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Preface xvii

Preface to the Second Edition
It’s been more than twenty years since the first edition came out. In that

time, the hardcopy edition of the book sold reasonably well, but never in
vast numbers; it then went out of print, and I distributed it for free in pdf
format. Why a new edition now? There are several things that the first edition
skimped on or left out entirely; there are more modern ways of doing some
things; computing marches on; some mention of the so-called “replication
crisis” needs to be included. Specifically, the second edition contains:

• Expanded coverage of response surfaces and mixture designs.

• Some discussion of optimal design and “computer designs,” primarily
in the contexts of non-regular fractional factorials, response surface
designs, and mixture designs.

• Reduced emphasis on traditional p-value criteria such as .05 or .01
together with more discussion on replication of experiments and the
hidden multiplicities of analysis.

• A broader array of analysis approaches including Bayesian methods,
(restricted) maximum likelihood, and generalized linear models.

• Computing examples done primarily in R.
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xviii Preface

Preface
This text covers the basic topics in experimental design and analysis and

is intended for graduate students and advanced undergraduates. Students
should have had an introductory statistical methods course at about the level
of Moore and McCabe’s Introduction to the Practice of Statistics (Moore and
McCabe 1999) and be familiar with t-tests, p-values, confidence intervals,
and the basics of regression and ANOVA. Most of the text soft-pedals theory
and mathematics, but Chapter 19 on response surfaces is a little tougher sled-
ding (eigenvectors and eigenvalues creep in through canonical analysis), and
Appendix A is an introduction to the theory of linear models. I use the text
in a service course for non-statisticians and in a course for first-year Masters
students in statistics. The non-statisticians come from departments scattered
all around the university including agronomy, ecology, educational psychol-
ogy, engineering, food science, pharmacy, sociology, and wildlife.

I wrote this book for the same reason that many textbooks get written:
there was no existing book that did things the way I thought was best. I start
with single-factor, fixed-effects, completely randomized designs and cover
them thoroughly, including analysis, checking assumptions, and power. I
then add factorial treatment structure and random effects to the mix. At this
stage, we have a single randomization scheme, a lot of different models for
data, and essentially all the analysis techniques we need. I next add block-
ing designs for reducing variability, covering complete blocks, incomplete
blocks, and confounding in factorials. After this I introduce split plots, which
can be considered incomplete block designs but really introduce the broader
subject of unit structures. Covariate models round out the discussion of vari-
ance reduction. I finish with special treatment structures, including fractional
factorials and response surface/mixture designs.

This outline is similar in content to a dozen other design texts; how is this
book different?

• I include many exercises where the student is required to choose an
appropriate experimental design for a given situation, or recognize the
design that was used. Many of the designs in question are from earlier
chapters, not the chapter where the question is given. These are impor-
tant skills that often receive short shrift. See examples on pages 636
and 631.
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• I use Hasse diagrams to illustrate models, find test denominators, and
compute expected mean squares. I feel that the diagrams provide a
much easier and more understandable approach to these problems than
the classic approach with tables of subscripts and live and dead indices.
I believe that Hasse diagrams should see wider application.

• I spend time trying to sort out the issues with multiple comparisons
procedures. These confuse many students, and most texts seem to just
present a laundry list of methods and no guidance.

• I try to get students to look beyond saying main effects and/or interac-
tions are significant and to understand the relationships in the data. I
want them to learn that understanding what the data have to say is the
goal. ANOVA is a tool we use at the beginning of an analysis; it is not
the end.

• I describe the difference in philosophy between hierarchical model
building and parameter testing in factorials, and discuss how this be-
comes crucial for unbalanced data. This is important because the dif-
ferent philosophies can lead to different conclusions, and many texts
avoid the issue entirely.

• There are three kinds of “problems” in this text, which I have denoted
exercises, problems, and questions. Exercises are intended to be sim-
pler than problems, with exercises being more drill on mechanics and
problems being more integrative. Not everyone will agree with my
classification. Questions are not necessarily more difficult than prob-
lems, but they cover more theoretical or mathematical material.

This text contains many formulae, but I try to use formulae only when I
think that they will increase a reader’s understanding of the ideas. In several
settings where closed-form expressions for sums of squares or estimates ex-
ist, I do not present them because I do not believe that they help (for example,
the Analysis of Covariance). Similarly, presentations of normal equations do
not appear. Instead, I approach ANOVA as a comparison of models fit by
least squares, and let the computing software take care of the details of fit-
ting. Future statisticians will need to learn the process in more detail, and
Appendix A gets them started with the theory behind fixed effects.

Speaking of computing, examples in this text use one of four packages:
MacAnova, Minitab, SAS, and S-Plus. MacAnova is a homegrown package
that we use here at Minnesota because we can distribute it freely; it runs
on Macintosh, Windows, and Unix; and it does everything we need. You can
download MacAnova (any version and documentation, even the source) from
http://www.stat.umn.edu/˜gary/macanova. Minitab and SAS
are widely used commercial packages. I hadn’t used Minitab in twelve years
when I started using it for examples; I found it incredibly easy to use. The
menu/dialog/spreadsheet interface was very intuitive. In fact, I only opened
the manual once, and that was when I was trying to figure out how to do
general contrasts (which I was never able to figure out). SAS is far and away
the market leader in statistical software. You can do practically every kind of
analysis in SAS, but as a novice I spent many hours with the manuals trying
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to get SAS to do any kind of analysis. In summary, many people swear by
SAS, but I found I mostly swore at SAS. I use S-Plus extensively in research;
here I’ve just used it for a couple of graphics.

I need to acknowledge many people who helped me get this job done.
First are the students and TA’s in the courses where I used preliminary ver-
sions. Many of you made suggestions and pointed out mistakes; in particular
I thank John Corbett, Alexandre Varbanov, and Jorge de la Vega Gongora.
Many others of you contributed data; your footprints are scattered throughout
the examples and exercises. Next I have benefited from helpful discussions
with my colleagues here in Minnesota, particularly Kit Bingham, Kathryn
Chaloner, Sandy Weisberg, and Frank Martin. I thank Sharon Lohr for in-
troducing me to Hasse diagrams, and I received much helpful criticism from
reviewers, including Larry Ringer (Texas A&M), Morris Southward (New
Mexico State), Robert Price (East Tennessee State), Andrew Schaffner (Cal
Poly—San Luis Obispo), Hiroshi Yamauchi (Hawaii—Manoa), and William
Notz (Ohio State). My editor Patrick Farace and others at Freeman were a
great help. Finally, I thank my family and parents, who supported me in this
for years (even if my father did say it looked like a foreign language!).

They say you should never let the camel’s nose into the tent, because
once the nose is in, there’s no stopping the rest of the camel. In a similar
vein, student requests for copies of lecture notes lead to student requests for
typed lecture notes, which lead to student requests for more complete typed
lecture notes, which lead . . . well, in my case it leads to a textbook on de-
sign and analysis of experiments, which you are reading now. Over the years
my students have preferred various more primitive incarnations of this text to
other texts; I hope you find this text worthwhile too.

Gary W. Oehlert
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Chapter 1

Introduction

How do you answer these questions?

• Is a new drug a safe, effective treatment for a disease?

• How much buffer is needed around a GMO corn field to prevent the
spread of GMO pollen to surrounding corn fields?

• How will the click rate change depending on the placement of an ad-
vertisement on a web page?

• Will an ice cream manufactured with a new kind of stabilizer be as
palatable as our current ice cream?

• Does short-term incarceration of spouse abusers deter future assaults?

• What are the optimal conditions for operating a chemical refinery,
given this month’s grade of raw material?

Experiments collect the data that help answer questions like these, and this
book is meant to help decision makers and researchers design good experi- Experiments

answer questionsments, analyze them properly, and answer their questions.
Consider the spousal assault example mentioned above. Justice officials

need to know how they can reduce or delay the recurrence of spousal assault.
They are investigating three different actions in response to spousal assaults.
The assailant could be warned, sent to counseling but not booked on charges,
or arrested for assault. Which of these actions works best? How can they
compare the effects of the three actions?

This book deals with comparative experiments. We wish to compare
some treatments. For the spousal assault example, the treatments are the three
actions by the police. We compare treatments by using them and comparing
the outcomes. Specifically, we apply the treatments to experimental units Treatments,

experimental
units, and

responses

and then measure one or more responses. In our example, individuals who
assault their spouses could be the experimental units, and the response could
be whether or not assault recurs within one year. We compare treatments by
comparing the responses obtained from the experimental units in the different



2 Introduction

treatment groups. This could tell us if there are any differences in responses
between the treatments, what the estimated sizes of those differences are,
which treatment has the greatest reduction in one-year recurrence, and so on.

An experiment is characterized by the treatments and experimental units
to be used, the way treatments are assigned to units, and the responses
that are measured.

1.1 Why Experiment?

Experiments help us answer questions, but there are also non-experimental
techniques. What is so special about experiments? Consider that:Advantages of

experiments
1. We can design experiments to compare treatments directly.

2. We can design experiments to minimize any bias in the comparison.

3. We can design experiments so that the error in the comparison is small.

4. We can design experiments so that error is accurately estimated.

5. Most important, we are in control of experiments, in the sense of con-
trolling the assignment of treatments to units (or units to treatments,
if you prefer) and having that control allows us to make stronger in-
ferences about the nature of differences that we see in the experiment.
Specifically, we may make inferences about causation.

This last point distinguishes an experiment from an observational study. AnControl versus
observation observational study also has treatments, units, and responses. However, in

the observational study we merely observe which units are in which treatment
groups; we don’t get to control that assignment.

Example 1.1 Does spanking hurt?
Let’s contrast an experiment with an observational study described in

Straus, Sugarman, and Giles-Sims (1997). A large survey of women aged
14 to 21 years was begun in 1979; by 1988 these same women had 1239
children between the ages of 6 and 9 years. The women and children were
interviewed and tested in 1988 and again in 1990. Two of the items measured
were the level of antisocial behavior in the children and the frequency of
spanking. Results showed that children who were spanked more frequently
in 1988 showed larger increases in antisocial behavior in 1990 than those
who were spanked less frequently. Does spanking cause antisocial behavior?
Perhaps it does, but there are other possible explanations. Perhaps children
who were becoming more troublesome in 1988 may have been spanked more
frequently, while children who were becoming less troublesome may have
been spanked less frequently in 1988.
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1.1 Why Experiment? 3

Figure 1.1: XKCD 552: Correlation. Accessed from
https://m.xkcd.com/552, used under the Creative Commons
license.

Example 1.2 Keep on smoking?
Freedman, Pisani, Purves, and Adhikari (1991) describe a large survey

of households conducted by the Public Health Service. Men and women in
those households were divided into groups by age and by whether they had
never smoked, were current smokers, or had quit smoking. The nonsmok-
ers were a little healthier than the smokers, but those who had quit smoking
were much less healthy than the current smokers. Does this mean that stop-
ping smoking makes you sick? No, there are several other potential explana-
tions, the most likely of which is that many smokers who get very sick quit
smoking, thus making the group of former smokers look less healthy than the
smokers.

The drawback of observational studies is that the grouping into “treat-
ments” is not under the control of the experimenter and its mechanism is
usually unknown. Thus observed differences in responses between treatment
groups could very well be due to other hidden mechanisms, rather than the
treatments themselves. Observational studies can find correlation or associ-
ation, but observational studies cannot, in and of themselves, find causation.
See Figure 1.1 for an additional example.

It is important to say that while experiments have some advantages, ob-
servational studies are also useful and can produce important results. For ex- Observational

studies are useful
too

ample, studies of smoking and human health are observational, but the link
that they have established is one of the most important public health issues
in recent decades. Similarly, observational studies established an associa-
tion between heart valve disease and the diet drug fen-phen that led to the
withdrawal of the drugs fenfluramine and dexfenfluramine from the market
(Connolloy et al. 1997 and US FDA 1997).

Mosteller and Tukey (1977) list three concepts associated with causation
and state that at least two of the three are needed to support a causal relation- Causal

relationshipsship:

• Consistency
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• Responsiveness

• Mechanism.

Consistency means that, all other things being equal, the relationship be-
tween two variables is consistent across populations in direction and maybe
in amount. Responsiveness means that we can go into a system, change the
causal variable, and watch the response variable change accordingly. Mech-
anism means that we have a step-by-step mechanism leading from cause to
effect.

In an experiment, we are in control, so we can achieve responsiveness.Experiments can
demonstrate
consistency and
responsiveness

Thus, if we see a consistent difference in observed response between the
various treatments, we can infer that the treatments caused the differences
in response. We don’t need to know the mechanism—we can demonstrate
causation by experiment. (This is not to say that we shouldn’t try to learn
mechanisms—we should. It’s just that we don’t need mechanism to infer
causation.)

We should note that there are times when experiments are not feasible,
even when the knowledge gained would be extremely valuable. For example,Ethics constrain

experimentation we can’t perform an experiment proving once and for all that smoking causes
cancer in humans. We can observe that smoking is associated with cancer in
humans; we have mechanisms for this and can thus infer causation. But we
cannot demonstrate responsiveness, since that would involve making some
people smoke, and making others not smoke. It is simply unethical.

Ethical issues in experimentation can be much more subtle than assign-
ing people to smoke, and research institutions have review boards to ensure
that experimentation maintains ethical standards. This involves many issues
such as minimizing pain or trauma for experimental animals, ensuring that
human subjects give informed consent to participate in experiments, settingEthical issues

may be subtle up special safeguards when working with vulnerable populations (for exam-
ple, children, the mentally ill, or trauma survivors), minimizing potential side
effects (this could be drug side effects for humans or migration of genetically
modified pollen into the wild), and so on. Although this book will not have
much further discussion regarding ethics, ethics must be a consideration in
the design of any experiment. Be sure to follow your local review board’s
standards and instructions.

1.2 Experimental Design

An experiment has treatments, experimental units, responses, and a method
to assign treatments to units.

Treatments are the different procedures we want to compare. These could
be different kinds or amounts of fertilizer in agronomy, different ad-
vertisement placement in web design, or different temperatures in a
reactor vessel in chemical engineering.
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1.2 Experimental Design 5

Experimental units are the things to which we apply the treatments. These
could be plots of land receiving fertilizer, different articles in an online
newspaper, or batches of feedstock at a refinery.

Responses are outcomes that we observe after applying a treatment to an
experimental unit. That is, the response is what we measure to judge
what happened in the experiment; we often have more than one re-
sponse. Responses for the above examples might be nitrogen content
or biomass of corn plants, click-through rate for the advertisement, or
yield and quality of the product per ton of raw material.

Randomization is the use of a known, understood probabilistic mechanism
for the assignment of treatments to units. Other aspects of an exper-
iment can also be randomized: for example, the order in which units
are evaluated for their responses.

Together the treatments, experimental units, responses, and a method to as-
sign treatments to units constitute the experimental design. Some authors
make a distinction between the selection of treatments to be used, called
“treatment design,” and the selection of units and assignment of treatments,
called “experiment design.” We will not maintain that formal distinction.

Note that there is no mention of a method for analyzing the results in our
definition of experimental design. Strictly speaking, the analysis is not part
of the design, but a wise experimenter will always consider the analysis when Analysis not part

of design, but
consider it during

planning

planning an experiment. Analyzing experiments would be easy if there were
no experimental error.

Experimental Error is the random variation present in all experimental re-
sults. Different experimental units will give different responses to the
same treatment, and it is often true that applying the same treatment
over and over again to the same unit will result in different responses
in different trials. Experimental error does not refer to conducting the
wrong experiment or dropping test tubes.

Making sense of an experiment can be very difficult if there is confound-
ing. Except in very special circumstances, confounding should be avoided,
because no amount of fancy analysis will overcome confounding.

Confounding occurs when the effect of one factor or treatment cannot be
distinguished from that of another factor or treatment. The two factors
or treatments are said to be confounded. Consider planting corn va-
riety A in Minnesota and corn variety B in Iowa. In this experiment,
we cannot distinguish location effects from variety effects—the variety
factor and the location factor are confounded.

Whereas the design determines the proper analysis to a great extent, we
will see that two experiments with similar designs may be analyzed differ-
ently, and two experiments with different designs may be analyzed similarly.
Proper analysis depends on the design and the kinds of statistical model as-
sumptions we believe are correct and are willing to assume.
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Not all experimental designs are created equal. A good experimental
design must do the following:

Be accurate (avoid bias/systematic error/confounding) Comparative exper-
iments look at differences in response between treatments. If our ex-
periment has systematic error, then our comparisons will be biased, no
matter how precise our measurements are or how many experimental
units we use. For example, if responses for units receiving treatment
one are measured with instrument A, and responses for treatment two
are measured with instrument B, then we don’t know if any observed
differences are due to treatment effects or instrument miscalibrations.
Randomization, as will be discussed more below, is our main tool to
combat systematic error. Blinding (see below) can also be important.

Be precise (reduce variability) Even without systematic error, there will be
random error in the responses, and this will lead to random error in
the treatment comparisons. Experiments are precise when this random
error in treatment comparisons is small. Precision depends on the size
of the random errors in the responses, the number of units used, and
the experimental design used. Several chapters of this book deal with
designs to improve precision.

Allow estimation of error Experiments must be designed so that we have
an estimate of the size of random error. This permits statistical infer-
ence: for example, confidence intervals or tests of significance. We
cannot do inference without an estimate of error. Sadly, experiments
that cannot estimate error continue to be run.

Have broad validity The conclusions we draw from an experiment are ap-
plicable to the experimental units we used in the experiment. If the
units are actually a statistical sample from some population of units,
then the conclusions are also valid for the population. Beyond this, we
are extrapolating, and the extrapolation might or might not be success-
ful. For example, suppose we compare two different drugs for treating
attention deficit disorder. Our subjects are preadolescent boys from
our clinic. We might have a fair case that our results would hold for
preadolescent boys elsewhere, but even that might not be true if our
clinic’s population of subjects is unusual in some way. The results are
even less valid for older boys or for girls. Thus if we wish to have
wide validity—for example, broad age range and both genders—then
our experimental units should reflect the population about which we
wish to draw inference.

We need to realize that some compromise will probably be needed be-Compromise
often needed tween these goals. For example, broadening the scope of validity by using a

variety of experimental units may decrease the precision of our comparisons.
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1.3 More About Randomization

We characterize an experiment by the treatments and experimental units to be
used, the way we assign the treatments to units, and the responses we mea-
sure. An experiment is randomized if the method for assigning treatments Randomization to

assign treatment
to units

to units involves a known, well-understood probabilistic scheme. The prob-
abilistic scheme is called a randomization. As we will see, an experiment
may have several randomized features in addition to the assignment of treat-
ments to units. Randomization is one of the most important elements of a
well-designed experiment.

Let’s emphasize first the distinction between a random scheme and a Haphazard is not
randomized“haphazard” scheme. Consider the following potential mechanisms for as-

signing treatments to experimental units. In all cases suppose that we have
four treatments that need to be assigned to 16 units.

• We use sixteen identical slips of paper, four marked with A, four with
B, and so on to D. We put the slips of paper into a basket and mix them
thoroughly. For each unit, we draw a slip of paper from the basket and
use the treatment marked on the slip.

• Treatment A is assigned to the first four units we happen to encounter,
treatment B to the next four units, and so on.

• As each unit is encountered, we assign treatments A, B, C, and D based
on whether the “seconds” reading on the clock is between 1 and 15, 16
and 30, 31 and 45, or 46 and 60.

The first method clearly uses a precisely-defined probabilistic method. We
understand how this method makes it assignments, and we can use this method
to obtain statistically equivalent randomizations in replications of the exper-
iment.

The second two methods might be described as “haphazard;” they are not
predictable and deterministic, but they do not use a randomization. It is diffi-
cult to mathematically model the mechanism that is being used. Assignment
here depends on the order in which units are encountered, the elapsed time
between encountering units, how the treatments were labeled A, B, C, and
D, and potentially other factors. I might not be able to replicate your experi-
ment, simply because I tend to encounter units in a different order, or I tend
to work a little more slowly. The second two methods are not randomization.

Haphazard is not randomized!

Introducing more randomness into an experiment may seem like a per-
verse thing to do. After all, we are always battling against random exper-
imental error. However, random assignment of treatments to units has two Two reasons for

randomizinguseful consequences:

1. Randomization protects against confounding.
2. Randomization can form the basis for inference.
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We will discuss randomization for inference in the next chapter, but it is
rarely used for inference in practice. However, the success of randomization
in the protection against confounding is so overwhelming that randomization
is almost universally recommended.

1.3.1 Randomization Against Confounding

We defined confounding as occurring when the effect of one factor or treat-
ment cannot be distinguished from that of another factor or treatment. How
does randomization help prevent confounding? Let’s start by looking at the
trouble that can happen when we don’t randomize.

Consider a new drug treatment for coronary artery disease. We wish to
compare this drug treatment with bypass surgery, which is costly and po-
tentially dangerous. We have 100 patients in our pool of volunteers that
have agreed via informed consent to participate in our study; they need to
be assigned to the two treatments. We then measure five-year survival as a
response.

What sort of trouble can happen if we fail to randomize? Bypass surgery
is a major operation, and patients with severe disease might not be strong
enough to survive the operation. It might thus be tempting to assign theFailure to

randomize can
cause
confounding

stronger patients to surgery and the weaker patients to the drug therapy. This
confounds strength of the patient with treatment differences. The drug ther-
apy would likely have a lower survival rate because it is getting the weakest
patients, even if the drug therapy is every bit as good as the surgery.

Alternatively, perhaps only small quantities of the drug are available early
in the experiment, so that we assign more of the early patients to surgery,
and more of the later patients to drug therapy. There will be a problem if the
early patients are somehow different from the later patients. For example, the
earlier patients might be from your own practice, and the later patients might
be recruited from other doctors and hospitals. The patients could differ by
age, socioeconomic status, and other factors that are known to be associated
with survival.

There are several potential randomization schemes for this experiment;
here are two:

• Toss a coin for every patient; heads—the patient gets the drug, tails—
the patient gets surgery.

• Make up a basket with 50 red balls and 50 white balls well mixed
together. Each patient gets a randomly drawn ball; red balls lead to
surgery, white balls lead to drug therapy.

Note that for coin tossing the numbers of patients in the two treatment groups
are random, while the numbers are fixed for the colored ball scheme. (Both
of these designs are gross oversimplifications. A real experimental design
would include considerations for age, gender, health status, and so on.)

Here is how randomization has helped us. No matter which features of
the population of experimental units are associated with our response, our
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randomizations put approximately half the patients with these features in
each treatment group. Approximately half the men get the drug; approxi- Randomization

balances the
population on

average

mately half the older patients get the drug; approximately half the stronger
patients get the drug; and so on. The beauty of randomization is that it helps
prevent confounding, even for factors that we do not know are important.
These are not exactly 50/50 splits, but the deviation from an even split fol-
lows rules of probability that we can use when making inference about the
treatments.

Here is another toy example of randomization. A company is evaluating
two different accounting packages for use by its staff. Part of the evaluation
is how quickly a set of transactions can be entered correctly using the two
programs. We have 20 test accountant specialists, and each will enter the
transactions twice, using each program once.

As expected, there are potential pitfalls in nonrandomized designs. Sup-
pose that all account specialists did the evaluation in the order A first and B
second. Does the second program have an advantage because the accountant
will be familiar with the transactions and thus enter them more quickly? Or
maybe the second program will be at a disadvantage because the accountants
will be tired and thus slower.

Two randomized designs that could be considered are:

1. For each accountant, toss a coin: the accountant will use the programs
in order AB or BA according to whether the coin is a head or a tail,
respectively.

2. Choose 10 accountants at random for the AB order, the rest get the BA
order.

Both these designs are randomized and will help guard against confounding, Different
randomizations

are different
designs

but the designs are slightly different and we will see that they should be
analyzed differently.

Cochran and Cox (1957) draw the following analogy:

Randomization is somewhat analogous to insurance, in that it
is a precaution against disturbances that may or may not occur
and that may or may not be serious if they do occur. It is gen-
erally advisable to take the trouble to randomize even when it is
not expected that there will be any serious bias from failure to
randomize. The experimenter is thus protected against unusual
events that upset his expectations.

Randomization generally costs little in time and trouble, but it can save us
from disaster.

1.3.2 Randomizing Other Things

We have taken a very simplistic view of experiments; “assign treatments to
units and then measure responses” hides a multitude of potential steps and
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choices that will need to be made. Many of these additional steps can be
randomized, as they could also lead to confounding. For example:

• If the experimental units are not used simultaneously, you can random-
ize the order in which they are used.

• If the experimental units are not used at the same location, you can
randomize the locations at which they are used.

• If you use more than one measuring instrument for determining re-
sponse, you can randomize which units are measured on which instru-
ments.

When we anticipate that one of these might cause a change in the response,
we can often design that into the experiment (for example, by using blocking;
see Chapter 12). Thus I try to design for the known problems, and randomize
everything else. In sum,

Randomize! Randomize! Randomize!

Example 1.3 One tale of woe
I once evaluated data from a study that was examining cadmium and

other metal concentrations in soils around a commercial incinerator. The
issue was whether the concentrations were higher in soils near the incinerator.
They had eight sites selected (matched for soil type) around the incinerator,
and took ten random soil samples at each site.

The samples were all sent to a commercial lab for analysis. The analysis
was long and expensive, so they could only do about ten samples a day. Yes
indeed, there was almost a perfect match of sites and analysis days. Sev-
eral elements, including cadmium, were only present in trace concentrations,
concentrations that were so low that instrument calibration, which was done
daily, was crucial. When the data came back from the lab, we had a very
good idea of the variability of their calibrations, and essentially no idea of
how the sites differed.

The lab was informed that all the trace analyses, including cadmium,
would be redone, all on one day, in a random order that we specified. Fortu-
nately I was not a party to the question of who picked up the $75,000 tab for
reanalysis.

1.3.3 Performing a Randomization

Once we decide to use randomization, there is still the problem of actually
doing it. Randomizations usually consist of choosing a random order for
a set of objects (for example, doing analyses in random order) or choosingRandom orders

and random
subsets

random subsets of a set of objects (for example, choosing a subset of units for
treatment A). Thus we need methods for putting objects into random orders
and choosing random subsets. When the sample sizes for the subsets are fixed
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and known (as they usually are), we will be able to choose random subsets
by first choosing random orders.

Randomization methods can be either physical or numerical. Physical
randomization is achieved via an actual physical act that is believed to pro-
duce random results with known properties. Examples of physical random-
ization are coin tosses, card draws from shuffled decks, rolls of a die, and Physical

randomizationtickets in a hat. I say “believed to produce random results with known prop-
erties” because cards can be poorly shuffled, tickets in the hat can be poorly
mixed, and skilled magicians can toss coins that come up heads every time.
Large scale embarrassments due to faulty physical randomization include
poor mixing of Selective Service draft induction numbers during World War
II (see Mosteller, Rourke, and Thomas 1970). It is important to make sure
that any physical randomization that you use is done well.

Physical generation of random orders is most easily done with cards or
tickets in a hat. We must order N objects. We take N cards or tickets,
numbered 1 through N , and mix them well. The first object is then given Physical random

orderthe number of the first card or ticket drawn, and so on. The objects are then
sorted so that their assigned numbers are in increasing order; this puts the
objects into random order. With good mixing, all orders of the objects are
equally likely.

Once we have a random order, random subsets are easy. Suppose that
the N objects are to be broken into g subsets with sizes n1, . . ., ng, with
n1 + · · · + ng = N . For example, eight students are to be grouped into one Physical random

subsets from
random orders

group of four and two groups of two. First arrange the objects in random
order. Once the objects are in random order, assign the first n1 objects to
group one, the next n2 objects to group two, and so on. If our eight students
were randomly ordered 3, 1, 6, 8, 5, 7, 2, 4, then our three groups would be
(3, 1, 6, 8), (5, 7), and (2, 4).

Numerical randomization uses numbers taken from a table of “random”
numbers or generated by a “random” number generator in computer software. Numerical

randomizationThe word random is quoted because these numbers are not truly random.
The numbers in the table are the same every time you read it; they don’t
change unpredictably when you open the book. The numbers produced by the
software package are from an algorithm; if you know the algorithm you can
predict the numbers perfectly. They are technically pseudorandom numbers; Pseudorandom

numbersthat is, numbers that possess many of the attributes of random numbers so
that they appear to be random and can usually be used in place of random
numbers, for example, for randomly assigning treatments to units.

Example 1.4 Random sampling in R.
Random sampling is easy in R. In principle, we need to assign random

numbers to very unit, and then arrange the units in a random order by putting
their random numbers in increasing order. However, functions in R can hide
that and move directly to the samples.
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12 Introduction

1 > sample(1:8,8)
[1] 5 4 8 1 7 3 2 6

2 > subject.names <- c("Christine","Erica","Rebecca","Debbie","Laura","Karen",
+ "Sarah","Ellen","Alice","Amanda")

3 > sample(subject.names,10)
[1] "Laura" "Erica" "Karen" "Alice" "Amanda" "Rebecca"
[7] "Ellen" "Sarah" "Christine" "Debbie"

4 > sample(c(1,1,1,1,2,2,3,3),8)
[1] 2 1 1 3 1 2 1 3

In line 1, we ask for a sample of size 8 from the numbers 1 through 8 without
replacement. This produces the numbers arranged in random order. Lines 2
and 3 show that we can do the same thing with subject names instead of sub-
ject numbers, putting the names in random order. Finally, line 4 approaches
the issue differently. Suppose we want 4 units in treatment one, and 2 in
each of treatments two and three. Line 4 puts 4 ones, 2 twos, and 2 threes in
random order. In this case, subjects 2, 3, 5, and 7 would get treatment one.

1.4 More About Units

To this point, we have discussed experimental units as the items to which we
apply the treatments. However, there are also measurement units.

Measurement units (or response units) are the actual objects on which the
response is measured. These may differ from the experimental units.
For example, consider the effect of different fertilizers on the nitrogen
content of corn plants. Different field plots are the experimental units,
because we apply the fertilizers to the plots, but the measurement units
might be a subset of the corn plants on the field plot, or a sample of
leaves, stalks, and roots from the field plot.

A common source of difficulty is failing to recognize the distinction be-
tween experimental units and measurement units. Consider an educationalExperimental and

measurement
units

study, where six classrooms of 25 first graders each are assigned at random
to two different reading programs, with all the first graders evaluated via a
common reading exam at the end of the school year. Are there six experi-
mental units (the classrooms) or 150 (the students)?

One way to determine the experimental unit is via the consideration that
an experimental unit should be able to receive any treatment. Thus if students
were the experimental units, we could see more than one reading program inExperimental unit

could get any
treatment

each classroom. However, the nature of the experiment makes it clear that all
the students in the classroom receive the same program, so the classroom as
a whole is the experimental unit. We don’t measure how a classroom reads,
though; we measure how students read. Thus students are the measurement
units for this experiment.

There are many situations where a treatment is applied to group of ob-
jects, some of which are later measured for a response. For example,
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1.4 More About Units 13

• Fertilizer is applied to a plot of land containing corn plants, some of
which will be harvested and measured. The plot is the experimental
unit and the plants are the measurement units.

• Ingots of steel are given different heat treatments, and each ingot is
punched in four locations to measure its hardness. Ingots are the ex-
perimental units and locations on the ingot are measurement units.

• Mice are caged together, with different cages receiving different nutri-
tional supplements. The cage is the experimental unit, and the mice
are the measurement units.

Treating measurement units as experimental units makes us think that
we have more information that we actually have, and this generally leads
to overly optimistic analysis. For example, we will reject null hypotheses
more often than we should, and our confidence intervals will be too short and Use summary of

measurement unit
responses as

experimental unit
response

will not have their claimed coverage rates. The usual way around this is to
determine a single response for each experimental unit. This single response
is a summary of the responses in each measurement unit in the experimental
unit, typically the average or total of the responses for the measurement units
within an experimental unit, but the median, maximum, minimum, variance
or some other summary statistic could also be appropriate depending on the
goals of the experiment.

A second issue with units is determining their “size” or “shape.” For agri-
cultural experiments, a unit is generally a plot of land, so size and shape have Size of units
an obvious meaning. For an animal feeding study, size could be the number
of animals per cage. For an ice cream formulation study, size could be the
number of liters in a batch of ice cream. For a cloud computing configuration
study, size could be the length of time the computer cluster is observed under
load conditions.

Not all potential measurement units in an experimental unit will be equiv-
alent. For the ice cream, samples taken near the edge of a carton (unit) may
have more ice crystals than samples taken near the center. Thus it may make
sense to plan the units so that the ratio of edge to center is similar to that Edge may be

different than
center

in the product’s intended packaging. Similarly, in agricultural trials, guard
rows are often planted to reduce the effect of being on the edge of a plot. You
don’t want to construct plots that are all edge, and thus all guard row, so this
constrains the size and shape of the experimental units. For experiments that
occur over time, such as the computer network study, there may be a transient
period at the beginning before the network moves to steady state. You don’t
want time units so short that all you ever measure is transient.

Financial resources are always limited, but one common situation is that
is a limit on some other resource, such as a fixed area, a fixed amount of time, More

experimental
units, fewer

measurement
units usually

better

or a fixed number of measurements. This fixed resource needs to be divided
into units and perhaps measurement units. How should the split be made? In
general, more experimental units with fewer measurement units per experi-
mental unit works better (see, for example, Fairfield Smith 1938). However,
smaller experimental units are inclined to have greater edge effect problems
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14 Introduction

than are larger units, so this recommendation needs to be moderated by con-
sideration of the actual units.

A third important issue is that the response of a given unit should not
depend on or be influenced by other units, either the treatments given other
units or the responses of other units. This is usually ensured through some
kind of separation of the units, either in space or time. For example, a forestryIndependence of

units experiment would provide separation between units, so that a fast-growing
tree does not shade trees in adjacent units and thus make them grow more
slowly; and a drug trial giving the same patient different drugs in sequence
would include a washout period between treatments, so that a drug would be
completely out of a patient’s system before the next drug is administered.

When the response of a unit is influenced by the treatment given to other
units, we get confounding between the treatments, because we cannot esti-
mate treatment response differences unambiguously. In some cases, we can
design around this problem. When the response of a unit is influenced by the
response of another unit, we get a poor estimate of the precision of our exper-
iment unless we modify our analysis to account for the correlation between
responses. In particular, we usually overestimate the precision. Failure to
achieve this independence can seriously affect the quality of any inferences
we might make.

A final issue with units is determining how many units are required. We
consider this in detail in Chapter 7.Sample size

1.5 More About Responses

We have been discussing “the” response, but it is a rare experiment that mea-
sures only a single response.

Primary responses Experiments often address several questions, and we
may need a different response for each question. Responses such as
these are often called primary responses, because they measure the
quantity of primary interest for a unit.

Surrogate responses We cannot always measure the primary response. For
example, a drug trial might be used to find drugs that increase life ex-
pectancy after initial heart attack: thus the primary response is years of
life after heart attack. This response is not likely to be used, however,
because it may be decades before the patients in the study die, and thus
decades before the study is completed. For this reason, experimenters
use surrogate responses. (It isn’t only impatience; it becomes more
and more difficult to keep in contact with subjects as time goes on.)
Surrogate responses are responses that are supposed to be related to—
and predictive for—the primary response. For example, we might mea-
sure the fraction of patients still alive after five years, rather than wait
for their actual lifespans. Or we might have an instrumental reading of
ice crystals in ice cream, rather than use a human panel and get their
subjective assessment of product graininess.
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1.5 More About Responses 15

Surrogate responses are common, but not without risks. In particular,
we may find that the surrogate response turns out not to be a good
predictor of the primary response.

Predictive responses In addition to responses that relate directly to the ques-
tions of interest, some experiments collect predictive responses. We
use predictive responses to model the primary response. The modeling
is done for two reasons. First, such modeling can be used to increase
the precision of the experiment and the comparisons of interest. In
this case, we call the predictive responses covariates (see Chapter 17).
Second, the predictive responses may help us understand the mecha-
nism by which the treatment is affecting the primary response. Note,
however, that since we observed the predictive responses rather than
setting them experimentally, the mechanistic models built using pre-
dictive responses are observational.

Audit responses A final class of responses is audit responses. We use au-
dit responses to ensure that treatments were applied as intended and
to check that environmental conditions have not changed. Thus in a
study looking at nitrogen fertilizers, we might measure soil nitrogen
as a check on proper treatment application, and we might monitor soil
moisture to check on the uniformity of our irrigation system.

Blinded responses Blinding occurs when the evaluators of a response do not
know which treatment was given to which unit. Blinding helps prevent
bias in the evaluation, even unconscious bias from well-intentioned
evaluators. Double blinding occurs when both the evaluators of the
response and the (human subject) experimental units do not know the
assignment of treatments to units. Blinding the subjects can also pre-
vent bias, because subject responses can change when subjects have
expectations for certain treatments.

Example 1.5 Cardiac arrhythmias
Acute cardiac arrhythmias can cause death. Encainide and flecanide

acetate are two drugs that were known to suppress acute cardiac arrhythmias
and stabilize the heartbeat. Chronic arrhythmias are also associated with
sudden death, so perhaps these drugs could also work for nonacute cases. The
Cardiac Arrhythmia Suppression Trial (CAST) tested these two drugs and a
placebo (CAST Investigators 1989). The real response of interest is survival,
but regularity of the heartbeat was used as a surrogate response. Both of
these drugs were shown to regularize the heartbeat better than the placebo
did. Unfortunately, the real response of interest (survival) indicated that the
regularized pulse was too often 0. These drugs did improve the surrogate
response, but they were actually worse than placebo for the primary response
of survival.

By the way, the investigators were originally criticized for including a
placebo in this trial. After all, the drugs were known to work. It was only the
placebo that allowed them to discover that these drugs should not be used for
chronic arrhythmias.
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1.6 More About Treatments

There are a couple special forms of treatments that deserve special mention.

Control Beyond the idea of a controlled experiment, we also can have con-
trol treatments. A control treatment is a “standard” treatment that is
used as a baseline or basis of comparison for the other treatments. This
control treatment might be the treatment in common use, or it might
be a null treatment (no treatment at all). For example, a study of new
pain killing drugs could use a standard pain killer as a control treat-
ment, or a study on the efficacy of fertilizer could give some fields no
fertilizer at all. This would control for average soil fertility or weather
conditions.
In general, if you want to compare treatments to some kind of standard
treatment, that standard/control treatment should be in the experiment.
The only exception might occur when there is very strong prior knowl-
edge that responses to the control treatment behave in a quantifiably
consistent and predictable way. That prior knowledge is almost never
available.

Placebo A placebo is a null treatment that is used when the act of applying a
treatment—any treatment—has an effect. Placebos are often used with
human subjects, because people often respond to any treatment: for
example, reduction in headache pain when given a sugar pill. Blinding
is important when placebos are used with human subjects. Placebos
are also useful for nonhuman subjects. The apparatus for spraying
a field with a pesticide may compact the soil affecting crop growth.
Thus we drive the apparatus over the field, without actually spraying,
as a placebo treatment.

Factors In many cases a treatment is actually the combination of two or
more aspects. For example, the baking treatment for a cake involves
a given time at a given temperature. The treatment is the combination
of time and temperature, but we can vary the time and temperature
separately. Thus we speak of a time factor and a temperature factor.
Individual settings for each factor are called levels of the factor.

1.7 Problems

Suppose we are studying the effect of diet on height of children, and weProblem 1.1
have two diets to compare: diet A (a well balanced diet with lots of broccoli)
and diet B (a diet rich in potato chips and candy bars). We wish to find the
diet that helps children grow (in height) fastest. We have decided to use 20
children in the experiment, and we are contemplating the following methods
for matching children with diets:

1. Let them choose.
2. Take the first 10 for A, the second 10 for B.
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3. Alternate A, B, A, B.

4. Toss a coin for each child in the study: heads→ A, tails→ B.

5. Get 20 children; choose 10 at random for A, the rest for B.

Describe the benefits and risks of using these five methods.

Human organs for transplantation have a very limited shelf life. The only Problem 1.2
seemingly viable method to extend that life is via cryopreservation, but this
requires that the organ be frozen and thawed at appropriate rates. One prob-
lem with this approach is that the organ needs to be thawed uniformly enough
that the early thawing tissues are not aging out of usefulness while other parts
of the organ are still frozen, and it must be thawed slowly enough that the tis-
sues are not damaged. Iron oxide nanoparticles (IONP) offer the possibility
of uniformly thawing organ tissues at controllable rates, because they give
off heat when placed in an alternating magnetic field (AMF). In principle,
organs are placed in a solution of IONP so that the IONP are absorbed fairly
uniformly into the tissue. The organ is frozen, and then thawed by putting it
in an AMF.

One practical problem is that the IONPs will clump in the tissues, reduc-
ing the rate of heating. This experiment examines additives that are hoped to
reduce the clumping and thus speed the thawing. Four organs are randomized
to four different treatments, namely IONP dispersed in filtered water, filtered
water and FBS, filtered water and PBS, and filtered water and agarose. Each
organ was split into three samples. The twelve samples were then subjected
(in random order) to AMF and the resulting specific absorption rate (rate of
temperature change per gram of iron) was measured.

How many experimental units are there in this design? Explain your
answer.

Time: the early 2000s. Place: Minnesota. The high school graduation Problem 1.3
requirements are widely reviled and are being replaced. The governor and
the state House of Representatives have proposed one new set of standards,
whereas the state Senate has proposed a different set of standards. Neither
group wants to give in, so suppose that the governor proposes the following
compromise.

Each school district in the state can choose between the two
competing sets of standards, and students in those districts must
meet the standards chosen by the district. In 10 years time, 3
complete cohorts of students will have moved from freshman
year in high school through a nominal 4 years of college. The
response for any given school district will be the percentage of
students in those three cohorts who graduate from that district
who also graduate from college before the end of the 10 year
time limit. After the 10 years, the two sets of standards will be
compared on this (and other) responses.

Comment on the design of the study; tell me what is good and what is bad.
(You should ignore the political implausibility of this compromise and the
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near certainty that the new rules would be changed multiple times in the next
10 years.)
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Chapter 2

On Inference

Statistical inference is the process of taking the information that we have in
data and making statements about the underlying processes that generated Inference is

moving from data
to answers

the data. For example, inferential statements could be estimates of means,
variances, or other aspects of the underlying process, or they could be state-
ments about evidence relating to certain hypotheses, such as two treatments
producing the same mean response. In the inference step, we take the data
we collected in our experiment and try to answer the questions that originally
prompted us to run the experiment.

2.1 Schools of Inference

While it would be nice to have a one size fits all approach to inference, learn- Multiple
approaches to

inference
ers of statistics may be disappointed to discover that there are multiple ways
to approach inference. Usually these multiple approaches lead to similar in-
ferential results, but the philosophies behind the approaches, the difficulty of
implementing the approaches, and the kinds of inferential statements that can
be made differ.

Example 2.1 Collar Runstitch Times

Bezjak and Knez (1995) provide data on the length of time it takes gar-
ment workers to runstitch a collar on a man’s shirt, using a standard work-
place and a more ergonomic workplace. Each worker sewed two sets of
collars, one set with each system, with the order standard then ergonomic or
the reverse determined by the toss of a coin. Table 2.1 gives the “auxiliary
manual time” per collar in seconds for 30 workers using both systems. One
question of interest is whether the times are the same on average for the two
workplaces. Alternatively, one might wish to make an interval estimate of the
difference in average runstitch times between the two workplaces. Employee
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Table 2.1: Auxiliary manual times runstitching a collar for 30 workers
under standard (S) and ergonomic (E) conditions.

# S E # S E # S E
1 4.90 3.87 11 4.70 4.25 21 5.06 5.54
2 4.50 4.54 12 4.77 5.57 22 4.44 5.52
3 4.86 4.60 13 4.75 4.36 23 4.46 5.03
4 5.57 5.27 14 4.60 4.35 24 5.43 4.33
5 4.62 5.59 15 5.06 4.88 25 4.83 4.56
6 4.65 4.61 16 5.51 4.56 26 5.05 5.50
7 4.62 5.19 17 4.66 4.84 27 5.78 5.16
8 6.39 4.64 18 4.95 4.24 28 5.10 4.89
9 4.36 4.35 19 4.75 4.33 29 4.68 4.89

10 4.91 4.49 20 4.67 4.24 30 6.06 5.24

Table 2.2: Differences in runstitching times (standard − ergonomic).

1.03 -.04 .26 .30 -.97 .04 -.57 1.75 .01 .42
.45 -.80 .39 .25 .18 .95 -.18 .71 .42 .43

-.48 -1.08 -.57 1.10 .27 -.45 .62 .21 -.21 .82

#1 (Mr. Skeptical) thinks the workplaces will make no difference in times.
Employee #2 (Mr. Enthusiastic) thinks that the new environment will shave
half a second off the stitching time.

These data are paired, because each worker was measured twice, once for
each workplace, so the observations on the two workplaces are dependent.
Fast workers are probably fast for both workplaces, and slow workers are
slow for both. Because the mean of differences is the same as the difference
of means, what we do is compute the difference (standard − ergonomic) for
each worker, and work with the differences. This gets rid of much of the
dependence in the data. Table 2.2 gives the differences between standard and
ergonomic times.

2.1.1 Standard Frequentist Approach

Frequentist approaches to statistics are by far the most common, and this is
what most people think of when they think of statistics.1 They assume that
unknowns (means, variances, regression coefficients, and so on) are fixed
quantities and relate the observed data to these unknowns through a proba-
bility distribution for the data given the values of the parameters; this is called
the likelihood. For the runstitching data we assume that the differences (stan-
dard− ergonomic) are independent from worker to worker, have mean µ andModels often

based on normal
distribution

variance σ2, and follow a normal distribution giving us a probability distri-
bution:

f(yi;µ, σ) =
1√

2πσ2
exp

[
−(yi − µ)2

2σ2

]
1Indeed, these were the only approaches mentioned in the first edition of this book.
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for one data point or

f(y1, . . . , yn;µ, σ) =

[
1√

2πσ2

]n
exp

[
−

n∑
i=1

(yi − µ)2

2σ2

]
(2.1)

for a set of n independent data points. This is the simplest example of a
standard linear model, of which we will see many generalizations later in this
book. Procedures designed specifically for this set of assumptions, including
t-tests and confidence intervals, F -tests, and so on are the basic, standard
tools of statistical analysis.

Frequentists make inferential statements by comparing the results actu-
ally observed to other results that could have been observed when sampling Confidence

intervals and
p-values

data from the likelihood. This leads to confidence intervals for estimating
parameters (in what fraction of repeated experiments would this procedure
produce an interval that contains the parameter of interest), p-values for test-
ing null hypotheses (in what fraction of repeated experiments when the null
is true would we observe results this extreme or more extreme), and so on.
Most uses of statistics involve frequentist methods, and many users of statis-
tics are not even aware that other approaches are possible.

The null hypothesis of interest for Mr. Skeptical is that µ, the mean of the
differences, is 0; Mr. Enthusiastic has a null hypothesis that the mean is .5. In
fact, most of the time we will be joining Mr. Skeptical in assuming no effect
as a null hypothesis. While one might hope that the ergonomic workplace
shortened the time to complete a collar, it is best to check for changes in both
directions. With these model assumptions, we would typically use a one-
sample t-test on the differences (the same thing as a paired t-test). A t-based
confidence interval is the standard approach for an interval estimate of µ.

Let d1, d2, . . ., dn be the n differences in the sample (standard – ergonomic
in our example). Our null hypothesis is that the mean µ equals prespecified
value µ0 (H0: µ = µ0, here µ0 = 0 or µ0 = .5), and our alternative is H1:
µ 6= µ0.

The formula for a one sample t-test is One-sample
t-test

t =
d̄− µ0
s/
√
n

,

where d̄ is the mean of the data (here the differences d1, d2, . . ., dn), n is the
sample size, and s is the sample standard deviation (of the differences)

s =

√√√√ 1

n− 1

n∑
i=1

(di − d̄ )2 .

If our null hypothesis is correct and our assumptions are true, then the t-
statistic follows a t-distribution with n− 1 degrees of freedom.

The p-value for a test is the probability, assuming that the null hypothesis
is true, of observing a test statistic as extreme or more extreme than the one The p-value
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we did observe. “Extreme” means away from the null hypothesis toward
the alternative hypothesis. Our alternative here is that the true average is
different than the null hypothesis value, so larger or smaller values of the test
statistic are extreme. Thus the p-value is the area under the t-curve (with
n − 1 degrees of freedom) for the region that is at least as big in absolute
value as the absolute value of the observed t.

A t-based confidence interval for the mean of the differences with cover-
age rate 1− E is formed viat confidence

interval

d̄± tE/2,n−1
s√
n

where tE/2,n−1 is the E/2 percent point of a t distribution with n-1 degrees
of freedom. There are no hypotheses associated with a t confidence interval,
although there is a close association: the points in a 1−E confidence interval
are the potential null hypothesis values that would have a p-value of more
than E .

Example 2.2 Standard freqentist analysis of runstitching time dif-
ferences.

Even though t-tests and confidence intervals are simple to do by hand,
we will still usually do them in R. See the Companion example Paired Pro-
cedures for an exposition on the commands needed.

