1: Histogram of runstitch differences

4.1 Paired T Test

The paired t-test (confidence interval) just does a one-sample test (confidence interval) on the differences. There is little evidence of difference.

t.test(differences)

 One Sample t-test

data: differences
t = 1.49, df = 29, p-value = 0.147
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 -0.06532811 0.41599478
sample estimates:
mean of x
0.1753333

Should this be a one or two-sided alternative? That is a good question without an obvious answer. I could hypothesize that the employees will be faster with the standard because they are used to it, or I could hypothesize that they will be faster with the ergonomic, because it’s just better. I don’t know which is reasonable, so it is probably best to use a two-sided alternative that will check for either.

You can also do the paired test using the two sets of responses but setting paired=TRUE. Results are the same as above.

t.test(RunStitch$Standard, RunStitch$Ergonomic, paired=TRUE)

 Paired t-test

data: RunStitch$Standard and RunStitch$Ergonomic
t = 1.49, df = 29, p-value = 0.147
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.06532811 0.41599478
sample estimates:
mean of the differences
 0.1753333

Finally, you can choose a null mean other than 0.

t.test(differences, mu=.5)

 One Sample t-test

data: differences
t = -2.7591, df = 29, p-value = 0.009934
alternative hypothesis: true mean is not equal to 0.5
95 percent confidence interval:
 -0.06532811 0.41599478
sample estimates:
mean of x
0.1753333

4.2 Randomization (permutation) Paired T Test

permsign.test() does the randomization version of the paired t. The randomization null hypothesis is that the grouping is irrelevant, implying that either the positive or negative version of the difference could have occurred with equal probability. We simulate from this null distribution by randomly changing signs of the differences and looking at the distribution of the resulting means.

The main advantage of this procedure over the t test is that the permutation test does not assume or depend on normality.

The p-values are computed by a simulation, so they will vary a bit if you repeat the command. We note that they are close to the t-test in this case.

The histogram plots all of the randomization outcomes, and the red line on the plot is at the observed value.

permsign.test(differences, plot=TRUE)

[image: Histogram of pairwise randomization outcomes]

Figure 4.2: Histogram of pairwise randomization outcomes

Permutation Sign Test for differences

 Null hypothesis mean value: 0

 Lower tail p-value 0.9273
 Upper tail p-value 0.0728
 Two tail p-value 0.1456

95% confidence interval: -0.05867, 0.4093

There is also a version of permsign.test() that will save you the toil of computing the differences, along with the possibility of using a data frame source.

permsign.test(Standard, Ergonomic, plot=FALSE, data=RunStitch)

Permutation Sign Test for Standard - Ergonomic

 Null hypothesis mean value: 0

 Lower tail p-value 0.9253
 Upper tail p-value 0.0751
 Two tail p-value 0.1502

95% confidence interval: -0.05867, 0.4093

5 Likelihood and Predictive Procedures

The likelihood for a set of data, a model, and a set of parameters for the model is simply the probability (or probability density) for those data in that model with those parameters. For a variety of reasons, we generally work with the (natural) log of the likelihood rather than the likelihood itself. We can use log likelihood to compare models and to create confidence regions for parameters.

The R function logLik() (don’t blame me, I didn’t name it) is the basic tool for computing the log likelihood of a model fitted to data. We will use it explicitly and implicitly when we do likelihood procedures on data.

5.1 Models

We have seen “formulas” of the form response ~ predictor in a couple of use cases already. The most common models are linear models, where the responses are assumed to be independent and follow a normal (Gaussian) distribution with constant variance and means determined by the predictors in the formula. The most common predictors could be grouping variables (factors), in which case the means are means in different groups, or the predictors could be continuous numeric variables, in which case the mean is determined as coefficients times the numeric value of the predictors (aka linear regression).

By default, formulas will include an intercept, or constant value. This is indicated in the formula by a 1 (a coefficient times the constant value 1 just yields a constant coefficient contribution to the mean). A model of the form response ~ 1 just fits the single mean. If predictor is a single numeric variable, then a formula of the form response ~ predictor or response ~ 1 + predictor produces the same simple linear regression, because the 1+ part is added automatically. On the other hand, a formula of the form response ~ predictor - 1 or response ~ 0 + predictor leaves the intercept out of the model.

The formula response ~ 0 just fits the mean as zero, period. If you want to fit a model with a different mean, say 5, you could subtract 5 from the data and fit a mean of 0, as in response - 5 ~ 0.