We can test the null hypothesis that the mean difference is 0 (Mr. Skep-
tical) or the null hypothesis that the mean difference is .5 (Mr. Enthusiastic).
The mean difference is positive (.175), but much closer to 0 than to .5. The
t-statistic testing µ0 = 0 is only 1.49 corresponding to a p-value of .147
(.074 above the observed 1.49, plus .074 from below –1.49 for the two-sided
alternative); the t-statistic for testing µ0 = .5 is –2.76 with a p-value of .01.
There is effectively no evidence against µ0 = 0, and there is reasonable, but
not overwhelming, evidence against µ0 = .5.

The data are much more in alignment with Mr. Skeptical than with Mr.
Enthusiastic.

2.1.2 Likelihood Approach

The Likelihood approach forms a special subset of frequentist methods that
is widely applicable with quasi-automatic methods of inference that gener-
ally work well for large sample sizes. Likelihood methods sometimes match
standard frequentist methods, but often they are slightly different.

The likelihood is essentially the same thing as the probability function,
except now we think of the data as being fixed and the distributional param-
eters as quantities that we can vary. Continuing the example in equation 2.1:

L(µ, σ; y1, . . . , yn) =

[
1√

2πσ2

]n
exp

[
−

n∑
i=1

(yi − µ)2

2σ2

]
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We usually work with the log likelihood ` = ln(L):

`(µ, σ; y1, . . . , yn) = −n
2

ln(2πσ2)−
n∑
i=1

(yi − µ)2

2σ2
(2.2)

A maximum likelihood estimate (MLE) chooses parameters to be those Maximum
likelihood

estimate (MLE)
that make the data most likely. (See, for example, Casella and Berger 2002
chapter 6.) In our example, we choose µ and σ to be those that maximize
`(µ, σ). In simple situations, the MLE can often be written as a simple for-
mula, but this is not true in many of the situations we will see. Maximum
likelihood estimates will always lie in the domain of the unknown parame-
ter. For example, variances will always be estimated to be nonnegative. Some
standard frequentist methods for estimating variances in complex experimen-
tal designs can lead to negative estimates of variance. This embarrassment is
one of the principal reasons we use MLEs in analyzing some experimental
results.

Under certain conditions (which do not always hold!), MLEs are approx-
imately normally distributed for large enough sample sizes and have a vari-
ance that can be computed from the data. The most worrisome non-normal
case for us is estimating a parameter on the boundary of its domain, espe-
cially estimating a variance, which might be estimated as 0, but cannot be
less than 0.

The Likelihood ratio test statistic (LRT) is twice the difference between
the log likelihood at the MLE and the log likelihood at the null hypothe-
sis (see Figure 2.1). As the size of the data set increases, the distribution Likelihood ratio

test (LRT)of the LRT under the null hypothesis approaches chi-square with degrees of
freedom equal to the number of parameters being tested. (See, for example,
Casella and Berger 2002 chapter 7.) Larger values of the LRT lead to smaller
p-values. As with estimation, tests of parameter values at the boundary of the
possible parameter values cause the chi-square approximation to fail. Like-
lihood confidence intervals can be constructed from likelihood ratio tests as
the set of parameters for which the LRT does not reject the null hypothesis. Likelihood interval
These can be written out in a formula in simple cases, but, in general, these
intervals need to be computed in software.

This likelihood formulation is very general, but inferential statements
from likelihood methods are typically only approximate, improving as the
sample size grows. We will use likelihood methods primarily for estimating
variance components in complex designs.

Example 2.3 Likelihood ratio tests for runstitching time differ-
ences.

We can fit null models and full models in R, and then extract the log like-
lihoods using the logLik (sic) function. See Companion section Likelihood
and Predictive Procedures. Test http link

The log likelihoods for models with 0 and .5 means as well as the model
with the estimated mean are:
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Figure 2.1: Two times a generic log likelihood curve with, the null
value and MLE marked by vertical lines, and (twice) the log likelihood
at the MLE and null shown by horizontal lines. The LRT is the length
of the arrow.

Model Log likelihood LRT
µ = 0 -29.99 2(−28.88−−29.99) = 2.21
µ = .5 -32.38 2(−28.88−−32.38) = 6.99
µ estimated -28.88

The two null models fit one parameter each (the variance), and the unre-
stricted model fits two parameters (the mean and the variance). Thus the
likelihood ratio tests should be compared to a chisquare distribution with
2− 1 = 1 degrees of freedom. The resulting p-values are .137 for the null of
0 and .008 for the null of .5. As we would hope, the p-values for these LR
tests are very similar to those from the t-tests (ote that the square root of the
LRT is approximately equal to thet-test).

Although we will typically not be obtaining the MLE or LRT by hand,
it is worthwhile to look at our simple example in Equation 2.2 in a bit more
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detail. First, it is clear that in order to get the maximum likelihood, we will
choose µ̂ to make

∑
i(yi − µ)2 as small as possible (the sum of squared dif-

ferences enters with a negative coefficient, so minimizing the sum of squares Least squares
maximizes its negative). This explains why “least squares” is such a preva-
lent technique.

Second, the values of µ and σ2 that maximize the likelihood are

µ̂ = d̄ and σ̂2 =
1

n

n∑
i=1

(di − d̄ )2 =
n− 1

n
s2

Notice that the maximum likelihood estimate (MLE) for the variance is slightly
smaller than the unbiased estimate s2 used in the t-test (the MLE divides by n not n− 1

n instead of n−1). Many people prefer unbiased estimates of variances, and
this had led to modifications of maximum likelihood that provide unbiased
estimates of variances. It is in this guise of restricted maximum likelihood
(REML) that we will be using likelihood techniques. REML

Third, a bit of algebra gives us that for our example

LRT = n log(1 + t2/(n− 1))

showing the functional relationship between the t and the LRT in this prob-
lem: as the sample size gets bigger, the LRT will be closer and closer to LRT related to t2

t2.

2.1.3 Predictive Model Selection

Predictive model selection says that the best model for data is the one that
would best predict future data from the same data generating system. Such
model selection does not involve testing hypotheses about parameters in mod-
els. It is instead concerned with figuring out how well a model predicts future Seek best

predictiondata based only on the data at hand. The overriding problem is that a model
will not predict future data as well as it predicts the data on which it is fit;
it will be too optimistic. Thus the task is to use the current data for both a
model fit and an adjustment for the unfounded optimism.

Cross-validation is a tool that directly attacks the problem of using the
same data for fitting a model and assessing its predictive performance. As an
example, 10-fold cross-validation divides the data into 10 randomly chosen
subsets. It then fits the model ten times, each time leaving out one of the
subsets of data. Predictive accuracy is judged by predicting the values of the Cross-validation
left out subset based on the model fit to the other nine subsets. N -fold cross-
validation is similar, except it leaves out one data point at a time, and predicts
with the model fit to the other N − 1 data points. The “quality of the predic-
tion” is sometimes fairly simple to define (for example, squared residuals in
regression-like situations), but it not always obvious. Cross-validation works
fairly well, but it involves a lot of computation. This has led researchers to
consider other approaches.
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One generic approach to assessing model predictions would be to look at
the expected log likelihood of future data, conditional on the parameters. Of
course, we usually don’t know the parameters, so we substitute the MLE for
the unknown parameters. We also don’t have future data, so we just evaluate
the criterion at the data that we do have. This is simply Lmax, the same max-
imized log likelihood that we used in the LRT. Fortunately, we can calculate
the expected amount by which Lmax over-estimates the log likelihood of fu-
ture data; it is simply p, the number of parameters in the model. Thus the
maximized log likelihood on the current data less the number of parameters
in the model is an unbiased estimate of the log likelihood of future data based
on the same model.

For historical reasons, the difference of Lmax and p is multiplied by –2,
obtaining AIC, the Akaike Information Criterion. There is also a version ofAIC and AICc
AIC that works a little better in small samples called corrected AIC, or AICc.
Suppose we have several models to compare based on a data set of size n.
Let Lkmax be the maximized likelihood for model k; this is the likelihood
evaluated at the maximum likelihood estimates of the parameters in the kth
model. Let pk be the number of parameters that we fit for model k. Then the
Akaike Information Criterion is

AIC = 2pk − 2 log(Lkmax),

and the AIC corrected for small sample size is

AICc = 2pk
n

n− pk − 1
− 2 log(Lkmax) .

We want models with small values of AIC (AICc). A large likelihood makesMinimize AIC
these criteria small as does a small number of parameters. The criteria try to
balance between fitting well and using too many parameters.

In information theory, if two models have AIC values that differ by δ,
then the model with the lower AIC is exp(|δ|/2) times as likely as the modelModel odds
with the higher AIC to be the model that minimizes information loss (does
the best prediction). Thus an AIC difference of 2 gives approximately 3:1
odds in favor of the model with the smaller AIC.

Example 2.4 Comparing models for runstitching time differences
using information criteria.

We fit the full and null models for the runstitch data and compute the
AICc criterion:

1 > AICc(lm(d˜1)); AICc(lm(d˜0)); AICc(lm(d-.5˜0))
[1] 62.20718
[1] 62.11872
[1] 66.89868

AICc ever so slightly prefers the null model with mean of zero. The model
with mean .5 should probably not be considered further.
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For two models that differ by just one parameter, AIC will select the
larger model if the LRT is 2 or greater. Using the chi-square approximation
to the LRT, AIC is adding an additional variable when the p-value for the LRT AIC differs from

testing
parameters

is .157 or smaller, so AIC is not a stringent filter for adding single variables.
However, AIC becomes more stringent as you consider adding more and
more variables at once, being roughly equivalent to testing at the .05 level for
7 variables at a time, and roughly equivalent to testing at the .01 level for 16
variables at a time.

2.1.4 Subsampling Approach

Subsampling methods, including randomization tests and bootstrap methods,
do not use probability functions or likelihood functions but instead use some
kind of subsampling from the original data to generate reference distributions
for inference. Randomization tests are rarely used in practice, but they have
the advantage that basically their only assumption is that a randomization
was performed in setting up the experiment. This makes them useful in legal
settings, or other settings where the assumptions of the inference may be
subject to dispute. We will use Bootstrap procedures in some cases where
the theory for a test or confidence interval is difficult to work out.

Nearly all the analysis that we will do in this book will be parametric,
with nearly all of it making assumptions like “The responses in treatment
group A are independent from unit to unit and follow a normal distribution
with mean µ and variance σ2.” Nowhere in the design of our experiment did
we do anything to make this so; all we did was randomize treatments to units
and observe responses.

In fact, randomization itself can be used as a basis for inference. The
advantage of this randomization approach is that it relies only on the ran- Randomization

inference makes
few assumptions

domization that we performed. It does not need independence, normality,
and the other assumptions that go with linear models. The disadvantage of
the randomization approach is that it can be tedious to implement, even in
relatively small problems, though computers make it much easier. Further-
more, the inference that randomization provides is often indistinguishable
from that of standard techniques such as t-tests or F -tests.

Randomization tests look at the world “backwards” from the paramet-
ric procedures we used in frequentist and likelihood methods. In frequentist
methods, we know what groups or treatments the data belong to; what is ran-
dom is the value of the response. In randomization methods, we know the
responses that we observed; what is random is the groups or treatments that
the data belong to. The randomization null hypothesis is that the labelling
as to groups makes no difference on the response; it’s just a label. The vari-
ability in any test statistic is simply generated by the random assignment of
treatments to units.

To construct a randomization test, we choose a descriptive statistic for
the data and then get the distribution of that statistic under the randomization
null hypothesis. The randomization p-value is the probability (under this
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randomization distribution) of getting a descriptive statistic as extreme or
more extreme than the one we observed.

Example 2.5 A randomization alternative to the paired t-test for
runstitching time differences.

The randomization null hypothesis is that the two workplaces are com-
pletely equivalent; we would have observed the responses we did observe
regardless of the treatments, and the treatments merely act to label the re-
sponses. For example, the first worker had responses of 4.90 and 3.87, which
we have labeled as standard and ergonomic. Under the randomization null,
the responses would be 4.90 and 3.87 no matter how the random assignment
of treatments turned out. The only thing that could change is which of the
two is labeled as standard, and which as ergonomic. Thus, under the random-
ization null hypothesis, we could, with equal probability, have observed 3.87
for standard and 4.90 for ergonomic.

What does this mean in terms of the differences? We observed a dif-
ference of 1.03 for worker 1. Under the randomization null, we could with
equal probability have observed the difference –1.03, and similarly for all the
other differences. Thus in the randomization analogue to a paired t-test, the
absolute values of the differences are taken to be fixed, and the signs of the
differences are random (because of the randomization), with each sign inde-
pendent of the others and having equal probability of positive and negative.

For this problem, we take the sum of the differences as our descriptive
statistic. The average would lead to exactly the same p-values, and we could
also form tests using the median or other measures of center. With 30 work-
ers, there are 230 =1,073,741,824 different ways that the random assignment
of signs could turn out. In principle, we need to evaluate all billion plus pos-
sibilities to compute the p-value for our test (please recall that I did describe
this approach as tedious). In practice, we take a random sample of possibil-
ities from the total list of possibilities and determine the p-value from this
random subsample.

1 > permsign.test(d,plot=TRUE)
$x0
[1] 5.26

$lower.p
[1] 0.9292

$upper.p
[1] 0.0713

$twosided.p
[1] 0.1426

Figure 2.2 shows a histogram of the randomization distribution for 10,000
random sample configurations of signs. The observed value of 5.26 is not
far into the tail of the distribution, and the randomization p-value is .143.
The similarity of the randomization p-value and the typical t-test p-value is
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Figure 2.2: Histogram of 10,000 samples from the randomization
distribution of the sum of the differences for runstitching, with vertical
line added at the observed sum.

typical, and they get closer as sample sizes increase. Keep in mind that we
sampled our reference distribution, so if we do the test another time we will
get a slightly different sample from the reference distribution and a slightly
different p-value.

We can also construct a confidence interval for the mean difference. How
much larger could the mean of differences be before it becomes significant
(in a two-sided 5% test) in the randomization distribution? Just .057. How

Randomization
interval estimate

much smaller could it be before it becomes significant in the randomization
distribution? About .406. Thus the randomization confidence interval of the
mean of the differences is (–.057, .406).

2.1.5 Bayesian Approach

Bayesian methods assume that all unknowns are random variables that follow
probability distributions. In addition to the likelihood for the data given the
unknowns (shared by frequentists and Bayesians), Bayesians express their
prior beliefs about the unknown parameters via a prior probability distribu-
tion. After observing data, Bayesians update probability distributions for the
unknowns using Bayes rule (whence Bayesian statistics) to obtain the poste- Prior and

posterior
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rior distribution, and construct inference based on the posterior distribution
of the unknowns. Prior and posterior in this context mean before and after
seeing the data.

A bit more mathematically, we have:

flike(y|θ) a likelihood for the data y given the parameters θ;

fprior(θ) a prior distribution for the parameters; and

fpost(θ|y) the posterior for the parameters given the data.

They combine via Bayes rule

fpost(θ|y) =
flike(y|θ)fprior(θ)

f(y)
(2.3)

=
flike(y|θ)fprior(θ)∫
flike(y|θ)fprior(θ)dθ

(2.4)

Frequentist inferential statements are somewhat awkward. For example,
for a 95% confidence interval for a mean, the statement says that in a long run
of identical experiments, the procedure that generated the confidence interval
will produce intervals containing the mean in 95% of all repetitions. It saysBayesians make

probability
statements

nothing in particular about this particular repetition that we have observed. In
contrast, Bayesian inferential statements are generally the kind of statements
we would like to make. For example, for a 95% Bayesian credible interval,
the statement says that the unknown parameter is in the computed interval
with probability 95%.

One of the challenges with Bayesian analysis is that the denominator in
Equation 2.3 is generally very difficult to compute. Instead, statisticians useMCMC
approximate samples from the posterior to do inference, with these samples
coming from a technique called Markov Chain Monte Carlo (MCMC). To
get the posterior mean, we take the mean of the MCMC samples. To get
a posterior probability interval, we take the corresponding quantiles of the
MCMC samples. MCMC algorithms allow us to make progress using only
the numerator in Equation 2.3 without ever needing to evaluate the denomi-
nator.

There are several methods available for comparing Bayesian models,
but they fall into two groups: the Bayes factor and various predictive mea-
sures such as WAIC (Widely Applicable Information Criterion) and LOOCV
(Leave One Out Cross-Validation). Both WAIC and LOOCV are more com-
putationally intensive than AIC, but it turns out there is a trick that allows usLOOCV
to estimate LOOCV without actually doing multiple fits of the data (Vehtari,
Gelman, and Gabry 2017). WAIC and LOOCV estimate the same quan-
tity and will typically be nearly equal in well-behaved cases. We will use
LOOCV and the Bayes factor with the important caveat that the Bayes factor
is highly dependent on how the prior is specified.
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In the Bayesian context, we can construct a “posterior predictive” dis-
tribution. This is the probability distribution of a future data point given
the data we have seen and the priors we are using. In formulae, the
posterior predictive distribution fpostpred is

fpostpred(ynew|y) =

∫
flike(ynew|θ)fpost(θ|y) dθ

LOOCV estimates N times the expected value of log fpostpred(ynew|y).

Prior distributions can keep parameters from varying freely. If a parame-
ter is not completely free to adapt to the data, it does not contribute as much Effective number

of parametersto the model fit. In this way, the effective number of parameters in a Bayesian
model can differ from the evident/explicit number of parameters. WAIC esti-
mates and uses an effective number of parameters; LOOCV does not explic-
itly use an effective number of parameters, but such a value can be derived.

The second Bayesian approach to comparing models is to compute the
Bayes Factor. The Bayes factor gives the evidence, based solely on the data,
for preferring one model relative to another model; the Bayes factor does not Compare models

via Bayes factortake into account any prior information we might have about which model is
more likely (it does take priors on the parameters into account).

The Bayes factor for model 1 relative to model 2 is denoted BF12. If
BF12 > 1, then the data favor model 1 over model 2.

Technically, the Bayes factor for model 1 relative to model 2 is the
(marginal) probability of the data under model 1 divided by the (marginal)
probability of the data under model 2. Each of these probabilities is de-
fined as the likelihood of the data given the parameters times the prior
probability of the parameters, that product then integrated (averaged)
across all possible values of the parameters. Somewhat more mathemat-
ically, each of these probabilities takes the form

f(y) =

∫
flike(y|θ)fprior(θ) dθ

The discerning reader will recognize this quantity as the denominator of
Equation 2.3, which value we just said was very difficult to compute. In
practice, we will also need tools to approximate the Bayes factor.

There is a relationship between between a Bayes factor and the analo-
gous LRT. The LRT takes the ratio of the peak or maximum values of the Bayes factor and

LRTlikelihoods under the two models whereas the Bayes factor takes the ratio of
the average values of the likelihood, with each average weighted according
to the corresponding prior distribution for the unknown parameters.

Here are some useful facts about Bayes factors:
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• The Bayes factor internally accounts for the number of parameters, so
no further parameter count adjustment is needed.

• BF12 = 1/BF21, so the Bayes factor can give evidence in favor of
either model.

• If model 1 is nested in model 2 and model 1 is correct, then BF12 will
go to infinity as the sample size increases. (Note that this kind of thing
does not happen with frequentist tests; model 1 will still be rejected at
rate E even for very large sample sizes.)

• If we have BF12 and BF32, then BF13 = BF12/BF32. This can be
be useful if we have Bayes factors for multiple models compared to a
single model.

• Bayes factors are much more sensitive to how the prior distributions
were specified than are the estimates of parameters or LOOCV.

• While it is easy to define these marginal probabilities, they can be dif-
ficult to compute due to the integration/averaging.

The Bayes factor can be combined with prior probabilities of models to
get the (posterior) probability of models given the data:

P (Model 1 given data)

P (Model 2 given data)
= BF12

P (Model 1)

P (Model 2)
(2.5)

where the probabilities in the rightmost fraction are prior probabilities for theModel
comparison with
priors on models

models. Posterior odds for models are thus a combination of the evidence
in the data (via the Bayes factor) and the prior odds for the models. See
Figure 2.3. If our prior probabilities for all models are the same, then the
Bayes factor tells us the relative probability of each model to other models.

One can do a formal Bayesian model selection using decision theory,
or one can do an informal Bayesian model selection using the Bayes factor
alone. The formal approach leads to a decision regarding two models, taking
into account the prior probabilities for the models as well as the losses one
might incur from making the wrong decision. The informal approach looks
only at what the data have to say about the odds of the two models given the
data (that is, the Bayes factor).

Informally, if BF12, the Bayes Factor for model 1 relative to model 2,
is greater than 1, then the data say that model 1 is the preferred model. TheScale for Bayes

factor greater BF12, the more strongly the data argue for model 1 over model 2.
There is no hard and fast rule for interpreting Bayes Factors, but Table 2.3
gives one scale for interpreting them. If BF12 < 1, then you can either flip
the models to obtain BF21 (which will be greater than 1) and interpret using
Table 2.3 or you can take the reciprocals of the ranges and say, for example,
that a Bayes factor between 1 and 1/3 is not worth more than a bare mention.

Even though BF12 > 1 argues for model 1, most researchers do not
feel that this is sufficient evidence to make a model selection statement with
confidence. Thus you will sometimes see an informal policy that says to
select model 1 if BF12 > K, select model 2 if BF12 < 1/K, and remain
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Figure 2.3: XKCD 1132: Frequentists vs. Bayesians. Accessed
from m.xkcd.com/1132, used under the Creative Commons
license.

Table 2.3: Kass and Raftery (1995) guidelines for interpreting the
Bayes factor of model 1 relative to model 2.

BF12 Evidence against model 2
1 to 3 Not worth more than a bare mention
3 to 20 Postive
20 to 150 Strong
>150 Very strong

undecided if the Bayes factor lies between the two cutoffs. Typical values of
K might be 3, 5, or even 10.

The more formal approach to choosing between models requires that
the researcher provide additional information. This includes the prior
probability that model 1 is the true model (P1, so that P2 = 1 − P1 is
the prior probability that model 2 is correct), the loss (cost) for choosing
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model 2 when model 1 is correct (C2), and the loss (cost) for choosing
model 1 when model 2 is correct (C1). Using equation 2.5, we can
rearrange it to get the posterior probability of model 1 given the data:

P (Model 1 given data) =
BF12

P1

P2

1 +BF12
P1

P2

If you choose model 1, the average cost will beP (Model 2 given data)C2;
if you choose model 2, the average cost will beP (Model 1 given data)C1.

The decision theory approach says to make the decision with lowest
average cost, so choose model 1 if

Average loss if choosing model 2 > Average loss if choosing model 1
P (Model 1 given data)C1 > P (Model 2 given data)C2

BF12
P1

P2

1 +BF12
P1

P2

C1 >
1

1 +BF12
P1

P2

C2

BF12 >
C2

C1

P2

P1

Thus the formal Bayesian model choice is also based on the Bayes factor,
but the cutoff for which model is chosen is adjusted to account for priorDecision theoretic

model choice
minimizes
expected cost

probabilities of models and the costs of choosing the wrong model. The
formal approach becomes the informal approach if we assume the ratio on
the right is 1 (for example, equal prior probabilities and equal costs of mis-
selection).

Bayesian model selection is about minimizing the expected loss when
choosing a model. It does not reject or fail to reject hypotheses. It does not
privilege one model over the other (as opposed to frequentist methods, which
privilege the null model). It makes no claims about the rate at which it falsely
selects certain models (that is, it has no analogue of the p-value). In fact, if
the cost ratio is sufficiently far from 1, the Bayesian approach can select a
model that is not well supported by the data, simply to hedge against a large
potential cost.

Example 2.6 A Bayesian analysis for the runstitching time differ-
ences.

We will use the same likelihood that we used in standard frequentist
and likelihood methods, but we must also specify prior distributions. As-
sume that the prior distribution for µ is normal with mean 0 and standard
deviation .5. This reasonably sums up our prior belief that the different en-
vironments could have somewhat different means, but probably not vastly
different means. We will assume that our prior belief about σ is summarized
as σ is uniformly distributed between .1 and 10; this is a much broader prior
spread on σ than is likely in the data.
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Table 2.4: Bayesian estimation and model comparison results for
the runstitching experiment. Bayes factors computed as given model
relative to first model with point prior at 0.

µ Prior µ Prior σ Prior µ Post. Bayes
Mean SD Range Interval LOOCV Factor
.0 .0 (.1,10) (.0,.0) 62.15 1.00
.0 .1 (.1,10) (–.08,.23) 61.62 1.19
.0 .5 (.1,10) (–.08,.40) 61.91 0.65
.0 .5 (.4,2) (–.08,.41) 61.82 4.01
.0 .8 (.1,10) (–.06,.41) 61.80 0.42
.5 .5 (.1,10) (–.05,.44) 61.90 0.56
.5 .1 (.1,10) (.22,.54) 63.48 0.27
.5 .0 (.1,10) (.5,.5) 66.78 0.10

On the basis of MCMC samples, we can say that the probability that µ
is in the interval (–.08, .40) is 95%. Note that this is actually a probability
statement, not a confidence statement. Furthermore, we estimate the poste-
rior mean for µ to be .16. Notice that the posterior mean is between the mean
of the prior and the mean of the data. The Bayesian analysis compromises
between the information in the prior and the information in the data.

Suppose now that Mr. Enthusiastic complains that the prior distribution
for µ should be normal with mean .5 and standard deviation .5. He is a
Bayesian and is allowed to say that is his prior belief. We can refit with
this prior, and we get a posterior mean for µ of .19 with a 95% credible
interval of (–.05, .44). We can see that this larger prior mean has pulled the
posterior mean up a little bit. Suppose instead that Mr. Enthusiastic is not
only enthusiastic but also more certain in his prior beliefs; in that case he
might use a prior for µ that is normal with mean .5 and standard deviation .1.
Implementing this model yields a posterior mean estimate of .38 and a 95%
credible interval of (.22, .54). In the limit, someone might express complete
certainty about the mean. He or she might wish to fit with a prior for µ
that has mean 0 and standard deviation 0, or perhaps mean .5 and standard
deviation 0. No amount of data is going to overcome a prior with standard
deviation 0, so the posterior estimates for µ are exactly 0 and .5 with no
uncertainty.

Table 2.4 shows the posterior credible intervals for µ and LOOCV values
for eight different priors. Five of the priors give very similar intervals for
µ, with the prior expectation of .5 and standard deviation of .1 shifting the
interval up noticeably. Six of the priors have sufficiently similar LOOCV
values as to be effectively interchangeable. The priors centered at .5 with
small standard deviation have higher LOOCV and would not be considered
(sorry, Mr. Enthusiastic).

Table 2.4 also shows the Bayes factors for the seven models relative to
the model with a point prior at 0. Values less than one favor the point prior at
0, values greater than one favor the other prior. Among the models that use
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the a uniform prior from .1 to 10 for the residual standard deviation, only the
one with prior mean 0 standard deviation .1 for µ is favored to the point prior
at zero, and that only just slightly. This is fully in agreement with LOOCV.

Look now at the Bayes factors for the two models that use a prior for
µ with mean 0 and standard deviation .5. These two models differ by the
prior that is placed on the error variability, either uniform from .1 to 10 or
uniform from .4 to 2. For these models the credible interval for the error
standard deviation is .52 to either .88 or .90, so either prior is consistent
with the data, but the more compact prior concentrates the prior probability
closer to where the data indicate the standard deviation actually is. However,
the Bayes factors for these two priors differ by a factor of 6.2 (the more
compact prior density for the error standard deviation is (10–.1)/(2-.4)=6.2
times as high as the more diffuse density; this is not a coincidence). This
is an example of how the Bayes factor can be much more sensitive to the
choice of prior than are the estimates or the LOOCV. Thus while there are
strong philosophical justifications for using the Bayes factor as a measure of
model preference based on the data, the Bayes factor is only as good as your
belief in the priors that go into the models. Priors yielding roughly equivalent
estimates can yield radically different Bayes factors.

One final approach to mention is the Region Of Practical Equivalence,
or ROPE. This approach is appropriate in the common situation where one
of the models (say model 1) being compared is simply a version of the otherROPE: Region of

Practical
Equivalence

model with the parameters fixed at certain values. For example, model 2
might have a prior for µ that is N(0,.5), and model 1 might specify that µ =
0. Suppose that in our heart of hearts we believe that the parameter values
cannot be exactly as specified in model 1. They might be very close, but
they simply cannot ever match the specification of model 1 exactly. On the
other hand, we might be able to say that there is a region (interval for a
single parameter) around the model 1 values that is for all practical purposes
equivalent to model 1. For example, perhaps any µ between –.01 and .01 is
close enough to 0 to ignore the differences. This is our ROPE.

The ROPE approach says to get the probability of the ROPE under the
posterior distribution: PROPE . For a suitable E , select model 1 if PROPE >
1−E , select model 2 if PROPE < E , and remain undecided if E < PROPE <
1− E .

2.1.6 Wrap up

All of the inferential approaches we examined led to similar conclusions in
our simple example. This will usually be the case, with most differences
occurring in small data sets (or with very concentrated priors). So why areStrengths and

weaknesses there so many different ways to do inference? Because every method has its
weaknesses.

The t-confidence intervals and F tests of the standard frequentist methods
are widely understood and accepted, “exact” in many situations, broadly de-
veloped, and generally easy to compute. However, they work better in what
we will call fixed effects analysis and start running into problems in complex
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random effects models. They do not provide probability statements as part
of inference.

Likelihood methods solve some of the problems that classical methods
experience in random effects, for example, you cannot get negative estimates
of variances with likelihood methods. However, their standard methods for
tests and confidence intervals are not applicable when testing whether vari-
ances are zero, which will be an area of key interest.

Randomization methods are fine in simple problems and are nearly bul-
letproof from an applicability/are-the-assumptions-correct point of view. But
they do not generalize easily to more complicated designs.

Bayesian methods allow us to make the kind of inferential statements
that we would like to make (for example, probability rather than confidence),
but these statements are based on our subjectively-chosen prior. They are
never easy to implement, but they do not get much more difficult (at least in
principle) as designs and models get more complicated. In fact, you can do
Bayesian analysis in extremely complex models.

Why don’t we all use Bayesian procedures all the time? The two main
reasons are subjectivity and difficulty. A Bayesian must specify a prior dis-
tribution for the unknowns in the model. My prior might not be the same Some dislike

subjectivityas your prior, and as we saw with Mr. Skeptical and Mr. Enthusiastic, that
means that my inference will not be the same as your inference. Many re-
searchers find that deeply troubling. However, everyone uses prior informa-
tion to design experiments; any experiment conducted without reference to
the prior information held by the experimenter and the literature is a poor ex-
periment indeed. In addition, the effect of the prior diminishes as the amount
of data increases. Conversely, the so-called objective methods used by non-
Bayesians are not nearly as objective in practice as one would wish them
to be, as there are many different ways that the objective methods can be
subjectively selected and used (Gelman and Loken 2014). Bayes methods
are becoming more prevalent in applied work, but they remain an exception
when analyzing designed experiments.

Difficulty takes several forms. A Bayesian must elicit the prior distribu-
tion; doing this well is not straightforward. The prior can be specified in a Doing Bayes well

requires extra
effort

routine/mechanistic fashion, and there has been a lot of work over the years
on determining so-called objective priors. However, the fact remains that
one only gets the full benefit of the Bayesian perspective if one has a genuine
prior. And, except in the simplest of toy problems, Bayesian solutions are
challenging to compute. It is only in the last two or three decades, when com-
puters have become fast enough and algorithms have become clever enough,
that one can approximate the Bayesian solution in realistic models. It is this
evolution of our computing capabilities that has brought Bayesian statistics
out of the shadows.
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Figure 2.4: XKCD 892: Null Hypothesis. Accessed from
m.xkcd.com/882, used under the Creative Commons license.

2.2 The Talk

It is time to have “the talk,” that difficult, embarrassing discussion about the
statistical facts of life. And like some other talks we might have experienced,
this is not a one time issue but rather something we need to keep in mind
throughout our work.

Considering biomedical research, Ioannidis (2005) has the provocative
title “Why Most Published Research Findings are False.” An effort to re-
peat 100 experiments in social psychology with statistically significant re-
sults found only 36 achieved significance when repeated2 (Open Science
Collaboration 2015), and the estimated effects averaged about half the size
of the original studies. Baker (2016) reports on an informal poll of more thanMany “significant”

results not
repeatable

1,500 scientists, saying “More than 70% of researchers have tried and failed
to reproduce another scientist’s experiments, and more than half have failed
to reproduce their own experiments.” The clamor reached a point that the
American Statistical Association felt the need to release “The ASA’s State-
ment on p-Values: Context, Process, and Purpose” (Wasserstein and Lazar
2016). What in the world is going on? Why is Figure 2.4 so funny?

Regression to the mean. In any measurement/remeasurement or test/retest
situation, the second measurement is typically closer to the overall

2Although bear in mind that the p-value is itself a random variable; it will not always be
significant in a repeat experiment even absent any other issues.
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mean than the first measurement. This is the source of the term re-
gression as it is used in statistics, and it means that the flashy result
from your first experiment will usually not look so flashy when you
repeat the experiment.

Publication bias. Legions of valid, well-designed and well-executed experi-
ments have been run that are never published or even discussed outside
of the lab that ran them. Publication is biased in favor of experiments
that have statistically significant results, even though non-significant
(sometimes called negative) results are also informative.

Given the nature of significance testing, repeated testing of a true null
hypothesis will eventually yield a significant result rejecting the null
hypothesis. See Figure 2.5 for an application of this principle. If the
earlier negative results are not publicly available, then that first signif-
icant result appears to stand on its own, when, in fact, a great deal of
non-public evidence points in the other direction. Such results will not
stand the test of time.

Options for analysis. This is a broad category that ranges from diligent anal-
ysis of experimental results all the way to scientific fraud. Experi-
menters can approach their data in many different ways, and it is re-
sponsible to attempt to extract as much information as possible from
experimental results. However, every additional approach to the data
is an opportunity to adapt the analysis to quirks of this particular set of
results, quirks that are unlikely to be repeated in future data. Perhaps
the treatments only look different for women, or perhaps the results
appear to be more clear after removal of outliers. The more options
you have in your analysis and the more hidden multiplicities of testing
in your analysis, the less likely your “significant” result is to stand up
to repeated experiments.

How bad can this be? Simmons, Nelson, and Simonsohn (2011) de-
scribe a simulation study wherein there were two completely random
responses, three “treatment” conditions, and twenty observations per
treatment with subjects of each gender. Suppose the researchers have
the options of choosing among dependent variables, adding 10 more
observations per treatment (after seeing the results of the first 20 ob-
servations), controlling for gender or its interaction with treatment, or
dropping one of the three treatments. If they take advantage of all
of their possibilities, the probability that at least one of their analysis
choices leads to a p-value less than .05 is .61. Three times out of five
they will find something “significant” when looking at totally random
data with no treatment effects whatsoever. That is how bad it can be.

The more extreme aspect of options for analysis is dredging the data for
something, anything, that looks “significant.” This is sometimes called
p-hacking. Results from data dredging are less likely to be repeatable.
Data dredging/p-hacking is fine if reported as such and described as
being part of exploration of the data. It can be an important hypothesis-
generating method for further experimentation.
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Figure 2.5: XKCD 882: Significant. Accessed from
m.xkcd.com/882, used under the Creative Commons license.

What is not fine is pretending that a result from data dredging was
originally hypothesized. This is sometimes called HARKing (hypoth-
esis after results known). The difference between diligent analysis or
data dredging and outright fraud is often in the reporting. Saying that
treatments one and four are different for women in the full data set is
one thing; pretending that the experiment only contained women and
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only used treatments one and four is fraud.
Curiously, traditional practice in analyzing designed experiments is ex-
tremely diligent about some aspects of multiple testing (for example, in
the context of pairwise comparisons) and totally oblivious to multiple
testing in other contexts (for example, in analysis of factorial experi-
ments).

Disincentives to repeat experiments. Wouldn’t you be more certain of your
result if you repeated your experiment and go the same result? Of
course you would. But repeating the experiment costs money, repeat-
ing the experiment costs time (and you want to get that publication or
product out the door), and repeating the experiment runs the risk of not
getting the same results.3

Misunderstanding of p-values. When testing a null hypothesis, the p-value
is the probability, computed assuming that the null is true, of observing
results as extreme or more extreme than those in the data at hand. Ex-
treme needs to be defined, but it roughly means “away from the null;”
for a two-sample t-statistic, more extreme might mean larger in abso-
lute value. Another way of thinking about a small p-value for a test is
that either (a) the null is true and you were unlucky, or (b) the null is
not true. No one likes to be unlucky.
That is all fine. The problems come when we try to take a p-value and
interpret it as the probability that the null is true, or we base our deci-
sions solely on the p-value, or we engage in p-hacking, or we interpret
statistical significance as practical significance, and so on.

Confusing statistical and practical significance. A small p-value does not
mean that the discovered effect has practical significance, and a large
p-value does not mean that the data are inconsistent with with effects
of a practically significant size.

Let’s talk more about p-values. By long tradition, tests with p-values less
than 5% are deemed statistically significant, and those with p-values less than Continuous

evidence, binary
decisions

1% are deemed highly significant. A p-value is a form of evidence, and it is
a reasonably continuous form of evidence. Decisions, however, are discrete
and often binary. Thus we need to be wary of situations where we are making
decisions near any cutoff point. A p-value of .049 is not in any practical sense
different from a p-value of .051 as far as level of evidence goes, but if you
have to make a binary decision, then you need to draw the line somewhere.

In order to illustrate the relationship between the p-value and the proba-
bility that a null hypothesis is false, let’s make the following assumptions:

1. A fraction τ of the potential null hypotheses are false, and 1 − τ of
them are true.

2. We will reject the null if the p-value is less than EI , so a fraction EI of
the correct nulls will be rejected.

3I once heard a very famous scientist say to take only one data point, because the second
one will just confuse you. He was kidding ... I think.
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Table 2.5: Sellke et al. approximate lower bound on the
probability that rejecting the null is an error as a function of the
p-value.
p .05 .01 .005 .001 .0005 .0001
P(p) .29 .11 .067 .018 .01 .0025

3. We will reject a false null with probability 1 − EII (or fail to reject it
with probability EII ).

This is an over-simplification of real world practice, but it works for purposes
of illustration.

Putting all these together, we can compute the probability that a randomly
chosen null we are testing is false given that we rejected it; this is called thePositive predictive

value positive predictive value of the test:

P (Null false|Null rejected) =
(1− EII)τ

(1− EII)τ + EI(1− τ)
(2.6)

Smaller values of EI and EII lead to larger values of this probability, as do
larger values of τ .

Sometimes you are operating in a “confirmatory” mode; in such a case,
you are attempting to verify a result that has previous evidence in its favor,
and you would expect τ to be fairly large. In other cases you could be operat-
ing in an “exploratory” or “hypothesis generating” mode, and there could beConfirmatory or

exploratory
mode?

many null hypotheses with little to no prior evidence that they are false; for
these situations, τ is likely to be very small. For example, this might be true
in a brain imaging experiment where we are examining tens of thousands of
brain regions for the handful that might be involved in a cognitive process.

Here are a couple of numerical examples. Set EI = .05, which is the
traditional cutoff for statistical significance. Suppose that EII = .1, meaning
that we have a large enough sample size or large enough effect sizes that we
are reasonably sure of detecting any null that is actually false. (Many real
world experiments have EII considerably larger than .1.) Finally, suppose
that we are in a confirmatory mode with τ = .5. For these values, the proba-
bility of a rejected null actually being false works out to .947, so rejection is
fairly strong evidence that the null is false. But what if we are working in an
exploratory mode? If we change τ to .001 to reflect one possible exploratory
situation, then the probability that a rejected null is actually false is less than
.02, and we find that nearly all rejections are actually incorrect rejections. If
we reduce EI to .001, then the probability that a rejected null is actually false
increases to .47, which is a lot bigger than .02, but not in the same range as
we saw for confirmatory situations.

Here is another approach to the issue of what p-values mean. What we
would really like to know is the probability that rejecting the null is an error;Approximate error

probability of course, the p-value does not give us that information. Sellke, Bayarri,
and Berger (1999) define an approximate lower bound on this probability,
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and they show that this lower bound works pretty well in a wide variety of
problems. Suppose that before seeing any data you thought that the null and
alternative each had probability .5 of being true. Then for p-values less than
e−1 ≈ .37, the Sellke et al. approximate error probability is

P(p) =
−ep log(p)

1− ep log(p)
.

The interpretation of the approximate error probability P(p) is that having
seen a p-value of p, the probability that rejecting the null hypothesis is an
error is at least P(p). Table 2.5 shows that the probability that rejection is
a Type I error is more than .1, even for a p-value of .01. This lower bound
also suggests that .05 and .01 traditional criteria for significance are not suf-
ficiently stringent, and .005 and .001 might be more in line with what we are
looking for.

How can we move forward? What should we do? Here are a few sugges-
tions.

Preregister your design and analysis plan. If you describe your method of
analysis in detail prior to seeing the data and stick to it, then you have
provided yourself some protection against how the multiplicity of op-
tions affects the probability that your result will stand up to scrutiny
and replication. Some grants require this. Preregistration is typically
not a contract, but it does mean that you will need to explain deviations
from the plan.

Document your data and analysis. Even if you do not register your anal-
ysis plan, be sure to thoroughly document the analysis you did per-
form. This should include thorough documentation of any software
commands you used to produce your results. The rmarkdown pack-
age in R can be very helpful here. Similarly, thorough documentation
of your data works toward openness in research. This is in the spirit of
full disclosure so that others can properly evaluate your results. It can
also save you a lot of time down the road when you need to come back
and reconsider a data set.

Repeat experiments when possible. This is potentially costly and some-
times logistically impossible, but the gold standard for whether your
results will stand up to scrutiny and replication is to repeat them and
see what happens. Detailed documentation of methods is a crucial step
in making experiments reproducible.

Publish or publicize non-significant/negative results. Ideally this would be
done at a disciplinary level, but you can start by creating your own on-
line archive of non-significant results, or, better yet, working with the
library at your institution. This is only useful if others can find and un-
derstand what you did, so thorough documentation, careful keyword
indexing, and metadata will be key.
Some journals are beginning to use results independent review, also
called registered reports, wherein papers are accepted based on the
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introduction and methods sections, before the results are known. This
also encourages high quality research proposals.

Use appropriate levels of significance. If we want the probability of the
null being false given a rejection to be reasonably high, then Equa-
tion 2.6 shows us that the type I error rate EI will need to decrease
as τ (the probability that a random null hypothesis is false) decreases.
For experiments with probability of rejecting a false null (power) of at
least .5 (EII of at most .5), using EI = τ/6 as a cut off for significance
will give us probability of at least .75 that a rejected null is, in fact,
false. Of course, this just pushes the problem back to specifying τ , but
it does tell us that if we wish to test whether ESP exists, we will need
to test with very small p-value cut offs for significance.

Understand p-values. This ought to be a given, but it is all too easy to mis-
interpret a p-value, even when you know what it means. Read and
understand the American Statistical Association statement on p-values
(Wasserstein and Lazar 2016), which pushes the following points:

1. p-values can indicate how incompatible the data are with a spec-
ified statistical model.

2. p-values do not measure the probability that the studied hypoth-
esis is true, or the probability that the data were produced by
random chance alone.

3. Scientific conclusions and business or policy decisions should not
be based only on whether a p-value passes a specific threshold.

4. Proper inference requires full reporting and transparency.
5. A p-value, or statistical significance, does not measure the size of

an effect or the importance of an effect.
6. By itself, a p-value does not provide a good measure of evidence

regarding a model or hypothesis.

2.3 Problems

We wish to evaluate a new textbook for a statistics class. There are sevenExercise 2.1
class sections; four are chosen at random to receive the new book, three re-
ceive the old book. At the end of the semester, student evaluations show the
following percentages of students rate the textbook as “very good” or “excel-
lent” (data set TextBooks):

Section
1 2 3 4 5 6 7

Book New Old Old New New Old New
Rating 46 37 47 45 32 62 56

Use standard frequentist and randomization approaches to (a) test the null
hypothesis that the two texts have the same average rating, and (b) create
confidence intervals for the difference in average rating.
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Dairy cows are bred by selected bulls, but not all cows become pregnant Exercise 2.2
at the first service. A drug is proposed that is hoped to increase the bulls
fertility. Each of seven bulls will be bred to 2 herds of 100 cows each (a
total of 14 herds). For one herd (selected randomly) the bulls will be given
the drug, while no drug will be given for the second herd. Assume the drug
has no residual effect. The response we observe for each bull is the number
of impregnated cows under drug therapy minus the number of impregnated
cows without the drug. The observed differences are -1, 6, 4, 6, 2, -3, 5 (data
set CalfCounts). Find the p-value for the randomization test of the null
hypothesis that the drug has no effect versus a one-sided alternative (the drug
improves fertility).

As part of a larger experiment, Dale (1992) looked at six samples of a Exercise 2.3
wetland soil undergoing a simulated snowmelt. Three were randomly se-
lected for treatment with a neutral pH snowmelt; the other three got a re-
duced pH snowmelt. The observed response was the number of Copepoda
removed from each microcosm during the first 14 days of snowmelt (data set
Copepoda).

Reduced pH Neutral pH
256 159 149 54 123 248

Compare frequentist and randomization methods for testing the null hypoth-
esis that pH does not affect the count of Copepoda.

Chu (1970) studied the effect of the insecticide chlordane on the ner- Exercise 2.4
vous systems of American cockroaches. The coxal muscles from one meso-
and one metathoracic leg on opposite sides were surgically extracted from
each of six roaches. The roaches were then treated with 50 micrograms of
α-chlordane, and coxal muscles from the two remaining meso- and metatho-
racic legs were removed about two hours after treatment. The Na+-K+ATPase
activity was measured in each muscle, and the percentage changes for the six
roaches are given here:

15.3 -31.8 -35.6 -14.5 3.1 -24.5
Data set Cockroaches. Test the null hypothesis that the chlordane treat-
ment has not affected the Na+-K+ATPas activity. What experimental tech-
nique (not mentioned in the description above) must have been used to justify
a randomization test?

Twenty-six boards are cut to dimension 26 inches, by 2.5 inches by .75 Exercise 2.5
inches. Thirteen of the boards are randomly selected, and these boards are
planed to a uniform thickness of .625 inches. The remaining thirteen boards
have a notch cut in the center that is 1 inch wide and .125 inch deep (that is,
.625 inch of wood remains under the notch). Each board is then supported
at the ends and pressure is applied in the center until the board fails (center-
point loading at .1 in/minute across a span of 24 inches). The response is the
breaking strength of the boards, in pounds. Data from D. Shmulsky, data set
NotchedBoards.
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Shape Breaking strength (lbs)
Uniform 243 229 305 395 210 311 289

269 282 399 222 331 369
Notched 215 202 273 292 253 247 350

246 352 398 267 331 342

Compare the results of standard frequentist and randomization procedures
for testing the null hypothesis that the strength of the boards is equal for the
two shapes.

McElhoe and Conner (1986) use an instrument called a “Visiplume” toProblem 2.1
measure ultraviolet light. By comparing absorption in clear air and absorp-
tion in polluted air, the concentration of SO2 in the polluted air can be es-
timated. The EPA has a standard method for measuring SO2, and we wish
to compare the two methods across a range of air samples. The recorded
response is the ratio of the Visiplume reading to the EPA standard reading.
There were six observations on coal plant number 2: .950, .978, .762, .733,
.823, and 1.011 (data set VisiplumePlant2).

If we make the null hypothesis be that the Visiplume and standard mea-
surements are equivalent (and the Visiplume and standard labels are just la-
bels and nothing more), then the ratios could (with equal probability) have
been observed as their reciprocals. That is, the ratio of .950 could with equal
probability have been 1/.950 = 1.053, since the labels are equivalent and as-
signed at random. Suppose we take as our summary of the data the sum of
the ratios. We observe .95 + ... + 1.011 = 5.257. Test (using randomization
methods) the null hypothesis of equivalent measurement procedures against
the alternative that Visiplume reads higher than the standard.

Are you a frequentist, a predictivist, or a Bayesian? Why? Do you con-Problem 2.2
sider your reason to be a good reason?

What is the standard p-value cutoff used in your field of study in order toProblem 2.3
declare some result “significant”? Is this cutoff appropriate for the kinds of
experiments conducted in your field?

In your field of study, where could you preregister a design and analysisProblem 2.4
plan for an experiment?

Your lab partner analyzes your results can says that according to a t-Problem 2.5
interval, the probability that the mean response is between 1.73 and 2.11 is
.95; comment on this statement.

Consider data x1, x2, . . . , xn. Model 1 says that these data are indepen-Question 2.1
dent, normally distributed, with mean 0 and variance 1. Model 2 says that
given µ, the data are independent, normally distributed with mean µ and vari-
ance 1, and in addition, µ has a prior distribution that is normal with mean 0
and variance 1.
(a) Compute the Bayes factor for model 2 relative to model 1.
(b) The z test statistic for testing the null hypothesis µ = 0 is z =

√
n x;

z is normally distributed with mean 1 and variance 1 if model 1 is correct.
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Rewrite the Bayes factor in terms of z2, and find the range of z2 for which
the Bayes factor favors model 2.
(c) Show that the probability that the Bayes factor selects model 1 when
model 1 is correct goes to 1 as the sample size tends to infinity.
(d) Explain why the z test has a positive probability of rejecting µ = 0 when
model 1 is correct, even for arbitrarily large sample sizes.
(e) Show that the probability that the Bayes factor selects model 2 when
model 2 is correct goes to 1 as the sample size tends to infinity.
(f) The “Bayesian Information Criterion” (BIC) is

BIC = log(n)pk − 2 log(Lkmax) .

Using your answer to part (b), explain why the BIC multiplies the number of
parameters by the log of the sample size.

The Dickey-Savage ratio says that for certain priors, when the “null” Question 2.2
model is a restriction of the alternative model to certain parameter values,
the Bayes factor will be the ratio of the posterior distribution at the null val-
ues (under model 2) to the prior distribution of the null values (under model
2). See Dickey and Lientz (1970). If the null values become more likely after
seeing the data, then model 1 is the preferred model.

Explain in a heuristic way how the ROPE criterion is related to the Bayes
factor using the Dickey-Savage ratio.
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Chapter 3

Completely Randomized
Designs

The simplest randomized experiment for comparing several treatments is the
Completely Randomized Design, or CRD. We will study CRD’s and their
analysis in some detail before considering any other designs, because many
of the concepts and methods learned in the CRD context can be transferred
with little or no modification to more complicated designs. Here, we define
completely randomized designs and describe the initial analysis of results.

3.1 Structure of a CRD

We have g treatments to compare and N units to use in our experiment. For
a completely randomized design: All partitions of

units with sizes
n1 through ng

equally likely in
CRD

1. Select sample sizes n1, n2, . . . , ng with n1 + n2 + · · ·+ ng = N .

2. Choose n1 units at random to receive treatment 1, n2 units at random
from the N − n1 remaining to receive treatment 2, and so on.

This randomization produces a CRD; all possible arrangements of the N
units into g groups with sizes n1 though ng are equally likely. Statistically,
that is all there is to a CRD. Note, however, that there is a lot more to creat-
ing the experiment than the randomization of treatments to units; the exper-
imenter must also select the treatments, experimental units, and responses.
Doing these requires much non-statistical insight.

Completely randomized designs are the simplest, most easily understood, First consider a
CRDand most easily analyzed designs; they are also most robust against experi-

mental difficulties such as missing data. For these reasons, we consider the
CRD first when designing an experiment. The CRD may prove to be in-
adequate for some reason, but I always consider the CRD when developing
an experimental design before possibly moving on to a more sophisticated
design.
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Example 3.1 Acid rain and birch seedlings
Wood and Bormann (1974) studied the effect of acid rain on trees. “Clean”

precipitation has a pH in the 5.0 to 5.5 range, but observed precipitation pH
in northern New Hampshire is often in the 3.0 to 4.0 range. Is this acid rain
harming trees, and if so, does the amount of harm depend on the pH of the
rain?

One of their experiments used 240 six-week-old yellow birch seedlings.
These seedlings were divided into five groups of 48 at random, and the
seedlings within each group received an acid mist treatment 6 hours a week
for 17 weeks. The five treatments differed by mist pH: 4.7, 4.0, 3.3, 3.0, and
2.3; otherwise, the seedlings were treated identically. After the 17 weeks, the
seedlings were weighed, and total plant (dry) weight was taken as response.
Thus we have a completely randomized design, with five treatment groups
and each ni fixed at 48. The seedlings were the experimental units, the mist
pH levels were the treatments, and plant dry weight was the response.

This is a nice, straightforward experiment, but let’s look over the steps
in planning the experiment and see where some of the choices and compro-
mises were made. It was suspected that damage might vary by pH level, plant
developmental stage, and plant species, among other things. This particu-
lar experiment only addresses pH level (other experiments were conducted
separately). Many factors affect tree growth. The experiment specifically
controlled for soil type, seed source, and amounts of light, water, and fer-
tilizer. The desired treatment was real acid rain, but the available treatment
was a synthetic acid rain consisting of distilled water and sulfuric acid (rain
in northern New Hampshire is basically a weak mixture of sulfuric and ni-
tric acids). There was no placebo per se. The experiment used yellow birch
seedlings; what about other species or more mature trees? Total plant weight
is an important response, but other responses (possibly equally important) are
also available. Thus we see that the investigators have narrowed an enormous
question down to a workable experiment using artificial acid rain on seedlings
of a single species under controlled conditions. A considerable amount of
nonstatistical background work and compromise goes into the planning of
even the simplest (from a statistical point of view) experiment.

Example 3.2 Resin lifetimes
Mechanical parts such as computer disk drives, light bulbs, and glue

bonds eventually fail. Buyers of these parts want to know how long they are
likely to last, so manufacturers perform tests to determine average lifetime,
sometimes expressed as mean time to failure, or mean time between failures
for repairable items. The last computer disk drive I bought had a mean time
to failure of 800,000 hours (over 90 years). Clearly the manufacturer did not
have disks on test for over 90 years; how do they make such claims?

One experimental method for reliability is called an accelerated life test.
Parts under stress will usually fail sooner than parts that are unstressed. By
modeling the lifetimes of parts under various stresses, we can estimate (ex-
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Table 3.1: log10 times until failure of a resin under temperature
stress. Data set ResinLifetimes.

Temperature (oC)
175 194 213 231 250

2.04 1.85 1.66 1.66 1.53 1.35 1.15 1.21 1.26 1.02
1.91 1.96 1.71 1.61 1.54 1.27 1.22 1.28 .83 1.09
2.00 1.88 1.42 1.55 1.38 1.26 1.17 1.17 1.08 1.06
1.92 1.90 1.76 1.66 1.31 1.38 1.16

trapolate to) the lifetime of parts that are unstressed. That way we get an
estimate of the unstressed lifetime without having to wait the complete un-
stressed lifetime.

Nelson (1990) gave an example where the goal was to estimate the life-
time (in hours) of an encapsulating resin for gold-aluminum bonds in inte-
grated circuits operating at 120oC. Since the lifetimes were expected to be
rather long, an accelerated test was used. Thirty-seven units were assigned
at random to one of five different temperature stresses, ranging from 175o to
250o. Table 3.1 gives the log10 lifetimes in hours for the test units. Figure 3.1
shows a set of boxplots for these data with a superimposed line. Simple ex-
ploratory plotting of this sort is recommended before any formal analysis.
For one thing, it shows us how far 120o (where we wish to predict) is from
the data we have.

For this experiment, the choice of units was rather clear: integrated cir-
cuits with the resin bond of interest. Choice of treatments, however, de-
pended on knowing that temperature stress reduced resin bond lifetime. The
actual choice of temperatures probably benefited from knowledge of the re-
sults of previous similar experiments. Once again, experimental design is a
combination of subject matter knowledge and statistical methods.

3.2 Goals, Models, and Inference

What are you trying to learn from your experiment? Are you trying to predict
future observations? Are you trying to determine whether various treatments
yield the same results? Are you trying to extrapolate to unobserved treatment
levels? These are a few of the goals you might have based on your experi-
ment. The kind of inference you do can differ depending on the goals, but all
of these inferential goals share the need to choose an appropriate statistical
model for the data. Comparing models and choosing the right model is the
common theme in inference for experimental data.

3.2.1 Models

A model for data is a specification of the statistical distribution for the data.
Generally, this specification is incomplete in the sense that it depends on
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Figure 3.1: Boxplots of log10 times until failure of a resin under five
different temperature stresses.

some unknown values called parameters. For example, the number of heads
in ten tosses of a coin could be modeled as Binomial(10,p), where p is the
unknown probability that the coin comes up heads. In the analysis of experi-
mental data, we may posit several different models for the data, all with un-
known parameters. The objectives of the experiment can often be described
as deciding which model is the best description of the data, and, potentially,
making inferences about the parameters in the models.

There are many ways to think about models, but it is common to consider
the model to consist of two components: the model for the means (average
or expected values), and the model for the variability (experimental error).
For example, consider the birch tree weights from Example 3.1. We mightModel for the

means assume that all the treatments have the same mean response, or that each
treatment has its own mean, or that the means in the treatments are a straight
line function of the treatment pH. Each one of these models for the means has
its own parameters, namely the common mean, the five separate treatment
means, and the slope and intercept of the linear relationship, respectively.

The second basic part of our data models is a description of how the
data vary around the treatment means. This is the model for the variabilityModel for the

variability
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or model for the errors. As with the model for the means, there are often
several choices for how we model the variability. To begin, we will assume
that the variability is normally distributed, with constant variance σ2, and
independent from observation to observation. Assuming normality, constant
variance, and independence does not make those assumptions true, and we
will eventually need to check, and potentially relax, all of those assumptions.
But we begin with this model for the variability because it is the simplest,
easiest to understand situation.

We will denote a response value by y, with subscripts indicating the par-
ticular value. Thus yij is the response for the jth unit in treatment i. We have Basic notation
g treatments, so i can run from 1 to g, and we have ni units in the ith treat-
ment group, so j can run from 1 to ni. In some situations, we will also have a
numerical value zi associated with each treatment. For the tree seedlings, zi
indicates the pH in treatment i; for the resin lifetimes, zi indicates the temper-
ature in treatment i. We will generically call zi a dose, but in any particular
setting we could be more specific.

Here are a few potential models for the mean structure for yij : Basic mean
structures

0 This is the zero-mean model. It is rarely used, and typically only arises
when the responses yij are themselves differences of other values,
which differences might reasonably have mean zero. More generally,
if you have a model wherein all data should have mean δ, then you can
use the zero mean model for yij − δ.

µ This is the single-mean model wherein all responses are assumed to have
the same mean, but the mean is unknown and would need to be esti-
mated.

θ0 + θ1zi This is the linear-in-dose model, which only makes sense when
there is a “dose” in the treatments.

θ0 + θ1zi + θ2z
2
i This is the quadratic-in-dose model. Clearly, one can po-

tentially go to higher powers (but no higher than g − 1).

f(zi; θ) This is a generic, functional dose-response model included here
merely to indicate that one does not need to use polynomials. How-
ever, you do need to specify what form of function you will use if you
choose not to use polynomials.

µi This is the separate-means model or treatment-means model. Here all
responses in a given treatment have the same mean or expected value,
but different treatments can have different means.

µij This is the saturated model, with every response having its own mean.
One does not typically use this model in data analysis, but the saturated
model does appear in the definition of some inferential quantities (such
as the deviance, which we will see later when we consider models that
do not use the normal distribution for variability).

Our basic model is then

yij = E(yij) + εij
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where the expected value E(yij) is described by a model for the mean struc-
ture, and the experimental errors εij are assumed to be independent, normal,
with mean 0 and variance σ2.

The standard analysis for comparative experiments is concerned with the
structure of the means. We are trying to learn whether the means are all theStandard analysis

explores means same, or if some differ from the others, and the nature of any differences that
might be present. The error structure is assumed to be of lesser interest, and
we generally deal with the structure of the variability in service of learning
about the means.

Let me emphasize that the mean structure comparisons in the standard
analysis may not be the only models of interest, even though they are oftenStandard analysis

is not always
appropriate

an appropriate place to begin. For example, the structure of the variability is
the key in Example 3.3.

Example 3.3 Luria, Delbrück, and variances
In the 1940s it was known that some strains of bacteria were sensitive to a

particular virus and would be killed if exposed. Nonetheless, some members
of those strains did not die when exposed to the virus and happily proceeded
to reproduce. What caused this phenomenon? Was it spontaneous mutation,
or was it an adaptation that occurred after exposure to the virus? These two
competing theories for the phenomenon led to the same average numbers
of resistant bacteria, but to different variances in the numbers of resistant
bacteria—with the mutation theory leading to a much higher variance. Ex-
periments showed that the variances were high, as predicted by the mutation
theory. This was an experiment where all the important information was in
the variance, not in the mean. It was also the beginning of a research collab-
oration that eventually led to the 1969 Nobel Prize for Luria and Delbrück.

3.2.2 Selecting a Model

You select models differently depending on your goals. The two most com-
mon goals are determining whether treatments have any effect (that is, de-
ciding between a single-mean model and a more comples means model) and
predicting future values. Note that even though the goals may be different,
the models you consider are typically the same.

If your goal is to determine whether treatments have any effect, then you
are working in the realm of model comparison via Analysis of Variance or
Bayes Factor. The philosophy is parsimony. A dictionary definition of par-Parsimony
simony is an unwillingness to spend resources. In our context, resources are
degrees of freedom in the model (roughly the number of parameters in the
model), so we choose to use no more parameters than we absolutely need
to use. This approach is widely seen in science. “Occam’s Razor” holds
that when there are two satisfactory explanations, the simpler explanation is
better. “Einstein’s Blade” holds that things should be made as simple as pos-
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sible, but not simpler. In other words, use as many parameters as you need to
fit the data well, but do not use more than that.

If your goal is to predict future values, selecting the model that minimizes
AICc or LOOCV is recommended.

3.3 Frequentist Model Comparison

Analysis of Variance, or ANOVA for short, is the standard frequentist method
for comparing models when the variability is assumed to be independent,
normal, and constant variance and the models are fit by using least squares.
Let ŷij be the fitted or predicted value from a model. Least squares fitting ANOVA

comparisons,
least squares

chooses from among all potential fitted values that the model could produce
to use that set of fitted values that minimizes

∑
ij(yij − ŷij)2, called the sum

of squared errors or the sum of squared residuals. Minimizing the sum of
squared errors is the Maximum Likelihood approach for independent normal
errors with constant variance. When people speak of ANOVA they mean both
an algorithm for partitioning the variability in the data (into sums of squares)
that can be applied to most any data set as well as an inferential framework
that is appropriate for comparing models when the errors from the model are
independent and normally distributed with constant variance.

3.3.1 Fitting the models

Before comparing models we need to fit models.

Example 3.4 Frequentist model fitting for resin lifetimes
The displays below show excerpts from an R session fitting some of these

models.

1 > options(contrasts=c("contr.sum","contr.poly"))
2 > head(ResinLifetimes,3)

temp.z logTime temp Time
1 175 2.04 175 109.64782
2 175 1.91 175 81.28305
3 175 2.00 175 100.00000

3 > myRL <- within(ResinLifetimes,
{temp.z2 <- temp.zˆ2;temp.z3<-temp.zˆ3;temp.z4<-temp.zˆ4})

4 > head(myRL,3)
temp.z logTime temp Time temp.z4 temp.z3 temp.z2

1 175 2.04 175 109.64782 937890625 5359375 30625
2 175 1.91 175 81.28305 937890625 5359375 30625
3 175 2.00 175 100.00000 937890625 5359375 30625

The gray line numbers are not part of the session and have been added for
clarity. The greater than sign is the R prompt, and the user types commands
to the right of the prompt. We will return to line 1 in section 3.5, but for now
know that this command is executed silently when you load the cfcdae
package. Line 2 simply prints the first three rows of the ResinLifetimes
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data set, which includes the data from Table 3.1. Line 3 creates a new copy of
ResinLifetimes that includes second, third, and fourth powers of tem-
perature (temp.z), and line 4 shows the first three rows of the new data set.
Note that temp is a factor version of temperature; factors indicate groups
rather than quantities.

5 > fit.single <- lm(logTime ˜ 1,data=myRL)
6 > fit.separate <- lm(logTime ˜ temp,data=myRL)
7 > fit.linear <- lm(logTime ˜ temp.z,data=myRL)
8 > fit.quad <- lm(logTime ˜ temp.z + temp.z2,data=myRL)
9 > fit.quad2 <- lm(logTime ˜ temp.z + I(temp.zˆ2),data=myRL)
10 > fit.cube <- lm(logTime ˜ temp.z + temp.z2 + temp.z3,data=myRL)
11 > fit.quart <- lm(logTime ˜ temp.z + temp.z2 + temp.z3 + temp.z4,data=myRL)
12 > fit.poly1 <- lm(logTime ˜ poly(temp.z,1),data=myRL)
13 > fit.poly2 <- lm(logTime ˜ poly(temp.z,2),data=myRL)
14 > fit.poly3 <- lm(logTime ˜ poly(temp.z,3),data=myRL)
15 > fit.poly4 <- lm(logTime ˜ poly(temp.z,4),data=myRL)

Lines 5 and 6 fit the single-mean and separate-means models. The lm func-
tion fits “linear models” via least squares; this is the standard frequentist
approach. The principal argument to lm is a formula consisting of a re-
sponse variable (here logTime for the logarithm of the lifetimes), followed
by a tilde (interpreted as “is modeled by”), followed by explanatory vari-
ables. The term 1 indicates the overall mean or intercept; it is included in
the model unless specifically removed from the model. Line 6 uses a factor
version of temperature as the explanatory variable, so a separate mean will
be fit for each level of temperature. Lines 7–15 fit polynomial models using
different approaches. Lines 7–11 fit the polynomial models by explicitly in-
cluding powers of temperature (line 9 shows that it is possible to create the
powers within the model formula). Lines 12–15 show how you can let R cre-
ate the power terms itself. It does this by creating orthogonal polynomials.
These orthogonal polynomials are mathematically equivalent to the ordinary
polynomials we used in lines 7–11 in the sense that you can go back and forth
between ordinary and orthogonal polynomials and, again mathematically, the
two versions will give the same fitted values. However, the orthogonal poly-
nomials yield much more stable computations; this is especially true when
the z values are all far from 0, as is the case with these data.

16 > with(myRL,boxplot(logTime ˜ temp,ylab="log(lifetime)",xlab="temperature",
at=unique(temp.z),boxwex=5))

17 > abline(fit.linear)

Lines 16 and 17 produced Figure 3.1. Using with on line 16 tells R to look
for variables within that data set. Note: we will see that several of these mod-
els produce equivalent fits to the data but use different parameterizations to
produce those equivalent fits.

3.3.2 The Analysis of Variance

Using ANOVA to compare two models only works when one model is a spe-
cial case, or restricted version, of another model. The smaller model is said to
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be nested in the larger model. For example, you can produce the single-mean
model from the separate-means model by setting all of the separate means to ANOVA

compares nested
models

be equal to each other. Likewise, you can get any of the polynomial models
from the separate-means model by restricting the separate means to lie on
a polynomial curve. More obviously, you can get a lower order polynomial
from a higher order polynomial by setting the higher order θ coefficients to
0. Thus we can compare these models using ANOVA.

Strictly speaking, the ANOVA decomposition is just an application of the
Pythagorean Theorem. The process of minimizing the sum of squared errors
produces a right triangle: in N dimensional space, the vector of residuals
(yij − ŷij) is perpendicular to the vector of fitted values (ŷij). Thus squared
lengths (sums of squares) will add up appropriately. If we further try to
approximate the fit from a large model by the fit from a smaller, nested model,
then we will get another right triangle and a further partitioning of the sums
of squares.

Let model 1 be nested in model 2. For example, model 1 could be the
single-mean model, and model 2 could be the separate-means model. Let
RSS1 be the residual sum of squares for model 1, and let RSS2 be the residual
sum of squares for model 2. The improvement sum of squares for going from Improvement SS
the nested model 1 to the enclosing model 2 is RSS1−RSS2. This will always
be nonnegative, because the enclosing model can always fit at least as well
as the nested model.

Consider a sequence of models: model 1 nested in model 2 nested in
model 3 with residual sums of squares RSS1, RSS2, and RSS3. This might be
the single-mean model nested in the quadratic model nested in the separate- Sequences of

models and
residual SS

means model. Model i uses ki parameters to describe the means. In our
example, k1 = 1 (just a single-mean), k2 = 3 (an intercept, a slope, and a
quadratic coefficient), and k3 = 5 (five group means). When we go from
model 1 to model 2, we spend k2 − k1 parameters and gain a reduction in
residual sum of squares of RSS1 − RSS2. When we go from model 2 to
model 3, we spend an additional k3 − k2 parameters to gain a reduction in
residual sum of squares of RSS2−RSS3. For a sequence of models, ANOVA
produces a sequence of incremental improvement sums of squares for going
to larger and larger models, and finally is left with the RSS for the largest
model.

There are several ways to summarize this information. The one most
closely related to the last paragraph is

Residual Residual Incremental Incremental
Model DF SS DF SS

1 N − k1 RSS1

2 N − k2 RSS2 k2 − k1 RSS1 − RSS2

3 N − k3 RSS3 k3 − k2 RSS2 − RSS3

If you ask R to compare several linear models, its output will look something
like this table.
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The usual version of an ANOVA table hides most of the information in
the residual columns of the preceding version and displays incremental in-
formation and the “leftovers” (residuals) in the last line:

Source DF SS MS
Model 1 to Model 2 k2 − k1 RSS1 − RSS2 (RSS1 − RSS2)/(k2 − k1)
Model 2 to Model 3 k3 − k2 RSS2 − RSS3 (RSS2 − RSS3)/(k3 − k2)
Residuals (to model 3) N − k3 RSS3 RSS3/(N − k3)

Here MS abbreviates “mean square,” which is a sum of squares divided by
its degrees of freedom. A mean square is variability explained per degree of
freedom used.

Finally, there are some shortcut, or abbreviated, names for many of the
elements of this table. Using these shortcuts, we get what is considered the
standard ANOVA table. Typically, “Model i to Model i + 1” is written asStandard ANOVA

table “Model i + 1” with the fact that it is actually an improvement suppressed.
For example, when comparing the separate-means model to the single-mean
model, the line is often labeled “Treatments,” or in the case of our example
might be labeled “Temperature.” Similarly “RSSi − RSSi+1” is written as
SSi+1 with the fact that it is a difference suppressed, and “ki+1−ki” is written
as dfi+1, again with the difference suppressed. This gives us

Source DF SS MS F
Model 2 df2 SS2 MS2 = SS2/df2 MS2/MSE

Model 3 df3 SS3 MS3 = SS3/df3 MS3/MSE

Residuals dfE RSS3 MSE = RSS3/dfE

Note that we have added a column labeled “F,” which gives the ratio of theF-ratio
MS for a line to the MS for error. This compares the variability explained per
degree of freedom for increasing the size of the model to the variability per
degree of freedom in the residuals.

When the mean structure in our model is large enough that it encom-
passes the mean structure in the data, then the expected value of MSE is σ2,MSE estimates σ2

the variance of the experimental errors. If model i describes the complete
mean structure for the data, and model i is nested in model i + 1, then the
(improvement) mean square for moving from model i to model i+1 also has
expected value σ2, the same as for MSE. On the other hand, when the larger
model is needed to explain the mean structure, then the expected value of its
mean square is larger than σ2. If the MS for a model term is larger than MSE,
then it is explaining more variability per degree of freedom that we would
expect from random variation. If that F -ratio is large enough, then we would
conclude that we need that term in the model.

Under the null hypothesis that model i completely explains the mean
structure, then the F statistic for going from model i to (enclosing) model i+1
follows an F distribution with degrees of freedom the same as its numeratorF test and p value
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and denominator mean squares. For example, in the ANOVA table above,
the degrees of freedom for testing model 3 against model 2 would be df3 and
dfE. The p value for the model comparison is the area under an F curve (with
those degrees of freedom) to the right of the observed F. A small p-value
indicates that we should prefer the larger model.

Example 3.5 ANOVA for resin lifetime models
On line 1, we use the anova command and give as arguments a set of

nested models fit earlier.

1 > anova(fit.single,fit.quad,fit.separate)
Analysis of Variance Table

Model 1: logTime ˜ 1
Model 2: logTime ˜ temp.z + temp.z2
Model 3: logTime ˜ temp

Res.Df RSS Df Sum of Sq F Pr(>F)
1 36 3.8313
2 34 0.2937 2 3.5376 192.7245 <2e-16 ***
3 32 0.2937 2 0.0000 0.0015 0.9985
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

In this case, R displays the information in the first form described above,
showing the incremental improvements moving from model to model. The
F -test for going from the single-mean model to the quadratic model has a
tiny p-value, providing strong evidence that the linear and quadratic terms
are needed. On the other hand, the test for going from the quadratic model to
the separate-means model has a large p-value, indicating that the additional
two degrees of freedom are not explaining enough variability to justify their
inclusion after the quadratic model.

2 > anova(fit.quart)
Analysis of Variance Table

Response: logTime
Df Sum Sq Mean Sq F value Pr(>F)

temp.z 1 3.4593 3.4593 376.9128 < 2.2e-16 ***
temp.z2 1 0.0783 0.0783 8.5361 0.006338 **
temp.z3 1 0.0000 0.0000 0.0020 0.964399
temp.z4 1 0.0000 0.0000 0.0009 0.976258
Residuals 32 0.2937 0.0092
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

On line 2, we ask for the ANOVA of a single fitted model. In this form,
R creates an internal sequence of models beginning with the single-mean
model and then adding in each term in the model sequentially. We see the
improvement SS for adding in linear, then quadratic after linear, then cubic
and linear and quadratic, and so forth. Note that the incremental SS for linear
and quadratic in the second command sum to the improvement SS for going
from the single-mean model to the quadratic model in the first command. We
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see that the p-value for going from linear to quadratic is small (.006). This
is significant by traditional standards, but not by the more rigorous standards
we advocated earlier.

3 > anova(fit.poly4)
Analysis of Variance Table

Response: logTime
Df Sum Sq Mean Sq F value Pr(>F)

poly(temp.z, 4) 4 3.5376 0.88441 96.363 < 2.2e-16 ***
Residuals 32 0.2937 0.00918
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Line 3 illustrates that while the form poly(temp.z,4) generates a fourth
power polynomial, ANOVA in R treats it as a single bundle of four degrees of
freedom (that is, a single term) and does not separate the powers sequentially
as it did when we entered the powers ourselves.

4 > anova(fit.separate)
Analysis of Variance Table

Response: logTime
Df Sum Sq Mean Sq F value Pr(>F)

temp 4 3.5376 0.88441 96.363 < 2.2e-16 ***
Residuals 32 0.2937 0.00918
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Finally, line 4 shows the ANOVA for the separate-means model, with a single
line for the four degrees of freedom between the five treatments. Note that the
residual SS and df are the same in all four of these ANOVAs. The separate-
means model and the fourth order polynomial (either using poly() or done
by hand) exhaust the four degrees of freedom between five groups and give
the same fitted values in each treatment, and thus the same residual SS. If we
compare the single-mean model to the separate-means model, we would con-
clude that we needed the separate-means model, even though it uses all four
degrees of freedom between treatments, and we have seen that two degrees
of freedom suffice.

Note: order matters in these models. If you fit third and fourth powers
first and then see whether you need first and second powers, you will find thatOrder of terms

matters you do not need first and second powers if third and fourth powers are in the
model. However, we usually try to maintain hierarchy, where the presence
of a term implies the presence of lower order terms (so cubic present would
imply linear and quadratic present).

3.3.3 ANOVA Computations

In general we will use computer software to calculate the sums of squares in
an ANOVA. However, there are simple formulae for SS for certain special
situations. Understanding these special situations can help you understand
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SSTrt =
∑g

i=1 ni(yi• − y••)2

SSE =
∑g

i=1

∑ni
j=1(yij − yi•)2

dfTrt = g − 1

dfE = N − g

Display 3.1: ANOVA quantities in the separate-means
model.

what is going on in ANOVA.
Let’s establish some notation for sample averages and the like. The sum

of the observations in the ith treatment group is

yi• =

ni∑
j=1

yij .

The mean of the observations in the ith treatment group is Treatment means

yi• =
1

ni

ni∑
j=1

yij = yi•/ni .

The overbar indicates averaging, and the dot (•) indicates that we have aver-
aged (or summed) over the indicated subscript. The sum of all observations
is

y•• =

g∑
i=1

ni∑
j=1

yij =

g∑
i=1

yi• ,

and the grand mean of all observations is Grand mean

y•• =
1

N

g∑
i=1

ni∑
j=1

yij = y••/N .

We want the ANOVA for the separate-means model. The fitted values
for that model for data in treatment i will be the mean response from that
treatment yi•. The sum of squared deviations of the data from the group Error SS
means is

SSE =

g∑
i=1

ni∑
j=1

(yij − yi•)2 .

We also need the improvement SS for going from a single mean to separate Treatment or
groups SS
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means, denoted SSTrt. This is

SSTrt =

g∑
i=1

ni∑
j=1

(yi• − y••)2 =

g∑
i=1

ni(yi• − y••)2 .

It is a bit tedious to compute these SS by hand, but it is eminently doable
(indeed, old guys such as myself remember computing this by hand!).

It also helps to see where these formulae come from. Consider the fol-
lowing:

yij = y•• + (yi• − y••) + (yij − yi•)
That is easy enough, we have just added and subtracted overall and groupPythagorean

theorem and
ANOVA

means on the right hand side. Now square both sides and add up.

g∑
i=1

ni∑
j=1

y2ij = Ny2•• +

g∑
i=1

ni∑
j=1

(yi• − y••)2 +

g∑
i=1

ni∑
j=1

(yij − yi•)2

= Ny2•• +

g∑
i=1

ni(yi• − y••)2 +

g∑
i=1

ni∑
j=1

(yij − yi•)2

= SSMean + SSTrt + SSE

Wait, time out! What happened to all of the cross-product terms that should
appear when we square that sum on the right hand side? It turns out that
the cross products add to zero; that is an algebraic expression of the fact
this decomposition is forming right angles in N dimensional space, and the
Pythagorean Theorem is going to work.

3.4 Predictive Model Comparison

Predictive model comparison is fairly straightforward: find the model
with the lowest AIC or AICc value.

Example 3.6 ANOVA for resin lifetime models
Here we see the AICc computations in R.

1 > AICc(fit.single)
[1] 25.44922

2 > AICc(fit.linear)
[1] -58.4569

3 > AICc(fit.quad)
[1] -64.68237

4 > AICc(fit.cube)
[1] -61.99923

5 > AICc(fit.quart)
[1] -59.13575

6 > AICc(fit.separate)
[1] -59.13575

Draft of Feb 25, 2021



3.5 Parameters 63

For these data, AICc model selection agrees with ANOVA: the separate-
means model (line 6) is greatly preferred to the single-mean model (line 1),
but the quadratic model (line 3) is preferred to the separate-means model,
because the separate-means model uses more degrees of freedom than are
strictly necessary.

3.5 Parameters

Statistical models contain parameters that control means, variances, and, po-
tentially, other aspects of how the data are distributed. As straightforward as
that sounds, mean parameters in particular are somewhat slippery beasts to
latch onto. The main issues are alternatives and redundancy. Consider these Alternatives and

redundancytwo quadratic models for a mean response:

θ0 + θ1zij + θ2z
2
ij

and
θ̃0 + θ̃1(zij − 2) + θ̃2(zij − 2)2

These two models are both second order (quadratic) models, they will yield
the same ANOVA or Bayes factors, the same fitted values, and the same
residuals. But θ0 6= θ̃0 and θ1 6= θ̃1. Thus you and I can be talking about
quadratic models and yet be talking about different parameters.

It is yet more interesting when there is redundancy. Suppose we wish to
model a response using two predictors, w and z, via

θ0 + θ1zij + θ2wij

and unbeknownst to us, these two predictors are related via w = 2z. In this
case, any combination of θ1 and θ2 that has the same value of θ1 + 2θ2 will
yield exactly the same fitted values. Thus the pair (4,5) cannot be distin-
guished from the pair (6,4) or any of an infinite number of other combina-
tions. You cannot say which is the “correct” pair, because all the pairs that
follow that relationship are equally valid.

The redundancy example seems extreme, but it is very close to home. As
we move further into our study, we will find that it will be convenient to write Many models

have redundant
parameters

treatment means as a central value plus a deviation from the central value:

µi = µ+ αi

where µ is the central value and αi is the deviation from the central value
called the treatment effect. But we have g+1 parameters to describe g means,
meaning there is redundancy. If we add 10 to µ and subtract 10 from each
αi, we get the same totals µ+αi. The parameters µ and αi are not estimable
in and of themselves.

The way to move forward is to restrict or constrain the coefficients in our
model so that we remove the redundancy. In the z, w example, we might
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assume that θ2 = 0 and move forward with just z. In the µ, αi example,
we might assume that µ =

∑
i µi/g (this is the same thing as assuming that Restrictions on

parameters0 =
∑

i αi) making µ be the average of the means. R, on the other hand,
by default assumes α1 = 0 (or, equivalently, µ1 = µ), although it lets you
change that. For hand computation, assuming µ = y•• has some advantages.
Each of these assumptions is equally valid in a mathematical sense.

The point of all this is not to scare you away from parameters but rather
to impress on you the importance of knowing exactly how your parameters
are defined and constrained. Using parameters computed under constraint A
as if they were computed under constraint B will lead to confusion and chaos.

In this book, unless otherwise noted, we will assume that for grouping
factors the treatment effects sum to 0:

g∑
i=1

αi = 0

Combined with our assumptions of normality and constant variance, we can
write this more completely as

yij = µ+ αi + εij where

εij ∼ independent N(0, σ2) and

0 =

g∑
i=1

αi

Fortunately, even though we had to make a choice of constraint, the impor-
tant things don’t depend on which set of constraints we use. Important things
are treatment means, differences of treatment means (or, equivalently, differ-
ences of αi’s), and comparisons of models.

Our constraint that the treatment effects αi add to zero implies that the
treatment effects are not completely free to vary. We can set g − 1 of themDegrees of

freedom for
treatment effects

however we wish, but the remaining treatment effect is then determined be-
cause it must be whatever value makes the zero sum true. We express this
by saying that the treatment effects have g − 1 degrees of freedom. This is
exactly the same as the increase in the number of free parameters going from
the single-mean model to the separate-means model.

3.5.1 Estimating Parameters

Most data analysis these days is done using a computer. Few of us sit down
and crunch through the necessary calculations by hand. Nonetheless, know-
ing the basic formulae and ideas behind our analysis helps us understand and
interpret the quantities that come out of the software black box. If we don’t
understand the quantities printed by the software, we cannot possibly use
them to understand the data and answer our questions.
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The first thing to understand is that standard frequentist estimates will
not equal the corresponding Bayesian estimates, and the estimates from dif-
ferent inference schools have different desirable properties. For example,
the standard frequentist estimates are unbiased. Unbiased means that when
you average the values of the estimates across all repeated experimental out-
comes, you get the true parameter values. Bayesian estimates are generally Unbiased

estimators correct
on average

at least a little biased. On the other hand, if you look at how far the estimate
is from its target value, Bayesian estimates have a lower mean squared error
than standard frequentist estimates.

The second thing to understand is that there are no explicit formulae for
Bayesian estimates, only an algorithm to derive them, and the simple, explicit
formulae for frequentist estimates only work in special circumstances. Thus
what we are trying to accomplish in this section is to gain some insights, not
learn a set of steps for general use.

3.5.2 Frequentist estimates

It is convenient to introduce a notation to indicate the estimator of a param-
eter. The usual notation in statistics is to put a “hat” over the parameter to
indicate the estimator; thus µ̂ is an estimator of µ. Because we have parame-
ters that satisfy µi = µ+αi, our unbiased estimators will satisfy µ̂i = µ̂+α̂i.

Consider first the separate-means model, with each treatment group hav-
ing its own mean µi. The natural estimator of µi is yi•, the average of the µ̂i = yi•
observations in that treatment group. We estimate the expected (or average)
response in the ith treatment group by the observed average in the ith treat-
ment group responses. Thus we have

µ̂i = yi• .

The sample average is an unbiased estimator of the population average, so µ̂i
is an unbiased estimator of µi.

The treatment effects αi are the differences of the treatment mean and the
central value:

αi = µi − µ ;

and the same will be true of the estimates

α̂i = µ̂i − µ̂ .

To go beyond this, we must make explicit what we mean by µ.
Use the notation µ• for the mean of the group means:

µ• =
1

g

g∑
i=1

µi

We estimate µ• via

µ̂• =
1

g

g∑
i=1

µ̂i =
1

g

g∑
i=1

yi•
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Because our standard, default constraint is that the sum of the treatment
effects is 0 (or, equivalently, µ = µ•), we have

αi = µi − µ•
leading to estimatesα̂i =

yi• − 1
g

∑g
i=1 yi•

α̂i = µ̂i − µ̂• = yi• −
1

g

g∑
i=1

yi• .

The overall grand mean of the data is

y•• =
1

N

g∑
i−1

ni∑
j=1

yij .

If the group sample sizes are all the same, called balanced data, that is, if
n = n1 = · · · = ng, then µ̂• = y••:

µ̂• =
1

N

g∑
i−1

ni∑
j=1

yij =
1

g

g∑
i−1

1

n

n∑
j=1

yij =
1

g

g∑
i−1

yi• = y•• .

We know that

SSTrt =

g∑
i=1

ni(yi• − y••)2 ,

so if all of the group sample sizes are the same, we also have

SSTrt =

g∑
i=1

nα̂i
2 .

This pattern of take an effect, square it, multiply by the number of units
receiving the effect, and then add over the levels of the effect to get the sum
of squares for the term in the model is generic even in more complex, but still
balanced, models.

The remaining parameter in the separate-means model is the error vari-
ance σ2. We estimate that variance by the mean square for error in the model,
also denoted s2:

σ̂2 = s2 = MSE =
1

N − g

g∑
i=1

n∑
j=1

r2ij

=
1

N − g

g∑
i=1

n∑
j=1

[yij − (µ̂+ α̂i)]
2

=
1

N − g

g∑
i=1

n∑
j=1

[yij − yi•]2
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Model Parameter Estimator
Separate means µi yi•

σ2
∑g

i=1

∑ni
j=1(yij−yi•)

2

N−g

µ
∑g

i=1 yi•/g

αi yi• −
∑g

i=1 yi•/g

(if balanced) µ y••
(if balanced) αi yi• − y••

Display 3.2: Parameter estimators in the separate-means
model.

where rij is the residual for the i, j point, equal to the response minus the
fitted value. This is an unbiased estimate of σ2. The formulae for these
estimators are collected in Display 3.2.

The deviations from the group mean yij−yi• add to zero in any treatment
group, so that any ni − 1 of them determine the remaining one. Put another
way, there are ni− 1 degrees of freedom for error in each group, or N − g = Error degrees of

freedom
∑

i(ni − 1) degrees of freedom for error for the experiment. There are thus
N − g degrees of freedom for our estimate σ̂2. This is analogous to the
formula n1+n2−2 for the degrees of freedom in a two-sample t-test. Another
way to think ofN−g is the number of data values minus the number of mean
parameters estimated.

A point estimate gives our best guess as to the value of a parameter. A
confidence interval gives a plausible range for the parameter, that is, a set Confidence

intervals for
means and

effects

of parameter values that are consistent with the data. Confidence intervals
for the µi’s are useful and straightforward to compute. Confidence intervals
for µ and the αi’s are only slightly more trouble to compute, but are perhaps
less useful, because there are several potential ways to define the α’s based
on different constraints. Differences between µi’s, or equivalently, differ-
ences between αi’s, are extremely useful; these will be considered in depth
in Chapter 4. Confidence intervals for the error variance σ2 will be consid-
ered in Chapter 10.

Confidence intervals for parameters in the mean structure have the gen-
eral form: Generic

confidence
interval for mean

parameter
unbiased estimate± multiplier× standard error of estimate.

The standard deviation for the average yi• is σ/
√
ni . We do not know σ,

so we use σ̂ = s =
√

MSE as an estimate and obtain s/
√
ni as the standard

errors for yi•. The standard error of an estimated treatment effect α̂i in the
balanced (equal replication) case is σ

√
1/n− 1/N . Again, we must use an
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Parameter Estimator Standard Error

µ y•• s/
√
N

µi yi• s/
√
n

αi yi• − y•• s
√

1/n− 1/N

Display 3.3: Standard errors of point estimators
in the separate-means model with balanced data.

estimate of σ, yielding s
√

1/n− 1/N for the standard error. Keep in mind
that the treatment effects α̂i are negatively correlated, because they must add
to zero. These standard errors appear in Display 3.3.

For an interval with coverage 1− E , we use the upper E/2 percent point
of the t-distribution with N − g degrees of freedom as the multipler. This is
denoted tE/2,N−g. We use the E/2 percent point because we are constructingUse t multiplier

when error is
estimated

a two-sided confidence interval, and we are allowing error rates of E/2 on
both the low and high ends. For example, we use the upper 2.5% point (or
97.5% cumulative point) of t for 95% coverage. The degrees of freedom for
the t-distribution come from σ̂2, our estimate of the error variance. For the
separate-means model, the degrees of freedom are N − g.

Example 3.7 Frequentist estimates for resin lifetimes
Back in Example 3.4 there was a line 1 that set the contrasts op-

tion in R to contr.sum. That told R to use the parameterization where
treatment effects sum to zero; you must set this option before fitting your
model, although you only need to set it once. When you load the R package
cfcdae (Companion to a First Course in Design and Analysis of Experi-
ments, an R package to accompany this book), it automatically sets contrasts
to contr.sum.
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1 > summary(fit.separate)

Call:
lm.default(formula = logTime ˜ temp)

Residuals:
Min 1Q Median 3Q Max

-0.22667 -0.03667 0.00250 0.03125 0.20333

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.43794 0.01585 90.708 < 2e-16 ***
temp1 0.49456 0.03065 16.134 < 2e-16 ***
temp2 0.19081 0.03065 6.225 5.67e-07 ***
temp3 -0.06044 0.03065 -1.972 0.0573 .
temp4 -0.24365 0.03222 -7.563 1.30e-08 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.0958 on 32 degrees of freedom
Multiple R-squared: 0.9233,Adjusted R-squared: 0.9138
F-statistic: 96.36 on 4 and 32 DF, p-value: < 2.2e-16

Line 1 shows the basic summary of the fitted separate-means model. We
are particularly interested in the coefficients. For these, R gives us estimates
and standard errors as well as results of a test that the coefficient is 0. The
(Intercept) is what we were calling µ, so µ̂ = 1.44. Note: the sample
sizes in the resin lifetime data set are not equal, so µ̂ 6= y•• = 1.47. Unequal
sample sizes also causes the standard errors for the treatment effects to be
unequal.

The interpretation of the t-tests in the output of line 1 is a test of the
null hypothesis that a particular αi is zero, allowing all the other effects
in the model to be non-zero. We don’t usually test that individual αis are
zero; we generally include all the levels in a factor or none of them. In
fact, we can make any particular αi zero by changing our definition of µ and
thus changing our parameterization, so testing individual treatment effects is
problematic. However, in the next chapter we will consider tests of linear
combinations of treatment effects.

R only prints four treatment effects α̂i, one for each degree of freedom
between treatments. The final treatment effect is set by the constraint that
they must all add to 0.

2 > confint(fit.separate,level=.995)
0.25 % 99.75 %

(Intercept) 1.39014624 1.48573471
temp1 0.40214062 0.58697842
temp2 0.09839062 0.28322842
temp3 -0.15285938 0.03197842
temp4 -0.34078923 -0.14652029

Line 2 shows that it is straightforward to get confidence intervals for the
coefficients, and you can also set the level of coverage.
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3 > model.effects(fit.separate,"temp")
175 194 213 231 250

0.49455952 0.19080952 -0.06044048 -0.24365476 -0.38127381

Line 3 uses the model.effects function from the cfcdae library; it can
compute that left out treatment effect for you. That is not challenging in this
example, but it is helpful in more complicated situations.

4 > summary(fit.quad)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.4179987 1.1564331 6.415 2.51e-07 ***
temp.z -0.0450981 0.0110542 -4.080 0.000258 ***
temp.z2 0.0000786 0.0000261 3.011 0.004879 **

...

Now we see coefficient results for the quadratic model,

5 > summary(fit.quart)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.699e-01 1.957e+02 0.005 0.996
temp.z 7.573e-02 3.750e+00 0.020 0.984
temp.z2 -7.649e-04 2.679e-02 -0.029 0.977
temp.z3 2.600e-06 8.459e-05 0.031 0.976
temp.z4 -2.988e-09 9.962e-08 -0.030 0.976

Residual standard error: 0.0958 on 32 degrees of freedom
Multiple R-squared: 0.9233,Adjusted R-squared: 0.9138
F-statistic: 96.36 on 4 and 32 DF, p-value: < 2.2e-16

the quartic model with ordinary polynomials,

6 > summary(fit.poly4)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.465135 0.015750 93.027 < 2e-16 ***
poly(temp.z, 4)1 -1.859909 0.095801 -19.414 < 2e-16 ***
poly(temp.z, 4)2 0.279899 0.095801 2.922 0.00634 **
poly(temp.z, 4)3 0.004310 0.095801 0.045 0.96440
poly(temp.z, 4)4 -0.002873 0.095801 -0.030 0.97626
...

and the quartic model with orthogonal polynomials. Here are a few important
lessons. First, the first and second order coefficients (linear and quadratic)
are different in every model. In particular, you cannot simply drop the third
and fourth order terms from the model in line 2 and assume the first and
second order coefficients remaining will work on their own. In general, term
coefficients depend on what other terms are in the model.

Second, standard errors of polynomial terms depend on how you pa-
rameterize the polynomial and, in general, what other polynomial terms are

Draft of Feb 25, 2021



3.6 Bayesian Analysis 71

in the model. For example, compare the standard errors for temp.z and
temp.z2 in the models from lines 1 and 2; they are orders of magnitude
different! The problem is that the raw polynomial terms are highly corre-
lated with each other, and that correlation increases the standard error of the
estimates.

Third, think back to the meaning of the t-tests, which test whether a
particular θi is zero allowing the other coefficients to be non-zero. The results
from line 5 show that we can get rid of any single term if we keep the other
three. However, it is highly recommended that you maintain hierarchy, which
means that if you have a term of order k in your model, you also have terms
of all lower orders in your model. Maintaining hierarchy, there is really only
one test that matters, that of the fourth order term, which has a very large
p-value and is not needed.

Fourth, the t-tests in the results of line 5 make it appear that the terms
have no predictive ability. However, the overall F -test for the model shows
that it is highly significant. Be sure to inspect the overall F as well as the
individual coefficient ts.

3.6 Bayesian Analysis

We must specify the prior distributions in the Bayesian model before doing
model fitting, model comparison, or inference on parameters. A bona fide
Bayesian analysis would elicit these prior distributions from subject matter
experts, but for ease of presentation, we will typically make use of generic,
weakly informative priors created by our modeling tools.

In principle, Bayesian inference is straightforward. For model compari-
son, we compute the marginal likelihood of the data under each model and
then compare these marginal likelihoods by taking their ratio as the Bayes
factor. The model with the highest marginal likelihood (highest Bayes Fac-
tor as the numerator of the factor) is the preferred model. Alternatively, we
can compute LOOCV for each potential model, and select the model with
lowest value. Inference on parameters can be made by taking a sample from
the posterior distribution and then computing appropriate summaries on that Inference based

on posterior
distribution

sample. For example, we take the average of the posterior samples as our
estimate of the mean of the posterior distribution. We use quantiles (per-
cent points) of the posterior samples to estimate quantiles of the posterior
distribution. We can thus easily compute interval estimates by, for example,
computing the 2.5% and 97.5% quantiles of the posterior samples. We can
even get fancy and make inference about functions and combinations of pa-
rameters by computing the corresponding functions of the posterior samples,
and then use means, quantiles, and so forth of the computed values to make
the inference.

In practice, things are not quite so simple. For example, we can take sam-
ples from the (approximate) posterior distribution of the parameters using an
approach called Markov chain Monte Carlo. These samples are not indepen-
dent samples. When the correlation among these samples is too high, we say
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that the chain is not mixing well, and we must either take additional samplesCheck
performance of
Markov chain

to compensate for the correlation or we must reframe the model to reduce
the correlation. When we take more samples, we might “thin” the results by
retaining only a subset (say, every fifth sample) of those actually generated.
The only purpose of this is to save space in the fitted results; it actually makes
the estimates a little worse. One example of reframing the model is to use
orthogonal polynomials in place of ordinary polynomials.

There are diagnostics that help us detect when a chain is not mixing well.
For a well-mixing chain:

• A plot of the chain values against time (a trace plot) should look like a
horizontal blur with no visible trends. Plots of multiple chains should
overlap.

• The autocorrelation of the values of the chain should decay to zero
quickly.

• The “effective sample size” of the chain should be fairly large, ideally
nearly as large as the length of the chain.

If the chain is not mixing well, our inferences may not be accurate. A well-
mixing chain makes life easy, and a poorly-mixing chain makes life hard.

The good news is that you can do Bayesian inference in R. The bad news
is that there is no one-size-fits-all approach to Bayesian inference in R, but
instead there are several packages that approach these computations in differ-No single

standard for
Bayesian analysis
in R

ent ways, each with its own advantages and disadvantages. We will use the
tools in cfcdae, because they are reasonably easy to use and set up priors in
a way that matches this book. Note, however, that packages brms (Bürkner
2017) and rstanarm (Stan Development Team 2016) are more compre-
hensive than cfcdae. All three of these packages are wrappers around the
rstan (Stan Development Team 2018) package, which is itself an interface
to the Stan Bayesian computation system (Stan Development Team 2017).
There are also packages that provide interfaces to the JAGS Bayesian com-
putation system (Plummer 2003).

We will also occasionally use the BayesFactor package in R (Morey,
Rouder, and Jamil 2015). This package only fits linear mixed models with
normally distributed errors and a specific type of prior, but it is very fast, and
we will need that speed in some situations.