Will will demonstrate using the data from the RunStitch example in cfcdae, which we have used before. Each worker run stitches collars using two different setups: the conventional setup and an ergonomic setup. The two runs are made in random order for each worker, and the interest is in any difference in average speed between the two setups.

Load the runstitch data from the package and create differences between Standard and Ergonomic.

data(RunStitch)
differences <- RunStitch[,"Standard"] - RunStitch[,"Ergonomic"]
head(differences)

[1] 1.03 -0.04 0.26 0.30 -0.97 0.04

5.2 Likelihood and Likelihood Ratio Test

The likelihood ratio test (LRT) compares a statistic to a chisquare distribution. The statistic is twice the difference in log likelihoods between the model at the null value of the parameters and the model with the parameters set to the values that maximize the likelihood. The chisquare distribution has degrees of freedom equal to the difference in number of parameters between the two models (that is, how many parameters does the null hypothesis restrict).

The p-values from this test are approximate, with the approximation getting better as the sample size increases. In modest sized samples and simple models such as this, you would typcially use a t-test.

Here are the two models:

null0model <- lm(differences~0)
nullp5model <- lm(differences-.5~0)
fullmodel <- lm(differences~1)

The likelihoods are and twice their difference are:

null0Like <- logLik(null0model)
nullp5Like <- logLik(nullp5model)
fullLike <- logLik(fullmodel)
null0Like;nullp5Like;fullLike

'log Lik.' -29.98793 (df=1)

'log Lik.' -32.37791 (df=1)

'log Lik.' -28.88137 (df=2)

and twice their difference are:

LRT0 <- 2*(fullLike-null0Like)
LRT0

'log Lik.' 2.213124 (df=2)

LRTp5 <- 2*(fullLike-nullp5Like)
LRTp5

'log Lik.' 6.993092 (df=2)

The models differ by one parameter (set the mean to zero or let it be fit), so we should compare this to a chisquare with one degree of freedom, using the upper tail area to get the p-value.

pchisq(LRT0, 1, lower.tail=FALSE)

'log Lik.' 0.1368413 (df=2)

pchisq(LRTp5, 1, lower.tail=FALSE)

'log Lik.' 0.008182487 (df=2)

The p-value is about .14 for the null of 0, so there is no evidence against the null that the mean difference is 0. However, the p-value for the null of .5 is less than .01, so there is some evidence against that null.

5.3 Likelihood Confidence Interval

The values of a parameter in a likelihood confidence interval with coverage 1-α\alpha are those null values that would not be rejected by the LRT at level α\alpha. This process is not automated in R for this simple model, so we need to do a little work.

Create a function that computes the log likelihood for a given null value:

myLogLike <- function(null) {
 logLik(lm(differences-null~0))
}

Next we create a dense grid of potential null mean values and evaluate the log likelihood at each potential null. The grid used here is probably more dense than necessary, and the denser the grid, the longer it takes to do the work.

x <- seq(-.2, .6, .001) # steps of .001
loglike <- x
for(i in 1:length(x)) {
 loglike[i] <- myLogLike(x[i])
}

Those null values that do not get rejected by the LRT are in the interval. A null value does not get rejected if its log likelihood is bigger than a cutoff. The cutoff is the maximized log likelihood minus one half of the 99th percentile (for 99% coverage). Note that the LRT, which is compared to chisquare, uses twice the log likelihood, so we use .5 times the chisquare when using the likelihood. This gives us the interval, which is -.139 to .490.

cutoff <- logLik(fullmodel) - qchisq(.99,1)/2
range(x[loglike>cutoff])

[1] -0.139 0.490

It’s also nice to see a plot of the log likelihood with a horizontal line at the cutoff.

plot(x, loglike, xlab="Mean", ylab="log likelihood", type='l')
abline(h=cutoff)

5.4 AIC, AICc, and BIC

Information Criteria such as AIC and BIC attempt to select a model that will do a good job of predicting future data. The idea is that you compute AIC or BIC for a selection of potential models for you data and choose the one that has the lowest IC.

Both criteria take the form of minus 2 times the log likelihood plus a multiple of the number of parameters in the model. AIC uses 2 times the number of parameters, so it does not penalize additional parameters very much. BIC uses log of the sample size times the number of parameters, so it can penalize additional parameters quite a bit. AICc is a small sample correction for AIC.

If the true model is among the models you are comparing, BIC will eventually find it in large sample sizes. However, BIC may not work well when all the models are approximate. Conversely, AIC can pick out a reasonable model even when all of the models are approximate, but it will not home in on the true model if the true model is among the selection group, even in large sample sizes.