Function bglmm in package cfcdae fits a variety of Bayesian mod-
els (the “b”), including linear models (the “lm”), linear mixed models (the
second “m”), and generalized linear models (the “g”). bglmm assumes thatbglmm

coefficients for different terms in a model are independent a priori. Coef-
ficients within a single model are not necessarily independent; for example,
effects αi for a categorical/factor predictor are assumed to sum to zero. The
prior mean for all coefficients is assumed to be zero.

bglmm gives model coefficients a two-stage prior. The first stage of the
prior for term A is constructed assuming that we know a standard deviation
σA. Regression-like coefficients in term A are assumed to be normally dis-
tributed with mean 0 and standard deviation σA. The prior for categorical
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factor effects is a bit more complicated. Each αi is assumed to be normal
with mean 0 and variance σ2A(g−1)/g, and the treatment effects add to zero.
This looks a bit odd, but it is the distribution you get when you start with g
independent outcomes with mean 0 and standard deviation σA and then sub-
tract out their mean so that they sum to zero. In other words, the first stage
prior for factor effects contains negative covariances that guarantee the zero
sum constraint.

At the second stage, σA is assumed to follow a gamma distribution with
a prior mean and shape parameter that the user can set. Letting σA vary
yields an overall (marginal) prior for the coefficients with longer tails than
normal. As the shape parameter gets bigger and bigger, the distribution for Two-stage prior

for meansσA concentrates more and more around the prior mean. Thus you can turn
the prior for coefficients into an simple, one-stage normal prior by choosing
a very large shape parameter.

The final part of the overall prior distribution is a gamma prior on the
standard deviation of the residuals.

bglmm lets you choose the shape and mean parameters for the standard
deviations of all terms and the residuals. If you leave them unspecified, it tries
to select reasonable values based on the data. Note: using the data to specify
the prior is not a strictly Bayesian way of doing things. It is a particularly
questionable idea if you use Bayes factors.

Example 3.8 Resin lifetimes, Bayesian model fitting with bglmm.
We now fit Bayesian analogues to many of the frequentist models we fit

to the resin lifetime data.

1 > bfit.single <- bglmm(logTime ˜ 1, data=myRL, quiet=TRUE)
Need to compile the model. Compiling now.

2 > bfit.separate <- bglmm(logTime ˜ temp, data=myRL, quiet=TRUE)
3 > bfit.linear <- bglmm(logTime ˜ poly(temp.z,1), data=myRL,quiet=TRUE)
4 > bfit.quad <- bglmm(logTime ˜ poly(temp.z,2), data=myRL, quiet=TRUE)
5 > bfit.quart <- bglmm(logTime ˜ poly(temp.z,4), data=myRL, quiet=TRUE)
6 > bfit.quad.trouble <- bglmm(logTime ˜ temp.z+temp.z2, data=myRL, quiet=TRUE)

Warning messages:
1: There were 3983 transitions after warmup that exceeded the maximum treedepth.
...

7 > myRL <- within(myRL, stemp <- (temp.z - mean(temp.z))/sd(temp.z))
8 > myRL <- within(myRL, stemp.2 <- stempˆ2)
9 > bfit.quad.lesstrouble <- bglmm(logTime ˜ stemp+stemp.2, data=myRL, quiet=TRUE)

The model formula for bglmm is the same as that for lm; the quiet=TRUE
suppresses progress information printed during the MCMC sampling. By
default, bglmm uses four chains with each having 1,000 warm up steps and
1,000 sampling steps for a total of 4,000 samples. One thing to note is the
“Need to compile the model” message after line 1. Once in every R session,
bglmm will need to compile a model for every family of models used; this
takes a minute or so. The default family is independent, normally distributed
errors with mean 0 and constant variance. All of the models we are fitting at
this point fall into that category, so we only need one compilation for all of
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the commands shown here.

The quadratic model is fit three times: once with orthogonal polynomi-
als (line 4), once with ordinary polynomials (line 6), and once with ordinary
polynomials (line 9) after temp.z was standardized (line 7). Fitting the
model with raw polynomials (line 6) produces an ominous warning about ex-
ceeding maximum tree depth. This means that the algorithm is trying very
hard at each iteration, but it recognizes that it is not working very well. This
is also apparent in the execution times. The quadratic model with raw poly-
nomials took 58 seconds to fit, whereas the other two quadratic models fin-
ished in under one second. Increasing the tree depth, for example, by using
max treedepth=15 as an argument to bglmm will help the raw quadratic
model, but the real fix is to use predictors that are all on approximately the
same scale.

Before we go any further, it is important to check whether the Markov
chains we are using are working well.

10 > summary(bfit.separate)[,9:10]
n_eff Rhat

(Intercept) 4000 1.000
temp1 4000 1.000
temp2 4000 1.000
temp3 4000 0.999
temp4 4000 1.000
sigma.Intercept 4000 1.000
sigma.temp 4000 1.000
sigma0 4000 1.000

The summary of bglmm output contains diagnostic information in two of
its columns. The diagnostics are the effective sample size n eff (bigger is
better, and close to the actual number of Markov chain samples is great), and
the potential scale reduction factor Rhat (near 1 is good, under 1.01 is good
enough). Things look fine for the separate-means model,

11 > summary(bfit.quad)[,9:10]
n_eff Rhat

(Intercept) 4000 0.999
poly(temp.z, 2)1 4000 1.000
poly(temp.z, 2)2 4000 1.000
sigma.Intercept 4000 1.000
sigma.poly(temp.z, 2) 4000 1.000
sigma0 4000 1.000

and for the orthogonal polynomials model. However, the results are strik-
ingly different for the raw polynomials model.
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Figure 3.2: Trace and autocorrelation diagnostic plots of the
quadratic coefficient in bfit.quad.trouble (top row) and the first
group effect in bfit.separate (bottom row).

12 > summary(bfit.quad.trouble)[,9:10]
n_eff Rhat

(Intercept) 83.10 1.07
temp.z1 81.20 1.07
temp.z21 81.10 1.07
sigma.Intercept 7.22 1.35
sigma.temp.z 3.77 1.94
sigma.temp.z2 2.11 4.68
sigma0 83.20 1.01

The Markov chain for the bfit.quad.trouble model is performing
very poorly, and we should be skeptical of results that it produces.

We should also examine the variable traces and autocorrelations.
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13 plot(bfit.quad.trouble,plottype="trace",pars="temp.z21")
14 plot(bfit.quad.trouble,plottype="autocor",pars="temp.z21")
15 plot(bfit.separate,plottype="trace",pars="temp1")
16 plot(bfit.separate,plottype="autocor",pars="temp1")

Figure 3.2 shows diagnostic plots for the quadratic coefficient in the raw
quadratic model and for α1 in the separate-means model, using the com-
mands on lines 13–16. The trace plots show the values of the four chains
plotted against their index. For the separate-means coefficient, we see hori-
zontal blurs, with no discernible trends; that is what we hope to see. Contrast
that with the plot for the quadratic coefficient, where we can see clear inter-
nal trends and no horizontal blur. Autocorrelation plots show the correlation
between a value in the Markov chain, and the following value, or the value
two steps later, and so on. These should drop to zero as quickly as possible.
In the plot we see that they effectively disappear after one lag for α1, but they
remain high for many lags for the quadratic coefficient. The separate-means
model Markov chain is performing much better.

After assessing the Markov chains, we can compare models.

17 > loo::loo(bfit.separate)
[1] -59.46428
Warning message:
Some Pareto k diagnostic values are slightly high.
See help(’pareto-k-diagnostic’) for details.

18 > loo::loo(bfit.separate,verbose=TRUE)
Computed from 4000 by 37 log-likelihood matrix

Estimate SE
elpd_loo 29.7 5.3
p_loo 6.2 1.8
looic -59.5 10.5

Pareto k diagnostic values:
Count Pct

(-Inf, 0.5] (good) 34 91.9%
(0.5, 0.7] (ok) 3 8.1%

(0.7, 1] (bad) 0 0.0%
(1, Inf) (very bad) 0 0.0%

All Pareto k estimates are ok (k < 0.7)
See help(’pareto-k-diagnostic’) for details.

The LOOCV values are computed with the loo function (apologies to read-
ers in the UK), which uses something called Pareto tail smoothing to improve
the computations. We see a warning after line 17 (and there are others, al-
though it will be suppressed in the output) that things might not be working
prefectly. Calling loo again with the verbose=TRUE option (line 18) pro-
vides more diagnostic information. Here we see that there is not too much to
worry about, so we proceed with other models.
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19 > loo::loo(bfit.single)
[1] 24.69686

20 > loo::loo(bfit.linear)
[1] -58.28534

21 > loo::loo(bfit.quad)
[1] -64.45412

22 > loo::loo(bfit.quart)
[1] -60.51446

23 > loo::loo(bfit.quad.trouble)
[1] -63.97302

24 > loo::loo(bfit.quad.lesstrouble)
[1] -64.29662

There is variability among LOOCV values for supposedly equivalent mod-
els, but that can be eliminated by taking more samples from the posterior (in-
crease n.samples in bglmm). Curiously, even though the Markov chain
performed poorly for the raw quadratic model, its LOOCV value is just about
where it should be.

The LOOCV values support our previous conclusions from ANOVA or
AICc: the quadratic model is the best choice. This is also reinforced by the
Bayes factor calculation comparing the quadratic and separate-means models

25 > brms::bayes_factor(bfit.quad,bfit.separate)
Iteration: 1
...
The estimated Bayes factor in favor of x1 over x2 is equal to: 159.1455

(although, the standard warning about the Bayes factor depending strongly
on the prior still holds).

bglmm computes samples from the posterior as part of its call, and you
can review the estimation results either by printing the output or using the
summary function. Here are the results for the separate-means model ap-
plied to the resin lifetime data.

26 > summary(bfit.separate)[,1:8]
mean se_mean sd 2.5% 25% 50% 75% 97.5%

(Intercept) 1.4400 0.000272 0.0172 1.4000 1.4300 1.4400 1.4500 1.4700
temp1 0.4900 0.000525 0.0332 0.4220 0.4680 0.4900 0.5110 0.5550
temp2 0.1890 0.000522 0.0330 0.1240 0.1670 0.1890 0.2110 0.2520
temp3 -0.0609 0.000514 0.0325 -0.1250 -0.0825 -0.0605 -0.0392 0.0024
temp4 -0.2410 0.000559 0.0354 -0.3110 -0.2640 -0.2420 -0.2170 -0.1710
sigma.Intercept 2.1100 0.019200 1.2200 0.7170 1.2500 1.7800 2.6200 5.3800
sigma.temp 0.4780 0.003470 0.2200 0.2240 0.3340 0.4260 0.5620 1.0500
sigma0 0.1010 0.000214 0.0135 0.0783 0.0914 0.0992 0.1080 0.1320

The results include for each parameter the estimated posterior mean, a mea-
sure of how precisely that mean was estimated (se mean), the posterior
standard deviation, and several quantiles of the posterior distribution. For
α̂1 (temp1), the estimated mean is .49, the posterior standard deviation is
.0332, and a 95% posterior interval runs from .422 to .555. These results are
effectively identical to the frequentist estimates and confidence intervals.

You can also visualize the results in a variety of ways.
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(Intercept)

temp.factor1

temp.factor2

temp.factor3

temp.factor4

sigma0

0.0 0.5 1.0 1.5

temp.factor3 temp.factor4 sigma0
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Figure 3.3: Posterior credible intervals and histograms for mean
parameters and error standard deviation in the separate-means
model for the resin lifetime data.

27 > plot(bfit.separate,plottype="interval",pars=c("internal_FullBeta","sigma0"))
ci_level: 0.8 (80% intervals)
outer_level: 0.95 (95% intervals)

28 > plot(bfit.separate,plottype="histogram",pars=c("internal_FullBeta","sigma0"))

For example, Figure 3.3 shows posterior credible intervals and histograms for
the mean parameters and error standard deviation (internal FullBeta
is a shortcut denoting all parameters in the mean structure).

Suppose that your colleague is pretty darn sure that the standard deviation
of the errors should be about 2. You can incorporate that information by us-
ing the arguments sigma.scale0=2, gamma.shape0=100 (sigma0
being the error standard deviation, and a shape of 100 indicating a strong
prior belief).

29 > bfit.separate.alt <- bglmm(logTime˜temp,quiet=TRUE,
sigma.scale0 =2,gamma.shape0 =100,data=myRL)

Warning messages:
1: There were 37 divergent transitions after warmup.
Increasing adapt_delta above 0.8 may help

When we do that in line 29, we get a warning message about divergent tran-
sitions. Divergent transitions are a bad thing, and we need to try to eliminate
them. The principal way to do that is by increasing adapt delta from its
default value of .8 toward 1. Divergent transitions can also indicate that the
model should be reparameterized (as we did before by using scaled predic-
tors or orthogonal polynomials), or they might also indicate that the model
just doesn’t fit very well (which is the case here).

Draft of Feb 25, 2021



3.6 Bayesian Analysis 79

30 > bfit.separate.alt <- bglmm(logTime˜temp,quiet=TRUE,
sigma.scale0 =2,gamma.shape0 =100,data=myRL,adapt_delta=.995)

31 > summary(bfit.separate.alt)[,1:8]
mean se_mean sd 2.5% 25% 50% 75% 97.5%

(Intercept) 1.4200 0.00398 0.221 0.9900 1.28000 1.4200 1.5700 1.840
temp1 0.1570 0.00730 0.259 -0.2650 -0.00965 0.1050 0.2890 0.792
temp2 0.0513 0.00477 0.241 -0.4150 -0.07890 0.0271 0.1750 0.586
temp3 -0.0266 0.00459 0.238 -0.5550 -0.14800 -0.0161 0.0988 0.466
temp4 -0.0713 0.00473 0.242 -0.6150 -0.19500 -0.0399 0.0630 0.385
sigma.Intercept 2.1300 0.02490 1.270 0.6370 1.19000 1.8000 2.6900 5.520
sigma.temp 0.3480 0.01060 0.262 0.0379 0.15900 0.2840 0.4680 1.020
sigma0 1.3300 0.00300 0.158 1.0400 1.22000 1.3200 1.4300 1.650

29 > loo::loo(bfit.separate.alt)
[1] 92.53691

After refitting with an increased adapt delta in line 29, the summary af-
ter line 30 shows results very different than those of the default prior in line
1. Even though we changed the prior on the error variance and not on the
mean effects, the mean effects are shrunk back toward 0. This is because our
prior says that there is a lot of error variability, and as a consequence, some of
the difference between treatment means is being attributed to error variability
rather than treatment mean differences. However, the LOOCV shows that the
model with this modified prior is a very poor predictor of the data relative to
the other models we have investigated (it’s even worse than the single-mean
model).

We can visualize the problem with pointwise posterior predictive plots

32 > plot(bfit.separate.alt,plottype="pointwise")
33 > plot(bfit.separate,plottype="pointwise",ylim=c(-5,9))

as seen in Figure 3.4. The two plots are on the same scale, and one can easily
see that the default prior produces accurate, yet much more precise, predic-
tions.
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34 > BayesFactor::lmBF(logTime˜temp,myRL)
Bayes factor analysis
--------------
[1] temp : 1.561215e+14 0%

Against denominator:
Intercept only

---
Bayes factor type: BFlinearModel, JZS

35 > BayesFactor::lmBF(logTime˜temp.z+temp.z2,myRL)
Bayes factor analysis
--------------
[1] temp.z + temp.z2 : 3.15165e+16 0%

Against denominator:
Intercept only

---
Bayes factor type: BFlinearModel, JZS

36 > 3.1516e16/1.561215e+14
[1] 201.8684

Finally, consider computing the Bayes Factor using the lmBF function in
package BayesFactor. By default, this function computes the Bayes fac-
tor of the fitted model relative to the single-mean model. We do this on lines
34–35 for the separate-means model and the quadratic model. Taking the
ratio of those two Bayes factors on line 36 gives us the Bayes factor for the
quadratic model relative to the separate-means model. The value here is not
the same as we computed on line 25, but the prior distributions used by the
two packages are different, so we cannot expect the Bayes factors to be the
same.

Bayes Factors, LOOCV values, and estimates can all be affected by the
choice of prior for the variances in the models. These effects are smallest
when the priors do not provide much information about the parameters; such
priors are called diffuse, vague, non-informative, and similar names. As pri-
ors become more informative and/or less congruent with the data, the effect
of the prior will be seen in our inferential quantities. In general, estimated
values are much less sensitive to priors as long as the priors are reasonably
non-informative.

3.7 Side-by-Side Plots

Hoaglin, Mosteller, and Tukey (1991) introduce the side-by-side plot as a
method for visualizing treatment effects and residuals. For each term in the
model (including residuals but usually excluding the overall mean), we plot
the values for that term in horizontal rows. Figure 3.5 shows a side-by-side
plot for the resin lifetime data of Example 3.2. We plot the estimated treat-Side-by-side plots

show effects and
residuals

ment effects α̂i in one row and the residuals rij in a second row. (There will
be more rows in more complicated models we will see later.) The horizontal
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Figure 3.4: Pointwise posterior predictive intervals for each
response in the resin lifetime data under the alternative prior and the
default prior, plotted on the same vertical scale.

scale is in the same units as the response. In this plot, we have used a boxplot
for the residuals rather than plot them individually; this will usually be more
understandable when there are relatively many points to be put in a single
row.

Example 3.9 Side-by-side plot for effects in the (non-Bayesian)
separate-means model for resin lifetimes.

We can produce a side-by-side plot with one simple command.

1 > sidebyside(fit.separate)

What we see from the side-by-side plot is that the treatment effects are large
compared to the size of the residuals. We were also able to see this in the
parallel boxplots in the exploratory analysis, but the side-by-side plots will
generalize better to more complicated models.

3.8 Wrap Up

The design aspects of a Completely Randomized Design are almost trivial.
Once you have the treatments, units, and sample sizes, randomly assign treat-
ments to units so that all possible assignments of treatments to units with the
prescribed sample sizes are equally likely. It’s just like drawing tickets from
a hat. It’s dead easy, but it is incredibly effective and robust. When creating
an experiment, always consider the CRD first. You may, in the end, decide
to use another design, but the CRD is your starting point and your reference
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Figure 3.5: Side-by-side plot for the (non-Bayesian)
separate-means model fit to the resin lifetime data.

for how good some other design might be.
Most of this chapter has been about analysis of a CRD. Some people

incorrectly conflate the design and analysis aspects of an experiment; for ex-
ample, I have heard someone say “I ran an ANOVA design.” Do not be that
person. Understand the difference between design and analysis and under-
stand your options for analysis.

We have rather explicitly separated the idea of choosing a model from
the idea of inference on parameters. At the complexity of the models of this
chapter, that separation is a distinction without much of a difference. How-
ever, in later chapters we will consider more complex designs and models
where there is a difference between choosing a model and testing some pa-
rameters. It is best to get used to the idea now.

3.9 Problems

Rats were given one of four different diets at random, and the responseExercise 3.1
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measure was liver weight as a percentage of body weight. The responses
were (data set RatLiverWeight).

Treatment
1 2 3 4

3.52 3.47 3.54 3.74
3.36 3.73 3.52 3.83
3.57 3.38 3.61 3.87
4.19 3.87 3.76 4.08
3.88 3.69 3.65 4.31
3.76 3.51 3.51 3.98
3.94 3.35 3.86

3.64 3.71

(a) Compute the overall mean and treatment effects.

(b) Compute the Analysis of Variance table for these data. What would
you conclude about the four diets?

An experimenter randomly allocated 125 male turkeys to five treatment Exercise 3.2
groups: control and treatments A, B, C, and D. There were 25 birds in each
group, and the mean results were 2.16, 2.45, 2.91, 3.00, and 2.71, respec-
tively. The sum of squares for experimental error was 153.4. Test the null
hypothesis that the five group means are the same against the alternative that
one or more of the treatments differs from the control.

Twelve orange pulp silage samples were divided at random into four Exercise 3.3
groups of three. One of the groups was left as an untreated control, while
the other three groups were treated with formic acid, beet pulp, and sodium
chloride, respectively. One of the responses was the moisture content of the
silage. The observed moisture contents of the silage are shown below (data
from Caro et al. 1990, data set OrangePulpSilage):

NaCl Formic acid Beet pulp Control
80.5 89.1 77.8 76.7
79.3 75.7 79.5 77.2
79.0 81.2 77.0 78.6

Means 79.6 82.0 78.1 77.5
Grand mean 79.3

Compute an analysis of variance table for these data and test the null hypoth-
esis that all four treatments yield the same average moisture contents.

We have five groups and three observations per group. The group means Exercise 3.4
are 6.5, 4.5, 5.7, 5.7, and 5.1, and the mean square for error is .75. Compute
an ANOVA table for these data.

The leaves of certain plants in the genus Albizia will fold and unfold in Exercise 3.5
various light conditions. We have taken fifteen different leaves and subjected
them to red light for 3 minutes. The leaves were divided into three groups
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of five at random. The leaflet angles were then measured 30, 45, and 60
minutes after light exposure in the three groups. Data from W. Hughes, data
set Albizia.

Delay (minutes) Angle (degrees)
30 140 138 140 138 142
45 140 150 120 128 130
60 118 130 128 118 118

Analyze these data to test the null hypothesis that delay after exposure does
not affect leaflet angle.

Suppose that we have a completely randomized design that has five treat-Exercise 3.6
ments, with six units assigned to each treatment, and two measurements on
each unit for a total of 60 responses. What are the degrees of freedom of the
F -ratio for testing the null hypothesis that there is no treatment effect?

Cardiac pacemakers contain electrical connections that are platinum pinsProblem 3.1
soldered onto a substrate. The question of interest is whether different op-
erators produce solder joints with the same strength. Twelve substrates are
randomly assigned to four operators. Each operator solders four pins on each
substrate, and then these solder joints are assessed by measuring the shear
strength of the pins. Data from T. Kerkow, data set PacemakerPins.

Strength (lb)
Operator Substrate 1 Substrate 2 Substrate 3
1 5.60 6.80 8.32 8.70 7.64 7.44 7.48 7.80 7.72 8.40 6.98 8.00
2 5.04 7.38 5.56 6.96 8.30 6.86 5.62 7.22 5.72 6.40 7.54 7.50
3 8.36 7.04 6.92 8.18 6.20 6.10 2.75 8.14 9.00 8.64 6.60 8.18
4 8.30 8.54 7.68 8.92 8.46 7.38 8.08 8.12 8.68 8.24 8.09 8.06

Analyze these data to determine if there is any evidence that the operators
produce different mean shear strengths. (Hint: what are the experimental
units?)

Scientists are interested in whether the energy costs involved in reproduc-Problem 3.2
tion affect longevity. In this experiment, 125 male fruit flies were divided at
random into five sets of 25. In one group, the males were kept by themselves.
In two groups, the males were supplied with one or eight receptive virgin fe-
male fruit flies per day. In the final two groups, the males were supplied with
one or eight unreceptive (pregnant) female fruit flies per day. Other than
the number and type of companions, the males were treated identically. The
longevity of the flies was observed. Data from Hanley and Shapiro (1994),
data set FruitFlyLifespan.
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Companions Longevity (days)
None 35 37 49 46 63 39 46 56 63 65 56 65 70

63 65 70 77 81 86 70 70 77 77 81 77

1 pregnant 40 37 44 47 47 47 68 47 54 61 71 75 89
58 59 62 79 96 58 62 70 72 75 96 75

1 virgin 46 42 65 46 58 42 48 58 50 80 63 65 70
70 72 97 46 56 70 70 72 76 90 76 92

8 pregnant 21 40 44 54 36 40 56 60 48 53 60 60 65
68 60 81 81 48 48 56 68 75 81 48 68

8 virgin 16 19 19 32 33 33 30 42 42 33 26 30 40
54 34 34 47 47 42 47 54 54 56 60 44

Analyze these data to test the null hypothesis that reproductive activity does
not affect longevity. Write a report on your analysis. Be sure to describe the
experiment as well as your results.

Park managers need to know how resistant different vegetative types are Problem 3.3
to trampling so that the number of visitors can be controlled in sensitive areas.
The experiment deals with alpine meadows in the White Mountains of New
Hampshire. Twenty lanes were established, each .5 m wide and 1.5 m long.
These twenty lanes were randomly assigned to five treatments: 0, 25, 75, 200,
or 500 walking passes. Each pass consists of a 70-kg individual wearing lug-
soled boots walking in a natural gait down the lane. The response measured
is the average height of the vegetation along the lane one year after trampling.
Data based on Table 16 of Cole (1993), data set TrampledPlants.

Number
of passes Height (cm)
0 20.7 15.9 17.8 17.6
25 12.9 13.4 12.7 9.0
75 11.8 12.6 11.4 12.1
200 7.6 9.5 9.9 9.0
500 7.8 9.0 8.5 6.7

Analyze these data to determine if trampling has an effect after one year, and
if so, describe that effect.

Caffeine is a common drug that affects the central nervous system. Among Problem 3.4
the issues involved with caffeine are how does it get from the blood to the
brain, and does the presence of caffeine alter the ability of similar compounds
to move across the blood-brain barrier? In this experiment, 43 lab rats were
randomly assigned to one of eight treatments. Each treatment consisted of
an arterial injection of C14-labeled adenine together with a concentration of
caffeine (0 to 50 mM). Shortly after injection, the concentration of labeled

Draft of Feb 25, 2021



86 Completely Randomized Designs

adenine in the rat brains is measured as the response (data from McCall,
Millington, and Wurtman 1982, data set CaffeineAdenine).

Caffeine (mM) Adenine
0.0 5.74 6.90 3.86 6.94 6.49 1.87
0.1 2.91 4.14 6.29 4.40 3.77
0.5 5.80 5.84 3.18 3.18
1 3.49 2.16 7.36 1.98 5.51
5 5.92 3.66 4.62 3.47 1.33

10 3.05 1.94 1.23 3.45 1.61 4.32
25 1.27 .69 .85 .71 1.04 .84
50 .93 1.47 1.27 1.13 1.25 .55

The main issues in this experiment are whether the amount of caffeine present
affects the amount of adenine that can move from the blood to the brain, and
if so, what is the dose response relationship. Analyze these data.

I am curious about the role of the First Year Experience course (requiredProblem 3.5
of all freshmen in our college) on student retention. The 2450 incoming
freshmen self select into 100 groups (half with 24 students and half with 25
students). The 100 sections are divided into 4 groups of 25 at random. These
four groups are assigned to the factor level combinations of medium (online
versus face to face) and freedom (student choice about which units to do or
no student choice). Two years later, when students would be entering their
third year of college, we determine which of the 2450 students have returned
for their third year (that is, are retained into the third year).

How many error degrees of freedom does this design have? Justify your
answer.

Parkinson’s disease appears to be caused by reduced transmission ofProblem 3.6
GABA (gamma-aminobutyric acid) to the sub thalamic region of the brain.
GABA is an inhibitor, so that area becomes over excited leading to the symp-
toms. Researchers test an experimental gene therapy. Twenty-two advanced
stage Parkinson’s patients receive the gene therapy, and 23 other patients re-
ceive a placebo therapy. From a pre-treatment average score of 25, the gene
therapy group improved by 8 points, and the control group improved by 4
points. The four point difference between the gene therapy and the control
group is statistically significant (using an ordinary two-sample t-test).

(a) Is this a randomized experiment?

(b) Is the four point improvement by the control group a statistically sig-
nificant improvement from baseline? Why or why not?

(c) This experiment is an example of what well known experimental phe-
nomenon?

Engineers wish to know the effect of polypropylene fibers on the com-Problem 3.7
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pressive strength of concrete. Fifteen concrete cubes are produced and ran-
domly assigned to five levels of fiber content (0, .25, .50, .75, and 1%). Data
from Figure 2 of Paskova and Meyer (1997), data set ConcreteStrength.

Fiber
content (%) Strength (ksi)
0 7.8 7.4 7.2
.25 7.9 7.5 7.3
.50 7.4 6.9 6.3
.75 7.0 6.7 6.4
1 5.9 5.8 5.6

Analyze these data to determine if fiber content has an effect on concrete
strength, and if so, describe that effect.

Under the right conditions, cells in a fibrin solution will deposit on a Problem 3.8
mold and create a bio-artificial vascular graft (a manufactured patch for an
artery). If the cells are subjected to mechanical stress during deposition,
they respond by producing more extra-cellular matrix, which increases the
mechanical strength of the graft. One sensible way to produce the stress is
to sleeve the graft over a latex tube and cyclically distend the tube with air.
The problem is that the apparatus needs to be sterile, the convenient method
for sterilizing the latex tube is autoclaving, and the heat of autoclaving will
modify the elastic properties of the latex.

This experiment examines the effects of autoclaving on the elastic mod-
ulus (in kPa) of the latex. The adjustable factors for the autoclave are the
temperature (121 C or 135 C) and the time (10 minutes or 20 minutes). We
look at five treatments: Control (no autoclaving), and the factorial combi-
nations of time and temperature, each at the two levels given above. Fifteen
latex tube samples are randomly assigned to the five treatments, and the mod-
ulus is then observed after treatment. Large values of the modulus are good.
Data follow (from Z. Syedain, data set Autoclaving).

Treatment modulus (kPa)
Control 1117.5 1076.2 951.1
121o, 10 min 732.8 750.3 707.8
121o, 20 min 596.0 648.6 713.9
135o, 10 min 565.4 623.4 608.0
135o, 20 min 510.9 664.6 484.9

Analyze these data to determine if autoclaving affects the modulus of
elasticity.

Ninety-three student volunteers are told that they will be having a con- Problem 3.9
versation with a member of their same gender. The students are randomly
assigned to three treatments, 31 students per treatment. One group of stu-
dents will be told that their conversation partner is is an extrovert, a second
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group is told that their partner is an introvert, and the third group is given no
information. Prior to beginning the conversations, subjects fill out a ques-
tionaire.

In fact, there is no conversation; the quantities derived from the pre-
conversation questionaire are the responses. The response shown here is
“perception of power” in the upcoming conversation, a scale derived from
18 items in the questionaire. Higher responses on this scale indicate percep-
tions of greater power. (Synthetic data, data set PowerPerception.)

Information Perceived power
Extrovert 3.41 3.11 3.06 3.95 4.23 2.62 3.42 4.35

3.77 2.65 3.62 2.73 4.25 3.47 3.14 4.54
3.44 3.83 4.67 3.84 3.47 2.80 4.75 4.00
3.70 3.59 4.61 4.98 4.02 2.65 4.99

Introvert 4.60 3.79 4.14 4.39 4.34 3.91 3.51 3.17
3.93 5.68 3.01 3.26 5.13 3.85 2.98 4.03
4.28 6.41 2.54 4.93 4.78 3.60 3.67 3.92
3.73 5.13 4.09 3.89 4.38 4.20 5.06

None 2.22 2.36 1.52 3.08 2.50 4.68 2.16 3.29
3.23 2.14 3.79 3.53 3.14 2.50 2.25 4.97
2.24 3.63 5.54 3.91 3.71 3.81 3.50 2.74
4.07 2.47 2.69 2.49 3.65 2.71 3.43

Analyze these data to determine if the expectation of certain personality
characteristics in the conversation partner affects the perception of power.

Prove that µ? =
∑g

i=1 µi/g is equivalent to
∑g

i=1 αi = 0.Question 3.1

Prove thatQuestion 3.2

0 =

g∑
i=1

ni∑
j=1

α̂irij .
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Chapter 4

Looking for Specific
Differences—Contrasts

An Analysis of Variance can give us an indication that not all the treatment
groups have the same mean response, but an ANOVA does not, by itself, tell
us which treatments are different or in what ways they differ. To do this, we
need to look at the treatment means, or equivalently, at the treatment effects.
One method to examine treatment effects is called a contrast.

ANOVA is like background lighting that dimly illuminates all of our data,
but not giving enough light to see details. Using a contrast is like using a Contrasts

examine specific
differences

spotlight; it enables us to focus in on a specific, narrow feature of the data.
But the contrast has such a narrow focus that it does not give the overall
picture. By using several contrasts, we can move our focus around and see
more features. Intelligent use of contrasts involves choosing our contrasts so
that they highlight interesting features in our data.

4.1 Contrast Basics

Contrasts take the form of a difference between means or averages of means.
For example, here are two contrasts:

(µ+ α6)− (µ+ α3)

and
µ+ α2 + µ+ α4

2
− µ+ α1 + µ+ α3 + µ+ α5

3
.

The first compares the means of treatments 6 and 3, while the second com-
pares the mean response in groups 2 and 4 with the mean response in groups
1, 3, and 5.

Formally, a contrast is a linear combination of treatment means or effects Contrasts
compare

averages of
means

∑g
i=1wiµi = w({µi}) or

∑g
i=1wiαi = w({αi}), where the coefficients wi

satisfy
∑g

i=1wi = 0.
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Contrast coefficients add to zero.

Less formally, we sometimes speak of the set of contrast coefficients {wi} as
being a contrast; we will try to avoid ambiguity. Notice that because the sum
of the coefficients is zero, we have that

w({αi}) =

g∑
i=1

wiαi = µ

g∑
i=1

wi +

g∑
i=1

wiαi

=

g∑
i=1

wi(µ+ αi) = w({µi}) .

(You can replace µ with any constant, but µ gives us the link to treatment
means.) We may also make contrasts in the observed data:

w({yi•}) =

g∑
i=1

wiyi• =

g∑
i=1

wi(yi• −
g∑
i=1

yi•/g) =

g∑
i=1

wiα̂i = w({α̂i}) .

The
∑
yi•/g can be replaced with any other definition of µ̂, and we find

that the contrast in the treatment effects equals the contrast in the treatment
means, regardless of how µ̂ is defined, and thus regardless of how the treat-
ment effects are constrained. Put another way, a contrast depends on theContrasts do not

depend on
α-restrictions

differences between the values being contrasted, but not on the overall level
of the values. Recall that with respect to restrictions on the treatment effects,
we said that “the important things don’t depend on which set of restrictions
we use.” In particular, contrasts don’t depend on the restrictions.

Contrasts do not depend on how treatment effects are parameterized.

We may use several different kinds of contrasts in any one analysis. The
trick is to use contrasts that focus on interesting questions. These questions
will differ from situation to situation.

Probably the most common contrasts are pairwise comparisons, where
we contrast the mean response in one treatment with the mean response in a
second treatment. For a pairwise comparison, one contrast coefficient is 1,Pairwise

comparisons a second contrast coefficient is −1, and all other contrast coefficients are 0.
For example, in an experiment with g = 4 treatments, the coefficients (0, 1,
−1, 0) compare the means of treatments 2 and 3, and the coefficients (−1, 0,
1, 0) compare the means of treatments 1 and 3. For g treatments, there are
g(g − 1)/2 different pairwise comparisons. We will consider simultaneous
inference for pairwise comparisons in Section 5.4.

A second classic example of contrasts occurs in an experiment with a
control and two or more new treatments. Suppose that treatment 1 is a con-
trol, and treatments 2 and 3 are new treatments. We might wish to compare
the average response in the new treatments to the average response in the
control; that is, on average do the new treatments have the same response as

Draft of Feb 25, 2021



4.1 Contrast Basics 91

the control? Here we could use coefficients (−1, .5, .5), which would sub-
tract the average control response from the average of treatments 2 and 3’s
average responses. As discussed below, this contrast applied to the observedControl versus

other treatments treatment means ((y2• + y3•)/2 − y1•) would estimate the contrast in the
treatment effects ((α2 + α3)/2− α1). Note that we would get the same kind
of information from contrasts with coefficients (1, −.5, −.5) or (−6, 3, 3);
we’ve just rescaled the result with no essential loss of information. We might
also be interested in the pairwise comparisons, including a comparison of the
new treatments to each other (0, 1, −1) and comparisons of each of the new
treatments to control (1, −1, 0) and (1, 0, −1).

Another common form of contrast is useful in situations where the treat-
ments are naturally grouped. Consider next an experiment with four treat-
ments examining the growth rate of lambs. The treatments are four different
food supplements. Treatment 1 is soy meal and ground corn, treatment 2
is soy meal and ground oats, treatment 3 is fish meal and ground corn, and
treatment 4 is fish meal and ground oats. Again, there are many potential
contrasts of interest. A contrast with coefficients (.5, .5, −.5, −.5) would
take the average response for fish meal treatments and subtract it from the Compare related

groups of
treatments

average response for soy meal treatments. This could tell us about how the
protein source affects the response. Similarly, a contrast with coefficients (.5,
−.5, .5, −.5) would take the average response for ground oats and subtract it
from the average response for ground corn, telling us about the effect of the
carbohydrate source.

Finally, consider an experiment with three treatments examining the ef-
fect of development time on the number of defects in computer chips pro-
duced using photolithography. The three treatments are 30, 45, and 60 sec-
onds of developing. If we think of the responses as lying on a straight line
function of development time, then the contrast with coefficients (−1/30, 0, Polynomial

contrasts for
quantitative

doses

1/30) will estimate the slope of the line relating response and time. If in-
stead we think that the responses lie on a quadratic function of development
time, then the contrast with coefficients (1/450, −2/450, 1/450) will estimate
the quadratic term in the response function. The use of contrasts to estimate
or test polynomial terms is now mostly historical, because modern software
allows us to easily refit with polynomial predictors rather than extract the
information from a separate means model using contrasts.

Two contrasts {w} and {w?} are said to be orthogonal if
g∑
i=1

wiw
?
i /ni = 0 .

If there are g treatments, you can find a set of g−1 contrasts that are mutually
orthogonal, that is, each one is orthogonal to all of the others. However, there
are infinitely many sets of g− 1 mutually orthogonal contrasts, and there are g − 1 orthogonal

contrastsno mutually orthogonal sets with more than g−1 contrasts. There is an anal-
ogy from geometry. In a plane, you can have two lines that are perpendicular
(orthogonal), but you can’t find a third line that is perpendicular to both of
the others. On the other hand, there are infinitely many pairs of perpendicular
lines.
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Orthogonal contrasts have two properties that can provide modest advan-
tages. First, orthogonal contrasts applied to observed means are independentOrthogonal

contrasts are
independent and
partition variation

(as random variables). Thus, the random error of one contrast is not corre-
lated with the random error of an orthogonal contrast. Second, a complete set
of orthogonal contrasts partitions the between groups sum of squares. That
is, if you compute the sums of squares for a full set of orthogonal contrasts
(g−1 contrasts for g groups), then adding up those g−1 sums of squares will
give you exactly the between groups sum of squares (which also has g − 1
degrees of freedom).

In any experimental situation, you should use the contrasts that address
meaningful questions. If they do not happen to be orthogonal, that is alright.
It is much more important to address the correct questions than it is to be
orthogonal.

Use contrasts that address the questions you are trying to answer.

4.2 Standard Frequentist Inference for Contrasts

We use contrasts in observed treatment means or effects to make inference
about the corresponding contrasts in the true treatment means or effects. The
kinds of inference we work with here are point estimates, confidence inter-
vals, and tests of significance. The procedures we use for contrasts are similar
to the procedures we use when estimating or testing means.

The observed treatment mean yi• is an unbiased estimate of µi = µ+ αi,
so a sum or other linear combination of observed treatment means is an un-w({yi•})

estimates
w({µi})

biased estimate of the corresponding combination of the µi’s. In particular,
a contrast in the observed treatment means is an unbiased estimate of the
corresponding contrast in the true treatment means. Thus we have:

E[w({yi•})] = E[w({α̂i})] = w({µi}) = w({αi}) .

The variance of yi• is σ2/ni, and the treatment means are independent,
so the variance of a contrast in the observed means is

Var [w({yi•})] = σ2
g∑
i=1

w2
i

ni
.

We will usually not know σ2, so we estimate it by the mean square for error
from the ANOVA.

We compute a confidence interval for a mean parameter with the general
form: unbiased estimate ± t-multiplier × estimated standard error. Con-
trasts are linear combinations of mean parameters, so we use the same basicConfidence

interval for
w({µi})

form. We have already seen how to compute an estimate and standard error,
so

w({yi•})± tE/2,N−g
√

MSE

√√√√ g∑
i=1

w2
i

ni
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4.2 Standard Frequentist Inference for Contrasts 93

forms a 1 − E confidence interval for w({µi}). As usual, the degrees of
freedom for our t-percent point come from the degrees of freedom for our
estimate of error variance, hereN −g. We use the E/2 percent point because
we are forming a two-sided confidence interval, with E/2 error on each side.

The usual t-test statistic for a mean parameter takes the form

unbiased estimate− null hypothesis value
estimated standard error of estimate

.

This form also works for contrasts. If we have the null hypothesisH0 : w({µi}) =
δ, then we can do a t-test of that null hypothesis by computing the test statis-
tic

t =
w({yi•})− δ

√
MSE

√∑g
i=1

w2
i

ni

.

Under H0, this t-statistic will have a t-distribution with N − g degrees of t-test for w({µi})
freedom. Again, the degrees of freedom come from our estimate of error
variance. The p-value for this t-test is computed by getting the area under
the t-distribution with N − g degrees of freedom for the appropriate region:
either less or greater than the observed t-statistic for one-sided alternatives,
or twice the tail area for a two-sided alternative.

We may also compute a sum of squares for any contrast w({yi•}):

SSw =
(
∑g

i=1wiyi•)
2∑g

i=1
w2
i

ni

.

This sum of squares has 1 degree of freedom, so its mean square is MSw =
SSw/1 = SSw. We may use MSw to test the null hypothesis thatw({µi}) = 0
by forming the F -statistic MSw/MSE. If H0 is true, this F -statistic will have
an F -distribution with 1 and N − g degrees of freedom (N − g from the SS and F -test for

w({µi})MSE). It is not too hard to see that this F is exactly equal to the square of
the t-statistic computed for same null hypothesis δ = 0. Thus the F -test and
two-sided t-tests are equivalent for the null hypothesis of zero contrast mean.
It is also not too hard to see that if you multiply the contrast coefficients by
a nonzero constant (for example, change from (−1, .5, .5) to (2, −1, −1)),
then the contrast sum of squares is unchanged. The squared constant cancels
from the numerator and denominator of the formula.

Example 4.1 Rat liver weights
Exercise 3.1 provided data on the weight of rat livers as a percentage

of body weight for four different diets. Summary statistics from those data
follow:

i 1 2 3 4
yi• 3.75 3.58 3.60 3.92
ni 7 8 6 8 MSE = .04138

If diets 1, 2, and 3 are rations made by one manufacturer, and diet 4 is a
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ration made by a second manufacturer, then it may be of interest to compare
the responses from the diets of the two manufacturers to see if there is any
difference. Further, if ration 1 is an “premium” ration, and rations 2 and3 are
standard, then it may be of interest to compare the premium ration from the
first manufacturer to the standard rations from the first manufacturer.

The contrast with coefficients (1/3, 1/3, 1/3, −1) will compare the mean
response in the first three diets (manufacturer 1) with the mean response in
the last diet (manufacturer 2). Note that we intend “the mean response in the
first three diets” to denote the average of the treatment averages, not the sim-
ple average of all the data from those three treatments. The simple average
will not be the same as the average of the averages because the sample sizes
are different.

Our point estimate of this contrast is

w({yi•}) =
1

3
3.75 +

1

3
3.58 +

1

3
3.60 + (−1)3.92 = −.277

with standard error

SE(w({yi•})) =
√
.04138

√
(13)2

7
+

(13)2

8
+

(13)2

6
+

(−1)2

8
= .0847 .

The mean square for error has 29− 4 = 25 degrees of freedom. To construct
a 95% confidence interval for w({µi}), we need the upper 2.5% point of a
t-distribution with 25 degrees of freedom; this is 2.06, as can be found in
Appendix Table C.3 or using software. Thus our 95% confidence interval is

−.277± 2.06× .0847 = −.277± .174 = (−.451,−.103) .

Suppose that we wish to test the null hypothesis H0 : w({µi}) = δ. Here
we will use the t-test and F -test to test H0 : w({µi}) = δ = 0, but the t-test
can test other values of δ. Our t-test is

−.277− 0

.0847
= −3.27 ,

with 25 degrees of freedom. For a two-sided alternative, we compute the
p-value by finding the tail area under the t-curve and doubling it. Here we
get twice .00156 or about .003. This is fairly strong evidence against the null
hypothesis.

Because our null hypothesis value is zero with a two-sided alternative, we
can also test our null hypothesis by computing a mean square for the contrast
and forming an F -statistic. The sum of squares for our contrast is

(133.75 + 1
33.58 + 1

33.60 + (−1)3.92)2

(1/3)2

7 + (1/3)2

8 + (1/3)2

6 + (−1)2
8

=
(−.277)2

.1733
= .443 .
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The mean square is also .443, so the F -statistic is .443/.04138 = 10.7. We
compute a p-value by finding the area to the right of 10.7 under the F -
distribution with 1 and 25 degrees of freedom, getting .003 as for the t-test.

Of course, we are not likely to be doing these contrast calculations by
hand. The linear.contrast function does the work for us.

1 > fit1 <- lm(weight ˜ diet, data=RatLiverWeight)
2 > linear.contrast(fit1,diet,c(1/3,1/3,1/3,-1))

estimates se t-value p-value lower-ci upper-ci
1 -0.2811508 0.08467399 -3.320392 0.00276231 -0.4555401 -0.1067615

3 > linear.contrast(fit1,diet,c(1,-.5,-.5,0))
estimates se t-value p-value lower-ci upper-ci

1 0.1565476 0.09448756 1.656807 0.1100575 -0.03805315 0.3511484
4 > linear.contrast(fit1,diet,cbind(c(1/3,1/3,1/3,-1),c(1,-.5,-.5,0)))

estimates se t-value p-value lower-ci upper-ci
1 -0.2811508 0.08467399 -3.320392 0.00276231 -0.45554013 -0.1067615
2 0.1565476 0.09448756 1.656807 0.11005747 -0.03805315 0.3511484

Line 1 fits the linear model. Line 2 uses linear.contrast to calculate
the inferential quantities for the contrast with coefficients (1/3, 1/3, 1/3, −1).
There is more roundoff error in our hand calculations than is typical, so per-
haps we should have carried more digits. The inference remains the same,
however. Note that you can change the coverage of the interval estimate
using the confidence argument.

Line 3 uses the contrast with coefficients (1, −.5, −.5, 0) to compare
the premium to standard rations within manufacturer 1. In this case, the p-
value is .11, so there is little evidence against the null hypothesis that the
premium ration delivers the same response as the standard rations. Line 4
merely shows that one can do both contrasts in a single command by creating
a matrix with a column for each set of contrast coefficients.

4.3 Bayesian Inference for Contrasts

Usual Bayesian inference for a contrast would be the posterior mean, pos-
terior standard deviation, and a posterior interval estimate. These are easily
computed from the MCMC samples from the posterior by applying the con-
trast to each sample.

In addition, one can do model comparison. In this case, the models being
compared would be the unrestricted model and a model where we constrain
the estimated treatment effects in such a way that the contrast value will be
exactly zero. This constrained model plays the role of the “null” model. The
constrained and unconstrained models can then be compared via LOOCV or
Bayes factor. Unfortunately, this means that we need to refit a constrained
Bayesian model for every contrast we wish to consider.

Example 4.2 Bayesian contrast analysis of rat liver weights
We begin by fitting the Bayesian model in line 1, and then use the

linear.contrast function in line 2.
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1 > fit2 <- bglmm(weight˜diet,data=RatLiverWeight,adapt_delta = .99)
2 > linear.contrast(fit2,diet,cbind(c(1/3,1/3,1/3,-1),c(1,-.5,-.5,0)))

post. mean post. sd lower upper approx BF
1 -0.2299550 0.08994509 -0.40264604 -0.04355175 12.224385
2 0.1258293 0.09543917 -0.05953985 0.31158403 1.110057

3 > fit2c1 <- bglmm(weight˜diet,data=RatLiverWeight,adapt_delta = .99,
add.constraints = list(diet=c(1/3,1/3,1/3,-1)), show.redundant.effects = TRUE)

4 > fit2c2 <- bglmm(weight˜diet,data=RatLiverWeight,adapt_delta = .99,
add.constraints = list(diet=c(1,-.5,-.5,0)),show.redundant.effects = TRUE)

5 > summary(fit2c2)[,c(1,3)]
mean sd

(Intercept) 3.7100 0.0419
diet1 -0.0587 0.0249
diet2 -0.0728 0.0600
diet3 -0.0446 0.0594
diet4 0.1760 0.0747
sigma.Intercept 4.9100 2.7600
sigma.diet 0.2950 0.2170
sigma0 0.2220 0.0322

6 > loo(fit2c1)
[1] 3.845055

7 > loo(fit2c2)
[1] -2.940697

8 > loo(fit2)
[1] -3.602275

9 > bayes_factor(fit2,fit2c1)
The estimated Bayes factor in favor of x1 over x2 is equal to: 11.7724

10 > bayes_factor(fit2,fit2c2)
The estimated Bayes factor in favor of x1 over x2 is equal to: 0.9501

11 > linear.contrast(fit2,diet,cbind(c(1/3,1/3,1/3,-1),c(1,-.5,-.5,0)),exactBF=TRUE)
post. mean post. sd lower upper BF

1 -0.2261716 0.09495031 -0.4050476 -0.0322537 12.0078787
2 0.1240304 0.09312277 -0.0528093 0.3054965 0.9773381

For a Bayesian model, the output of linear.contrast includes the pos-
terior mean, posterior standard deviation, and a posterior interval estimate.
It also includes an approximate Bayes factor for comparing the unrestricted
model to the model with the coefficients constrained to have contrast value
zero. In this case, the (approximate) Bayes factor shows a postive preference
for the unconstrained model over the model that requires the mean of the first
three treatments to equal the mean of the third treatment. For the second con-
trast, the (approximate) Bayes factor is close enough to 1 that it is difficult to
have much of a preference for full model over the constrained model (or vice
versa).

Lines 3 and 4 fit two constrained models. In line 3, we add constraints so
that the coefficients of the term diet satisfy the contrast (1/3, 1/3, 1/3, −1),
that is, this contrast will always be 0. Line 4 is analogous for the contrast
(1,−.5,−.5,0). Note that in addition to adding the constraint to the function
call, we also ask bglmm to return all the coefficients, even the redundant
(unneeded mathematically) coefficients. We use this in line 5, where we ask
for a summary of model results for the second constrained model. Because
we asked to see redundant coefficients, all the coefficients show up in the
summary. In particular, we can see that the average of the posterior means
for diets 2 and 3 is the same as the posterior mean for diet 1.
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Lines 6, 7, and 8 compute LOOCV values for our three models, and
lines 9 and 10 compute Bayes factors comparing the unconstrained model to
each of the constrained models. The inference from the actual Bayes factors
agrees with that of the approximate Bayes factors, although the values are
not that similar. The Bayes factor ever so slightly prefers the model with the
contrast (1, −.5, −.5, 0) constrained to be zero. LOOCV, however, prefers
the full, unconstrained model. The is an example of a predictive criterion like
LOOCV preferring larger models than a more stringent criterion such as the
Bayes factor.

The approximation used in linear.contrast to compute the Bayes
factor is asymptotic, meaning that it works better for larger data sets. The
linear.contrast function also has an option exactBF=TRUE (as shown
in line 11), in which case it will refit the model constraining each contrast and
then compute the Bayes factor. This is, of course, much slower than the ap-
proximate method.

4.4 Further Reading and Extensions

Contrasts are a special case of estimable functions, which are described in
some detail in Appendix Section A.6. Treatment means and averages of
treatment means are other estimable functions. Estimable functions are those
features of the data that do not depend on how we choose to restrict the treat-
ment effects.

4.5 Problems

Use the data from Exercise 3.3. Compute a 99% confidence interval for Exercise 4.1
the difference in response between the average of the three treatment groups
(acid, pulp, and salt) and the control group.

Refer to the data in Problem 3.1. Workers 1 and 2 were experienced, Exercise 4.2
whereas workers 3 and 4 were novices. Find a contrast to compare the expe-
rienced and novice workers and test the null hypothesis that experienced and
novice works produce the same average shear strength.

Consider an experiment taste-testing six types of chocolate chip cookies: Exercise 4.3
1 (brand A, chewy, expensive), 2 (brand A, crispy, expensive), 3 (brand B,
chewy, inexpensive), 4 (brand B, crispy, inexpensive), 5 (brand C, chewy,
expensive), and 6 (brand D, crispy, inexpensive). We will use twenty different
raters randomly assigned to each type (120 total raters).
(a) Design contrasts to compare chewy with crispy, and expensive with inex-
pensive.

(b) Are your contrasts in part (a) orthogonal? Why or why not?

The resistance of a wood product to the flow of electricity depends on Exercise 4.4
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the moisture content of the product. Thus a measure of resistance is some-
times used to measure moisture content. Consider an experiment with six
treatments: particle board at low moisture, particle board at medium mois-
ture, particle board at high moisture, plywood at low moisture, plywood at
medium moisture, and solid fir at low moisture. Resistance is measured sev-
eral times for each treatment.

Construct a contrast comparing low moisture to medium moisture, and
describe why your contrast is good.

I have a completely randomized design with 40 observations, 10 in eachExercise 4.5
of four treatment groups. The treatments are different temperatures: 90, 100,
110, and 120 degrees C. The sum of squares between treatments is 250. The
sum of squares for the contrast with coefficients (−3, 1, 1, 1) is 125, and the
sum of squares for the contrast with coefficients (0, −2, 1, 1) is 80. What
is the sum of squares for the contrast with coefficients (0, 0, 1, −1)? Justify
your answer.

A consumer testing agency obtains four cars from each of six makes:Problem 4.1
Ford, Chevrolet, Nissan, Lincoln, Cadillac, and Mercedes. Makes 3 and 6
are imported while the others are domestic; makes 4, 5, and 6 are expensive
while 1, 2, and 3 are less expensive; 1 and 4 are Ford products, while 2 and
5 are GM products. We wish to compare the six makes on their oil use per
100,000 miles driven. The mean responses by make of car were 4.6, 4.3, 4.4,
4.7, 4.8, and 6.2, and the sum of squares for error was 2.25.

Design a set of contrasts that seem meaningful. For each contrast, outline
its purpose.

Consider the data in Problem 3.2. Design a set of contrasts that seemProblem 4.2
meaningful. For each contrast, outline its purpose and test the null hypothesis
that the contrast has expected value zero.

One-hundred thirteen people were randomly assigned into five groups.Problem 4.3
Each group will receive some information about a political campaign, and
then make a determination about whether the campaign has been using pos-
itive or negative advertising. They make that rating on a 1 to 7 scale, with
1 being most positive and 7 being most negative. Group one receives the
transcript of a television ad that attacks an opposing candidate. Group two
receives the transcript of the ad plus an editorial describing the campaign as
generally positive. Group three receives the transcript of the ad plus an ed-
itorial describing the campaign as generally negative. Groups four and five
receive only the positive and negative editorials, respectively. Data follow
(data set cfcdae::PoliticalAds).
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Trans. only 4 2 6 4 6 3 4 5 4 4 6 6 3 4
4 4 4 2 4 6 4 5 4

Trans. & pos. ed. 4 5 2 4 6 5 5 2 4 5 5 5 5 4
5 6 4 5 5 3 3 4 6 2 5 4 3

Trans. & neg. ed. 7 5 6 4 3 5 7 7 6 5 7 5 5 7
6 5 7 7 6 4 5 6 5

Pos. ed. only 7 3 3 5 5 4 4 4 4 3 2 4 3 5
2 4 3 2 4 1 4

Neg. ed. only 3 5 7 5 6 3 5 6 5 5 4 6 4 7
7 7 6 6 6

Does media coverage affect perception? Does the actual transcript change
the response to media reporting? Assuming the editorials affect preception,
does positive reporting improve perception as much as negative reporting de-
creases it?

Cakes can be baked either one at a time on the top or bottom oven rack, Problem 4.4
or two at a time, with one on the top rack and one on the bottom rack. We
bake eight cakes, with two cake mix boxes randomly assigned to each of the
four treatments: top rack single, bottom rack single, top rack double, bottom
rack double. After the cake is baked and allowed to cool for 1 hour, its height
(mm) is measured at five locations, with the average of the five measurements
taken as the height for the cake. Data follow (data from D. Schendel, data set
cfcdae:CakeHeights).

Brand Height (mm)
Top, single 50.6 49.2
Bottom, single 46.0 46.4
Top, double 48.4 47.3
Bottom, double 45.1 46.1

Use contrasts to compare the top rack heights to the bottom rack heights, and
the single cake heights to the double cake heights.

Everyone likes a strong, durable paper towel (absorbency is another de- Problem 4.5
sirable property, but this experiment is about durability). Five rolls of paper
towels are purchased, one each from five brands (B, V, S, S2, and T). The
first three brands are name brands, and the last two are store brands. From
each roll, we randomly select three towels. In random order, each towel is
dipped in water until wet, gently squeezed by hand to remove absorbed water,
then spread across the top of a bowl and held in place by clothespins. Then,
pennies are gently placed on the suspended towel until the towel breaks. The
number of pennies until the towel is the measure of strength. Data follow
(data from A. Frosch, data set cfcdae::TowelStrength).
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Brand Pennies
B 145 119 162
V 159 170 133
S 73 80 74
S2 84 89 94
T 138 125 140

Use contrasts to (a) test the null hypothesis that name brands have the same
strength as store brands, and (b) test the null hypothesis that brands coded
with an S have the same strength as brands not coded with an S.

In an experiment with three treatments and samples sizes n1 = 15, n2 =Problem 4.6
10, n3 = 10, the sum of squares for treatments is 100 with 2 degrees of free-
dom. We also know that the sum of squares for the contrast with coefficients
(2, −1, −1) is 80.

Consider the contrast with coefficients (0, 1, −1). Can you determine
the sum of squares for this contrast? If so, compute the sum of squares and
explain why your computation is correct. If not, explain why the information
given is inadequate.

Show that under our assumptions orthogonal contrasts in the observedQuestion 4.1
treatment means are uncorrelated random variables.
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Chapter 5

Multiple Comparisons

When we make several related tests or interval estimates at the same time,
frequentist analysis must compensate. This is called making multiple com-
parisons or doing simultaneous inference. The issue of multiple comparisons
is one of error rates. Each of the individual tests or confidence intervals has a
Type I error rate Ei that can be controlled by the experimenter. If we consider Multiple

comparisons,
simultaneous

inference, families
of hypotheses

the tests together as a family, then we can also compute a combined Type I
error rate for the family of tests or intervals. When a family contains more
and more true null hypotheses, the probability that one or more of these true
null hypotheses is rejected increases, and the probability of any Type I errors
in the family can become quite large. Multiple comparisons procedures deal
with Type I error rates for families of tests.

Example 5.1 Carcinogenic mixtures
We are considering a new cleaning solvent that is a mixture of 100 chem-

icals. Suppose that regulations state that a mixture is safe if all of its con-
stituents are safe (pretending we can ignore chemical interaction). We test
the 100 chemicals for causing cancer, running each test at the 5% level. This
is the individual error rate that we can control.

What happens if all 100 chemicals are harmless and safe? Because we
are testing at the 5% level, we expect 5% of the nulls to be rejected even
when all the nulls are true. Thus, on average, 5 of the 100 chemicals will be
declared to be carcinogenic, even when all are safe. Moreover, if the tests
are independent, then one or more of the chemicals will be declared unsafe
in 99.4% of all sets of experiments we run, even if all the chemicals are safe.
This 99.4% is a combined Type I error rate; clearly we have a problem.

A particularly insidious version of multiple testing arises when data ar-
rive sequentially and the same hypothesis is tested multiple times as data
accumulate. The problem arises when you stop taking data as soon as a “sig-
nificant” result is obtained. For an extreme example, suppose that you are
accumulating data from a normal with mean µ and variance 1, and you wish
to test H0 : µ = 0. You can take up to 100 data points, but you will take 10
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Figure 5.1: Traces of the z statistic from 10 to 100 samples,
stopping when |z| > 2. Twenty-eight of 100 traces stopped; these are
marked in red. Final z values of the stopped traces are shown at
n = 100.

to begin and keep taking data one point at a time until you get a z statistic
(z = x

√
n) that is greater than 2 in absolute value or until you reach n = 100.

Even though we are testing the same null value for the same parameter, this
is a family of tests indexed by the sample size.

Figure 5.1 shows the trajectories of z for 100 simulated experiments. Of
the 100 simulations, 28 reached |z| > 2. The nominal 5% error rate was
nearly 30% when following this scheme. If you look just at n = 100, only
2 of the 100 simulations are significant (this is within sampling variability ofTesting as data

accumulate
inflates Type I
error

the expected 5 significant). The problem is not the test itself; the problem is
repeated peeking over time and the fact that the z test can reject, but it will
never stop in favor of the null. There are sequential methods that allow you
to test as the sample size increases, but the boundaries for stopping the test
are much wider than the boundaries computed for fixed sample sizes.
Bayesians have a different point of view on multiple testing

Before moving on to a closer study of the frequentist approach to multi-
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ple comparisons, let us note here that the situation is quite different for the
Bayesian statistician. Fundamentally, Bayesians are not concerned with Type
I error rates, which are just not part of the Bayesian paradigm. Bayesians are
concerned with posterior distributions, and these depend on prior distribu- Posteriors

unaffected by
ignorable

stopping rules

tions and data. The posterior does not depend on a stopping rule for col-
lecting data so long as the stopping rule is ignorable, which means that the
stopping rule only depends on unknown parameters through the data. This
has led to claims that Bayesians never need to worry about stopping rules
for data collection. This is, perhaps, an overstatement, as it assumes that our
prior and likelihood are exact representations of nature. For example, Rosen-
baum and Rubin (1984) show that stopping rules can increase the sensitivity
of Bayesian analysis to the specification of the prior.

Still, there is evidence that Bayesian methods are less affected by stop-
ping rules than frequentist methods. This evidence is often in the context
of looking at the frequentist properties of a Bayesian technique, something
a fervent Bayesian might not do. For example, consider the sampling situ-
ation described above, but instead of stopping when |z| > 2, stop when the
Bayes factor is greater than 3 (favor alternative, which has a prior for µ that
is normal with mean 0 and variance 1) or less than 1/3 (favor null). Recall
that 3 is the smallest Bayes factor we are considering positive evidence for a
hypothesis. Of 100 simulations, four stopped in favor of the alternative and
the other 96 stopped in favor of the null. If we don’t stop sampling, of the
Bayes factors at n = 100, 83 were in favor of the null, and two were in favor
of the alternative. That is certainly better than what we saw with the z test.

This chapter will spend a lot of time on pairwise comparisons, where we
consider the possibility that µi = µj . Consider, however, the prior distribu-
tions we have been using for the single mean model and the separate means
model. In the former, all treatments have the same mean. In the latter, all
treatments have different means with probability 1. That is, under the sep-
arate means model with our prior, the posterior will never assign positive
probability to a situation with two or more equal means.

One can create Bayesian procedures that behave in an analogous way
to certain frequentist multiple comparison procedures by creating loss func-
tions that lead to decisions that include declaring some treatment means to
be grouped or clustered, using a different prior for treatment means that does
allow means to be equal, or augmenting the data description with many po-
tential models that assume various subsets of treatments have the same mean
and then doing model selection. However, error rates are still not a part of
any of these. Read more about multiple comparisons in a Bayesian context
in Section 5.9.

5.1 Error Rates

When we have more than one test or interval to consider, there are several
ways to define a combined Type I error rate for the family of tests. This vari-
ety of combined Type I error rates is the source of much confusion in the use Determine error

rate to control
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of multiple comparisons, as different error rates lead to different procedures.
People sometimes ask “Which procedure should I use?” when the real ques-
tion is “Which error rate do I want to control?”. As data analyst, you need
to decide which error rate is appropriate for your situation and then choose
a method of analysis appropriate for that error rate. This choice of error rate
is not so much a statistical decision as a scientific decision in the particular
area under consideration.

Data snooping is a practice related to having many tests. Data snooping
occurs when we first look over the data and then choose the null hypothesesData snooping

performs many
implicit tests

to be tested based on “interesting” features in the data. What we tend to
do is consider many potential features of the data and discard those with
uninteresting or null behavior. When we data snoop and then perform a test,
we tend to see the smallest p-value from the ill-defined family of tests that we
considered when we were snooping; we have not really performed just one
test. Some multiple comparisons procedures can actually control for data
snooping.

Simultaneous inference is deciding which error rate we wish to control,
and then using a procedure that controls the desired error rate.

Let’s set up some notation for our problem. We have a set of K null
hypotheses H01, H02, . . ., H0K . We also have the “combined,” “overall,” or
“intersection” null hypotheses H0 which is true if all of the H0i are true. InIndividual and

combined null
hypotheses

formula,
H0 = H01 ∩H02 ∩ · · · ∩H0K .

The collection H01, H02, . . ., H0K is sometimes called a family of null hy-
potheses. We reject H0 if any of null hypotheses H0i is rejected. In Exam-
ple 5.1, K = 100, H0i is the null hypothesis that chemical i is safe, and H0

is the null hypothesis that all chemicals are safe so that the mixture is safe.
We now define five combined Type I error rates. The definitions of these

error rates depend on numbers or fractions of falsely rejected null hypotheses
H0i, which will never be known in practice. We set up the error rates here
and later give procedures that can be shown mathematically to control the
error rates.

The per comparison error rate or comparisonwise error rate is the prob-
ability of rejecting a particular H0i in a single test when that H0i is true.
Controlling the per comparison error rate at E means that the expected frac-Comparisonwise

error rate tion of individual tests that reject H0i when H0 is true is E . This is just the
usual error rate for a t-test or F -test; it makes no correction for multiple com-
parisons. The tests in Example 5.1 controlled the per comparison error rate
at 5%.

The per experiment error rate or experimentwise error rate or familywise
error rate is the probability of rejecting one or more of the H0i (and thusExperimentwise

error rate rejecting H0) in a series of tests when all of the H0i are true. Controlling
the experimentwise error rate at E means that the expected fraction of exper-
iments in which we would reject one or more of the H0i when H0 is true
is E . In Example 5.1, the per experiment error rate is the fraction of times
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we would declare one or more of the chemicals unsafe when in fact all were
safe. Controlling the experimentwise error rate at E necessarily controls the
comparisonwise error rate at no more than E . The experimentwise error rate
considers all individual null hypotheses that were rejected; if any one of them
was correctly rejected, then there is no penalty for any false rejections that
may have occurred.

A statistical discovery is the rejection of an H0i. The false discovery
fraction is 0 if there are no rejections; otherwise it is the number of false False discovery

ratediscoveries (Type I errors) divided by the total number of discoveries. The
false discovery rate (FDR) is the expected value of the false discovery frac-
tion. If H0 is true, then all discoveries are false and the FDR is just the
experimentwise error rate. Thus controlling the FDR at E also controls the
experimentwise error at E . However, the FDR also controls at E the average
fraction of rejections that are Type I errors when some H0i are true and some
are false, a control that the experimentwise error rate does not provide. With
the FDR, we are allowed more incorrect rejections as the number of true re-
jections increases, but the ratio is limited. For example, with FDR at .05, we
are allowed just one incorrect rejection with 19 correct rejections.

The strong familywise error rate is the probability of making any false
discoveries, that is, the probability that the false discovery fraction is greater
than zero. Controlling the strong familywise error rate at E means that the Strong familywise

error rateprobability of making any false rejections is E or less, regardless of how
many correct rejections are made. Thus one true rejection cannot make any
false rejections more likely. Controlling the strong familywise error rate at
E controls the FDR at no more than E . In Example 5.1, a strong familywise
error rate of E would imply that in a situation where 2 of the chemicals were
carcinogenic, the probability of declaring one of the other 98 to be carcino-
genic would be no more than E .

Finally, suppose that each null hypothesis relates to some parameter (for
example, a mean), and we put confidence intervals on all these parameters.
An error occurs when one of our confidence intervals fails to cover the true
parameter value. If this true parameter value is also the null hypothesis value,
then an error is a false rejection. The simultaneous confidence intervals cri- Simultaneous

confidence
intervals

terion states that all of our confidence intervals must cover their true param-
eters simultaneously with confidence 1− E . Simultaneous 1− E confidence
intervals also control the strong familywise error rate at no more than E . (In
effect, the strong familywise criterion only requires simultaneous intervals
for the null parameters.) In Example 5.1, we could construct simultaneous
confidence intervals for the cancer rates of each of the 100 chemicals. Note
that a single confidence interval in a collection of intervals with simultaneous
coverage 1− E will have coverage greater than 1− E .

There is a trade-off between Type I error and Type II error (failing to
reject a null when it is false). As we go to more and more stringent Type I More stringent

procedures are
less powerful

error rates, we become more confident in the rejections that we do make, but
it also becomes more difficult to make rejections. Thus, when using the more
stringent Type I error controls, we are more likely to fail to reject some null
hypotheses that should be rejected than when using the less stringent rates. In
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simultaneous inference, controlling stronger error rates leads to less powerful
tests.

Example 5.2 Functional magnetic resonance imaging
Many functional Magnetic Resonance Imaging (fMRI) studies are inter-

ested in determining which areas of the brain are “activated” when a subject
is engaged in some task. Any one image slice of the brain may contain 5000
voxels (individual locations to be studied), and one analysis method produces
a t-test for each of the 5000 voxels. Null hypothesis H0i is that voxel i is not
activated. Which error rate should we use?

If we are studying a small, narrowly defined brain region and are uncon-
cerned with other brain regions, then we would want to test individually the
voxels in the brain regions of interest. The fact that there are 4999 other
voxels is unimportant, so we would use a per comparison method.

Suppose instead that we are interested in determining if there are any
activations in the image. We recognize that by making many tests we are
likely to find one that is “significant”, even when all nulls are true; we want
to protect ourselves against that possibility, but otherwise need no stronger
control. Here we would use a per experiment error rate.

Suppose that we believe that there will be many activations, so that H0 is
not true. We don’t want some correct discoveries to open the flood gates for
many false discoveries, but we are willing to live with some false discoveries
as long as they are a controlled fraction of the total made. This is acceptable
because we are going to investigate several subjects; the truly activated re-
jections should be rejections in most subjects, and the false rejections will be
scattered. Here we would use the FDR.

Suppose that in addition to expecting true activations, we are also only
looking at a single subject, so that we can’t use multiple subjects to determine
which activations are real. Here we don’t want false activations to cloud our
picture, so we use the strong familywise error rate.

Finally, we might want to be able to estimate the amount of activation in
every voxel, with simultaneous accuracy for all voxels. Here we would use
simultaneous confidence intervals.

A multiple comparisons procedure is a method for controlling a Type I
error rate other than the per comparison error rate.

The literature on multiple comparisons is vast, and despite the length of
this Chapter, we will only touch the highlights. I have seen quite a bit of
nonsense regarding these methods, so I will try to set out rather carefully
what the methods are doing. We begin with a discussion of Bonferroni-based
methods for combining generic tests. Next we consider the Scheffé proce-
dure, which is useful for contrasts suggested by data (data snooping). Then
we turn our attention to pairwise comparisons, for which there are dozens of
methods. Finally, we consider comparing treatments to a control or to the
best response.
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5.2 Bonferroni-Style Methods

The Bonferroni technique is the simplest, most widely applicable multiple
comparisons procedure. The Bonferroni procedure works for a fixed set of
K null hypotheses to test or parameters to estimate. Let pi be the p-value
for testing H0i. The Bonferroni procedure says to obtain simultaneous 1 − Ordinary

BonferroniE confidence intervals by constructing individual confidence intervals with
coverage 1− E/K, or reject H0i (and thus H0) if

pi < E/K .

That is, simply run each test at level E/K. The testing version controls the
strong familywise error rate, and the confidence intervals are simultaneous.
The tests and/or intervals need not be independent, of the same type, or re-
lated in any way.

The Holm procedure is a modification of Bonferroni that controls the
strong familywise error rate, but does not produce simultaneous confidence
intervals (Holm 1979). Let p(1), . . ., p(K) be the p-values for the K tests Holm
sorted into increasing order, and let H0(i) be the null hypotheses sorted along
with the p-values. Then reject H0(i) if

p(j) ≤ E/(K − j + 1) for all j = 1, . . ., i.

Thus we start with the smallest p-value; if it is rejected we consider the next
smallest, and so on. We stop when we reach the first nonsignificant p-value.
This is a little more complicated, but we gain some power since only the
smallest p-value is compared to E/K.

The Benjamini and Hochberg method (Benjamini and Hochberg 1995,
abbreviated BH) controls the False Discovery Rate. Once again, sort the p-
values and the hypotheses. For BH, start with the largest p-value and work Benjamini and

Hochberg
requires

independent tests

down. Reject H0(i) if

p(j) ≤ E(j/K) for some j ≥ i.
This procedure is correct when the tests are statistically independent. It con-
trols the FDR, but not the strong familywise error rate.

Benjamini and Yekutieli (Benjamini and Yekutieli 2001) show that the
BH approach also controls the FDR for some types of dependent tests. They
also provide a modification to the BH approach that controls FDR for tests
with any form of dependence. This modification will be more conservative
(make fewer rejections) than BH when the tests are independent. For Ben-
jamini and Yekutieli (abbreviated BY), reject H0(i) if

p(j) ≤ Ej/
K∑
k=1

K/k for some j ≥ i.

The expression in the denominator can be reasonably approximated via:
K∑
k=1

K/k ≈ K(ln(K) + .5)
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Reject H0(i) if Method Control

p(i) < E/K Bonferroni Simultaneous confidence
intervals

p(j) < E/(K − j + 1)
for all j = 1, . . ., i

Holm Strong familywise error
rate

p(j) ≤ Ej/K
for some j ≥ i

Benjamini &
Hochberg

False discovery rate;
needs independent tests

p(j) ≤ Ej/
∑K

k=1K/k
for some j ≥ i

Benjamini &
Yekutieli

False discovery rate;
general tests

Display 5.1: Summary of Bonferroni-style methods for K
comparisons.

The four Bonferroni methods are summarized in Display 5.1. Example 5.3
illustrates their use.

Example 5.3 Sensory characteristics of cottage cheeses
Table 5.1 shows the results of an experiment comparing the sensory char-

acteristics of nonfat, 2% fat, and 4% fat cottage cheese (Michicich 1995).
The table shows the characteristics grouped by type and p-values for testing
the null hypothesis that there was no difference between the three cheeses
in the various sensory characteristics. There are 21 characteristics in three
groups of sizes 7, 6, and 8.

How do we do multiple comparisons here? First we need to know:

1. Which error rate is of interest?

2. If we do choose an error rate other than the per comparison error rate,
what is the appropriate “family” of tests? Is it all 21 characteristics, or
separately within group of characteristic?

There is no automatic answer to either of these questions. The answers de-
pend on the goals of the study, the tolerance of the investigator to Type I error,
how the results of the study will be used, whether the investigator views the
three groups of characteristics as distinct, and so on.

The last two columns of Table 5.1 give the results of the Bonferroni,
Holm, and BH procedures applied at the 5% level to all 21 comparisons and
within each group. The p-values are compared to the criteria in Display 5.1
using K = 21 for the overall family and K of 7, 6, or 8 for by group com-
parisons.

Consider the characteristic “cheesy flavor” with a .01 p-value. If we use
the overall family, this is the tenth smallest p-value out of 21 p-values. The
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Table 5.1: Sensory attributes of three cottage cheeses: p-values
and 5% significant results overall and familywise by type of attribute
using the Bonferroni (•), Holm (◦), and BH methods(?).

Appearance
Characteristic p-value Overall By group
White .004 ? •◦?
Yellow .002 •◦? •◦?
Gray .13
Curd size .29
Size uniformity .73
Shape uniformity .08
Liquid/solid ratio .02 ? ?

Flavor
Characteristic p-value Overall By group
Sour .40
Sweet .24
Cheesy .01 ? ◦?
Rancid .0001 •◦? •◦?
Cardboard .0001 •◦? •◦?
Storage .001 •◦? •◦?

Texture
Characteristic p-value Overall By group
Breakdown rate .001 •◦? •◦?
Firm .0001 •◦? •◦?
Sticky .41
Slippery .07
Heavy .15
Particle size .42
Runny .002 •◦? •◦?
Rubbery .006 ? •◦?

results are

• Bonferroni The critical value is .05/21 = .0024—not significant.

• Holm The critical value is .05/(21−10+1) = .0042—not significant.

• BH The critical value is 10× .05/21 = .024—significant.

If we use the flavor family, this is the fourth smallest p-value out of six p-
values. Now the results are

• Bonferroni The critical value is .05/6 = .008—not significant.
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• Holm The critical value is .05/(6 − 4 + 1) = .017 (and all smaller
p-values meet their critical values)—significant.

• BH The critical value is 4× .05/6 = .033—significant.

R has a function that will adjust p-values for Bonferroni, Holm, BH, and
BYF, as well as some additional methods.

1 > p.appearance <- c(.004,.002,.13,.29,.73,.02,.02)
2 > p.flavor <- c(.4,.24,.01,.0001,.0001,.001)
3 > p.texture <- c(.001,.0001,.41,.07,.15,.42,.002,.006)
4 > p.adjust(p.appearance,method=’holm’)

[1] 0.024 0.014 0.390 0.580 0.730 0.100 0.100
5 > p.adjust(p.flavor,method=’holm’)

[1] 0.4800 0.4800 0.0300 0.0006 0.0006 0.0040
6 > p.adjust(p.texture,method=’holm’)

[1] 0.0070 0.0008 0.8200 0.2800 0.4500 0.8200 0.0120 0.0300
7 > p.adjust(c(p.appearance,p.flavor,p.texture),method=’holm’)

[1] 0.056 0.032 1.000 1.000 1.000 0.220 0.220 1.000 1.000 0.120 0.002 0.002
[13] 0.018 0.018 0.002 1.000 0.630 1.000 1.000 0.032 0.078

8 > p.adjust(p.appearance,method=’fdr’)
[1] 0.01400 0.01400 0.18200 0.33833 0.73000 0.03500 0.03500

9 > p.adjust(p.flavor,method=’fdr’)
[1] 0.4000 0.2880 0.0150 0.0003 0.0003 0.0020

10 > p.adjust(p.texture,method=’fdr’)
[1] 0.00400 0.00080 0.42000 0.11200 0.20000 0.42000 0.00533 0.01200

11 > p.adjust(c(p.appearance,p.flavor,p.texture),method=’fdr’)
[1] 0.0105 0.0060 0.1950 0.3582 0.7300 0.0350 0.0350 0.4410 0.3150 0.0210
[11] 0.0007 0.0007 0.0042 0.0042 0.0007 0.4410 0.1130 0.2100 0.4410 0.0060
[21] 0.0140

Lines 1–3 simply input the p-values for the three groups of characteristics.
Lines 4–6 apply the Holm adjustment to the p-values in each group sepa-
rately, and line 7 does the same for all p-values considered as a single family.
The remaining four lines repeat that process using BH.

We have presented Holm and BH as comparing p-values to the nominal
rate E divided by an adjustment factor. In R, p.adjust instead multiplies
each p-value by the adjustment factor, and you then compare that to the nom-
inal rate E .

“Cheesy” is the third characteristic in the flavor group; the Holm and
FDR adjusted p-values are .03 and .015. Both of these are significant at the
.05 level. When we combine all of the p-values, cheesy is the tenth character-
istic in the list; the Holm and FDR adjusted p-values are .12 and .021. Only
the FDR is significant for cheesy in the combined set of characteristics.

These results illustrate that more null hypotheses are rejected considering
each group of characteristics to be a family of tests rather than overall (the
K is smaller for the individual groups), and fewer rejections are made using
the more stringent error rates. Again, the choices of error rate and family of
tests are not purely statistical, and controlling an error rate within a group of
tests does not control that error rate for all tests.
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5.3 The Scheffé Method for All Contrasts

The Scheffé method is a multiple comparisons technique for contrasts that
produces simultaneous confidence intervals for any and all contrasts, includ-
ing contrasts suggested by the data. Thus Scheffé is the appropriate tech-
nique for assessing contrasts that result from data snooping. This sounds like Scheffé protects

against data
snooping, but has

low power

the ultimate in error rate control—arbitrarily many comparisons, even ones
suggested from the data! The downside of this amazing protection is low
power, that is, a reduced ability to detect differences that are there. Thus
we only use the Scheffé method in those situations where we have a contrast
suggested by the data, or many, many contrasts that cannot be handled by
other techniques. In addition, pairwise comparison contrasts yi• − yj•, even
pairwise comparisons suggested by the data, are better handled by methods
specifically designed for pairwise comparisons.

We begin with the Scheffé test of the null hypothesis H0 : w({αi}) = 0
against a two-sided alternative. The Scheffé test statistic is the ratio

SSw/(g − 1)

MSE
;

we get a p-value as the area under an F -distribution with g−1 and ν degrees Scheffé F -test
of freedom to the right of the test statistic. The degrees of freedom ν are from
our denominator MSE; ν = N−g for the completely randomized designs we
have been considering so far. Reject the null hypothesis if this p-value is less
than our Type I error rate E . In effect, the Scheffé procedure treats the mean
square for any single contrast as if it were the full g − 1 degrees of freedom
between groups mean square.

There is also a Scheffé t-test for contrasts. Suppose that we are testing
the null hypothesis H0 : w({αi}) = δ against a two-sided alternative. The
Scheffé t-test controls the Type I error rate at E by rejecting the null hypoth- Scheffé t-test
esis when

|w({yi•})− δ|√
MSE

∑g
i=1

w2
i

ni

>
√

(g − 1)FE,g−1,ν ,

where FE,g−1,ν is the upper E percent point of an F -distribution with g − 1
and ν degrees of freedom. Again, ν is the degrees of freedom for MSE. For
the usual null hypothesis value δ = 0, this is equivalent to the ratio-of-mean-
squares version given above.

We may also use the Scheffé approach to form simultaneous confidence Scheffé
confidence

interval
intervals for any w({αi}):

w({yi•})±
√

(g − 1)FE,g−1,ν ×

√√√√MSE

g∑
i=1

w2
i

ni
.

These Scheffé intervals have simultaneous 1 − E coverage over any set of
contrasts, including contrasts suggested by the data.
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Example 5.4 Acid rain and birch seedlings, continued
Example 3.1 introduced an experiment in which birch seedlings were

exposed to various levels of artificial acid rain. The following table gives
some summaries for the data:

pH
4.7 4.0 3.3 3.0 2.3

avg. weight .337 .296 .320 .298 .177
n 48 48 48 48 48

The MSE was .0119 with 235 degrees of freedom.
Inspection of the means shows that most of the response means are about

.3, but the response for the pH 2.3 treatment is much lower. This suggests
that a contrast comparing the pH 2.3 treatment with the mean of the other
treatments would have a large value. The coefficients for this contrast are
(.25, .25, .25, .25, −1). This contrast has value

.337 + .296 + .320 + .298

4
− .177 = .1357

and standard error√
.0119

(
.0625

48
+
.0625

48
+
.0625

48
+
.0625

48
+

1

48

)
= .0176 .

We must use the Scheffé procedure to construct a confidence interval or
assess the significance of this contrast, because the contrast was suggested
by the data. For a 99% confidence interval, the Scheffé multiplier is√

4 F.01,4,235 = 3.688 .

Thus the 99% confidence interval for this contrast is .1357−3.688×.0176 up
to .1357 + 3.688× .0176, or (.0708, .2006). Alternatively, the t-statistic for
testing the null hypothesis that the mean response in the last group is equal to
the average of the mean responses in the other four groups is .1357/.0176 =
7.71. The Scheffé critical value for testing the null hypothesis at the E = .001
level is√

(g − 1)FE,g−1,N−g =
√

4 F.001,4,235 =
√

4× 4.782 = 4.37 ,

so we can reject the null at the .001 level.

Remember, it is not fair to hunt around through the data for a big
contrast, test it, and think that you’ve only done one comparison.
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5.4 Pairwise Comparisons

A pairwise comparison is a contrast that examines the difference between
two treatment means yi• − yj•. For g treatment groups, there are(

g
2

)
=
g(g − 1)

2

different pairwise comparisons. Pairwise comparisons procedures control a
Type I error rate at E for all pairwise comparisons. If we data snoop, choose
the biggest and smallest yi•’s and take the difference, we have not made just
one comparison; rather we have made all g(g − 1)/2 pairwise comparisons,
and selected the largest. Controlling a Type I error rate for this greatest dif-
ference is one way to control the error rate for all differences.

As with many other inference problems, pairwise comparisons can be
approached using confidence intervals or tests. That is, we may compute Tests or

confidence
intervals

confidence intervals for the differences µi − µj or αi − αj or test the null
hypotheses H0ij : µi = µj or H0ij : αi = αj . Confidence regions for the
differences of means are generally more informative than tests.

A pairwise comparisons procedure can generally be viewed as a critical
value (or set of values) for the t-tests of the pairwise comparison contrasts.
Thus we would reject the null hypothesis that αi − αj = 0 if

|yi• − yj•|√
MSE

√
1/ni + 1/nj

> u ,

where u is a critical value. Various pairwise comparisons procedures differ Critical values u
for t-testsin how they define the critical value u, and u may depend on several things,

including E , the degrees of freedom for MSE, the number of treatments, the
number of treatments with means between yi• and yj•, and the number of
treatment comparisons with larger t-statistics.

An equivalent form of the test will reject if

|yi• − yj•| > u
√

MSE

√
1/ni + 1/nj = Dij .

If all sample sizes are equal and the critical value u is constant, then Dij

will be the same for all i, j pairs and we would reject the null if any pair of Significant
differences Dijtreatments had mean responses that differed by D or more. This quantity D

is called a significant difference; for example, using a Bonferroni adjustment
to the g(g−1)/2 pairwise comparisons tests leads to a Bonferroni significant
difference (BSD).

Confidence intervals for pairwise differences µi−µj can be formed from
the pairwise tests via

(yi• − yj•)± u
√

MSE

√
1/ni + 1/nj .

Draft of March 1, 2021



114 Multiple Comparisons

The remainder of this section presents methods for displaying the results
of pairwise comparisons, introduces the Studentized range, discusses sev-
eral pairwise comparisons methods, and then illustrates the methods with an
example.

5.4.1 Displaying the results

Pairwise comparisons generate a lot of tests, so we need convenient and com-
pact ways to present the results. An underline diagram is a graphical presen-Underline

diagram
summarizes
pairwise
comparisons

tation of pairwise comparison results; construct the underline diagram in the
following steps.

1. Sort the treatment means into increasing order and write out treatment
labels (numbers or names) along a horizontal axis. The yi• values may
be added if desired.

2. Draw a line segment under a group of treatments if no pair of treat-
ments in that group is significantly different. Do not include short lines
that are implied by long lines. That is, if treatments 4, 5, and 6 are not
significantly different, only use one line under all of them—not a line
under 4 and 5, and a line under 5 and 6, and a line under 4, 5, and 6.

Here is a sample diagram for three treatments that we label A, B, and C:

C A B

This diagram includes treatment labels, but not treatment means. From this
summary we can see that C can be distinguished from B (there is no underline
that covers both B and C), but A cannot be distinguished from either B or C
(there are underlines under A and C, and under A and B).

Note that there can be some confusion after pairwise comparisons. You
must not confuse “is not significantly different from” or “cannot be distin-Insignificant

difference does
not imply equality

guished from” with “is equal to.” Treatment mean A cannot be equal to
treatment means B and C and still have treatment means B and C not equal
each other. Such a pattern can hold for results of significance tests.

There are also several nongraphical methods for displaying pairwise com-
parisons results. In one method, we sort the treatments into order of increas-
ing means and print the treatment labels. Each treatment label is followed byLetter or number

tags one or more numbers (letters are sometimes used instead). Any treatments
sharing a number (or letter) are not significantly different. Thus treatments
sharing common numbers or letters are analogous to treatments being con-
nected by an underline. The grouping letters are often put in parentheses or
set as sub- or superscripts. The results in our sample underline diagram might
thus be presented as one of the following:

C (1) A (12) B (2) C (a) A (ab) B (b)

C1 A12 B2 Ca Aab Bb
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There are several other variations on this theme.
A third way to present pairwise comparisons is as a table, with treatments Table of CI’s or

significant
differences

labeling both rows and columns. Table elements can flag significant differ-
ences or contain confidence intervals for the differences. Only entries above
or below the diagonal of the table are needed.

5.4.2 The Studentized range

The range of a set is the maximum value minus the minimum value, and
Studentization means dividing a statistic by an estimate of its standard error. Range,

Studentization,
and Studentized

range

Thus the Studentized range for a set of treatment means is

max
i

yi•√
MSE/n

−min
j

yj•√
MSE/n

.

Note that we have implicitly assumed that all the sample sizes ni are the
same.

If all the treatments have the same mean, that is, if H0 is true, and all of
our distributional assumptions are correct, then the Studentized range statistic
follows the Studentized range distribution. Large values of the Studentized Studentized

range distributionrange are less likely under H0 and more likely under the alternative when the
means are not all equal, so we may use the Studentized range as a test statistic
forH0, rejectingH0 when the Studentized range statistic is sufficiently large.
This Studentized range test is a legitimate alternative to the ANOVA F -test.

The Studentized range distribution is important for pairwise comparisons
because it is the distribution of the biggest (scaled) difference between treat-
ment means when the null hypothesis is true. We will use it as a building
block in several pairwise comparisons methods.

The Studentized range distribution depends only on g and ν, the number
of groups and the degrees of freedom for the error estimate MSE. The quan- Percent points

qE(g, ν)tity qE(g, ν) is the upper E percent point of the Studentized range distribution
for g groups and ν error degrees of freedom; it is tabulated in Appendix Ta-
ble C.8.

5.4.3 Simultaneous confidence intervals

The Tukey honest significant difference (HSD) is a pairwise comparisons Tukey HSD or
honest significant

difference
technique that uses the Studentized range distribution to construct simultane-
ous confidence intervals for differences of all pairs of means. If we reject the
null hypothesis H0ij when the (simultaneous) confidence interval for µi−µj
does not include 0, then the HSD also controls the strong familywise error
rate.

The HSD uses the critical value

u(E , ν, g) =
qE(g, ν)√

2
,
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leading to The HSD

HSD =
qE(g, ν)√

2

√
MSE

√
1

n
+

1

n
=
qE(g, ν)

√
MSE√

n
.

Form simultaneous 1− E confidence intervals via

yi• − yj• ±
qE(g, ν)√

2

√
MSE

√
1

n
+

1

n
.

The degrees of freedom ν are the degrees of freedom for the error estimate
MSE.

Strictly speaking, the HSD is only applicable to the equal sample size
situation. For the unequal sample size case, the approximate HSD is

HSDij = qE(g, ν)
√

MSE

√
1

2ninj/(ni + nj)

or, equivalently,Tukey-Kramer
form for unequal
sample sizes

HSDij =
qE(g, ν)√

2

√
MSE

√(
1

ni
+

1

nj

)
.

This approximate HSD, often called the Tukey-Kramer form, tends to be
slightly conservative (that is, the true error rate is slightly less than E).

The Bonferroni significant difference (BSD) is simply the application ofBonferroni
significant
difference or BSD

the Bonferroni technique to the pairwise comparisons problem to obtain

u = u(E , ν,K) = tE/(2K),ν ,

BSDij = tE/(2K),ν

√
MSE

√
1/ni + 1/nj ,

where K is the number of pairwise comparisons. We have K = g(g − 1)/2
for all pairwise comparisons between g groups. BSD produces simultaneous
confidence intervals and controls the strong familywise error rate.

When making all pairwise comparisons, the HSD is less than the BSD.Use HSD when
making all
pairwise
comparisons

Thus we prefer the HSD to the BSD for all pairwise comparisons, because
the HSD will produce shorter confidence intervals that are still simultaneous.
When only a preplanned subset of all the pairs is being considered, the BSD
may be less than, and thus preferable, to the HSD.

Example 5.5 Free amino acids in cheese
Cheese is produced by bacterial fermentation of milk. Some bacteria

in cheese are added by the cheese producer. Other bacteria are present but
were not added deliberately; these are called nonstarter bacteria. Nonstarter
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Table 5.2: Total free amino acids in cheeses after 168
days of ripening, data set CheeseAminoAcid.

Strain added
None A B A&B
4.195 4.125 4.865 6.155
4.175 4.735 5.745 6.488

bacteria vary from facility to facility and are believed to influence the quality
of cheese.

Two strains (A and B) of nonstarter bacteria were isolated at a premium
cheese facility. These strains will be added experimentally to cheese to deter-
mine their effects. Eight cheeses are made. These cheeses all get a standard
starter bacteria. In addition, two cheeses will be randomly selected for each
of the following four treatments: control, add strain A, add strain B, or add
both strains A and B. Table 5.2 gives the total free amino acids in the cheeses
after 168 days of ripening. (Free amino acids are thought to contribute to
flavor.)

In this example we will make HSD comparisons (tests and confidence
intervals) using E = .1. No one would use such a high E , but it permits a
nice comparison of the techniques in this example. HSD is appropriate if
we want simultaneous confidence intervals on the pairwise differences. The
HSD is

qE(g, ν)√
2

√
MSE

√
1

ni
+

1

nj
=

q.1(4, 4)√
2

√
.1572

√
1

2
+

1

2

= 4.586× .3965/1.414 = 1.286 .

We form confidence intervals as the observed difference in treatment means,
plus or minus 1.286; so for A&B minus control, we have

6.322− 4.185± 1.286 or (.851, 3.423) .

In fact, only two confidence intervals for pairwise differences do not include
zero. The underline diagram is:

C A B A&B
4.19 4.43 5.31 6.32

We can use the pairwise function from cfcdae to automate this pro-
cess.
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1 > amino.acid.fit <- lm(freeAminoAcid˜strain,data=CheeseAminoAcid)
2 > pairs.out <- pairwise(amino.acid.fit,strain,confidence=.9,type="hsd")
3 > pairs.out

Pairwise comparisons ( hsd ) of strain
estimate signif diff lower upper

* A - AB -1.8915 1.285889 -3.1773889 -0.6056111
A - B -0.8750 1.285889 -2.1608889 0.4108889
A - none 0.2450 1.285889 -1.0408889 1.5308889
AB - B 1.0165 1.285889 -0.2693889 2.3023889

* AB - none 2.1365 1.285889 0.8506111 3.4223889
B - none 1.1200 1.285889 -0.1658889 2.4058889

4 > sidelines(pairs.out)
none -0.875 |
A -0.630 |
B 0.245 | |
AB 1.261 |

pairwise works on a model as fit in line 1. In line 2 we do all pairwise
comparisons, selecting the HSD method and confidence .9. Line 3 prints
the results, showing a line for every comparison with a point estimate and
an interval estimate. Comparisons that are significant are tagged with a *.
Line 4 shows that we can visualize the results with an “underline” diagram,
although it is shown on its side.

5.4.4 Strong familywise error rate

A step-down method is a procedure for organizing pairwise comparisons
starting with the most extreme pair and then working in. Relabel the groupsStep-down

methods work
inward from the
outside
comparisons

so that the sample means are in increasing order with y(1)• smallest and y(g)•
largest. (The relabeled estimated effects α̂(i) will also be in increasing or-
der, but the relabeled true effects α[i] may or may not be in increasing order.)
With this ordering, y(1)• to y(g)• is a stretch of g means, y(1)• to y(g−1)• is a
stretch of g − 1 means, and y(i)• to y(j)• is a stretch of j − i+ 1 means. In a
step-down procedure, all comparisons for stretches of k means use the same
critical value, but we may use different critical values for different k. This
has the advantage that we can use larger critical values for long stretches and
smaller critical values for short stretches.

Begin with the most extreme pair (1) and (g). Test the null hypothesis
that all the means for (1) up through (g) are equal. If you fail to reject,
declare all means equal and stop. If you reject, declare (1) different from (g)(i) and (j) are

different if their
stretch and all
containing
stretches reject

and go on to the next step. At the next step, we consider the stretches (1)
through (g − 1) and (2) through (g). If one of these rejects, we declare its
ends to be different and then look at shorter stretches within it. If we fail to
reject for a stretch, we do not consider any substretches within the stretch.
We repeat this subdivision till there are no more rejections. In other words,
we declare that means (i) and (j) are different if the stretch from (i) to (j)
rejects its null hypothesis and all stretches containing (i) to (j) also reject
their null hypotheses.

The REGWR procedure is a step-down range method that controls the
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strong familywise error rate without producing simultaneous confidence in- REGWR is
step-down with

Studentized
range based

critical values

tervals. The awkward name REGWR abbreviates the Ryan-Einot-Gabriel-
Welsch range test, named for the authors who worked on it. The REGWR
critical value for testing a stretch of length k depends on E , ν, k, and g.
Specifically, we use

u = u(E , ν, k, g) = qE(k, ν)/
√

2 k = g, g − 1,

and

u = u(E , ν, k, g) = qkE/g(k, ν)/
√

2 k = g − 2, g − 3, . . ., 2.

This critical value derives from a Studentized range with k groups, and we
use percent points with smaller tail areas as we move in to smaller stretches.

As with the HSD, REGWR error rate control is approximate when the
sample sizes are not equal. Unlike the situation where we want simultaneous
confidence intervals, we could also use the Holm method to control the strong
familywise error rate.

Example 5.6 Free amino acids in cheese, continued
Suppose that we only wished to control the strong familywise error rate

instead of producing simultaneous confidence intervals. Then we could use
REGWR or Holm instead of HSD and could potentially see additional sig-
nificant differences.

REGWR is a step-down method that begins like the HSD. Comparing C
and A&B, we conclude as in the HSD that they are different. We may now
compare C with B and A with A&B. These are comparisons that involve
stretches of k = 3 means; since k = g − 1, we still use E as the error rate.
The significant difference for these comparisons is

qE(k, ν)√
2

√
MSE

√
1

ni
+

1

nj
=
q.1(3, 4)√

2

√
.1572

√
1

2
+

1

2
= 1.115 .

Both the B-C and A&B-A differences (1.12 and 1.89) exceed this cutoff, so
REGWR concludes that B differs from C, and A differs from A&B. Recall
that the HSD did not distinguish C from B.

Having concluded that there are B-C and A&B-A differences, we can
now compare stretches of means within them, namely C to A, A to B, and
B to A&B. These are stretches of k = 2 means, so for REGWR we use the
error rate kE/g = .05. The significant difference for these comparisons is

qE/2(k, ν)
√

2

√
MSE

√
1

ni
+

1

nj
=
q.05(2, 4)√

2

√
.1572

√
1

2
+

1

2
= 1.101 .

None of the three differences exceeds this cutoff, so we fail to conclude that
those treatments differ and finish. The underline diagram is:
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C A B A&B
4.19 4.43 5.31 6.32

We can automate all this in R.