Let’s try these on the differences data. BIC prefers the null model.

BIC(null0model)

[1] 63.37706

BIC(nullp5model)

[1] 68.15703

BIC(fullmodel)

[1] 64.56513

AICc prefers the null model (barely).

AICc(null0model)

[1] 62.11872

AICc(nullp5model)

[1] 66.89868

AICc(fullmodel)

[1] 62.20718

And AIC slightly prefers the full model.

AIC(null0model)

[1] 61.97586

AIC(fullmodel)

[1] 61.76274

AIC(nullp5model)

[1] 66.75583

The model assuming a mean of .5 is never really in the running.

6 One-Sample Bayesian Procedures

The key philosophical difference with Bayesian procedures is that we express our prior knowledge about parameters and other unknowns using prior distributions and update those distributions to posterior distributions after observing the data. The key practical difference with Bayesian procedures is that there are generally no simple computations. Instead, we get approximate samples from the posterior distributions via Monte Carlo simulation.

There are several tools for doing the Monte Carlo in R including jags (which does Gibbs sampling), rstan (which does Hamiltonian sampling), brms, and others. We will illustrate using the bglmm function in cfcdae, which is a front end for rstan.

We will demonstrate using the data from the RunStitch example in cfcdae, which we have used before. Each worker run stitches collars using two different setups: the conventional setup and an ergonomic setup. The two runs are made in random order for each worker, and the interest is in any difference in average speed between the two setups.

Load the runstitch data from the package and create differences between Standard and Ergonomic.

data(RunStitch)
differences <- RunStitch[,"Standard"] - RunStitch[,"Ergonomic"]
head(differences)

[1] 1.03 -0.04 0.26 0.30 -0.97 0.04

6.1 bglmm Prior Distributions

bglmm places a normal prior with mean zero and standard deviation σk\sigma_k on all coefficients in term k of the model. At present in our example, we have at most one term in our formula: the mean. bglmm then puts a second level prior on σk\sigma_k, assuming that it follows a gamma distribution with expected value τk\tau_k and shape parameter νk\nu_k. A large value of νk\nu_k means that you are very certain that σk\sigma_k is near τk\tau_k, whereas a small value indicates uncertainty.

To illustrate the degree of uncertainty, consider the ratio of the .995 quantile to the .005 quantile of the distribution. This is one measure of the spread of the middle 99% of the distribution.

shape <- c(1, 1.5, 2:10, 15, 20, 30, 50, 100, 200, 400, 1000)
ratio <- qgamma(.995, shape) / qgamma(.005, shape)
data.frame(shape, ratio)

 shape ratio
1 1.0 1057.012101
2 1.5 178.999426
3 2.0 71.792473
4 3.0 27.448349
5 4.0 16.330513
6 5.0 11.683607
7 6.0 9.206618
8 7.0 7.686343
9 8.0 6.663908
10 9.0 5.930983
11 10.0 5.380372
12 15.0 3.893019
13 20.0 3.224391
14 30.0 2.587675
15 50.0 2.081903
16 100.0 1.676711
17 200.0 1.440322
18 400.0 1.294069
19 1000.0 1.176992

With a shape of just 1, the plausible range of values extends over 3 orders of magnitude. By the time you to shape 5, the range is down to just one order of magnitude. You need a huge shape parameter to really nail down a value for σk\sigma_k.

We also need a prior for the error standard deviation σ\sigma. We use the same approach of giving a prior expected value for σ\sigma and a shape parameter indicating degree of certainty.

If you do not specify the shape parameter, bglmm uses 1.5, which is rather dispersed. If you do not specify the prior expected value for a standard deviation, bglmm defaults to a value that is probably bigger than is reasonable.

6.2 RunStitch data

We want to illustrate fitting the Bayesian model, but we also want to illustrate how the results might depend on the prior distribution you choose. We want to consider prior means of either 0 or .5 (representing two different persons’ prior beliefs). We will also vary the prior standard deviation for the mean from nearly 0 up to .8. Generally, we will assume quite vague prior knowledge about the standard deviation of the data. However, we will also give one example where we assume much stronger certainty about the standard deviation to see what does, and does not, change.

We want to fit Bayesian models where we have a prior mean μ\mu for the differences and some known prior standard deviation for the differences. Things are fairly straightforward if the prior mean is 0, because that is what bglmm assumes. Just set the expected standard deviation to the desired value and use a very large shape to make it effectively constant. If the prior mean we want to fit is not zero, then we need to subtract the prior mean from the data and use a zero prior mean for the adjusted data.