1 > pairs.out.regwr <- pairwise(amino.acid.fit,strain,confidence=.9,type="regwr")
2 > pairs.out.regwr

Pairwise comparisons ( regwr ) of strain
estimate signif diff lower upper

* A - AB -1.8915 1.114670 -3.006169508 -0.7768305
A - B -0.8750 1.100905 -1.975905084 0.2259051
A - none 0.2450 1.100905 -0.855905084 1.3459051
AB - B 1.0165 1.100905 -0.084405084 2.1174051

* AB - none 2.1365 1.285889 0.850611111 3.4223889

* B - none 1.1200 1.114670 0.005330492 2.2346695
3 > sidelines(pairs.out.regwr)

none -0.875 |
A -0.630 | |
B 0.245 | |
AB 1.261 |

4 > with(CheeseAminoAcid,pairwise.t.test(freeAminoAcid,strain,
p.adjust.method="holm"))

Pairwise comparisons using t tests with pooled SD
data: freeAminoAcid and strain

A AB B
AB 0.044 - -
B 0.190 0.190 -
none 0.570 0.034 0.190

P value adjustment method: holm

In pairwise, all we need to do is change the type of comparison we wish to
make and proceed as before. Note that the computed significant differences
are not all the same, unlike the case with HSD.

R also has a builtin function pairwise.t.test that works on a re-
sponse vector and a grouping vector rather than a fitted model. It then does
p-value adjustments, in this case using the Holm method. Note that the Holm
approach does not find the significant difference between the control treat-
ment and treatment B (it is just barely significant using REGWR). Holm is a
general purpose method to control the strong familywise error rate, and it is
not quite as sensitive as the REGWR method, which was created expressly
for pairwise comparisons.

5.4.5 False discovery rate

We can apply the BY method to pairwise comparisons and control the FDR.
In addition to BY, there are two methods for which we have evidence of FDR
control in pairwise comparisons, but for which we have no definitive proof
or counterexample at this time. Benjamini and Yekutieli (2001) propose,
and provides some evidence, that BH controls FDR in pairwise comparisons.
Shaffer 2007 proposes, and provides some evidence, that Student-Newman-
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Keuls also controls the FDR. SNK and BH are each somewhat more sensitive
to some differences and less sensitive to others. Neither BY nor BH translates
easily to a “significant difference.”

The Student-Newman-Keuls (SNK) procedure is a step-down method
that uses the Studentized range test with critical value SNK

u = u(E , ν, k, g) = qE(k, ν)/
√

2

for a stretch of k means. This is similar to REGWR, except that we keep the
percent point of the Studentized range constant as we go to shorter stretches.
SNK does not control the strong familywise error rate.

Example 5.7 Free amino acids in cheese, continued
Suppose that we only wished to control the false discovery rate; now we

would use SNK instead of the more stringent HSD or REGWR.

SNK is identical to REGWR in the first two stages, so SNK will also get
to the point of making the comparisons of the three pairs C to A, A to B, and
B to A&B. However, the SNK significant difference for these pairs is less
than that used in REGWR:

qE(k, ν)√
2

√
MSE

√
1

ni
+

1

nj
=
q.1(2, 4)√

2

√
.1572

√
1

2
+

1

2
= .845 .

Both the B-A and A&B-B differences (1.02 and .98) exceed the cutoff, but
the A-C difference (.14) does not. The underline diagram for SNK is:

C A B A&B
4.19 4.43 5.31 6.32

In R, we have

1 > pairs.out.snk <- pairwise(amino.acid.fit,strain,confidence=.9,type="snk")
2 > pairs.out.snk

Pairwise comparisons ( snk ) of treatment
estimate signif diff lower upper

* A - AB -1.8915 1.1146695 -3.006169508 -0.77683049

* A - B -0.8750 0.8453095 -1.720309491 -0.02969051
A - none 0.2450 0.8453095 -0.600309491 1.09030949

* AB - B 1.0165 0.8453095 0.171190509 1.86180949

* AB - none 2.1365 1.2858889 0.850611111 3.42238889

* B - none 1.1200 1.1146695 0.005330492 2.23466951
3 > sidelines(pairs.out.snk)

none -0.875 |
A -0.630 |
B 0.245
AB 1.261

We can also look at the BH and BY adjusted p-values.
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4 > with(CheeseAminoAcid,pairwise.t.test(freeAminoAcid,strain,p.adjust.method="BH"))

Pairwise comparisons using t tests with pooled SD

data: freeAminoAcid and strain

A AB B
AB 0.027 - -
B 0.110 0.094 -
none 0.570 0.027 0.094

P value adjustment method: BH

The output from line 2 shows that every comparison except A–none is sig-
nificant (at the .1 level) according to SNK. In contrast, we see in the output
from line 4 that BH also declares the A–B difference to be non-significant.

5 > with(CheeseAminoAcid,pairwise.t.test(freeAminoAcid,strain,p.adjust.method="BY"))

Pairwise comparisons using t tests with pooled SD

data: freeAminoAcid and strain

A AB B
AB 0.065 - -
B 0.270 0.229 -
none 1.000 0.065 0.229

P value adjustment method: BY

BY is much more conservative, but it guaranteed to control FDR. In this
small example, the BY p-values are actually larger than the Holm p-values.
That will not always be true when there are more comparisons.

5.4.6 Experimentwise error rate

The Analysis of Variance F -test for equality of means controls the experi-
mentwise error rate. Thus investigating pairwise differences only when theProtected LSD

uses F -test to
control
experimentwise
error rate

F -test has a p-value less than E will control the experimentwise error rate.
This is the basis for the Protected least significant difference, or Protected
LSD. If the F -test rejects at level E , then do simple t-tests at level E among
the different treatments.

The critical values are from a t-distribution:

u(E , ν) = tE/2,ν ,

leading to the significant difference

LSD = tE/2,ν
√

MSE

√
1/ni + 1/nj .

As usual, ν is the degrees of freedom for MSE, and tE/2,ν is the upper E/2
percent point of a t-curve with ν degrees of freedom.
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Confidence intervals produced from the protected LSD do not have the
anticipated 1 − E coverage rate, either individually or simultaneously. See
Section 5.7.

Example 5.8 Free amino acids in cheese, continued
Finally, suppose that we only wish to control the experimentwise error

rate. Protected LSD will work here. LSD uses the same significant difference
for all pairs:

tE/2,ν
√

MSE

√
1

ni
+

1

nj
= t.05,4

√
.1572

√
1

2
+

1

2
= .845 .

This is the same as the SNK comparison for a stretch of length 2. All dif-
ferences except A-C exceed the cutoff, so the underline diagram for LSD
is:

C A B A&B
4.19 4.43 5.31 6.32

In R, we have

1 > anova(amino.acid.fit)
Df Sum Sq Mean Sq F value Pr(>F)

strain 3 5.6279 1.87595 11.932 0.0183 *
Residuals 4 0.6289 0.15722

2 > pairs.out.lsd <- pairwise(amino.acid.fit,strain,confidence=.9,type="lsd")
3 > pairs.out.lsd

Pairwise comparisons ( lsd ) of treatment
estimate signif diff lower upper

* A - AB -1.8915 0.8453078 -2.7368078 -1.04619217

* A - B -0.8750 0.8453078 -1.7203078 -0.02969217
A - none 0.2450 0.8453078 -0.6003078 1.09030783

* AB - B 1.0165 0.8453078 0.1711922 1.86180783

* AB - none 2.1365 0.8453078 1.2911922 2.98180783

* B - none 1.1200 0.8453078 0.2746922 1.96530783
4 > sidelines(pairs.out.lsd)

none -0.875 |
A -0.630 |
B 0.245
AB 1.261

5 > with(CheeseAminoAcid,pairwise.t.test(freeAminoAcid,treatment,
p.adjust.method = "none"))

Pairwise comparisons using t tests with pooled SD
data: freeAminoAcid and strain

A AB B
AB 0.0088 - -
B 0.0920 0.0624 -
none 0.5701 0.0057 0.0476

P value adjustment method: none

First we check to make sure that the F -test rejects at the selected error rate,
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Error rate Method

Simultaneous confidence
intervals

HSD

Strong familywise REGWR

False discovery rate SNK or BH

Experimentwise Protected LSD

Comparisonwise LSD

Display 5.2: Pairwise comparison methods.

then we use pairwise. Alternatively, we could use pairwise.t.test
with adjustment method none.

5.4.7 Comparisonwise error rate

Ordinary t-tests and confidence intervals without any adjustment control the
comparisonwise error rate. In the context of pairwise comparisons, this isLSD
called the least significant difference (LSD) method.

The critical values are the same as for the protected LSD:

u(E , ν) = tE/2,ν ,

and
LSD = tE/2,ν

√
MSE

√
1/ni + 1/nj .

5.4.8 Pairwise testing reprise

It is easy to get overwhelmed by the abundance of methods, and there are
still many more that we haven’t discussed. Your anchor in all this is yourChoose your

error rate, not
your method

error rate. Once you have determined your error rate, the choice of method
is reasonably automatic, as summarized in Display 5.2. Your choice of er-
ror rate is determined by the needs of your study, bearing in mind that the
more stringent error rates have fewer false rejections, but also fewer correct
rejections.

5.4.9 Pairwise comparisons methods that do not control combined
Type I error rates

There are many other pairwise comparisons methods beyond those already
mentioned. In this Section we discuss two methods that are motivated by
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completely different criteria than controlling a combined Type I error rate.
These two techniques do not control the experimentwise error rate or any of
the more stringent error rates, and you should not use them with the expecta-
tion that they do. You should only use them when the situation and assump-
tions under which they were developed are appropriate for your experimental
analysis.

Suppose that you believe a priori that the overall null hypothesis H0 is
less and less likely to be true as the number of treatments increases. Then the Duncan’s multiple

range if there is a
cost per error or
you believe H0

less likely as g
increases

strength of evidence required to reject H0 should decrease as the number of
groups increases. Alternatively, suppose that there is a quantifiable penalty
for each incorrect (pairwise comparison) decision we make, and that the total
loss for the overall test is the sum of the losses from the individual decisions.
Under either of these assumptions, the Duncan multiple range (given below)
or something like it is appropriate. Note by comparison that the procedures
that control combined Type I error rates require more evidence to rejectH0 as
the number of groups increases, while Duncan’s method requires less. Also,
a procedure that controls the experimentwise error rate has a penalty of 1 if
there are any rejections when H0 is true and a penalty of 0 otherwise; this is
very different from the summed loss that leads to Duncan’s multiple range.

Duncan’s multiple range (sometimes called Duncan’s test or Duncan’s
new multiple range) is a step-down Studentized range method. You specify Duncan’s Multiple

Rangea “protection level” E and proceed in step-down fashion using

u = u(E , ν, k, g) = q1−(1−E)k−1(k, ν)/
√

2

for the critical values. Notice that E is the comparisonwise error rate for
testing a stretch of length 2, and the experimentwise error rate will be 1 −
(1 − E)g−1, which can be considerably more than E . Thus fixing Duncan’s Experimentwise

error rate very
large for Duncan

protection level at E does not control the experimentwise error rate or any
more stringent rate. Do not use Duncan’s procedure if you are interested in
controlling any of the combined Type I error rates.

As a second alternative to combined Type I error rates, suppose that our
interest is in predicting future observations from the treatment groups, and
that we would like to have a prediction method that makes the average Minimize

prediction error
instead of testing

squared prediction error small. One way to do this prediction is to first par-
tition the g treatments into p classes, 1 ≤ p ≤ g; second, find the average
response in each of these p classes; and third, predict a future observation
from a treatment by the observed mean response of the class for the treat-
ment. We thus look for partitions that will lead to good predictions.

One way to choose among the partitions is to use AICc. Partitions with Predictive
Pairwise

Comparisons
low values of AICc should give better predictions.

This predictive approach makes no attempt to control any Type I error
rate; in fact, the Type I error rate is .15 or greater even for g = 2 groups! This
approach is useful when prediction is the goal, but can be quite misleading if
interpreted as a test of H0.
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5.4.10 Confident directions

In our heart of hearts, we often believe that all treatment means differ when
examined sufficiently precisely. Thus our concern with null hypothesesH0ijAll means differ,

but their order is
uncertain

is misplaced. As an alternative, we can make statements of direction. After
having collected data, we consider µi and µj ; assume µi < µj . We could de-
cide from the data that µi < µj , or that µi > µj , or that we don’t know—that
is, we don’t have enough information to decide. These decisions correspond
in the testing paradigm to rejecting H0ij in favor of µi < µj , rejecting H0ijCan only make

an error in one
direction

in favor of µj < µi, and failing to reject H0ij . In the confident directions
framework, only the decision µi > µj is an error. See Tukey (1991).

Confident directions procedures are pairwise comparisons testing proce-
dures, but with results interpreted in a directional context. Confident direc-
tions procedures bound error rates when making statements about direction.
If a testing procedure bounds an error rate at E , then the corresponding confi-
dent directions procedure bounds a confident directions error rate at E/2, the
factor of 2 arising because we cannot falsely reject in the correct direction.

Let us reinterpret our usual error rates in terms of directions. Suppose
that we use a pairwise comparisons procedure with error rate bounded at E .Pairwise

comparisons can
be used for
confident
directions

In a confident directions setting, we have the following:

Strong familywise The probability of making any incorrect state-
ments of direction is bounded by E/2.

FDR Incorrect statements of direction will on average
be no more than a fraction E/2 of the total number
of statements of direction.

Experimentwise The probability of making any incorrect state-
ments of direction when all the means are very
nearly equal is bounded by E/2.

Comparisonwise The probability of making an incorrect statement
of direction for a given comparison is bounded by
E/2.

There is no directional analog of simultaneous confidence intervals, so pro-
cedures that produce simultaneous intervals should be considered procedures
that control the strong familywise error rate (which they do).

5.5 Comparison with Control or the Best

There are some situations where we do not do all pairwise comparisons, but
rather make comparisons between a control and the other treatments, or theComparison with

control does not
do all tests

best responding treatment (highest or lowest average) and the other treat-
ments. For example, you may be producing new standardized mathematics
tests for elementary school children, and you need to compare the new tests
with the current test to assure comparability of the results. The procedures
for comparing to a control or the best are similar.

Draft of March 1, 2021



5.5 Comparison with Control or the Best 127

5.5.1 Comparison with a control

Suppose that there is a special treatment, say treatment g, with which we
wish to compare the other g−1 treatments. Typically, treatment g is a control
treatment. The Dunnett procedure allows us to construct simultaneous 1−E Two-sided

Dunnettconfidence intervals on µi − µg, for i = 1, . . ., g − 1 when all sample sizes
are equal via

yi − yg ± dE(g − 1, ν)
√

MSE

√
1

ni
+

1

ng
,

where ν is the degrees of freedom for MSE. The value dE(g − 1, ν) is tab-
ulated in Appendix Table C.9. These table values are exact when all sample
sizes are equal and only approximate when the sizes are not equal.

For testing, we can use

u(E , i, j) = dE(g − 1, ν) ,

which controls the strong familywise error rate and leads to DSD, the Dunnett
significant
difference

DSD = dE(g − 1, ν)
√

MSE

√
1

ni
+

1

ng
,

the Dunnett significant difference. There is also a step-down modification
that still controls the strong familywise error rate and is slightly more pow-
erful. We have g − 1 t-statistics. Compare the largest (in absolute value) to
dE(g − 1, ν). If the test fails to reject the null, stop; otherwise compare the
second largest to dE(g − 2, ν) and so on.

There are also one-sided versions of the confidence and testing proce-
dures. For example, you might reject the null hypothesis of equality only if One-sided

Dunnettthe noncontrol treatments provide a higher response than the control treat-
ments. For these, test using the critical value

u(E , i, j) = d′E(g − 1, ν) ,

tabulated in Appendix Table C.9, or form simultaneous one-sided confidence
intervals on µi − µg with

yi − yg ≥ d′E(g − 1, ν)
√

MSE

√
1

ni
+

1

ng
.

For t-critical values, a one-sided cutoff is equal to a two-sided cutoff with a
doubled E . The same is not true for Dunnett critical values, so that
d′E(g − 1, ν) 6= d2E(g − 1, ν).

Example 5.9 Alfalfa meal and turkeys
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An experiment is conducted to study the effect of alfalfa meal in the diet
of male turkey poults (chicks). There are nine treatments. Treatment 1 is a
control treatment; treatments 2 through 9 contain alfalfa meal of two different
types in differing proportions. Units consist of 72 pens of eight birds each, so
there are eight pens per treatment. One response of interest is average daily
weight gains per bird for birds aged 7 to 14 days. We would like to know
which alfalfa treatments are significantly different from the control in weight
gain, and which are not.

Here are the average weight gains (g/day) for the nine treatments:

22.668 21.542 20.001 19.964 20.893
21.946 19.965 20.062 21.450

The MSE is 2.487 with 55 degrees of freedom. (The observant student will
find this degrees of freedom curious; more on this data set later.) Two-sided,
95% confidence intervals for the differences between control and the other
treatments are computed using

dE(g − 1, ν)
√

MSE

√
1

ni
+

1

ng
= d.05(8, 55)

√
2.487

√
1

8
+

1

8

= 2.74× 1.577/2

= 2.16 .

Any treatment with mean less than 2.16 from the control mean of 22.668 is
not significantly different from the control. These are treatments 2, 5, 6, and
9.

We apply this method in R using the compare.to.control function
from cfcdae.

1 > compare.to.control(fit,treat,control=1)
difference lower upper

* 4 - 1 -2.703750 -4.863788 -0.5437122

* 7 - 1 -2.702500 -4.862538 -0.5424622

* 3 - 1 -2.666250 -4.826288 -0.5062122

* 8 - 1 -2.605000 -4.765038 -0.4449622
5 - 1 -1.775000 -3.935038 0.3850378
9 - 1 -1.211451 -3.456599 1.0336974
2 - 1 -1.125000 -3.285038 1.0350378
6 - 1 -0.721250 -2.881288 1.4387878

It is a good idea to give the control (treatment g) greater replication than
the other treatments. The control is involved in every comparison, so it makesGive the control

more replication sense to estimate its mean more precisely. More specifically, if you had a
fixed number of units to spread among the treatments, and you wished to
minimize the average variance of the differences yg• − yi•, then you would
do best when the ratio ng/ni is about equal to

√
g − 1.

Personally, I rarely use the Dunnett procedure, because I nearly always
get the itch to compare the noncontrol treatments with each other as well as
with the control.
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5.5.2 Comparison with the best

Suppose that the goal of our experiment is to screen a number of treatments
and determine those that give the best response—to pick the winner. The
multiple comparisons with best (MCB) procedure produces two results: Use MCB to

choose best
subset of

treatments
• It produces a subset of treatments that cannot be distinguished from

the best; the treatment having the true largest mean response will be in
this subset with probability 1− E .

• It produces simultaneous 1−E confidence intervals on µi−maxj 6=i µj ,
the difference between a treatment mean and the best of the other treat-
ment means.

The subset selection procedure is the more useful product, so we only discuss
the selection procedure.

The best subset consists of all treatments i such that

yi• > yj• − d′E(g − 1, ν)
√

MSE

√
1

ni
+

1

nj
for all j 6= i

In words, treatment i is in the best subset if its mean response is greater than
the largest treatment mean less a one-sided Dunnett allowance. When small
responses are good, a treatment i is in the best subset if its mean response is
less than the smallest treatment mean plus a one-sided Dunnett allowance.

Example 5.10 Weed control in soybeans
Weeds reduce crop yields, so farmers are always looking for better ways

to control weeds. Fourteen weed control treatments were randomized to 56
experimental plots that were planted in soybeans. The plots were later visu-
ally assessed for weed control, the fraction of the plot without weeds. The
percent responses are given in Table 5.3. We are interested in finding a subset
of treatments that contains the treatment giving the best weed control (largest
response) with confidence 99%.

For reasons that will be explained in Chapter 6, we will analyze as our
response the square root of percent weeds (that is, 100 minus the percent
weed control). Because we have subtracted weed control, small values of the
transformed response are good. On this scale, the fourteen treatment means
are

1.000 2.616 2.680 2.543 2.941 1.413 1.618
2.519 2.847 1.618 1.000 4.115 4.988 5.755

and the MSE is .547 with 42 degrees of freedom. The smallest treatment
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Table 5.3: Percent weed control in soybeans under 14
treatments. Data set WeedControl.

1 2 3 4 5 6 7
99 95 92 95 85 98 99
99 92 95 88 92 99 95
99 95 92 95 92 95 99
99 90 92 95 95 99 95

8 9 10 11 12 13 14
95 92 99 99 88 65 75
85 90 95 99 88 65 50
95 95 99 99 85 92 72
97 90 95 99 68 72 68

mean is 1.000, and the Dunnett allowance is

d′E(g − 1, ν)
√

MSE

√
1

ni
+

1

nj
= d′.01(13, 42)

√
.547

√
1

4
+

1

4

= 3.29× .740× .707

= 1.72.

So, any treatment with a mean of 1 + 1.72 = 2.72 or less is included in the
99% grouping. These are treatments 1, 2, 3, 4, 6, 7, 8, 10, and 11.

In R, we may use the compare.to.best function from cfcdae:

1 > fit <- lm(sqrt(100-pct.control)˜treatment,data=WeedControl)
2 > compare.to.best(fit,treatment,lowisbest = TRUE,confidence = .99)

difference allowance

* 14 - 1 4.754856e+00 1.716888

* 13 - 1 3.988022e+00 1.716888

* 12 - 1 3.114510e+00 1.716888

* 5 - 1 1.941476e+00 1.716888

* 9 - 1 1.847263e+00 1.716888
3 - 1 1.680337e+00 1.716888
2 - 1 1.615710e+00 1.716888
4 - 1 1.543076e+00 1.716888
8 - 1 1.519293e+00 1.716888
10 - 1 6.180340e-01 1.716888
7 - 1 6.180340e-01 1.716888
6 - 1 4.125704e-01 1.716888
11 - 1 3.996803e-15 1.716888

best is 1 0.000000e+00 NA

We can see that only treatments 5, 9, 12, 13, and 14 are outside the “best”
group.
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5.6 Reality Check on Coverage Rates

We already pointed out that the error rate control for some multiple com-
parisons procedures is only approximate if the sample sizes are not equal
or the tests are dependent. However, even in the “exact” situations, these
procedures depend on assumptions about the distribution of the data for the
coverage rates to hold: for example normality or constant error variance.
These assumptions are often violated—data are frequently nonnormal and
error variances are often nonconstant.

Violation of distributional assumptions usually leads to true error rates
that are not equal to the nominal E . The amount of discrepancy depends on
the nature of the violation. Unequal sample sizes or dependent tests are just
another variable to consider.

The point is that we need to get some idea of what the true error is, and
not get worked up about the fact that it is not exactly equal to E .

In the real world, coverage and error rates are always approximate.

5.7 A Warning About Conditioning

Except for the protected LSD, the multiple comparisons procedures discussed
above do not require the ANOVA F -test to be significant for protection of the
experimentwise error rate. They stand apart from the F -test, protecting the
experimentwise error rate by other means. In fact, requiring that the ANOVA
F -test be significant will alter their error rates.

Bernhardson (1975) reported on how conditioning on the ANOVA F -test
being significant affected the per comparison and per experiment error rates Requiring the

F -test to be
significant alters
the error rates of

pairwise
procedures

of pairwise comparisons, including LSD, HSD, SNK, Duncan’s procedure,
and Scheffé. Requiring the F to be significant lowered the per comparison
error rate of the LSD from 5% to about 1% and lowered the per experiment
error rate for HSD from 5% to about 3%, both for 6 to 10 groups. Looking
just at those null cases where the F -test rejected, the LSD had a per compari-
son error rate of 20 to 30% and the HSD per experiment error rate was about
65%—both for 6 to 10 groups. Again looking at just the null cases where
the F was significant, even the Scheffé procedure’s per experiment error rate
increased to 49% for 4 groups, 22% for 6 groups, and down to about 6% for
10 groups.

The problem is that when the ANOVA F -test is significant in the null
case, one cause might be an unusually low estimate of the error variance.
This unusually low variance estimate gets used in the multiple comparisons
procedures leading to smaller than normal HSD’s, and so on.
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5.8 Some Controversy

Simultaneous inference is deciding which error rate to control and then using
an appropriate technique for that error rate. Controversy arises because

• Users cannot always agree on the appropriate error rate.

• Users cannot always agree on what constitutes the appropriate family
of tests. Different groupings of the tests lead to different results.

• Standard statistical practice seems to be inconsistent in its application
of multiple comparisons ideas. For example, multiple comparisons are
fairly common when comparing treatment means, but almost unheard
of when examining multiple factors in factorial designs (see Chap-
ter 8).

You as experimenter and data analyst must decide what is the proper ap-
proach for inference. See Carmer and Walker (1982) for an amusing allegory
on this topic.

More philosophically, multiple comparisons procedures violate the like-
lihood principle, which says that given a statistical model, all of the evi-
dence you have for unknown parameters can be derived from the likelihood
function; see Berger and Wolpert (1988) for an extended discussion of theLikelihood

principle likelihood principle. Confidence intervals and p-values violate the likelihood
principle by referencing results obtained to results that might have been ob-
tained rather than simply relying on the likelihood. However, multiple com-
parisons adjustments go the extra mile by potentially involving other data not
directly relevant to the issue at hand (not just other potential outcomes of the
experiment at hand, as we do for confidence intervals and p-values) and by
accounting for the intentions of the investigator (see Berry 1988).

5.9 Further Reading and Extensions

There is much more to the subject of multiple comparisons than what we
have discussed here. For example, many procedures for contrasts can be
adapted to other linear combinations of parameters, and many of the pairwise
comparisons techniques can be adapted to contrasts. A good place to start is
Miller (1981), an instant classic when it appeared and still an excellent and
readable reference; much of the discussion here follows Miller. Hochberg
and Tamhane (1987) contains some of the more recent developments.

The first multiple comparisons technique appears to be the LSD sug-
gested by Fisher (1935). Curiously, the next proposal was the SNK (though
not so labeled) by Newman (1939). Multiple comparisons then lay dormant
till around 1950, when there was an explosion of ideas: Duncan’s multiple
range procedure (Duncan 1955), Tukey’s HSD (Tukey 1952), Scheffé’s all
contrasts method (Scheffé 1953), Dunnett’s method (Dunnett 1955), and an-
other proposal for SNK (Keuls 1952). The pace of introduction then slowed
again. The REGW procedures appeared in 1960 and evolved through the
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1970’s (Ryan 1960; Einot and Gabriel 1975; Welsch 1977). Improvements
in the Bonferroni inequality lead to the modified Bonferroni procedures in
the 1970’s and later (Holm 1979; Simes 1986; Hochberg 1988; Benjamini
and Hochberg 1995).

Procedures sometimes predate a careful understanding of the error rates
they control. For example, SNK has often been advocated as a less conser-
vative alternative to the HSD, but the false discovery rate was only defined
recently (Benjamini and Hochberg 1995). Furthermore, many textbook in-
troductions to multiple comparisons procedures do not discuss the different
error rates, thus leading to considerable confusion over the choice of proce-
dure.

One historical feature of multiple comparisons is the heavy reliance on
tables of critical values and the limitations imposed by having tables only
for selected percent points or equal sample sizes. Computers and software
remove many of these limitations. For example, the software in Lund and
Lund (1983) can be used to compute percent points of the Studentized range
for E’s not usually tabulated, while the software in Dunnett (1989) can com-
pute critical values for the Dunnett test with unequal sample sizes. When no
software for exact computation is available (for example, Studentized range
for unequal sample sizes), percent points can be approximated through sim-
ulation (see, for example, Ripley 1987).

Hayter (1984) has shown that the Tukey-Kramer adjustment to the HSD
procedure is conservative when the sample sizes are not equal.

The issue of optional stopping before testing is important in frequentist
statistics. One approach is the Sequential Probability Ratio Test (Wald 1947,
Ghosh and Sen 1991). This procedure allows you to test as each data point
arrives and still control your Type I error rate. Multiple testing over time
is crucial in clinical trials, where it sometimes goes by the name interim
analysis, and group-sequential designs (data arrive in blocks rather than one
at a time) are common. Some classical examples in this regard are found in
Pocock 1977, O’Brien and Fleming 1979, and Kim and DeMets 1987.

Berry and Hochberg (1999) provide a fairly gentle introduction to some
Bayesian perspectives on multiple comparisons. One outcome discussed
there is that a Bayesian might make decisions that look like multiple com-
parisons are being ignored or accommodated, depending on the kinds of in-
formation available and the form of the model. These authors also present an
example of a prior distribution for means in the separate means model that
does allow for exact equality of some means as well as the computation of a
posterior probability that some means are the same.

Neath and Cavanaugh (2006) provide an example approaching Bayesian
multiple comparisons as a model selection problem. This is somewhat anal-
ogous to the AICc method mentioned in Section 5.4.9.

Duncan (1961) introduced a Bayesian approach to pairwise comparisons,
extended and simplified in Waller and Duncan (1969). (This is the same Dun-
can as the new multiple range test, but a different procedure and different
justification.) This approach is a Bayesian decision problem directional dif-
ferences (greater than or less than). For any pair of means µi and µj , there are
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two decisions to make. In the first decision, we must decide between µj ≤ µi
and µj > µi. In the second decision, we must decide between µi ≤ µj and
µi > µj . If we decide µj > µi when µj ≤ µi is true, our loss is k1|µi − µj |.
On the other hand, if we decide µj ≤ µi when µj > µi is true, our loss is
k2|µi− µj |. The overall loss is the sum of the losses for each of the g(g− 1)
component decisions. In the end, for every pair of treatment means, we have
either decided µj > µi or µi > µj or that we cannot rank them relative to
each other (analogous to “not significantly different”).

The final decision rule takes the familiar form of declare two means dif-
ferent if |xi−xj | > u

√
MSE

√
1/ni + 1/nj , where u depends on the ratio of

relative costs of type I and II errors k = k1/k2, your prior knowledge about
the variability of treatment means relative to error variance, and degrees of
freedom. The multiplier u increases as k increases and decreases as the prior
ratio of variability among versus within treatments increases. Increasing k is
like decreasing E in frequentist comparison; lower values of the ratio of be-
tween to within variability lead to more stringent cutoffs, while higher values
are more like a per-comparison procedure.

One hesitates to wade into the discussion as to whether data collection
stopping rules affect Bayesian analysis. Subject matter experts have been
discussing this for decades, with a flurry of recent articles as Bayesian ap-
proaches have grown to have wider use. Chapter 4 of Berger and Wolpert
(1988) has an extended discussion of the role of stopping rules and their in-
teraction with likelihoods. Similarly, Lindsey (1997) also explores some of
the more arcane corners. The issues they discuss revolve around what does
it really mean to have an ignorable, or non-informative, stopping rule. Psy-
chologists have been prolific of late in their discussion of stopping rules. For
example, Wagenmakers (2007) has a fairly gentle introduction of some of the
issues. Rouder (2014) makes some categorical claims along with examples
(and with the title “Optional stopping: No problem for Bayesians” it’s pretty
clear which side he is on), but (Sanborn and Hills 2013) argue the reverse.
Blog posts on this subject are lively.

5.10 Problems

We have five groups and three observations per group. The group meansExercise 5.1
are 6.5, 4.5, 5.7, 5.6, and 5.1, and the mean square for error is .75. Com-
pute simultaneous confidence intervals (95% level) for the differences of all
treatment pairs.

Consider a completely randomized design with five treatments, four unitsExercise 5.2
per treatment, and treatment means

3.2892 10.256 8.1157 8.1825 7.5622 .

The MSE is 4.012.
(a) Construct an ANOVA table for this experiment and test the null hy-

pothesis that all treatments have the same mean.
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(b) Test the null hypothesis that the average response in treatments 1 and
2 is the same as the average response in treatments 3, 4, and 5.

(c) Use the HSD procedure to compare the means of the five treatments.

Refer to the data in Problem 3.1. Test the null hypothesis that all pairs Exercise 5.3
of workers produce solder joints with the same average strength against the
alternative that some workers produce different average strengths. Control
the strong familywise error rate at .05.

Refer to the data in Exercise 3.1. Test the null hypothesis that all pairs of Exercise 5.4
diets produce the same average weight liver against the alternative that some
diets produce different average weights. Control the FDR at .05.

Use the data from Exercise 3.3. Compute 95% simultaneous confidence Exercise 5.5
intervals for the differences in response between the three treatment groups
(acid, pulp, and salt) and the control group.

Use the data from Problem 3.2. Use the Tukey procedure to make all Problem 5.1
pairwise comparisons between the treatment groups. Summarize your results
with an underline diagram.

Use the data and context from Problem 3.8. We want to know which of Problem 5.2
the five treatments differ in mean. Choose one of the error rates, and provide
a justification for why you believe that is the correct error rate in this context.
Using that error rate, do all pairwise comparisons and report your results.

Use the data from Problem 3.9. Test whether the extravert or introvert Problem 5.3
conditions differ from control in terms of perception of power.

In an experiment with four groups, each with five observations, the group Problem 5.4
means are 12, 16, 21, and 19, and the MSE is 20. A colleague points out that
the contrast with coefficients -4, -2, 3, 3 has a rather large sum of squares.
No one knows to begin with why this contrast has a large sum of squares,
but after some detective work, you discover that the contrast coefficients are
roughly the same (except for the overall mean) as the time the samples had
to wait in the lab before being analyzed (3, 5, 10, and 10 days). What is the
significance of this contrast?

Consider an experiment taste-testing six types of chocolate chip cookies: Problem 5.5
1 (brand A, chewy, expensive), 2 (brand A, crispy, expensive), 3 (brand B,
chewy, inexpensive), 4 (brand B, crispy, inexpensive), 5 (brand C, chewy,
expensive), 6 (brand D, crispy, inexpensive). We will use twenty different
raters randomly assigned to each type (120 total raters). I have constructed
five preplanned contrasts for these treatments, and I obtain p-values of .03,
.04, .23, .47, and .68 for these contrasts. Discuss how you would assess the
statistical significance of these contrasts, including what issues need to be
resolved.

A satellite deorbits and pieces come raining down over northern Canada. Problem 5.6
Unfortunately, this satellite had a nuclear power cell, so now we have radio
isotopes spread all over the wilderness. A small plane flies a gamma ray
detector over the area and makes gamma ray counts at 10,000 locations in a
40 by 250 grid. At each location, we test the null hypothesis that the expected
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gamma ray emission rate is equal to the known background rate, versus the
alternative that the expected rate is higher than background. We will send
teams to investigate and, if required, clean up the locations that are found to
be significantly above background.

Discuss the pros and cons of using methods that control the per compar-
ison error rate, false discovery rate, or strong familywise error rate in this
situation. Which would you use?

An environmental consulting firm has collected 10 soil samples fromProblem 5.7
each of 55 sites and is testing them for dioxin. There is an accepted “back-
ground” level of dioxin, and the issue at hand is determining whether any of
the sites is above background concentration when tested against the null that
they are at background.

What error rate should they control if they want no more than 5% of the re-
jections to be incorrect rejections? Explain.

What error rate should they control if they want no more than a 5% chance
that any incorrect rejections are made? Explain.

A laboratory is trying to find compounds that will increase the “grip” ofProblem 5.8
tires in the winter. The real test is to make tires containing the compound, but
that is expensive, and the lab can only afford to do that when there is some
indication that the compound might actually work. Before making actual
tires, the lab screens a large number of compounds using a cheaper, but less
precise, process. For each compound screened, the output of the cheaper
process is a p-value for the null hypothesis that the compound does not affect
winter grip. Because the lab is testing a lot of compounds, there could be
a lot of false positives if they take all compounds with a p-value below 5%.
The lab doesn’t mind have a small fraction of false positives that go on to the
expensive test, but they don’t want the fraction of false positives to be larger
than 10%.

Choose an error rate that gives the lab the control that they want while
still selecting as many active compounds as possible. Defend your choice.

An issue of The Journal of Personality and Social Psychology publishedProblem 5.9
an article on ESP (extra-sensory perception). As we all know, many kinds
of ESP have been proposed at various times, and the scientific establishment
that any single person could exhibit any kind of ESP would be headline news.

Suppose that the experiment in JPSP went like this. Twenty student vol-
unteers were each tested for two kinds of ESP: telepathy (the ability to de-
termine the card that the experimenter was thinking about) and precognition
(the ability to see an event before it happens). The results of the 40 tests were
analyzed with a one-sample z-test. In this case, one student had a p-value less
than 5% for telepathy, and one had a p-value less than 5% for precognition.

What statistical issues do you see in terms of evidence for or against ESP?

In an experiment with five groups and 25 degrees of freedom for error, forQuestion 5.1
what numbers of contrasts is the Bonferroni procedure more powerful than
the Scheffé procedure?
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5.10 Problems 137

Consider using BH or SNK in a pairwise comparison problem. For con- Question 5.2
creteness, consider the case g = 5 and n = 5. Compare the cutoffs for
declaring significance. What do you see? For what configurations of group
means is SNK likely to be more powerful than BH?
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Chapter 6

Checking Assumptions

We analyze experimental results by using some set of frequentist or Bayesian
methods. Despite the many differences between the methods, they are all
based on the assumption that our data follow the model

yij = µ+ αi + εij ,

where the parameters αi’s are unknown and the εij’s are independent normals
with constant variance. We have done nothing to ensure that these assump-
tions are reasonably accurate.

What we did was random assignment of treatments to units, followed by
measurement of the response. As discussed briefly in Chapter 2, randomiza-
tion methods permit us to make inferences based solely on the randomization,
but these methods tend to be computationally tedious and difficult to extend. Accuracy of

inference
depends on

assumptions
being true

Model-based methods with distributional assumptions usually yield good ap-
proximations to the randomization inferences, provided that the model as-
sumptions are themselves reasonably accurate. If we apply the model-based
methods in situations where the model assumptions do not hold, the infer-
ences we obtain may be misleading. We thus need to look to the accuracy of
the model assumptions.

Historically, the assumptions of independence, constant variance, and
normality were our tickets to dependable inference, and statisticians worked
hard to ensure that their data were consistent with those assumptions. It was
an inferential case of the adage “If all you have is a hammer, the whole world Hammers and

nailslooks like a nail.” Fortunately, the past few decades have seen the arrival
of new tools in the toolbox, including robust methods, generalized linear
models (GLM) and Bayesian methods. These, together with better software,
permit us to more frequently analyze data as they are, rather than trying to
make them look as we think they should be.

For our standard models, the basic assumptions we need to check are that
the errors are 1) independent, 2) normally distributed, and 3) have constant
variance. (We also require that the errors have mean zero in every treatment
group. That is automatically true for the separate-means model, but it might
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not be true for reduced models such as polynomial models.) Independence
is the most important of these assumptions, and also the most difficult to ac-
commodate when it fails. For the kinds of models we have been using, nor-
mality is the least important assumption, particularly for large sample sizes;Independence,

constant
variance,
normality

see Chapter 10 for a different kind of model that is extremely dependent on
normality. Constant variance is intermediate, in that nonconstant variance
can have a substantial effect on our inferences, but nonconstant variance can
also be accommodated in many situations.

Note that the quality of our inference depends on how well the errors εij
conform to our assumptions, but that we do not observe the errors εij . The
closest we can get to the errors are rij , the residuals from the full model. Thus
we must make decisions about how well the errors meet our assumptions
based not on the errors themselves, but instead on residual quantities that
we can observe. This unobservable nature of the errors can make diagnosis
difficult in some situations.

In any real-world data set, we are almost sure to have one or more of
the three assumptions be false. For example, real-world data are never ex-
actly normally distributed. Thus there is no profit in formal testing of our
assumptions; we already know that they are not true. The good news is that
our procedures can still give reasonable inferences when the departures from
our assumptions are not too large. This is called robustness of validity, which
means that our inferences are reasonably valid across a range of departuresRobustness of

validity from our assumptions. Thus the real question is whether the deviations from
our assumptions are sufficiently great to cause us to mistrust our inference.
At a minimum, we would like to know in what way to mistrust the inference
(for example, our confidence intervals are shorter than they should be), and
ideally we would like to be able to correct any problems.

In the remaining sections of this chapter, I would like to (1) scare you
into believing that violation of our assumptions can lead to poor inference,
(2) give you some tools for diagnosing when there may be a problem with
our assumptions, and (3) give you some tools for working with data that fail
our assumptions. In many cases, these tools could be books unto themselves,
so our discussion of these tools, while perhaps longer than the student may
prefer, is still far from comprehensive.

Note: although nearly all of our discussion of assumptions will be done
in a frequentist context, Bayesian methods are also vulnerable to model mis-
specification.

6.1 Effects of Incorrect Assumptions

Our methods work as advertised when the data meet our assumptions. Some
violations of the assumptions have little effect on the quality of our infer-
ence, but others can cause almost catastrophic failure. This section gives an
overview of how failed assumptions affect inference.
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Table 6.1: Skewness and kurtosis for selected distributions.

Distribution γ1 γ2

Normal 0 0

Uniform 0 −1.2

Normal truncated at
±1 0 −1.06
±2 0 −0.63

Student’s t (df)
5 0 6
6 0 3
8 0 1.5
20 0 .38

Chi-square (df)
1 2.83 12
2 2 6
4 1.41 3
8 1 1.5

6.1.1 Effects of nonnormality

Before describing the effects of nonnormality, we need some way to quan-
tify the degree to which a distribution is nonnormal. For this we will use
the skewness and kurtosis, which measure asymmetry and tail length respec-
tively. The skewness γ1 and kurtosis γ2 deal with third and fourth powers of
the data:

γ1 =
E[(X − µ)3]

σ3
and γ2 =

E[(X − µ)4]

σ4
− 3.

For a normal distribution, both the skewness and kurtosis are 0. Distribu- Skewness
measures

asymmetry
tions with a longer right tail have positive skewness, while distributions with
a longer left tail have negative skewness. Symmetric distributions, like the
normal, have zero skewness. Distributions with longer tails than the normal
(more outlier prone) have positive kurtosis, and those with shorter tails than Kurtosis

measures tail
length

the normal (less outlier prone) have negative kurtosis. The “-3” in the defi-
nition of kurtosis is there to make the normal distribution have zero kurtosis.
Note that neither skewness nor kurtosis depends on location or scale.

Table 6.1 lists the skewness and kurtosis for several distributions, giving
you an idea of some plausible values. We could estimate the skewness and
kurtosis for the residuals in our analysis, but these values are of limited di-
agnostic value, as sample estimates of skewness and kurtosis are notoriously
variable.

For our discussion of nonnormal data, we will assume that the distribu-
tion of responses in each treatment group is the same apart from different
means, but we will allow this common distribution to be nonnormal instead
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Table 6.2: Actual Type I error rates for ANOVA F -test with nominal
5% error rate for various sample sizes and values of γ1 and γ2 using
the methods of Gayen (1950).

Four Samples of Size 5
γ2

γ1 -1 -.5 0 .5 1 1.5 2
0 .0527 .0514 .0500 .0486 .0473 .0459 .0446
.5 .0530 .0516 .0503 .0489 .0476 .0462 .0448
1 .0538 .0524 .0511 .0497 .0484 .0470 .0457
1.5 .0552 .0538 .0525 .0511 .0497 .0484 .0470

γ1 = 0 and γ2 = 1.5

4 groups of k k groups of 5 (k1, k1, k2, k2)

k Error k Error k1, k2 Error
2 .0427 4 .0459 10,10 .0480
10 .0480 8 .0474 8,12 .0483
20 .0490 16 .0485 5,15 .0500
40 .0495 32 .0492 2,18 .0588

of requiring it to be normal. Our usual point estimates of group means and
the common variance (yi• and MSE respectively) are still unbiased.

The nominal p-values for F -tests are only slightly affected by moder-
ate nonnormality of the errors. For balanced data sets (where all treatmentLong tails

conservative for
balanced data

groups have the same sample size), long tails tend to make the F -tests con-
servative; that is, the nominal p-value is usually a bit larger than it should
be; so we reject the null too rarely. Again for balanced data, short tails will
tend to make the F -tests liberal; that is, the nominal p-value is usually a bit
smaller than it should be, so that we reject the null too frequently. Asymme-Short tails liberal

for balanced data try generally has a smaller effect than tail length on p-values. Unbalanced
data sets are less predictable and can be less affected by nonnormality than
balanced data sets, or even affected in the opposite direction. The effect of
nonnormality decreases quickly with sample size. Table 6.2 gives the true
Type I error rate of a nominal 5% F -test for various combinations of sample
size, skewness, and kurtosis.

The situation is not quite so good for confidence intervals, with skewness
generally having a larger effect than kurtosis. When the data are normal,Skewness affects

confidence
intervals

two-sided t-confidence intervals have the correct coverage, and the errors
are evenly split high and low. When the data are from a distribution with
nonzero skewness, two-sided t-confidence intervals still have approximately
the correct coverage, but the errors tend to be to one side or the other, rather
than split evenly high and low. One-sided confidence intervals for a mean
can be seriously in error. The skewness for a contrast is less than that for a
single mean, so the errors will be more evenly split. In fact, for a pairwise
comparison when the sample sizes are equal, skewness essentially cancels
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out, and confidence intervals behave much as for normal data.
Individual outliers can so influence both treatment means and the mean

square for error that the entire inference can change if repeated excluding the
outlier. It may be useful here to distinguish between robustness (of validity) Outliers,

robustness,
resistance

and resistance (to outliers). Robustness of validity means that our procedures
give us inferences that are still approximately correct, even when some of our
assumptions (such as normality) are incorrect. Thus we say that the ANOVA
F -test is robust, because a nominal 5% F -test still rejects the null in about
5% of all samples when the null is true, even when the data are somewhat
nonnormal. A procedure is resistant when it is not overwhelmed by one or a
few individual data values. Our linear models methods are somewhat robust,
but they are not resistant to outliers.

6.1.2 Effects of nonconstant variance

When there are g = 2 groups and the sample sizes are equal, the Type I error
rate of the F -test is very insensitive to nonconstant variance. When there are Nonconstant

variance affects
F -test p-values

more than two groups or the sample sizes are not equal, the deviation from
nominal Type I error rate is noticeable and can in fact be quite large. The
basic facts are as follows:

1. If all the ni’s are equal, then the effect of unequal variances on the
p-value of the F -test is relatively small.

2. If big ni’s go with big variances, then the nominal p-value will be
bigger than the true p-value (we overestimate the variance and get
a conservative test).

3. If big ni’s go with small variances, then the nominal p-value will
be less than the true p-value (we underestimate the variance and
get a liberal test).

We can be more quantitative by using an approximation given in Box
(1954). Table 6.3 gives the approximate Type I error rates for the usual F -
test when error variance is not constant. Clearly, nonconstant variance can
dramatically affect our inference. These examples show (approximate) true
type I error rates ranging from under .02 to almost .3; these are deviations
from the nominal .05 that cannot be ignored.

Our usual form of confidence intervals uses the MSE as an estimate of
error. When the error variance is not constant, the MSE will overestimate the
error for contrasts between groups with small errors and underestimate the Nonconstant

variance affects
confidence

intervals

error for contrasts between groups with large errors. Thus our confidence
intervals will be too long when comparing groups with small errors and too
short when comparing groups with large errors. The intervals that are too
long will have coverage greater than the nominal 1 − E , and vice versa for
the intervals that are too short. The degree to which these intervals are too
long or short can be arbitrarily large depending on sample sizes, the number
of groups, and the group error variances.

Draft of March 1, 2021



144 Checking Assumptions

Table 6.3: Approximate Type I error rate E for nominal 5%
ANOVA F -test when the error variance is not constant.
g σ2i ni E
3 1, 1, 1 5, 5, 5 .05

1, 2, 3 5, 5, 5 .0579
1, 2, 5 5, 5, 5 .0685
1, 2, 10 5, 5, 5 .0864
1, 1, 10 5, 5, 5 .0954
1, 1, 10 50, 50, 50 .0748

3 1, 2, 5 2, 5, 8 .0202
1, 2, 5 8, 5, 2 .1833
1, 2, 10 2, 5, 8 .0178
1, 2, 10 8, 5, 2 .2831
1, 2, 10 20, 50, 80 .0116
1, 2, 10 80, 50, 20 .2384

5 1, 2, 2, 2, 5 5, 5, 5, 5, 5 .0682
1, 2, 2, 2, 5 2, 2, 5, 8, 8 .0292
1, 2, 2, 2, 5 8, 8, 5, 2, 2 .1453
1, 1, 1, 1, 5 5, 5, 5, 5, 5 .0908
1, 1, 1, 1, 5 2, 2, 5, 8, 8 .0347
1, 1, 1, 1, 5 8, 8, 5, 2, 2 .2029

6.1.3 Effects of dependence

When the errors are dependent but otherwise meet our assumptions, our esti-
mates of treatment effects are still unbiased, and the MSE is nearly unbiased
for σ2 when the sample size is large. The big change is that the variance ofVariance of

average not σ2/n
for dependent
data

an average is no longer just σ2 divided by the sample size. This means that
our estimates of standard errors for treatment means and contrasts are biased
(whether too large or small depends on the pattern of dependence), so that
confidence intervals and tests will not have their claimed error rates. The
usual ANOVA F -test will be affected for similar reasons.

Let’s be a little more careful. The ANOVA F -test is robust to depen-
dence when considered as a randomization test. This means that averaged
across all possible randomizations, the F -test will reject the null hypothesisF robust to

dependence
averaged across
randomizations

about the correct fraction of times when the null is true. However, when the
original data arise with a dependence structure, certain outcomes of the ran-
domization will tend to have too many rejections, while other outcomes of
the randomization will have too few.