Before seeing the data we might have a vague idea of how big the standard deviation of the data might be. Perhaps we think the prior mean is 1, but we are quite uncertain. For that, we might use a shape of 1.5 (ratio around 180). On the other hand, we might be more certain and use a shape of 6 (ratio about 10).

6.2.1 Model Fitting

Our first model is for someone who has a very strong prior belief that the mean should be near zero, evidenced by the small expected prior standard deviation for the intercept (sigma.scale.int) and large shape (gamma.shape.int). We use expected prior error standard deviation of 1 (sigma.scale0), along with a small shape indicating vague information (gamma.shape0). The quiet argument suppresses a lot of the progress information that is printed.

set.seed(20210330)
fit.0.0.vague <- bglmm(differences~1,
 sigma.scale.int=.001, gamma.shape.int=1000,
 sigma.scale0=1, gamma.shape0=1.5, quiet=TRUE)

Need to compile the model. Compiling now.

We now fit several similar models, where we gradually increase the prior standard deviation of the mean.

fit.0.1.vague <- bglmm(differences~1,
 sigma.scale.int=.1, gamma.shape.int=1000,
 sigma.scale0=1, gamma.shape0=1.5, quiet=TRUE)
fit.0.5.vague <- bglmm(differences~1,
 sigma.scale.int=.5, gamma.shape.int=1000,
 sigma.scale0=1, gamma.shape0=1.5, quiet=TRUE)
fit.0.8.vague <- bglmm(differences~1,
 sigma.scale.int=.8, gamma.shape.int=1000,
 sigma.scale0=1, gamma.shape0=1.5, quiet=TRUE)

To illustrate the effect of being more certain about the standard deviation of the data, we also fit a model with a larger shape.

fit.0.5.notsovague <- bglmm(differences~1,
 sigma.scale.int=.5, gamma.shape.int=1000,
 sigma.scale0=1, gamma.shape0=6, quiet=TRUE)

Finally, we fit three models that use a prior mean on the differences of .5, and use prior standard deviations of .001, .1, and .5.

fit.5.0.vague <- bglmm(differences-.5~1,
 sigma.scale.int=.001, gamma.shape.int=1000,
 sigma.scale0=1, gamma.shape0=1.5, quiet=TRUE)
fit.5.1.vague <- bglmm(differences-.5~1,
 sigma.scale.int=.1, gamma.shape.int=1000,
 sigma.scale0=1, gamma.shape0=1.5, quiet=TRUE)
fit.5.5.vague <- bglmm(differences-.5~1,
 sigma.scale.int=.5, gamma.shape.int=1000,
 sigma.scale0=1, gamma.shape0=1.5, quiet=TRUE)

6.2.2 Model Assessment

One risk with Bayesian analysis via MCMC is that the Markov chains might not be behaving properly. Here are three good, but not foolproof, ways to check your fit. If these show say that the chain is behaving badly, then it is behaving badly. However, a chain can be behaving badly without these methods catching the problem.

First, bglmm runs multiple chains (four by default). If you plot these traces, the four chains should all be on top of each other and the plot should look like a broad, blurry band without any patters. Uninteresting is good for the trace plots. Here we just look at the intercept, but you should look at all the parameters. It looks fine.

plot(fit.0.5.vague, plottype="trace", pars="(Intercept)")

 Second, successive values of the Markov chains are correlated. Typically, close values are more highly correlated and the correlation eventually dies off to zero. We want it to go to zero quickly and stay near zero for every parameter. Again, this looks fine.

plot(fit.0.5.vague, plottype="autocor", pars="(Intercept)")

Warning: Ignoring unknown parameters: fun.y

No summary function supplied, defaulting to `mean_se()`

 Third, the summary() method for bglmm objects includes a column labeled Rhat. You want the Rhat values to be small, which means down near 1. If they’re bigger than 1.1 or 1.2, you may have problems. Here, things are fine.

summary(fit.0.5.vague)[,"Rhat"]

 (Intercept) sigma0 sigma.Intercept
 1 1 1

6.2.3 Model Results

We’re eager to see the results, and now that we have assess the chains as working well (well, at least for fit.0.5.vague and the intercept), we can look at the results. The simplest way to see the results of the fit is to use the summary() function. For each parameter in the model, it produces

	The posterior mean for the parameter.

	The posterior standard error for the posterior mean.