More severe problems can arise when there was no randomization across
the dependence. For example, treatments may have been assigned to units
at random; but when responses were measured, all treatment 1 units were
measured, followed by all treatment 2 units, and so on. Random assignment
of treatment to units will not help us, even on average, if there is a strong
correlation across time in the measurement errors.
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Table 6.4: Error rates ×100 of nominal 95% confidence
intervals for µ1 − µ2, when neighboring data values have
correlation ρ and data patterns are consecutive or alternate.

ρ
–.3 –.2 –.1 0 .1 .2 .3 .4

Con. .19 1.1 2.8 5 7.4 9.8 12 14
Alt. 12 9.8 7.4 5 2.8 1.1 .19 .001

Example 6.1 Correlated errors
Consider a situation with two treatments and large, equal sample sizes.

Suppose that the units have a time order, and that there is a correlation of ρ
between the errors εij for time-adjacent units and a correlation of 0 between
the errors of other pairs. For two treatments, the F -test is equivalent to a
t-test. The t-test assumes that the difference of the treatment means has vari-
ance 2σ2/n. The actual variance of the difference depends on the correlation
ρ and the temporal pattern of the two treatments.

Consider first two temporal patterns for the treatments; call them con-
secutive and alternate. In the consecutive pattern, all of one treatment oc-
curs, followed by all of the second treatment. In the alternate pattern, the
treatments alternate every other unit. For the consecutive pattern, the actual
variance of the difference of treatment means is 2(1 + 2ρ)σ2/n, while for
the alternate pattern the variance is 2(1 − 2ρ)σ2/n. For the usual situation
of ρ > 0, the alternate pattern gives a more precise comparison than the con-
secutive pattern, but the estimated variance in the t-test (2σ2/n) is the same
for both patterns and correct for neither. So for ρ > 0, confidence intervals in
the consecutive case are too short by a factor of 1/

√
1 + 2ρ, and the intervals

will not cover the difference of means as often as they claim, whereas con-
fidence intervals in the alternate case are too long by a factor of 1/

√
1− 2ρ

and will cover the difference of means more often than they claim.

Table 6.4 gives the true error rates for a nominal 95% confidence inter-
val under the type of serial correlation described above and the consecutive
and alternate treatment patterns. These will also be the true error rates for
the two-group F -test, and the consecutive results will be the true error rates
for a confidence interval for a single treatment mean when the data for that
treatment are consecutive.

In contrast, consider randomized assignment of treatments for the same
kind of units. We could get consecutive or alternate patterns by chance, but
that is very unlikely. Under the randomization, each unit has on average one
neighbor with the same treatment and one neighbor with the other treatment,
tending to make the effects of serial correlation cancel out. Table 6.5 shows
median, upper, and lower quartiles of error rates for ρ = .4 and sample sizes
from 10 to 100 based on 10,000 simulations. The best and worst case error
rates are those from Table 6.4; but we can see in Table 6.5 that most random-
izations lead to reasonable error rates, and the deviation from the nominal
error rate gets smaller as the sample size increases.

Draft of March 1, 2021



146 Checking Assumptions

Table 6.5: Median, upper and lower quartiles of error
rates × 100 of nominal 95% confidence intervals for
µ1 − µ2 when neighboring data values have correlation .4
and treatments are assigned randomly, based on 10,000
simulations.

n
10 20 30 50 100

Lower quartile 3.7 3.9 4.0 4.2 4.5
Median 4.5 4.8 4.8 4.9 5.0
Upper quartile 6.5 5.7 5.8 5.5 5.4

Here is another way of thinking about the effect of serial correlation when
treatments are in a consecutive pattern. Positive serial correlation leads to
variances for treatment means that are larger than σ2/n, say σ2/(En), forPositive serial

correlation has a
smaller effective
sample size

E < 1. The effective sample size En is less than our actual sample size
n, because an additional measurement correlated with other measurements
doesn’t give us a full unit’s worth of new information. Thus if we use the
nominal sample size, we are being overly optimistic about how much preci-
sion we have for estimation and testing.

The effects of spatial association are similar to those of serial correlation,
because the effects are due to correlation itself, not spatial correlation as
opposed to temporal correlation.

6.2 Assessing Violations of Assumptions

Our assumptions of independent, normally distributed errors with constant
variance are not true for real-world data. However, our procedures may still
give us reasonably good inferences, provided that the departures from our
assumptions are not too great. Therefore we assess the nature and degree to
which the assumptions are violated and take corrective measures if they areAssess — don’t

test needed. The p-value of a formal test of some assumption does not by itself
tell us the nature and degree of violations, so formal testing is of limited
utility. Graphical and numerical assessments are the way to go.

Our assessments of assumptions about the errors are based on residuals.
The raw residuals rij are simply the differences between the data yij andAssessments

based on
residuals

the treatment means yi•. In later chapters there will be more complicated
structures for the means, but the raw residuals are always the differences
between the data and the fitted value.

We sometimes modify the raw residuals to make them more interpretable
(see Cook and Weisberg 1982). For example, the variance of a raw residual is
σ2(1−Hij), so we might divide raw residuals by an estimate of their standard
error to put all the residuals on an equal footing. (See below for Hij .) This is
the internally Studentized residual sij , defined byInternally

Studentized
residual
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sij =
rij√

MSE(1−Hij)
.

Internally Studentized residuals have a variance of approximately 1.
Alternatively, we might wish to get a sense of how far a data value is from

what would be predicted for it from all the other data. This is the externally
Studentized residual tij , defined by

tij = sij

(
N − g − 1

N − g − s2ij

)1/2

,

where sij in this formula is the internally Studentized residual. The exter-
nally Studentized residual helps us determine whether a data point follows Externally

Studentized
residual

the pattern of the other data. When the data actually come from our assumed
model, the externally Studentized residuals tij follow a t-distribution with
N − g − 1 degrees of freedom.

The quantity Hij used in computing sij (and thus tij) is called the lever-
age and depends on the model being fit to the data and sample sizes; Hij is Leverage
1/ni for the separate treatment means model we are using now. Most statis-
tical software will produce leverages and various kinds of residuals.

6.2.1 Assessing nonnormality

The normal probability plot (NPP), is a graphical procedure for assessing
normality. We plot the ordered data on the vertical axis against the ordered Normal

probability plot
(NPP)

normal scores on the horizontal axis. For assessing the normality of residu-
als, we plot the ordered residuals on the vertical axis. If you make an NPP
of normally distributed data, you get a more or less straight line. It won’t be
perfectly straight due to sampling variability. If you make an NPP of nonnor-
mal data, the plot will tend to be curved, and the shape of curvature tells you
how the data depart from normality.

Normal scores are the expected values for the smallest, second smallest,
and so on, up to the largest data point in a sample that really came from a Normal scores
normal distribution with mean 0 and variance 1. One simple approximation
to the normal score for the ith point from a sample of size n is the (i −
3/8)/(n+ 1/4) percent point of a standard normal.

In our diagnostic setting, we make a normal probability plot of the resid-
uals from fitting the full model; it generally matters little whether we use raw
or Studentized residuals. We then examine this plot for systematic deviation
from linearity, which would indicate nonnormality. Figure 6.1 shows proto-
type normal probability plots for long and short tailed data, data skewed to
the left and right, and multi-modal and normal data. All sample sizes are 50.

It takes some practice to be able to look at an NPP and tell whether the
deviation from linearity is due to nonnormality or sampling variability, and Practice!
even with practice there is considerable room for error. It is well worth your
time to look at a bunch of plots to get a feel for how they may vary.
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Figure 6.1: Normal probability plots of data with six shapes, with
(0,1) line added. All data standardized to zero mean and standard
deviation 1.

Outliers are an extreme form of nonnormality. Roughly speaking, an
outlier is an observation “different” from the bulk of the data, where different
is usually taken to mean far away from or not following the pattern of theOutliers
bulk of the data. Outliers can show up on an NPP as isolated points in the
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Table 6.6: Rainfall in acre feet from 52 clouds. Data set
CloudSeeding.

Unseeded Seeded
1202.6 87.0 26.1 2745.6 274.7 115.3

830.1 81.2 24.4 1697.8 274.7 92.4
372.4 68.5 21.7 1656.0 255.0 40.6
345.5 47.3 17.3 978.0 242.5 32.7
321.2 41.1 11.5 703.4 200.7 31.4
244.3 36.6 4.9 489.1 198.6 17.5
163.0 29.0 4.9 430.0 129.6 7.7
147.8 28.6 1.0 334.1 119.0 4.1

95.0 26.3 302.8 118.3

corners that lie off the pattern shown by the rest of the data. Some of the
points in the corners of the long tails panel of Figure 6.1 would be considered
outliers in the context of a model that assumes normally distributed data.

We can use externally Studentized residuals to construct a formal outlier
test. Each externally Studentized residual is a test statistic for the null hy-
pothesis that the corresponding data value follows the pattern of the rest of
the data, against an alternative that it has a different mean. Large absolute
values of the Studentized residual are compatible with the alternative, so we Outlier test
reject the null and declare a given point to be an outlier if that point’s Stu-
dentized residual exceeds in absolute value the upper E/2 percent point of
a t-distribution with N − g − 1 degrees of freedom. To test all data values
(or equivalently, to test the maximum Studentized residual), make a Bonfer-
roni correction and test the maximum Studentized residual against the upper
E/(2N) percent point of a t-distribution with N − g− 1 degrees of freedom.
This test can be fooled if there is more than one outlier.

Example 6.2 Cloud seeding
Simpson, Olsen, and Eden (1975) provide data giving the rainfall in acre

feet of 52 clouds, 26 of which were chosen at random for seeding with silver
oxide. The problem is to determine if seeding has an effect and what size the
effect is (if present). Data are given in Table 6.6.

1 > fit <- lm(rainfall˜seeding,data=CloudSeeding)
2 > anova(fit)

Analysis of Variance Table

Response: rainfall
Df Sum Sq Mean Sq F value Pr(>F)

seeding 1 1000332 1000332 3.993 0.05114 .
Residuals 50 12526130 250523
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

3 > plot(fit,which=2)

Fitting the standard linear model to the data yields a p-value of about .05, giv-
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Figure 6.2: Normal probability plot for cloud seeding data.

ing weak evidence of a difference between the treatments. However, before
making conclusions, we need to check assumptions.

Figure 6.2 shows an NPP for the cloud seeding data residuals. The plot
is angled with the bend in the lower right corner, indicating that the residuals
are skewed to the right. This skewness is pretty evident if you make box-plots
of the data, or simply look at the data in Table 6.6.

The plot method for a fitted linear model can display several types of
plots. By default, it shows four different plots, including the normal proba-
bility plot. Using which=2 selects the NPP.

Now compute the externally Studentized residuals.
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4 > rstudent(fit)
[1] 2.19411061 1.36772091 0.41990969 0.36539566 0.31620786 0.16082073
[7] -0.00320393 -0.03386275 -0.14038827 -0.15653518 -0.16824324 -0.19388491
[13] -0.23670624 -0.24923426 -0.25832867 -0.27369111 -0.27449976 -0.27914975
[19] -0.27955412 -0.28299133 -0.28845085 -0.29734898 -0.30908053 -0.32243340
[25] -0.32243340 -0.33032537 6.21229095 2.71710764 2.61380992 1.09427439
[31] 0.52877750 0.09504057 -0.02417313 -0.21770866 -0.28096164 -0.33780600
[37] -0.33780600 -0.37769688 -0.40302714 -0.48785195 -0.49211882 -0.63264837
[43] -0.65430019 -0.65573067 -0.66186225 -0.70871745 -0.81506307 -0.83132908
[49] -0.83400703 -0.86266333 -0.88289268 -0.89032932

5 > car::outlierTest(fit)
rstudent unadjusted p-value Bonferonni p

27 6.212291 1.1009e-07 5.7245e-06

The largest (corresponding to 2745.6) is 6.21, and is well beyond any reason-
able cutoff for being an outlier. The next largest Studentized residual is 2.71.
The outlier test can be automated using car::outlierTest as shown in
line 5.

6 > use <- rep(TRUE,52);use[27] <- FALSE
7 > fit.27 <- lm(rainfall˜seeding,data=CloudSeeding,subset=use)
8 > car::outlierTest(fit.27)

rstudent unadjusted p-value Bonferonni p
28 4.214633 0.00010977 0.0055984
29 4.038566 0.00019293 0.0098392

If we remove the outlier from the data set and reanalyze, we now find that
the largest Studentized residual is 4.21, corresponding to 1697.5. This has
a Bonferroni p-value of about .006 for the outlier test. This is an example
of masking, where one apparently outlying value can hide a second. If we
remove this second outlier and repeat the analysis, we now find that 1656 has
a Studentized residual of 5.35, again an “outlier”. Still more data values will
be indicated as outliers as we pick them off one by one.

The problem we have here is not so much that the data are mostly normal
with a few outliers, but that the data do not follow a normal distribution at all.
The outlier test is based on normality, and doesn’t work well for nonnormal
data.

6.2.2 Assessing nonconstant variance

There are formal tests for equality of variance—do not use them! This is for
two reasons. First, p-values from such tests do not tell us what we need to Don’t test equality

of variancesknow: the amount of nonconstant variance that is present and how it affects
our inferences. Second, classical tests of constant variance (such as Bartlett’s
test or Hartley’s test) are so incredibly sensitive to nonnormality that their
inferences are worthless in practice.

We will look for nonconstant variance that occurs when the responses
within a treatment group all have the same variance σ2i , but the variances Does variance

differ by
treatment?

differ between groups. We cannot distinguish nonconstant variance within a
treatment group from nonnormality of the errors.
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We assess nonconstant variance by making a plot of the residuals rij (or
sij or tij) on the vertical axis against the fitted values yij − rij = yi• on theResidual plots

reveal
nonconstant
variance

horizontal axis. This plot will look like several vertical stripes of points, one
stripe for each treatment group. If the variance is constant, the vertical spread
in the stripes will be about the same. Nonconstant variance is revealed as a
pattern in the spread of the residuals. Note that groups with larger sample
sizes will tend to have some residuals with slightly larger absolute values,
simply because the sample size is bigger. It is the overall pattern that we are
looking for.

The most common deviations from constant variance are those where the
residual variation depends on the mean. Usually we see variances increas-
ing as the mean increases, but other patterns can occur. When the varianceRight-opening

megaphone is
most common
nonconstant
variance

increases with the mean, the residual plot has what is called a right-opening
megaphone shape; it’s wider on the right than on the left. When the variance
decreases with the mean, the megaphone opens to the left. A third possi-
ble shape arises when the responses are proportions; proportions around .5
tend to have more variability than proportions near 0 or 1. Other shapes are
possible, but these are the most common.

A variation on the residuals versus fitted plot that can be helpful is to
use the square root of the absolute value of the Studentized residuals instead
of the residuals themselves. On this scale, the large residuals get pulled in
and the small residuals get pulled up toward 1. These transformed residuals
are more clumped and symmetrically distributed, sometimes making non-
constant variance more evident. R calls this a Scale-Location plot.

If you absolutely must test equality of variances—for example if change
of variance is the treatment effect of interest—Conover, Johnson, and John-
son (1981) suggest a modified Levene test. Let yij be the data. First computeLevene test
ỹi, the median of the data in group i; then compute dij = |yij − ỹi|, the ab-
solute deviations from the group medians. Now treat the dij as data, and use
the ANOVA F -test to test the null hypothesis that the groups have the same
average value of dij . This test for means of the dij is equivalent to a test for
the equality of standard deviations of the original data yij . The Levene test as
described here is a general test and is not tuned to look for specific kinds of
nonconstant variance, such as right-opening megaphones. Just as contrasts
and polynomial models are more focused than ANOVA, corresponding vari-
ants of ANOVA in the Levene test may be more sensitive to specific ways in
which constant variance can be violated.

Example 6.3 Resin lifetimes, continued
In Example 3.2 we analyzed the log10 lifetimes of an encapsulating resin

under different temperature stresses. What happens if we look at the lifetimes
on the original scale rather than the log scale?
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1 > fit <- lm(Time˜temp.factor,data=ResinLifetimes)
2 > plot(fit,which=1)
3 > plot(fit,which=3)
4 > car::leveneTest(fit)

Levene’s Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 4 2.3746 0.07286 .
32

---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Line 1 fits the model using the data on the original scale. Line 2 produces
the residual plot shown in Figure 6.3. A right-opening megaphone shape is
clear, showing that the variability of the residuals increases with the response
mean. Line 3 produces the scale-location plot (Figure 6.4), and nonconstant
scale is again evident. These scale-assessing residual plots are types 1 and 3
(which=1 or which=3) in R.

Although we typically do not test for constant variance, the Levene test
is available in the car package as shown on line 4. The Levene test for
the null hypothesis of constant variance has a p-value of about .07, which is
weak evidence against constant variance, even though nonconstant variance
is evident in the plots.

6.2.3 Assessing dependence

Serial dependence or autocorrelation is one of the more common ways that
independence can fail. Serial dependence arises when results close in time Serial

dependencetend to be too similar (positive dependence) or too dissimilar (negative de-
pendence). Positive dependence is far more common. Serial dependence
could result from a “drift” in the measuring instruments, a change in skill of
the experimenter, changing environmental conditions, and so on. If there is
no idea of time order for the units, then there can be no serial dependence.

A graphical method for detecting serial dependence is to plot the resid-
uals on the vertical axis versus time sequence on the horizontal axis. The Index plot to

detect serial
dependence

plot is sometimes called an index plot (that is, residuals-against-time index).
Index plots give a visual impression of whether neighbors are too close to-
gether (positive dependence), or too far apart (negative dependence). Positive
dependence appears as drifting patterns across the plot, while negatively de-
pendent data have residuals that center at zero and rapidly alternate positive
and negative.

The Durbin-Watson statistic is a simple numerical method for checking
serial dependence. Let rk be the residuals sorted into time order. Then the Durbin-Watson

statistic to detect
serial

dependence

Durbin-Watson statistic is:

DW =

∑n−1
k=1(rk − rk+1)

2∑n
k=1 r

2
k

.

If there is no serial correlation, the DW should be about 2, give or take sam-
pling variation. Positive serial correlation will make DW less than 2, and
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Figure 6.3: Residuals versus fitted values plot for resin lifetime data.

negative serial correlation will make DW more than 2. As a rough rule, se-
rial correlations corresponding to DW outside the range 1.5 to 2.5 are large
enough to have a noticeable effect on our inference techniques. Note that DW
itself is random and may be outside the range 1.5 to 2.5, even if the errors are
uncorrelated. For data sets with long runs of units from the same treatment,
the variance of DW is a bit less than 4/N .

Example 6.4 Temperature differences between thermocouples
Christensen and Blackwood (1993) provide data from five thermocou-

ples that were inserted into a high-temperature furnace to ascertain their rela-
tive bias. Sixty-four temperature readings were taken using each thermocou-
ple, with the readings taken simultaneously from the five devices. Table 6.7
gives the differences between thermocouples 3 and 5. We can estimate the
relative bias by the average of the observed differences.
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Figure 6.4: Scale-location plot for resin lifetime data.

Table 6.7: Temperature differences in degrees Celsius between
two thermocouples for 64 consecutive readings, time order along
rows. Data set Thermocouples.

3.19 3.15 3.13 3.14 3.14 3.13 3.13 3.11
3.16 3.17 3.17 3.14 3.14 3.14 3.15 3.15
3.14 3.15 3.12 3.05 3.12 3.16 3.15 3.17
3.15 3.16 3.15 3.16 3.15 3.15 3.14 3.14
3.14 3.15 3.13 3.12 3.15 3.17 3.16 3.15
3.13 3.13 3.15 3.15 3.05 3.16 3.15 3.18
3.15 3.15 3.17 3.17 3.14 3.13 3.10 3.14
3.07 3.13 3.13 3.12 3.14 3.15 3.14 3.14

1 > fit <- lm(temp.diff˜1,data=Thermocouples)
2 > plot(residuals(fit))
3 > abline(h=0)
4 > car::durbinWatsonTest(fit)

lag Autocorrelation D-W Statistic p-value
1 0.2131219 1.513854 0.046

Alternative hypothesis: rho != 0
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Figure 6.5: Deviations from the mean for paired differences of 64
readings from two thermocouples.

Line 1 fits a single-mean model to the differences, and line 2 plots the resid-
uals. By default, these are plotted in data order. Assuming that the data were
entered in time order, this gives a plot of residuals against time, as shown in
Figure 6.5. There is a tendency for positive and negative residuals to cluster
in time, indicating positive autocorrelation. Line 4 computes the Durbin-
Watson statistic. It is marginally significant, but more important is the value
of 1.5, indicating that the autocorrelation may be strong enough to affect our
inferences.

Spatial association, another common form of dependence, arises when
units are distributed in space and neighboring units have responses moreSpatial

association similar than distant units. For example, spatial association might occur in
an agronomy experiment when neighboring plots tend to have similar fertil-
ity, but distant plots could have differing fertilities.

One method for diagnosing spatial association is the variogram. We
make a plot with a point for every pair of units. The plotting coordinates
for a pair are the distance between the pair (horizontal axis) and the squaredVariogram to

detect spatial
association

difference between their residuals (vertical axis). If there is a pattern in this
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Figure 6.6: Horizontal (x) and vertical (y) locations of good (1) and
bad (0) integrated circuits on a wafer. Data set ICDefects.

figure—for example, the points in the variogram tend to increase with in-
creasing distance—then we have spatial association.

This plot can look pretty messy, so we usually do some averaging. Let
Dmax be the maximum distance between a pair of units. Choose some num- Plot binned

averages in
variogram

ber of bins K, say 10 or 15, and then divide the distance values into K
groups: those from 0 to Dmax/K, Dmax/K up to 2Dmax/K, and so on.
Now plot the average of the squared difference in residuals for each group of
pairs. This plot should be roughly flat for data with no spatial association;
it will usually have smaller average squared differences for small distances
when there is spatial association.

Example 6.5 Defective integrated circuits on a wafer
Taam and Hamada (1993) provide an example from the manufacture of

integrated circuit chips. Many IC chips are made on a single silicon wafer,
from which the individual ICs are cut after manufacture. Figure 6.6 (Taam
and Hamada’s Figure 1) shows the location of good (1) and bad (0) chips on
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a single wafer. Clustering of the good chips is readily apparent.
There are 54 chips, of which 20 are good; 37% of chips are good. There

are 182 adjacent chip pairs (neighbors either horizontally or vertically). If
placement of good and bad chips were independent, we would expect .372 +
.632 = 53% of the adjacent pairs to be the same. Instead, almost 70% are
the same. Similarly, 59% of the diagonal neighbors are the same. This shows
nearby chips are more likely to be the same. Curiously, and somewhat unusu-
ally, the number of equal pairs also increases at high distances. This occurs
because the chips near the edge are more likely to be bad, and the only way
to get a pair with a large distance is for them to cross the chip completely.

6.3 Fixing Problems

When our assessments indicate that our data do not meet our assumptions, we
must either modify the data so that they do meet the assumptions or change
our methods so that the data fit the assumptions of the new methods. His-
torically, data modification usually meant one of two things: transforming
the data to a new scale (for example, analyzing the logarithm of the data)
or analyzing data after outliers have been removed. New methods cover a
wide array of possibilities, including broad categories such as nonparametric
methods, robust methods, and generalized linear models as well as specialty
methods that fix a particular problem (e.g., nonconstant variance in analysis
of variance). We will see all of these approaches.

There is no step by step recipe for dealing with unmet assumptions.
Instead, there is a set of potential approaches, and you might want to try
more than one. By great luck, we often find that an approach that fixes one
problem, say non-constant variance, will also fix another problem, say non-
normality. In the following sections, we will go through different approaches
that we can take and discuss how they can be used to address problems in the
data.

6.3.1 Transformations

The classic tool for dealing with violations of assumptions is a transforma-
tion, or reexpression, of the response. For example, we might analyze the
logarithm of the response. The idea is that the responses on the transformed
scale match our assumptions more closely, so that we can use standard meth-
ods on the transformed data. Transforming the data can work remarkablyTransformed data

may meet
assumptions

well, but transforming cannot fix all problems, and it creates some problems
of its own.

There are several schemes for choosing transformations, some of which
will be discussed below. For now, we note that transformations often help,
and discuss the effect that transformations have on inference.

The null hypothesis tested by an F -test is that all the treatment means
are equal. Together with the other assumptions we have about the responses,
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the null hypothesis implies that the distributions of the responses in all the
treatment groups are exactly the same. Because these distributions are the
same before transformation, they will be the same after transformation, pro- Transformations

don’t affect the
null

vided that we used the same transformation for all the data. Thus we may test
the null hypothesis of equal treatment means on any transformation scale that
makes our assumptions tenable. By the same argument, we may test pairwise
comparisons null hypotheses on any transformation scale.

Confidence intervals are more problematic. We construct confidence in-
tervals for means or linear combinations of means, such as contrasts. How-
ever, the center described by a mean depends on the scale in which the mean Transformations

affect meanswas computed. For example, the average of a data set is not equal to the
square of the average of the square roots of the data set. This implies that
confidence intervals for means or contrasts of means computed on a trans-
formed scale do not back-transform into confidence intervals for the analo-
gous means or contrasts of means on the original scale.

Transformations and means (or contrasts of means) do not work well
together.

A confidence interval for an individual treatment median can be obtained
by back-transforming a confidence interval for the corresponding mean from Medians follow

transformationsthe scale where the data satisfy our assumptions. This works because medi-
ans are preserved through monotone transformations. If we truly need con-
fidence intervals for differences of means on the original scale, then there is
little choice but to do the intervals on the original scale (perhaps using some
alternative procedure) and accept whatever inaccuracy results from violated
assumptions. Large-sample, approximate confidence intervals on the origi-
nal scale can sometimes be constructed from data on the transformed scale
by using the delta method (Oehlert 1992).

The logarithm is something of a special case. Exponentiating a confi-
dence interval for the difference of two means on the log scale leads to a Special rules for

logsconfidence interval for the ratio of the means on the original scale. We can
also construct an approximate confidence interval for a mean on the origi-
nal scale using data on the log scale. Land (1972) suggests the following:
let µ̂ and σ̂2 be estimates of the mean and variance on the log scale, and let
η̂2 = σ̂2/n + σ̂4/[2(n + 1)] where n is the sample size. Then form a 1 − E Land’s method
confidence interval for the mean on the original scale by computing

exp(µ̂+ σ̂2/2± zE/2 η̂) ,

where zE/2 is the upper E/2 percent point of the standard normal.
Nonnormality, particularly asymmetry, can sometimes be lessened by

transforming the response to a different scale. Skewness to the right is less- Transformations
to improve
normality

ened by a square root, logarithm, or other transformation to a power less than
one, while skewness to the left is lessened by a square, cube, or other trans-
formation to a power greater than one. Symmetric long tails do not easily
yield to a transformation.
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Power family transformations are general tools for improving normality
and equalizing variance; they can only be used for data that are positive. ThePower family

transformations power family of transformations includes

y → sign(λ)yλ for λ 6= 0

and
y → log(y) for λ = 0 ,

where sign(λ) is +1 for positive λ and –1 for negative λ. The log function
corresponds to λ equal to zero. We multiply by the sign of λ so that the order
of the responses is preserved when λ is negative.

Nonnormality, particularly asymmetry, can sometimes be lessened by
transforming the response to a different scale. Skewness to the right is less-Transformations

to improve
normality

ened by a square root, logarithm, or other transformation to a power less than
one, while skewness to the left is lessened by a square, cube, or other trans-
formation to a power greater than one. Symmetric long tails do not easily
yield to a transformation.

Power family transformations are not likely to have much effect unless
the ratio of the largest to smallest value is bigger than 4 or so. Furthermore,Need positive

data with
max/min fairly
large

power family transformations only make sense when the data are all positive.
When we have data with both signs, we can add a constant to all the data to
make them positive before transforming, but different constants added lead
to different transformations.

Here is a simple method for finding an approximate variance-stabilizing
transformation power λ. Compute the mean and standard deviation for the
data in each treatment group. Regress the logarithms of the standard devi-Regression

method for
choosing λ

ations on the logarithms of the group means; let β̂ be the estimated regres-
sion slope. Then the estimated variance stabilizing power transformation is
λ = 1 − β̂. If there is no relationship between mean and standard deviation
(β̂ = 0), then the estimated transformation is the power 1, which doesn’t
change the data. If the standard deviation increases proportionally to the
mean (β̂ = 1), then the log transformation (power 0) is appropriate for vari-
ance stabilization.

The Box-Cox method for determining a transformation power is some-
what more complicated than the simple regression-based estimate, but itBox-Cox

transformations tends to find a better power and also yields a confidence interval for λ. Fur-
thermore, Box-Cox can be used on more complicated designs where the sim-
ple method is difficult to adapt. Box-Cox transformations rescale the power
family transformation to make the different powers easier to compare. Let ẏ
denote the geometric mean of all the responses, where the geometric mean is
the product of all the responses raised to the 1/N power:

ẏ =

 g∏
i=1

ni∏
j=1

yij

1/N

.
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The Box-Cox transformations are then

y(λ) =


yλ − 1

λẏλ−1
λ 6= 0

ẏ log(y) λ = 0

.

In the Box-Cox technique, we transform the data using a range of λ val-
ues from, say, -2 to 3, and fit the model for each of these transformations.
From these we can get SSE(λ), the sum of squared errors as a function of the
transformation power λ. The best transformation power λ? is the power that Use best

convenient powerminimizes SSE(λ). We generally use a convenient transformation power λ
close to λ?, where by convenient I mean a “pretty” power, like .5 or 0, rather
than the actual minimizing power which might be something like .427.

The Box-Cox minimizing power λ? will rarely be exactly 1; when should
you actually use a transformation? A graphical answer is obtained by making
the suggested transformation and seeing if the residual plot looks better. If
there was little change in the variances or the group variances were not that
different to start with, then there is little to be gained by making the transfor-
mation. A more formal answer can be obtained by computing an approximate Confidence

interval for λ1 − E confidence interval for the transformation power λ. This confidence
interval consists of all powers λ such that

SSE(λ) ≤ SSE(λ?)(1 +
FE,1,ν
ν

) ,

where ν is the degrees of freedom for error. Very crudely, if the transforma-
tion doesn’t decrease the error sum of squares by a factor of at least ν/(ν+4),
then λ = 1 is in the confidence interval, and a transformation may not be
needed. When I decide whether a transformation is indicated, I tend to rely
mostly on a visual judgement of whether the residuals improve after trans-
formation, and secondarily on the confidence interval.

An alternative presentation for Box-Cox transformations plots the likeli-
hood of the model fit to the transformed data and seeks the λ? that maximizes
the likelihood. The likelihood interval for λ is all values of λ that produce a
log-likelihood within χ2

E,ν/2 of the maximum likelihood.

Example 6.6 Cloud seeding, continued
The cloud seeding data introduced in Example 6.2 showed considerable

skewness to the right. Thus a square root or logarithm should help make
things look more normal.
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1 > fit <- lm(rainfall˜seeding,data=CloudSeeding)
2 > with(CloudSeeding, plot(sort(rainfall[seeding=="nonseeded"]),

sort(rainfall[seeding=="seeded"]),log=’xy’))
3 > abline(.5,1)
4 > boxCox(fit)
5 > fit2 <- lm(log(rainfall)˜seeding,data=CloudSeeding)
6 > plot(fit2,which=1)
7 > plot(fit2,which=2)
8 > anova(fit2)

Analysis of Variance Table

Response: log(rainfall)
Df Sum Sq Mean Sq F value Pr(>F)

seeding 1 17.007 17.0071 6.4738 0.01408 *
Residuals 50 131.353 2.6271

9 > linear.contrast(fit2,seeding,c(-1,1))
estimates se t-value p-value lower-ci upper-ci

1 1.143781 0.4495342 2.544369 0.01408266 0.240865 2.046697

Line 2 plots the sorted data for seeded and unseeded clouds, both on a loga-
rithmic scale (see panel 1 of Figure 6.7). If the two sets of data have the same
distributional shape, this line should be straight. We see it is approximately
straight, so even though these two are not normally distributed, it appears that
their distributions are similar.

Line 4 produces the Box-Cox plot in panel 2 of Figure 6.7. The best
power is around .1, but 0 is not too far off, so we will try a log transformation.
Panel 3 of Figure 6.7 shows that the variability is stable, and panel 4 shows
that we might have over-transformed a bit, because the residuals are now a
little skewed to the left.

Line 8 does the ANOVA for the logged data. The p-value of .014 is
reasonably trustworthy, because our assumptions are reasonable on that scale.
Note that the p-value on the original scale was .051, which gives us a very
different sense of what is happening in the data.

We also wish to estimate the effect of seeding. On the log scale, a 95%
confidence interval for the difference between seeded and unseeded is (.24,
2.05). This converts to a confidence interval on the ratio of the means of
(1.27, 7.76) by back-exponentiating. A 95% confidence interval for the mean
of the seeded cloud rainfalls, based on the original data and using a t-interval,
is (179.1, 704.8); this interval is symmetric around the sample mean 442.0.
Using Land’s method for log-normal data, we get (247.2, 1612.2); this inter-
val is not symmetric around the sample mean and reflects the asymmetry in
log-normal data.

Example 6.7 Tearing Facial Tissues
Table 6.8 shows the mass added to facial tissues stretched across the

mouth of a jar before the tissues tore. We would like to compare brands and
compare wet versus dry.
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Figure 6.7: Plots for the cloud seeding data. The panels are: sorted
responses for seeded clouds plotted against sorted results for
unseeded clouds; Box-Cox transformation likelihood plot; residuals
versus fitted plot for log-transformed data; normal probability plot for
log-transformed data.

Table 6.8: Mass in grams added to facial tissues before tearing.
Data from Joel Rumsch. Data set TissueTearing.

Brand A, dry 102 101 105 95 97 98 95 101
100 108 91 99 102 92 98 98

99 103 102 99 100 98 105
Brand A, wet 70 71 72 70 71 73 74 70

73 71 74 71 71 70 73 75
71 69 70 74 73 69 70 71

Brand B, dry 80 81 79 83 78 77 72 80
81 75 81 79 78 80 77 76
76 82 77 79 80 74 75 76

Brand B, wet 45 50 49 50 48 48 49 47
48 47 46 48 49 46 48 47
48 48 49 46 46 49 47 49
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Figure 6.8: Plots for the tearing facial tissues data. The first two
panels are residual and normal probability plots. The last two panels
are Box-Cox likelihood profiles for the original data and the data
reduced by 25.

1 > fit <- lm(tear.wt˜treatment,data=TissueTearing)
2 > plot(fit,which=1)
3 > plot(fit,which=2)
4 > car::boxCox(fit)
5 > fit2 <- lm(tear.wt-25˜treatment)
6 > car::boxCox(fit2)

Line 1 fits the model to the tissues data, and lines 2 and 3 make residuals and
NPP plots (see Figure 6.8). There is clear evidence of non-constant variance.
In addition, the non-constant variance makes the residuals look long tailed.

We use the boxCox function in the car package in line 4, with the
resulting likelihood plot shown in panel 3 of Figure 6.8. This shows the
power –.5 (reciprocal square root) is about best, with 0 (logarithm) just barely
in the 95% confidence interval for the power, and –1 (reciprocal) just barely
outside the interval.

The ratio of the maximum response to the minimum response is about
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2.5. As this ratio gets smaller, powers farther and farther from 1 are needed
to have much of an effect on unequal variance. Line 6 fits the model with
25 subtracted from the response, and line 7 does a Box-Cox analysis for the
second model. The resulting plot is the fourth panel of Figure 6.8. In this
case, power 0 (logarithm) is well inside the confidence interval.

Do not simply trust the Box-Cox curve. Refit the data with the selected
transformation and see how the residuals look.

7 > with(TissueTearing,plot(lm(-1/sqrt(tear.wt)˜treatment),which=1))
8 > with(TissueTearing,plot(lm(log(tear.wt)˜treatment),which=1))
9 > with(TissueTearing,plot(lm(log(tear.wt-25)˜treatment),which=1))

Lines 7–9 produce residual plots for the –.5 power, the logarithm, and the
logarithm of the data reduced by 25. These are shown in Figure 6.9. The
reciprocal square root of the data and the log of the data reduced by 25 have
both stabilized the variability. However, the log of the original data, even
though it is within the confidence interval, has not fully stabilized the vari-
ability.

We wanted to compare brands and wet versus dry, but now we have a
problem. It is difficult to take what we learn about differences between treat-
ments on a transformed scale and convert that back to saying something on
the original scale. We can do that best if the transformation was a logarithm,
so consider continuing with the log of the data less 25.

10 > fit3 <- lm(log(tear.wt-25)˜treatment,data=TissueTearing)
11 > linear.contrast(fit3,treatment,c(1,0,-1,0))

estimates se t-value p-value lower-ci upper-ci
1 0.3344314 0.01485397 22.51461 3.387903e-39 0.3049301 0.3639327

12 > linear.contrast(fit3,treatment,c(0,1,0,-1))
estimates se t-value p-value lower-ci upper-ci

1 0.7141147 0.01485397 48.07567 5.55236e-67 0.6846135 0.743616
13 > exp(c(.305,.364,.685,.744))

[1] 1.356625 1.439074 1.983772 2.104336

For dry tissues (line 11), the ratio of brand A (less 25) over brand B (less 25)
is between 1.36 and 1.44; this is a remarkably narrow interval. The corre-
sponding values for wet tissues are 1.98 and 2.10. Thus brand A is somewhat
stronger for dry tissues and much stronger for wet tissues. However, if what
we really want to know is the difference in strength on the original scale, then
using a transformation has not really helped us answer our question.

6.3.2 Removing Outliers

Former U.S. Supreme Court Justice Potter Stewart has been famously quoted
as saying that he could probably never succeed in defining hard core pornog-
raphy, but “I know it when I see it.” Outliers are a bit similar: they are difficult I know it when I

see itto define, but we all feel confident that we know one when we see one. Let
us use the non-technical definition that an outlier is a data point that is far
from the pattern established by the rest of the data. Implicit in the definition
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Figure 6.9: Residual plots for transformed facial tissues data. The
three panels are for the reciprocal square root of the data, the
logarithm of the data, and the logarithm of the data reduced by 25.

is that an outlier must be situated in a such a way that it is unlikely to be that
far away by chance. Thus an outlier can only be an outlier in the context of
a particular statistical model. A point that might be an outlier if we assume
model A might not be an outlier if we assume model B. This applies to both
the model for the variability and the model for the means.

Individual outliers can affect our analysis. One long-standing approach
for handling outliers is to analyze the data with the outliers included and
again with the outliers excluded. If your inferences are the same, you breathe
a sigh of relief. If your conclusions change, then you must be careful inTry analysis with

and without
outliers

interpreting the results, because the results depend rather delicately on a few
outlier data values.

Excluding outliers is very tempting, but it must be practiced with great
caution and full transparency. Some outliers are truly “bad” data, and their
extremity draws our attention to them. For example, we might have mis-
copied the data so that 17.4 becomes 71.4, an outlier; or perhaps Joe sneezed
in a test tube, and the yield on that run was less than satisfactory. Outliers
should be checked thoroughly to determine if there is some basis for their
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Table 6.9: Width of vaporized tissue in mm for different laser
power settings in watts with the laser moving at .01 inches/second.
Data set TissueVaporization; adapted from D. Deepa.

Power
5 10 15 19
1.11 1.71 1.92 1.12
1.10 1.41 1.88 2.34
1.21 1.55 1.96 2.41

exclusion.
Outliers can be the most important data; sometimes outliers are the infor-

mation in the data. One of the reasons that the south polar ozone “hole” was Outliers can be
important dataso late in discovery was that the algorithms for the satellite ozone data filtered

the sudden large drops as being erroneous readings. That is, the data show-
ing the ozone hole were pulled out as being outliers. Routine elimination of
outlier data values can be a disaster for learning from your data.

Example 6.8 Tissue Vaporization
An 850 nm laser is being tested for use in cutting tissue. In this study, we

wish to study how the power of the laser changes the width of tissue vapor-
ization as the laser in moved at .01 inches per second. There are 12 samples
of rat liver. These samples are randomized to 5, 10, 15, or 19 watts (power
of the laser), with three samples per power level. After cutting, the average
width of vaporized tissue along the incision is taken as the response; see Ta-
ble 6.9.

1 > fit <- lm(width˜power.factor-1,data=TissueVaporization)
2 > summary(fit)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

power.factor5 1.1400 0.2149 5.305 0.000724 ***
power.factor10 1.5567 0.2149 7.244 8.85e-05 ***
power.factor15 1.9200 0.2149 8.935 1.95e-05 ***
power.factor19 1.9567 0.2149 9.106 1.70e-05 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.3722 on 8 degrees of freedom
Multiple R-squared: 0.9682,Adjusted R-squared: 0.9523
F-statistic: 60.85 on 4 and 8 DF, p-value: 4.998e-06

3 > plot(fit,which=1)
4 > plot(fit,which=2)
5 > watts <- rep(c(5,10,15,19),each=3)
6 > with(TissueVaporization,plot(power,width))

Lines 3 and 4 fit and summarize the standard model, and lines 5 and 6 gen-
erate residual plots shown in Figure 6.10. There is a pretty clear outlier, and
notice that the one low value makes the other values at the same power level
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have large positive residuals. The outlier is, in this case, clearly visible when
we plot the responses against treatment (third panel of Figure 6.10).

7 > use <- (1:12)!=10
8 > fit2 <- lm(width˜power.factor-1,data=TissueVaporization,subset=use)
9 > summary(fit2)

Estimate Std. Error t value Pr(>|t|)
power.factor5 1.14000 0.05261 21.67 1.12e-07 ***
power.factor10 1.55667 0.05261 29.59 1.30e-08 ***
power.factor15 1.92000 0.05261 36.50 3.01e-09 ***
power.factor19 2.37500 0.06443 36.86 2.81e-09 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.09112 on 7 degrees of freedom
Multiple R-squared: 0.9983,Adjusted R-squared: 0.9973
F-statistic: 1009 on 4 and 7 DF, p-value: 9.705e-10

Line 9 generates a variable to indicate data to use (TRUE) and data to omit
(FALSE, case 10); line 10 then refits with the outlier left out. Examination
of the summary of the fit (line 11) shows that the first three estimated means
are unchanged. Showing this is the real reason for using the vw-1 form of
predictor. We also see that the fourth mean is dramatically higher.

In addition to means changing, the standard errors of estimated effects
have decreased by a factor of 4. Differences between treatments that were
insignificant now look significant. Inference depends strongly on this single
value.

One is tempted to speculate that the value of 1.12 might be a transcription
error; perhaps it should have been 2.12? Fortunately, in this experiment the
widths are determined from digital photographs, and those can be reinspected
to determine if this is simply a transcription error.

6.3.3 Robust methods

In many cases, outliers are just data like any other values in your data; the
problem is not outliers, the problem is that the model you assumed is not a
good fit to the data you have. Robust methods are designed for situations
where the usual assumptions of independent residuals with constant variabil-
ity are true, but the data come from a symmetric distribution with longer
tails than a normal distribution. That is, robust methods are designed for sit-
uations where the data mostly meet our usual assumptions, but are instead
more outlier prone.

For example, bglmm has an option to assume that the data follow a Stu-
dent’s t-distribution with 4 degrees of freedom. This will accommodate
longer tailed data than the default normal distribution. Alternatively, the
MASS package has two functions that are useful in this context. MASS::rlm
is robust and fairly efficient for a broad range of long-tailed distributions.
MASS::lqs can accommodate a large number of outliers without being
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Figure 6.10: Residuals versus predicted plot, residual probability
plot, and response versus predictor for liver vaporization width data.

overly perturbed by the outliers.

Example 6.9 Tissue Vaporization, continued
We saw in Example 6.8 that the data contained a large outlier. Let’s try

refitting this model to the full data set using a robust method.
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Figure 6.11: Residuals versus predicted plot and residual
probability plot for a robust fit of the liver vaporization width data.

1 > fit3 <- MASS::rlm(width˜power.factor-1,data=TissueVaporization)
2 > summary(fit3)

Call: rlm(formula = width ˜ power.factor - 1, data = TissueVaporization)
Residuals:

Min 1Q Median 3Q Max
-1.215e+00 -4.000e-02 -2.639e-05 4.750e-02 1.599e-01

Coefficients:
Value Std. Error t value

power.factor5 1.1400 0.0573 19.8788
power.factor10 1.5501 0.0573 27.0291
power.factor15 1.9200 0.0573 33.4800
power.factor19 2.3351 0.0573 40.7187

Residual standard error: 0.0593 on 8 degrees of freedom
3 > plot(fit3,which=1)
4 > plot(fit3,which=2)
5 > anova(MASS::rlm(width˜power.factor,data=TissueVaporization))

Analysis of Variance Table

Response: width
Df Sum Sq Mean Sq F value Pr(>F)

power.factor 3 1.9657 0.65523
Residuals 1.5379

Line 1 uses rlm from the MASS package. The results on line 2 are very close
to what we obtained when we omitted the outlier, except that rlm figures out
how to up or down weight data values on its own. The residual plots from
lines 3 and 4 are shown in Figure 6.11. We see that case 10 looks even more
outlying than before, but the other two responses at the highest power setting
no longer look as unusual as they did before.

Robust methods are good for fitting, but inference for robust methods is
not as well developed as what we have seen for other methods. For example,
line 5 shows the results for an ANOVA of the model. There are no F -values
or p-values, so it leaves one feeling hungry for more.
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6.3.4 Nonparametric methods

We have already talked about a randomization test as an alternative to a t-
tests; randomization, sometimes called permutation, tests are a class of non-
parametric methods. They make no distributional assumptions and derive a
reference distribution for a test from the distribution generated by repetitively
re-randomizing the data to treatments and observing the test statistic. Given a
computer and software, this is relatively straightforward. The perm package
in R contains several randomization test analogues, include permTS for two-
sample tests and permKS for K-sample tests (an alternative to ANOVA).

Rank tests are a second group of nonparametric statistics that can be used
instead of tests based on specific distributional assumptions. For example, Rank tests
one can use the Mann-Whitney-Wilcoxon test instead of a t-test (also called
the Mann-Whitney U -test or the Wilcoxon rank-sum test—wilcox.test
in R), and the Kruskal-Wallis test instead of ANOVA (kruskal.test in
R). The assumptions for these tests are that the data are independent coming
from distributions that all have the same shape and spread, but the medians in
different groups might not be the same. Rank tests work with the ranks of the
data; the smallest data value gets assigned a rank of 1 up to the largest data
value getting a rank ofN . Ranks are unaffected by any monotone transforma-
tion of the data, so rank tests are unaffected by any monotone transformation
of the data.

If your data meet a parameteric assumption (for example, normally dis-
tributed), doing inference under that parametric assumption is generally more
efficient than robust or nonparametric inference. That is, confidence intervals
will be shorter and power will be higher for the parametric inference. But if
your data do not meet an obvious parametric assumption, rank-based meth-
ods are alternatives.

Example 6.10 Cloud seeding, continued
Since the cloud seeding data arose from a randomized experiment, we

could use a randomization test on the difference of the means of the seeded
and unseeded cloud rainfalls.
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1 > perm::permTS(rainfall˜seeding,data=CloudSeeding)

Permutation Test using Asymptotic Approximation

data: rainfall by treat
Z = -1.9421, p-value = 0.05213
alternative hypothesis:

true mean seeding=nonseeded - mean seeding=seeded is not equal to 0
sample estimates:
mean seeding=nonseeded - mean seeding=seeded

-277.3962

2 > perm::permTS(log(rainfall)˜seeding,data=CloudSeeding)

Permutation Test using Asymptotic Approximation

data: log(rainfall) by treat
Z = -2.4179, p-value = 0.01561
alternative hypothesis:

true mean seeding=nonseeded - mean seeding=seeded is not equal to 0
sample estimates:
mean seeding=nonseeded - mean seeding=seeded

-1.143781

Lines 1 and 2 show the two-sample randomization t-tests for the cloud seed-
ing data on the original and logarithmic scales. Note that the p-value depends
on the scale; randomization tests are not invariant under monotone transfor-
mations. Note also that the p-values for the randomization tests are very close
to those we obtained assuming normality.

3 > wilcox.test(rainfall˜seeding,data=CloudSeeding)

Wilcoxon rank sum test with continuity correction

data: rainfall by treat
W = 203, p-value = 0.01383
alternative hypothesis: true location shift is not equal to 0

Line 3 shows the results of the Wilcoxon test. Again, its p-value in this case
is close to that of the t-test on the log scale, where the assumptions of the
t-test are met. Although not shown, if you repeat the Wilcoxon test with the
data after any monotone transformation, you will get the same results.

6.3.5 Methods for nonconstant variance

Dealing with nonconstant variance has provided gainful employment to statis-
ticians for many years, so there are a number of alternative methods to con-
sider. The simplest situation may be when the ratio of the variances in the dif-
ferent groups is known. For example, consider a situation where the response
for each experimental unit is the average of the responses for its measurement
units. Assume also that error variability is primarily due to variability among
the measurement units and that variability is constant. If each experimental
unit in treatments 1 and 2 had five measurement units, and for each unit inWeighted ANOVA

when ratio of
variances is
knownDraft of March 1, 2021
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treatments 3 and 4 had seven measurement units, then the variance between
experimental units in treatments 3 and 4 would be 5/7 the size of the variance
between experimental units in treatments 1 and 2, simply due to different
numbers of values in each average. Situations such as this can be handled us-
ing weighted ANOVA, where each unit receives a weight proportional to the
number of measurement units used in its average. In R, there is an optional
weights argument to lm that enables weighting.