	The posterior standard deviation of the parameter.

	The 2.5, 25, 50, 75, and 97.5 percentiles of the posterior distribution (these can be reset via optional arguments).

	The effective sample size of the chain (more is better, and closer to 4,000 is good for default chain sizes).

	The Rhat value.

Note: the posterior standard error is essentially a numerical issue. If you run the chains longer and longer, this standard error will decrease to zero. However, the posterior standard deviation, which measures the true statistical variability in the posterior, does not decrease as you increase the size of the chains.

Here we look at a few of the columns for the different models. Watch how the posterior intervals for the intercept and error variance (sigma0) change, or don’t change, across the models. Recall that the intervals for the intercept in the models where we subtracted .5 from the data need to have that .5 added back.

summary(fit.0.0.vague)[, c("mean","sd","2.5%","97.5%","Rhat")]

 mean sd 2.5% 97.5% Rhat
(Intercept) 2.83e-05 1.01e-03 -0.001990 0.00203 1
sigma0 6.80e-01 8.98e-02 0.530000 0.87300 1
sigma.Intercept 1.00e-03 3.14e-05 0.000943 0.00107 1

summary(fit.0.1.vague)[, c("mean","sd","2.5%","97.5%","Rhat")]

 mean sd 2.5% 97.5% Rhat
(Intercept) 0.0696 0.07640 -0.0821 0.221 0.999
sigma0 0.6690 0.09140 0.5170 0.873 0.999
sigma.Intercept 0.0999 0.00317 0.0938 0.106 1.000

summary(fit.0.5.vague)[, c("mean","sd","2.5%","97.5%","Rhat")]

 mean sd 2.5% 97.5% Rhat
(Intercept) 0.164 0.1150 -0.0616 0.393 1
sigma0 0.664 0.0896 0.5140 0.865 1
sigma.Intercept 0.500 0.0156 0.4680 0.531 1

summary(fit.0.5.notsovague)[,c("mean","sd","2.5%","97.5%","Rhat")]

 mean sd 2.5% 97.5% Rhat
(Intercept) 0.165 0.1210 -0.0763 0.397 1.000
sigma0 0.687 0.0918 0.5380 0.890 0.999
sigma.Intercept 0.500 0.0157 0.4690 0.531 1.000

summary(fit.0.8.vague)[, c("mean","sd","2.5%","97.5%","Rhat")]

 mean sd 2.5% 97.5% Rhat
(Intercept) 0.173 0.1250 -0.0675 0.413 1
sigma0 0.666 0.0891 0.5180 0.864 1
sigma.Intercept 0.799 0.0249 0.7520 0.848 1

summary(fit.5.5.vague)[, c("mean","sd","2.5%","97.5%","Rhat")] #ignore intercept

 mean sd 2.5% 97.5% Rhat
(Intercept) -0.307 0.1200 -0.548 -0.0732 1
sigma0 0.667 0.0909 0.516 0.8690 1
sigma.Intercept 0.500 0.0155 0.470 0.5310 1

summary(fit.5.1.vague)[, c("mean","sd","2.5%","97.5%","Rhat")] #ignore intercept

 mean sd 2.5% 97.5% Rhat
(Intercept) -0.126 0.0827 -0.2860 0.0396 1.000
sigma0 0.695 0.0965 0.5360 0.9200 1.000
sigma.Intercept 0.100 0.0032 0.0941 0.1060 0.999

summary(fit.5.0.vague)[, c("mean","sd","2.5%","97.5%","Rhat")] #ignore intercept

 mean sd 2.5% 97.5% Rhat
(Intercept) -0.000018 1.02e-03 -0.002010 0.00197 1
sigma0 0.735000 9.77e-02 0.578000 0.95700 1
sigma.Intercept 0.000999 3.14e-05 0.000937 0.00106 1

summary(fit.5.5.vague)["(Intercept)", c("mean","2.5%","97.5%")]+.5

 mean 2.5% 97.5%
 0.1930 -0.0480 0.4268

summary(fit.5.1.vague)["(Intercept)", c("mean","2.5%","97.5%")]+.5

 mean 2.5% 97.5%
0.3740 0.2140 0.5396

summary(fit.5.0.vague)["(Intercept)", c("mean","2.5%","97.5%")]+.5

 mean 2.5% 97.5%
0.499982 0.497990 0.501970

Let’s tabulate those intervals so that they can be more easily compared.

	Model
	Lower
	Upper

	0.0.vague
	0.00
	0.00

	0.1.vague
	-0.08
	0.22

	0.5.vague
	-0.06
	0.39

	0.5.notsovague
	-0.08
	0.40

	0.8.vague
	-0.07
	0.41

	5.5.vague
	-0.05
	0.43

	5.1.vague
	0.21
	0.54

	5.0.vague
	0.50
	0.50

Looking at the interval estimates above, we see that the precise priors (at 0 or .5) give us precise posterior estimates of the at the same place; this was expected. The models with .1 prior standard deviations for the intercept pull the values toward the prior mean value (upper end pulled down for the 0 prior mean, lower end pulled up for the .5 prior mean). Once you get to prior standard deviations for the mean of .5 or .8, it really doesn’t matter what the prior mean is, the posterior intervals are (roughly) the same. Changing the certainty about the data standard deviation also made essentially no change in the posterior interval.

6.2.4 Model Selection

We have looked at a lot of models. Ordinarily we wouldn’t be comparing models with lots of different prior parameters, because we would know our prior distributions and use them. Again, we are doing it here to illustrate what happens as those prior parameters change.

That said, we can still assess which models fit the data better. One way to do that is via the LOOIC, which we can get via the function loo(). Smaller values of LOOIC are better. All except fit.5.1.vague and fit.5.0.vague are roughly equivalent, but those last two are larger.

loo(fit.0.0.vague)

[1] 62.10294

loo(fit.0.1.vague)

[1] 61.55079

loo(fit.0.5.vague)

[1] 61.78026

loo(fit.0.5.notsovague)

[1] 61.66798

loo(fit.0.8.vague)

[1] 61.89743

loo(fit.5.5.vague)

[1] 61.97736

loo(fit.5.1.vague)

[1] 63.32825

loo(fit.5.0.vague)

[1] 66.68975

Bayes factors are a second way to assess models, but be aware that Bayes factors can be sensitive to priors. Let’s compare all these models to the one with a point prior at 0. According to the usual guidelines for judging Bayes factors, there is no differentiation between the point prior at 0 model and any of the others except for the last two, where the point prior is positively preferred.

bayes_factor(fit.0.0.vague, fit.0.1.vague, silent=TRUE)

Estimated Bayes factor in favor of bridge1 over bridge2: 0.82762

bayes_factor(fit.0.0.vague, fit.0.5.vague, silent=TRUE)

Estimated Bayes factor in favor of bridge1 over bridge2: 1.54172

bayes_factor(fit.0.0.vague, fit.0.5.notsovague, silent=TRUE)

Estimated Bayes factor in favor of bridge1 over bridge2: 1.04202

bayes_factor(fit.0.0.vague, fit.0.8.vague, silent=TRUE)

Estimated Bayes factor in favor of bridge1 over bridge2: 2.32126

bayes_factor(fit.0.0.vague, fit.5.5.vague, silent=TRUE)

Estimated Bayes factor in favor of bridge1 over bridge2: 1.76229

bayes_factor(fit.0.0.vague, fit.5.1.vague, silent=TRUE)

Estimated Bayes factor in favor of bridge1 over bridge2: 3.69433

bayes_factor(fit.0.0.vague, fit.5.0.vague, silent=TRUE)

Estimated Bayes factor in favor of bridge1 over bridge2: 10.46354

Extended R Examples for A First Course in Design and Analysis of Experiments, 2nd edition.

		1 Preliminaries		1.1 Download and Install R

		1.2 RStudio

		1.3 Packages

		1.4 Loading a package

		1.5 Keeping Results

		1.6 Keeping results the modern way

		2 Getting your data		2.1 Variables in R

		2.2 Data Sets in cfcdae

		2.3 Typing in data

		2.4 Generating Data

		2.5 Reading data from files

		3 Two-Sample Procedures		3.1 Standard t-test

		3.2 Digresson on computing percent points and quantiles

		3.3 Randomization (permutation) two-sample test

		4 Paired Procedures		4.1 Paired T Test

		4.2 Randomization (permutation) Paired T Test

		5 Likelihood and Predictive Procedures		5.1 Models

		5.2 Likelihood and Likelihood Ratio Test

		5.3 Likelihood Confidence Interval

		5.4 AIC, AICc, and BIC

		6 One-Sample Bayesian Procedures		6.1 bglmm Prior Distributions

		6.2 RunStitch data		6.2.1 Model Fitting

		6.2.2 Model Assessment

		6.2.3 Model Results

		6.2.4 Model Selection

 		
 Title Page