For pairwise comparisons, the Welch procedure is quite attractive. This
procedure is sometimes called the “unpooled” t-test. Let s2i denote the sam- Welch’s t for

pairwise
comparisons with
unequal variance

ple variance in treatment i. Then the Welch test statistic for testing µi = µj
is

tij =
yi• − yj•√
s2i /ni + s2j/nj

.

This test statistic is compared to a Student’s t distribution with

ν =
(
s2i /ni + s2j/nj

)2/(
1

ni − 1

s4i
n2i

+
1

nj − 1

s4j
n2j

)

degrees of freedom. For a confidence interval, we compute

tij = yi• − yj• ± tE/2,ν
√
s2i /ni + s2j/nj ,

with ν computed in the same way. More generally, for a contrast we use

t =

∑g
i wi yi•√∑g
i w

2
i s

2
i /ni

with approximate degrees of freedom

ν = (

g∑
i=1

w2
i s

2
i /ni)

2/

(
g∑
i=1

1

ni − 1

w4
i s

4
i

n2i

)
.

Confidence intervals are computed in an analogous way.
The Welch procedure generally gives observed error rates close to the

nominal error rates. Furthermore, the accuracy improves quickly as the sam-
ple sizes increase, something that cannot be said for the t and F -tests under Welch’s t works

wellnonconstant variance. Better still, there is almost no loss in power for using
the Welch procedure, even when the variances are equal. For simple com-
parisons, the Welch procedure can be used routinely. The problem arises in
generalizing it to more complicated situations.

In R, the t.test function (which does both tests and confidence inter-
vals) has an argument var.equal that defaults to FALSE. That is, R de-
faults to the unpooled Welch procedure; you must actively select the pooled
error version.
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The next most complicated procedure is an ANOVA alternative for non-
constant variance, and here there are two primary contenders. First, the
Welch method for the two-sample t-test has been extended to testing that
g treatments all have the same mean. Using the notation

wi =
ni
s2i

u =

g∑
i=1

wi

x̃•• =

∑g
i=1wixi•
u

f =
1

(3/(g2 − 1))
∑g

i=1[(1− wi/u)2/(ni − 1)]

the Welch alternative to the F -test is

W =

∑g
i=1wi(xi• − x̃••)2/(g − 1)

1 + 2(g−2)
(g2−1)

∑g
i=1(1− wi/u)2/(ni − 1)

which should be approximated under the null hypothesis as an F with g − 1
and f degrees of freedom.

The Brown-Forsythe method is the second procedure that is less sensitive
to nonconstant variance than is the usual ANOVA F -test. Again let s2i denoteBrown-Forsythe

modified F the sample variance in treatment i, and let di = s2i (1 − ni/N). The Brown-
Forsythe modified F -test is

BF =

∑g
i=1 ni(yi• − y••)2∑g
i=1 s

2
i (1− ni/N)

.

Under the null hypothesis of equal treatment means, BF is approximately
distributed as F with g − 1 and ν degrees of freedom, where

ν =
(
∑

i di)
2∑

i d
2
i /(ni − 1)

.

In R, the oneway.test function implements the Welch modified F -
test, and brown.forsythe.test in package cfcdae implements Brown-
Forsythe. Which should you use? Both reduce to the Welch t-test when
g = 2. Both do a good job of controlling E when the variances are un-
equal. The Welch method is preferable when “extreme” means go with small
variances, and the Brown-Forsythe method is preferable when the “extreme”
means go with large variances, where preferable means more likely to detect
the unequal means. See Brown and Forsythe (1974). If you were forced to
choose just one, go with the Welch procedure.

Draft of March 1, 2021



6.3 Fixing Problems 175

Fitted values

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

−1

0

1

2

20 40 60 80

Figure 6.12: Standardized residual plot for resin lifetime data on
original scale with separate standard deviations by treatment.

It is also possible to model nonconstant variances. This approach is
overkill in the g groups, separate means models we have looked at, because
we have other workable procedures such as the Welch or the Brown-Forsythe.
However, modeling nonconstant variance will generalize to much more com-
plex situations and models, whereas there is no handy one-size-fits-all gen-
eralization of the Welch or Brown-Forsythe.

In R, the gls function (generalized least squares) has a weights argu-
ment that allows us to specify a wide range of models for the error variances.
For example, we can specify a different error variance along some grouping
factor, or we can specify that the error variance is proportional to a covariate,
or a power of a covariate or even a power of the fitted values. More complex
forms are also available, and you can create new variance forms as well.

Modeling nonconstant variance sounds like every thing we need, but it
is not a complete solution to our problem. It works well for estimation, and
it works well for inference so long as sample sizes are large enough for the
likelihood ratio test to work well or for normal approximations to be suffi-
ciently accurate. However, we do not always have large sample sizes. This
means, for example, that we will be using normal-based confidence intervals
instead of t-based confidence intervals, because we do not have an equivalent
degrees of freedom.

Example 6.11 Resin lifetimes, continued
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Suppose that we need to do inference on the resin lifetime in time units,
not in log time units. For example, we might want a confidence interval on
the difference in time for the first two temperature levels.

1 > fit <- lm(Time˜temp.factor,data=ResinLifetimes)
2 > anova(fit)

Analysis of Variance Table

Response: Time
Df Sum Sq Mean Sq F value Pr(>F)

temp.factor 4 28027.9 7007.0 101.81 < 2.2e-16 ***
Residuals 32 2202.4 68.8

3 > brown.forsythe.test(Time˜temp.factor,data=ResinLifetimes)

One-way analysis of means, Brown-Forsythe (unequal variances)

data: Time and temp.factor
F = 111.74, num df = 4.000, denom df = 18.298, p-value = 1.36e-12

4 > oneway.test(Time˜temp.factor,data=ResinLifetimes)

One-way analysis of means (not assuming equal variances)

data: Time and temp.factor
F = 68.943, num df = 4.000, denom df = 14.373, p-value = 3.273e-09

Lines 1 and 2 fit the ordinary linear model for Time in original units and show
the ANOVA; we know this ANOVA is not trustworthy. Lines 3 and 4 do the
Brown-Forsythe and Welch F -tests. Both of these are highly significant, and
in this case all three give the same result.
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5 > fitw <- gls(Time˜temp.factor-1,data=ResinLifetimes,
weights=varIdent(form=˜1|temp.factor))

6 > summary(fitw)
Generalized least squares fit by REML

Model: Time ˜ temp.factor - 1
Data: NULL

AIC BIC logLik
234.0233 248.6806 -107.0116

Variance function:
Structure: Different standard deviations per stratum
Formula: ˜1 | temp.factor
Parameter estimates:

175 194 213 231 250
1.0000000 0.7339797 0.4918991 0.1329593 0.2839912

Coefficients:
Value Std.Error t-value p-value

temp.factor175 86.42419 4.606382 18.761838 0
temp.factor194 43.55983 3.380991 12.883747 0
temp.factor213 24.51965 2.265875 10.821274 0
temp.factor231 15.71865 0.654748 24.007153 0
temp.factor250 11.87267 1.510547 7.859846 0
...
Residual standard error: 13.02881
Degrees of freedom: 37 total; 32 residual

7 > plot(fitw)
8 > 13.029*c(1,.734,.492,.133,.284)
[1] 13.029000 9.563286 6.410268 1.732857 3.700236

Now we use the gls function to fit a model with separate means, but we also
allow separate error variances for each level of the temperature factor. Line 5
shows the somewhat arcane syntax needed to get the different variances. The
variance functions in R are extremely powerful and can do quite complex
structures, but the side effect is that even simple variance structures are not
straightforward.

The summary output on line 6 has several sections. The variance function
section says that the error standard deviations for the groups are all relative
to group one; the group two standard deviation is 73% of that in group one,
group three is 49% that of group one, and so on. The residual root mean
square near the bottom (13.029) is for group 1, and the corresponding values
for other groups are found proportionally as shown on line 8. The residual
plot (line 7, Figure 6.12) looks like constant variance, because the plot shows
standardized residuals, and each treatment group has its own individually fit
standard deviation.

Looking at the coefficients section of the summary output, one can see
that the estimated means are the same as we obtain from a linear model ignor-
ing the nonconstant variance, but the standard errors for the different factor
levels are dramatically different. This is due to the different standard devia-
tions fit in each factor level (and somewhat as well due to the sample sizes
not being equal).
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9 > with(ResinLifetimes, t.test(Time[temp.factor==175],Time[temp.factor==194]))

Welch Two Sample t-test

data: Time[temp.factor == 175] and Time[temp.factor == 194]
t = 7.5016, df = 12.846, p-value = 4.822e-06
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
30.50490 55.22381
sample estimates:
mean of x mean of y
86.42419 43.55983

10 > vcov(fitw)[1:2,1:2]
temp.factor175 temp.factor194

temp.factor175 21.21875 0.0000
temp.factor194 0.00000 11.4311

11 > sqrt(21.22+11.43)
[1] 5.714018

12 > (86.42-43.56)/5.714
[1] 7.500875

Line 9 does the Welch two-sample t procedure for comparing groups one and
two on the original time scale. The means and difference are what we would
get from the summary on line 6. Line 10 extracts the variances of the coeffi-
cients, line 11 computes the standard error of the difference of the means of
the first two groups, and line 12 computes a z-test as the difference divided
by the standard error. The value from line 12 is the same as the Welch test
(give or take round off error). The difference is that for the Welch test we
have an estimate of the degrees of freedom to use, but for the results from
gls we are just assuming the test follows a standard normal.
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13 > fitw2 <- gls(Time˜temp.factor-1,data=ResinLifetimes,
weights=varPower(form=˜fitted(.)))

14 > summary(fitw2)
Generalized least squares fit by REML

Model: Time ˜ temp.factor - 1
Data: NULL

AIC BIC logLik
233.9517 244.2118 -109.9758

Variance function:
Structure: Power of variance covariate
Formula: ˜fitted(.)
Parameter estimates:

power
0.7716835

Coefficients:
Value Std.Error t-value p-value

temp.factor175 86.42419 5.137080 16.823600 0
temp.factor194 43.55983 3.027629 14.387442 0
temp.factor213 24.51965 1.943176 12.618340 0
temp.factor231 15.71865 1.473997 10.663960 0
temp.factor250 11.87267 1.282116 9.260211 0
...
Residual standard error: 0.4653629
Degrees of freedom: 37 total; 32 residual

15 > .465*c(86.42,43.56,24.52,15.72,11.88)ˆ.772
[1] 14.538485 8.567000 5.497469 3.900446 3.142037

16 > AIC(fit)
[1] 268.1971

17 > AIC(fitw)
[1] 234.0233

18 > AIC(fitw2)
[1] 233.9517

We mentioned that there are many different potential variance functions, and
line 13 shows an example using a power function. In this case, we use the
model that the error standard deviation is proportional to a power of the fitted
value. (Note, if the power is 1, a log transformation would exactly equalize
the variances.) The summary output in line 14 gives the estimated power
(.772) along with the proportionality constant (.465). Line 15 shows the es-
timated standard deviations. These are similar to, but not the same as, the
estimated standard deviations from line 8.

Lines 16–18 show AIC values for the constant variance, group variance,
and power variance model fits. Warning: the AIC value for the linear model
(fit) is not comparable to the AIC values for fitw and fitw2. Look back
through the output and you will see that gls fits using REML instead of
maximum likelihood. We will talk much more about REML later when we
estimate variance components. For now, remember that you cannot compare
a REML likelihood or AIC to a non-REML likelihood or AIC, and you can-
not compare likelihood or AIC from two REML models if they have different
mean structures. That significantly restricts what we can compare, but we can
compare fitw and fitw2, because they have the same mean structure and
both used REML. Here, fitw2 is preferred, because even though it has a
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slightly lower likelihood, it used fewer parameters than fitw to get there.
(It is possible to refit the standard model using REML for comparability; its
AIC is 248.2, much higher than the two weighted models we considered.)

6.3.6 Generalized Linear Models

We have been focused on data that follow a normal distribution, but there is
a whole world of other distributions out there, and data could come from any
of them. Generalized linear models (GLM) allow us to fit a broader range
of response distributions with mean structures similar to those we have used
for normal distributions. (Note: it is easy to get confused by nomenclature;
generalized linear models are not the same as the general linear model or
generalized least squares.) Our standard linear model is just one example of
a GLM. You should also be aware that GLMs are a broad subject, and we will
barely scratch the surface. McCullagh and Nelder (1989) is the fundamental
reference, but there are dozens of others at various positions along the applied
to theoretical spectrum.

With our standard linear model, we have data distributed as normal with
mean µ, and we describe the structure of the mean with treatment effect
terms, regression terms, and so on. This is the linear predictor. In the GLM,Linear predictor;

link function we have data from a distribution that is not necessarily normal. The mean of
each data point is transformed by a link function, and then the transformed
version of the mean is fit via a linear predictor.

Note that this is a parameterization of a transformed mean, not the mean
of transformed data. This implies that we avoid some of the difficulties we
have encountered working with transformed data but trying to make infer-
ences on the original scale. The transformations used for means also takeParameterize

transformed
mean

what might be a restricted space (for example, between 0 and 1 for the prob-
ability of a binomial or nonnegative for the mean of a Poisson) and map it to
an unrestricted space. This avoids problems where a direct modeling of the
mean (called an identity link) might might lead to a fitted mean outside the
permissible range of values.

In R, the distribution is indicated by the family. The possible choices
for the family in R are gaussian (normal), inverse.gaussian (a pos-
itively skewed distribution for positive data; not the reciprocal of a normal),
Gamma (the gamma distribution, but with a capital G to distinguish it from
the gamma function; the gamma distribution is also for positive data skewedNon-normal

distributions to the right), binomial, and poisson. These families cover a much
broader range than the normal alone and include distributions with skew-
ness and distributions with variances that depend on the mean. GLMs give
us a better chance of working with a distribution that conforms to the prop-
erties of the data rather than trying to make our data look like a normal via
transformation.

Some distributions in GLM are determined entirely by their mean; the
binomial and Poisson are of this form. Other distributions have an additional
parameter, called a dispersion parameter and usually denoted by φ. ThisDispersion

parameter parameter adjusts the variability. For example, the variance is the dispersion
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Table 6.10: Germination counts (out of 20) for garden pea
seeds under four treatments. Data set PeaGermination;
adapted from K. Becklund.

Hours Substrate Counts
12 Towel 3 2
12 Soil 12 15
24 Towel 17 18
24 Soil 15 13

parameter for a normal distribution, and the reciprocal shape of a gamma
distribution is its dispersion parameter. For distributions that do not depend
on the dispersion parameter, φ is set to 1.

We use maximum likelihood to fit GLMs, and we use the deviance (some-
times called residual deviance) to assess how closely the model fits. For fami-
lies where φ is known to be 1, the deviance for a model is twice the difference Deviance
in log likelihood between a model of interest and the saturated model (recall
that the saturated model has a rich enough structure to compute a separate
mean for each response). For models where φ must be fit, the deviance is is
twice the difference in log likelihood between a model of interest and the sat-
urated model multiplied by φ. We estimate φ as the residual deviance divided
by the residual degrees of freedom. For a GLM with a normal distribution,
the deviance is the sum of squared errors.

One view of ANOVA for a sequence of nested models is successive re-
ductions in sum of squared errors together with successive increases in pa- Analysis of

deviancerameters used. There is an analysis of deviance that follows the same pat-
tern. Each time we add a term to a model, we use additional parameters
and decrease the deviance until we are left with a final residual deviance and
residual degrees of freedom.

In models where φ = 1 (binomial and Poisson), terms can be tested by
treating the incremental deviance for the term as being distributed under the
null as chi-square with degrees of freedom equal to the number of incremen- Comparing GLMs
tal parameters for the term. In fact, this is the likelihood ratio test. When φ
must be estimated, form a test statistic for a term by dividing its incremental
deviance by its incremental degrees of freedom, and then dividing that ratio
by our estimate of φ. Treat that ratio as having an F distribution under the
null, with numerator and denominator degrees of freedom taken as the incre-
mental degrees of freedom for the term and the residual degrees of freedom
used to estimate φ. For a GLM based on a normal distribution, this equals
the usual F -test in ANOVA.

Example 6.12 Germination of garden peas
A middle school science project explores the effect of soaking and sub-

strate treatments on the germination of garden pea seeds. There are eight
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batches of 20 seeds. Each batch of seeds is assigned to one of four treatment
conditions, two batches per condition. The treatments are presoak for 12
hours and place on wet paper towel; presoak for 12 hours and place on wet
potting soil; presoak for 24 hours and place on wet paper towel; and presoak
for 24 hours and place on wet potting soil.

The batches will be observed after seven days, with the response being
the number of seeds germinating. The batches are the experimental units, the
seeds are the measurement units, with a 0/1 response for each measurement
unit, and the total as the response for the experimental unit. Table 6.10 gives
the results.

These data can be reasonably modeled as a binomial response, with 20
trials and success probability potentially depending on treatment. In R, one
uses the glm function to fit a GLM model, using the family argument to
indicate the binomial distribution. For a binomial, the response is a matrix
with two columns giving the successes and the failures.

1 > fit <- glm(cbind(germinated,nongerminated)˜treatment,data=PeaGermination,
family=binomial)

2 > summary(fit)

Call:
glm(formula = cbind(germinated, nongerminated) ˜ treatment, family = binomial)

Deviance Residuals:
1 2 3 4 5 6 7 8

0.3292 -0.7039 -0.3292 0.4966 -0.3487 0.7329 0.3487 -0.4809

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.3945 0.2077 1.900 0.0575 .
treatment1 0.3363 0.3164 1.063 0.2878
treatment2 0.4528 0.3204 1.413 0.1576
treatment3 -2.3405 0.3968 -5.899 3.66e-09 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 58.5202 on 7 degrees of freedom
Residual deviance: 1.9703 on 4 degrees of freedom
AIC: 33.856

Number of Fisher Scoring iterations: 4

Line 1 fits the model. The summary on line two gives the usual parameter
estimates and standard errors, plus some additional quantities of interest. Re-
call that the linear predictor for a binomial in on the logit scale. For example,
the linear predictor for treatment 1 is .3945 − 2.3405 = −1.946. Trans-
forming back to the probability scale, the estimated success probability is
exp(−1.946)/(1 + exp(−1.946)) = .125. This is, of course 1/8 correspond-
ing to 5 of 40 seeds germinating.

The summary also shows deviance residuals. If you sum the squares
of the deviance residuals you get the deviance for the full model, which is
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1.97 for these data. The null deviance (for the single-mean model) is given
as 58.52, so the decrease in deviance going to the separate-means model is
56.55; this is accomplished with 3 additional parameters. We can get this
more simply as shown in line 3.

3 > anova(fit)
Analysis of Deviance Table

Model: binomial, link: logit

Response: cbind(germinated, 20 - germinated)

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev
NULL 7 58.52
treatment 3 56.55 4 1.97

4 > pchisq(56.55,3,lower.tail=FALSE)
[1] 3.206016e-12

Line 4 computes the p-value, which is very small indicating strong evidence
against the single-mean model.

Example 6.13 Resin lifetimes, continued
The resin lifetime data on the original scale have non-constant variance

with the variance roughly proportional to the square of the mean. The GLM
with a gamma distribution also has the variance proportional to the square of
the mean, so it might be a reasonable alternative to transforming the data.
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1 > fit <- glm(Time˜temp.factor,data=ResinLifetimes,
family=Gamma(link=log))

2 > summary(fit)

Call:
glm(formula = Time ˜ temp.factor, family = Gamma(link = log))

Deviance Residuals:
Min 1Q Median 3Q Max

-0.51486 -0.10500 -0.03331 0.05429 0.45970

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.33239 0.03622 92.005 < 2e-16 ***
temp.factor1 1.12687 0.07004 16.090 < 2e-16 ***
temp.factor2 0.44174 0.07004 6.307 4.47e-07 ***
temp.factor3 -0.13292 0.07004 -1.898 0.0668 .
temp.factor4 -0.57755 0.07361 -7.846 5.96e-09 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for Gamma family taken to be 0.04791153)

Null deviance: 20.1272 on 36 degrees of freedom
Residual deviance: 1.5385 on 32 degrees of freedom
AIC: 249.24

Number of Fisher Scoring iterations: 4

3 > (20.127-1.538)/4/.0479
[1] 97.01983

Line 1 fits the gamma GLM with a log link for the mean. Line 3 computes
the F -statistic for comparing the separate-means model to the single-mean
model based on information from the summary in line 2. This F is very sim-
ilar to the F of 96.36 (with the same degrees of freedom) that we computed
for the data on the log scale.

One can apply most of the same post-fit functions we used for lm models
to glm models; these include linear.contrast, plot, and so on. Be
aware that linear.contrast works on the scale of the linear predictor,
which might be log, or logit, or something else.

Sometimes count data look roughly like a Poisson distribution, but in-
stead of having a variance that is equal to the mean as a Poisson would, the
variance is greater than the mean. Here are two options for data like that.
The function glm.nb in the MASS package will fit a GLM to data follow-
ing a negative binomial distribution. The negative binomial has a variance
(µ+ µ2/r) that is larger than its mean (µ); for a negative binomial, the ratio
of the variance to the mean increases as the mean increases. The second op-
tion is the quasipoisson family for glm. In a quasi-Poisson, the variance
is proportional to the mean, but the proportionality constant (the dispersion
parameter) can be greater than one.

The quasi-Poisson estimates will be the same as the Poisson estimates,
but their standard errors will be multiplied by the square root of the estimated
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dispersion parameter. Technically, there is no likelihood for a quasi-Poisson
model (only a quasi-likelihood), so R does not return a likelihood, AIC, or
other likelihood-based quantities. However, deviance based tests described
above provide a reasonable approach to model comparison.

Example 6.14 Copepoda
Exercise 2.3 introduced counts of Copepoda in artificial wetland micro-

cosms post snowmelt with either neutral or lowered pH. Given that these are
counts of items, it might make sense to model the counts as Poisson dis-
tributed.

1 > fitp <- glm(count˜pH,data=Copepoda,family=poisson())
2 > summary(fitp)

Deviance Residuals:
1 2 3 4 5 6

4.698 -2.173 -2.952 -8.436 -1.605 8.067

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.09496 0.03212 158.638 < 2e-16 ***
pH1 -0.14148 0.03212 -4.405 1.06e-05 ***

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 193.93 on 5 degrees of freedom
Residual deviance: 174.32 on 4 degrees of freedom
AIC: 219.29

Line 1 fits the Poisson GLM to the data, and line 2 provides a summary. The
deviance decreased by 19.6 when we added the single additional parameter,
so that looks highly significant. Similarly, the t-test for the pH coefficient
is quite large. However, for a Poisson GLM we would expect the residual
deviance to be roughly the same size as the residual degrees of freedom, and
that is certainly not the case here.

The large relative size of the residual deviance suggests that the data have
more variability than Poisson with the same mean should have. To account
for this, we fit a quasi-Poisson model in line 3 and show the summary in line
4.
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3 > fitqp <- glm(count˜pH,data=Copepoda,family=quasipoisson())
4 > summary(fitqp)

Deviance Residuals:
1 2 3 4 5 6

4.698 -2.173 -2.952 -8.436 -1.605 8.067

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.0950 0.2116 24.075 1.77e-05 ***
pH1 -0.1415 0.2116 -0.669 0.54

(Dispersion parameter for quasipoisson family taken to be 43.42048)

Null deviance: 193.93 on 5 degrees of freedom
Residual deviance: 174.32 on 4 degrees of freedom
AIC: NA

The parameter estimates in the linear predictor are exactly the same as before,
as are the deviances. However, the dispersion parameter is estimated at 43.42,
and this increases the standard errors of the linear parameters by a factor of
6.59 (=

√
43.42). With this correction, pH no longer looks significant.

Even though this model only has a quasi-likelihood, we go ahead and
compute the F -test for pH in line 5:

5 > (193.93-174.32)/1/43.42
[1] 0.4516352

6 > .669ˆ2
[1] 0.447561

7 > anova(lm(count˜pH,data=Copepoda))
Response: count

Df Sum Sq Mean Sq F value Pr(>F)
pH 1 3220.2 3220.2 0.4893 0.5228
Residuals 4 26326.7 6581.7

Line 6 squares the t-test for pH in line 4, which gives us an F -test very close
to what we just computed.

Finally, given that the data have little difference in mean, and thus little
anticipated difference in variance, let’s try fitting the data with an ordinary
linear model as in line 7. Note that in this case the inference from the normal
(Gaussian) model is nearly identical to that from the quasi-Poisson model.

6.3.7 Accommodating dependence

Methods for dealing with dependence in data are generally complicated. We
will present only the simplest possible accommodation, leaving more more
complicated methods to other authors.

An autoregressive model of order 1 (AR1) is a model for data where there
is a time order, and data k steps apart have a correlation ρk. Because |ρ| < 1,AR1 model
this correlation can be large for nearby data values but decays fairly quickly
to 0 as data are separated more in time. In our context, we will assume that
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the errors εij are mean 0, constant variance, but have an AR1 correlation
structure across time. In some contexts, one might assume an AR1 structure
within certain blocks of data, but independence between blocks of data (think
of data collected sequentially but at multiple sites).

While the AR1 model will not be adequate for all data with time depen-
dence, it is a good start and can indicate the effect that the dependence is
likely to have on our inferences.

Example 6.15 Temperature differences between thermocouples, con-
tinued

Example 6.4 gave the difference in temperature readings between two
thermocouples at 64 consecutive times. A plot of the differences showed
substantial autocorrelation.

1 > fit1 <- lm(temp.diff˜1,data=Thermocouples)
2 > summary(fit1)

...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.141250 0.003138 1001 <2e-16 ***
...

3 > fit2 <- gls(temp.diff˜1,data=Thermocouples,cor=corAR1(form=˜(1:64)))
4 > summary(fit2)

Generalized least squares fit by REML
Model: temp.diff ˜ 1
Data: thermocouples

AIC BIC logLik
-278.9285 -272.4991 142.4643

Correlation Structure: AR(1)
Formula: ˜(1:64)
Parameter estimate(s):

Phi
0.243579

Coefficients:
Value Std.Error t-value p-value

(Intercept) 3.141487 0.004027105 780.0856 0
...

Line 1 fits the single-mean model to the data via ordinary least squares
(OLS), and line 2 shows the summary information for the estimated coef-
ficient. Line 3 fits the same mean model but now uses gls and sets the
correlation structure to be AR1. The argument form=˜x says that the time
steps are in variable x. Because our data are already in time order, we can
simply write form=˜(1:64).

Line 4 shows the summary for the AR1 fit. The lag one autocorrelation
is estimated as .24. The estimated mean is essentially the same, but the stan-
dard error has increased from .003 to .004. This is the result of the positive
autocorrelation in the data.

Note that the output to line 4 indicates that the fit was calculated using
REML; this is restricted maximum likelihood. Recall than REML likelihoods
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Table 6.11: Time to upload and download a 50MB file to three cloud
backup services, in seconds. Data are in time sequence down
columns. Data set CloudBackup.

Svc. Sec. Svc. Sec. Svc. Sec. Svc. Sec. Svc. Sec.
3 564 2 215 2 250 2 248 2 241
1 172 2 203 2 276 1 175 3 461
3 455 3 560 2 265 3 467 3 417
1 147 1 185 3 585 3 490 1 170
2 200 3 560 1 192 1 146 2 208
1 141 2 233 3 510 1 126 1 145

can only be compared to other REML models with the same mean structure
and cannot be compared to ML likelihoods.

5 > fit2b <- gls(temp.diff˜1,data=Thermocouples,cor=corAR1(form=˜(1:64)),method=’ML’)
6 > summary(fit2b)

Generalized least squares fit by maximum likelihood
Model: temp.diff ˜ 1
Data: thermocouples

AIC BIC logLik
-288.1547 -281.678 147.0773

Correlation Structure: AR(1)
Formula: ˜(1:64)
Parameter estimate(s):

Phi
0.2231942

Coefficients:
Value Std.Error t-value p-value

(Intercept) 3.141461 0.003923022 800.7759 0
...

7 > AIC(fit1,fit2b)
df AIC

fit1 2 -287.0342
fit2b 3 -288.1547

Line 5 refits the model using maximum likelihood. You can see from lines 4
and 6 that the estimates obtained from REML and ML are similar. Estimates
of variances under REML have less bias than those produced by ML; we will
see this again in more detail when we estimate variance components.

The important thing to understand now is that likelihoods and AIC val-
ues computed under ML and REML are not comparable. We can compare
likelihoods and AIC values for OLS (fit1) and ML (fit3) as we do in line
7, but we cannot use likelihood or AIC to compare fit2 to either fit1 or
fit3.

Example 6.16 File backup speed
I need to find a system to backup my computer files to the cloud. All

other issues being equal, I want to find the fastest service, so I sign up for
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a free trial period with three different providers and test their speeds. Speed
will depend on the speed of the backup service itself and also on the speed
of my internet service. I expect both of these to vary over time depending on
the load on the backup system and the load on my local network branch.

I have a 50MB file as a test case. An experimental run will consist
of uploading the file to the backup server, and then downloading it back
from the server. The response is the number of seconds to complete the
upload/download cycle. I run the upload/download cycle 30 times, using
each service 10 times, with the services randomly assigned to the time slots.
Table 6.11 gives the results.

We begin by fitting the usual separate-means model in line 1.

1 > fit1 <- lm(updowntime˜service,data=CloudBackup)
2 > plot(fit1,which=1)
3 > car::boxCox(fit1)
4 > fit2 <- lm(log(updowntime)˜service,data=CloudBackup)
5 > summary(fit2)

...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.57923 0.02233 249.897 < 2e-16 ***
service1 -0.51305 0.03157 -16.249 1.83e-15 ***
service2 -0.13017 0.03157 -4.123 0.00032 ***
...

6 > plot(residuals(fit2),type=’b’);abline(h=0)
7 > car::durbinWatsonTest(fit2)

lag Autocorrelation D-W Statistic p-value
1 0.44276 1.06326 0.012

Alternative hypothesis: rho != 0

The residual plot in line 2 (see Figure 6.13 panel 1) suggests non-constant
variance, and the Box-Cox plot (panel 2) suggests a log transformation. Line
4 fits the separate-means model to the log-transformed data, with an abbre-
viated summary in line 5. So far, so good, but I know that the data were col-
lected in time order, and I suspect that there could be autocorrelation. Line 6
plots the residuals in time order (panel 3 of Figure 6.13), and autocorrelation
seems to be present. The Durbin-Watson statistic of 1.06 (line 7) confirms
that visual diagnosis.

To deal with autocorrelation, we refit using gls with an AR1 time struc-
ture across the 30 time slots in line 8:
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8 > fit3 <- gls(log(updowntime)˜service,cor=corAR1(form= ˜(1:30)),data=CloudBackup)
9 > summary(fit3)

...
Correlation Structure: AR(1)
Formula: ˜(1:30)
Parameter estimate(s):

Phi
0.562057

Coefficients:
Value Std.Error t-value p-value

(Intercept) 5.579809 0.04224382 132.08581 0
service1 -0.483829 0.02136900 -22.64164 0
service2 -0.138539 0.02482215 -5.58126 0
...

Line 9 shows the summary of the fit. The lag-1 autocorrelation is estimated
to be .562, which is fairly substantial. The estimate mean and estimated
effects do not change much relative to the OLS fit, but the standard errors
change dramatically. The standard error of µ̂ nearly doubles when correla-
tion is taken into account, but the standard errors of the treatment effects are
roughly one third smaller after accounting for correlation.

Postive autocorrelation will increase the standard error of a mean (relative
to uncorrelated data with the same variance), and it will decrease the standard
error of differences of means.

The data in this example were entered in time order, so we could indicate
time order in line 8 for our 30 data points via form=˜(1:30). We could
have used data in another order, perhaps ordered by service provider, if we
have an additional variable that indicates the order in which the data were
run. For example, if time.slot is 1 for the first run, 2 for the second run,
and so on, then we can use the data in any order and set the correlation via
form=˜time.slot.

6.3.8 Bayesian approaches

Bayesian analysis is also sensitive to unmet assumptions or mis-specification
of the model. Thus a Bayesian statistician also needs to detect problems
and provide alternatives if needed. Bayesian statisticians have an advantageBayesian

methods also
depend on
assumptions

in this process, as the Bayesian inferential paradigm (posterior distributions,
Bayes factor, and so on) is essentially the same regardless of the models used
for the data. Thus Bayesian accommodation of unmet assumptions consists
of using different model assumptions and turning the Bayesian crank again.
No new methods per se are needed.

The bglmm function in cfcdae has the ability to fit a variety of model
forms that will meet many needs when data do not conform to standard as-
sumptions. bglmm does this via a family argument that works much like
that in glm, a varform argument that allows the user to structure the vari-
ance when the family is normal, and a boxcox argument that requests a
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Figure 6.13: Diagnostic plots for the cloud backup example. Panel 1
shows residuals versus fitted values for raw data, and panel 2 shows
the corresponding Box-Cox plot. Panel 3 shows residuals in time
order for log transformed data.

transformation of the response. Here we briefly revisit several of the previ-
ous examples, but using Bayesian methods rather than frequentist methods.

Example 6.17 Cloud seeding, continued
In Example 6.6, we used a Box-Cox analysis to find a transformation

of the data. We can do a similar thing in a Bayesian context. The argument
boxcox=TRUE tells bglmm to fit coefficients and a Box-Cox transforma-
tion power simultaneously.

1 > fit <- bglmm(rainfall˜seeding,data=CloudSeeding,boxcox=TRUE)
2 > summary(fit)[,c(1,2,4,6,8:10)]

mean se_mean 2.5% 50% 97.5% n_eff Rhat
(Intercept) 382.0000 1.19000 290.0000 377.0000 497.000 2040 1
seeding1 -52.5000 0.41900 -95.4000 -52.7000 -7.300 2880 1
sigma0 160.0000 0.28500 131.0000 159.0000 195.000 3250 1
lambda 0.0817 0.00163 -0.0539 0.0815 0.231 2040 1
sigma.Intercept 1630.0000 26.80000 246.0000 1180.0000 5620.000 3010 1
sigma.seeding 422.0000 7.06000 40.4000 283.0000 1570.000 3380 1

Line 1 shows the fitting command (omitting all the MCMC progress output),
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and line 2 shows a partial summary of the results. The MCMC ran well, and
the credible interval for lambda, the transformation power, is from –.05 to
.23. This interval corresponds well to what we got applying car::boxCox
to the OLS fit. Note that bglmm model estimates the coefficients at the same
time as the transformation power, making these coefficients extremely diffi-
cult to interpret, as they are being applied across a range of transformation
powers.

Example 6.18 Tissue Vaporization, continued
In Example 6.9, we used rlm to fit the vaporization data robustly. Here

we repeat the process, comparing the use of the gaussian and t4 (Student
t with 4 degrees of freedom) families.

1 > fitb <- bglmm(width˜power.factor-1,data=TissueVaporization,adapt_delta = .95)
2 > fitb2 <- bglmm(width˜power.factor-1,data=TissueVaporization,family="t4",

adapt_delta = .95)
3 > summary(fitb)[,c(1,3,4,6,8:10)]

mean sd 2.5% 50% 97.5% n_eff Rhat
power.factor1 1.110 0.262 0.565 1.110 1.630 3210 1
power.factor2 1.520 0.266 0.979 1.520 2.020 2960 1
power.factor3 1.860 0.270 1.300 1.870 2.400 3250 1
power.factor4 1.900 0.259 1.350 1.910 2.400 2960 1
sigma0 0.444 0.132 0.266 0.419 0.774 1680 1
sigma.power.factor 1.710 0.562 0.939 1.600 3.140 2870 1

4 > summary(fitb2)[,c(1,3,4,6,8:10)]
mean sd 2.5% 50% 97.5% n_eff Rhat

power.factor1 1.130 0.144 0.8190 1.130 1.400 2690 1
power.factor2 1.540 0.149 1.2300 1.550 1.840 2720 1
power.factor3 1.900 0.151 1.5800 1.910 2.200 2150 1
power.factor4 2.210 0.273 1.4500 2.280 2.560 1160 1
sigma0 0.217 0.116 0.0799 0.189 0.513 787 1
sigma.power.factor 1.820 0.607 1.0100 1.680 3.350 1750 1

5 > plot(fitb2)

Lines 1 and 2 fit the model assuming normal errors, and then again assuming
t4 errors. Looking at the summary on line 3, we can see that the third and
fourth treatment means are roughly equal, which implies that Bayesian anal-
ysis using normal errors is also susceptible to the outlier. Line 4 shows the
results assuming t4 errors, and we see that the fourth treatment mean is now
substantially higher. We also see that the standard error of our estimate of
the fourth treatment mean is higher than the other three means. This is rea-
sonable given that the outlier gets a lower weight in the analysis. Also note
that the variability of the mean estimates overall are larger for the Bayesian
approach.

Finally, line 5 illustrates that there is a plot method for objects of class
bglmm. It plots Pearson residuals versus fitted values and normal scores,
as shown in Figure 6.14. The outlier is not quite as down weighted in the
t4 analysis as it was in the rlm analysis. We can see this because the non-
outlying residuals in the fourth treatment group are a little above zero. They
would be centered on zero if the outlier were totally down weighted.
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Figure 6.14: Diagnostic plots for the Bayesian analysis of the tissue
vaporization data using a t4 family. Panel 1 shows Pearson residuals
versus fitted values, and panel 2 shows a normal plot of the Pearson
residuals.

Example 6.19 Resin lifetimes, continued
In Example 6.13, we accommodated non-constant variance by modeling

the residual variance as either separate by group or as a power of the mean.
We can do both of those in the Bayesian context as well.
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1 > fit <- bglmm(Time˜temp.factor-1,data=ResinLifetimes)
2 > fitb <- bglmm(Time˜temp.factor-1,data=ResinLifetimes,varform= ˜1|temp.factor)

3 > summary(fitb)[,c(1,3,4,6,8:10)]
mean sd 2.5% 50% 97.5% n_eff Rhat

temp.factor1 84.80 6.56 70.40 85.10 96.80 2080 1
temp.factor2 43.10 4.46 34.00 43.30 52.00 2220 1
temp.factor3 24.50 3.04 18.30 24.40 30.60 2610 1
temp.factor4 15.70 1.07 13.70 15.70 17.70 1300 1
temp.factor5 11.90 2.52 6.65 11.90 16.90 2220 1
sigma0[1] 16.60 5.92 9.26 15.40 31.30 1790 1
sigma0[2] 12.10 4.44 6.67 11.10 23.50 2130 1
sigma0[3] 8.20 2.94 4.56 7.55 15.70 2050 1
sigma0[4] 2.43 1.22 1.23 2.14 5.34 1070 1
sigma0[5] 5.52 2.80 2.56 4.79 13.30 1880 1
sigma.temp.factor 54.70 20.10 28.40 50.60 103.00 2800 1

4 > fitb2 <- bglmm(Time˜temp.factor-1,data=ResinLifetimes,varform= ˜1|temp.factor,
sigma.scale0=5)

5 > summary(fitb2)[,c(1,3,4,6,8:10)]
mean sd 2.5% 50% 97.5% n_eff Rhat

temp.factor1 85.80 4.490 76.40 85.80 94.40 4000 1.000
temp.factor2 43.30 3.480 36.20 43.40 50.10 4000 1.000
temp.factor3 24.50 2.450 19.70 24.50 29.40 4000 1.000
temp.factor4 15.70 0.856 14.00 15.70 17.40 4000 0.999
temp.factor5 11.80 1.850 8.06 11.90 15.50 4000 1.000
sigma0[1] 12.30 2.890 7.95 11.90 19.20 4000 1.000
sigma0[2] 9.55 2.390 6.03 9.20 15.30 4000 0.999
sigma0[3] 6.77 1.790 4.22 6.48 11.10 4000 0.999
sigma0[4] 2.14 0.759 1.19 1.98 4.07 2550 1.000
sigma0[5] 4.31 1.460 2.41 4.00 8.03 4000 1.000
sigma.temp.factor 54.90 21.400 28.70 50.20 111.00 4000 1.000

Line 1 fits the resin lifetimes using a model assuming a constant variance,
and line 2 fits the same mean structure but instead allows the variance to be
different for each level of temp.factor via the varform argument. The
summary from line 3 shows some differences from what we obtained using
gls. First, the more extreme means have been shrunk back toward 0, which
is the prior expectation for the treatment means in our model. Second, the
standard errors of the treatment means are considerably larger than what we
obtained with gls. This is reasonable, because the Bayesian approach ac-
counts for the fact that the within group standard deviations are all unknown
and could potentially be quite large, whereas the gls approach is using an
estimated standard error with the expectation that it will be inflated properly
(in the t multiplier) to reflect the variability in its expectation. Also affecting
this result is the fact the Bayesian analysis estimates the error standard devi-
ations to be larger. The default prior mean for the error standard deviation(s)
is set assuming that the model terms are not very predictive; that is, it is set
to be fairly large. In this case, the model is highly predictive, so the prior for
the standard deviations is dragging the estimates up. Refitting with a more
reasonably prior value, as in line 4, gives summary values from line 5 that
are more similar to the gls results. The moral here is that the automatically
generated priors are not always appropriate.

The second model we explored using gls was fitting standard deviations
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proportional to a power of the fitted value. We can also do that with bglmm.

6 > fitb3 <- bglmm(Time˜temp.factor-1,data=ResinLifetimes,varform="power",
sdpower.range = c(0,1))

7 > summary(fitb3)[,c(1,3,4,6,8:10)]
mean sd 2.5% 50% 97.5% n_eff Rhat

temp.factor1 4.460 0.0558 4.340 4.460 4.560 3540 1
temp.factor2 3.770 0.0690 3.640 3.780 3.910 3700 1
temp.factor3 3.200 0.0913 3.000 3.200 3.370 3720 1
temp.factor4 2.710 0.1200 2.470 2.710 2.940 3300 1
temp.factor5 2.450 0.1610 2.110 2.460 2.740 2420 1
sigma0 1.270 1.0200 0.268 0.965 4.120 1540 1
power 0.574 0.1900 0.193 0.574 0.938 1470 1
sigma.temp.factor 5.050 2.5600 2.350 4.380 12.000 1730 1

8 > exp(c(4.46,3.77,3.20,2.71,2.45))
[1] 86.48751 43.38006 24.53253 15.02928 11.58835
9 > 1.27*exp(c(4.46,3.77,3.20,2.71,2.45))ˆ.574
[1] 16.429145 11.056261 7.971055 6.016808 5.182652
10 > .965*exp(c(4.46,3.77,3.20,2.71,2.45))ˆ.574
[1] 12.483563 8.401017 6.056747 4.571827 3.937999

Line 6 fits the model using the "power" option for varform, and line 7
gives the summary. Note: the power option uses a log link so that the fitted
values, which are the exponential of the linear predictor, are guaranteed to
positive. Line 8 shows the exponentiation and the resulting fitted means,
which are quite close to the gls results.

Lines 9 and 10 show the fitted standard deviations using the posterior
mean and median values for the error standard deviation. The latter are rather
closer to the gls results than the former. The difference is due to the large
asymmetry in the results for the standard deviation.

We used GLMs to allow us to consider several distributions for our re-
sponse as alternatives to the normal (Gaussian). The same distributions (and
potentially many more), are available in the Bayesian context.

Example 6.20 Germination of garden peas
Example 6.20 introduced data on the germination of garden peas, with

eight binomial responses, each based on 20 trials. We can easily replicate
that analysis with Bayesian methods using a family = "binomial" ar-
gument.

1 > fit <- bglmm(cbind(germinated,nongerminated)˜treatment,data=PeaGermination,
family="binomial",adapt_delta=.9)

1 > summary(fit)[,c(1,3,4,6,8:10)]
mean sd 2.5% 50% 97.5% n_eff Rhat

(Intercept) 0.400 0.205 0.0123 0.403 0.808 2990 1.000
treatment1 0.329 0.312 -0.2650 0.324 0.959 3550 1.000
treatment2 0.445 0.317 -0.1710 0.441 1.070 3420 0.999
treatment3 -2.310 0.399 -3.1400 -2.290 -1.580 2500 1.000
sigma.Intercept 7.760 9.270 0.2790 4.280 32.800 3630 1.000
sigma.treatment 3.260 2.440 0.9960 2.570 10.300 2200 1.000

Line 1 fits the model. As with glm, the binomial response is a matrix with
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two columns for successes and failures. The summary in line 2 shows results
very similar to those obtained using glm.

Example 6.21 File backup speed, continued
Finally, for normally distributed data you can specify an AR1 error struc-

ture. Example 6.16 introduced backup times for a file to three different re-
mote servers. We observed considerable autocorrelation in the residuals, and
thus need to accommodate that correlation in our model.

1 > fit <- bglmm(log(updowntime)˜service,data=CloudBackup,
varform=c("ar1","time","timegroups"))

2 > summary(fit)[,c(1,3,4,6,8:10)]
mean sd 2.5% 50% 97.5% n_eff Rhat

(Intercept) 5.6000 0.0475 5.5200 5.5900 5.720 1690 1
service1 -0.4890 0.0259 -0.5410 -0.4890 -0.440 3270 1
service2 -0.1400 0.0286 -0.1950 -0.1400 -0.082 3200 1
sigma0 0.0882 0.0237 0.0402 0.0875 0.138 1780 1
rho 0.4620 0.1750 0.1150 0.4650 0.804 1840 1
sigma.Intercept 7.2000 4.0000 2.5700 6.2300 17.800 3040 1
sigma.service 0.9540 0.5830 0.3400 0.7990 2.510 2260 1

3 > plot(fit,plottype="pairs",pars=c("sigma0","rho"))

Line 1 fits the AR1 model. The varform argument is a triple of character
strings. The first is "ar1" indicating the model form. The second is the
name of the variable that indicates time, and the third is the name of the vari-
able that indicates groups that are correlated within group but independent
between groups. In this case, the time variable is just 1 through 30, and the
groups variable is all 1. The summary from line 2 produces estimates similar
to what we found before.

The command in line 3 plots the MCMC values for sigma0 and rho
against each other over time. In Figure 6.15, the smoothed scatterplot shows
substantial negative correlation between these values: when rho is small,
sigma0 is large, and vice versa. This illustrates how parameters in these
more complex models can compensate for each other.

6.4 Implications for Design

The major implication for design is that balanced data sets are usually a good
idea. Balanced data are less susceptible to the effects of nonnormality andUse balanced

designs nonconstant variance. Furthermore, when there is nonconstant variance, we
can usually determine the direction in which we err for balanced data.

When we know that our measurements will be subject to temporal or
spatial correlation, we should take care to block and randomize carefully.
We can, in principle, use the correlation in our design and analysis to increase
precision, but these methods are beyond this text.
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Figure 6.15: Pairwise plot of rho and sigma0 values across
iterations of the Markov Chain, using the cloud backup data.
Diagonal panels show histograms of the values; off diagonal panels
show smoothed scatterplots of the values.

6.5 Further Reading and Extensions

Statisticians started worrying about what would happen to their t-tests and F -
tests on real data almost immediately after they started using the tests. See,
for example, Pearson (1931). Scheffé (1959) provides a more mathematical
introduction to the effects of violated assumptions than we have given here.
Ito (1980) also reviews the subject.

Transformations have long been used in Analysis of Variance. Tukey
(1957a) puts the power transformations together as a family, and Box and
Cox (1964) introduce the scaling required to make the SSE’s comparable.
Atkinson (1985) and Hoaglin, Mosteller, and Tukey (1983) give more exten-
sive treatments of transformations for several goals, including symmetry and
equalization of spread.

The Type I error rates for nonnormal data were computed using the meth-
ods of Gayen (1950). Gayen assumed that the data followed an Edgeworth
distribution, which is specified by its first four moments, and then computed
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the distribution of the F -ratio (after several pages of awe-inspiring calculus).
Our Table 6.2 is computed with his formula (2.30), though note that there are
typos in his paper.

Box and Andersen (1955) approached the same problem from a differ-
ent tack. They computed the mean and expectation of a transformation of
the F -ratio under the permutation distribution when the data come from non-
normal distributions. From these moments they compute adjusted degrees
of freedom for the F -ratio. They concluded that multiplying the numerator
and denominator degrees of freedom by (1 + γ2/N) gave p-values that more
closely matched the permutation distribution.

There are two enormous, parallel areas of literature that deal with out-
liers. One direction is outlier identification, which deals with finding out-
liers, and to some extent with estimating and testing after outliers are found
and removed. Major references include Hawkins (1980), Beckman and Cook
(1983), and Barnett and Lewis (1994). The second direction is robustness,
which deals with procedures that are valid and efficient for nonnormal data
(particularly outlier-prone data). Major references include Andrews et al.
(1972), Huber (1981), and Hampel et al. (1986). Hoaglin, Mosteller, and
Tukey (1983) and Rey (1983) provide gentler introductions.

Rank-based, nonparametric methods are a classical alternative to linear
methods for nonnormal data. In the simplest situation, the numerical values
of the responses are replaced by their ranks, and we then do randomization
analysis on the ranks. This is feasible because the randomization distribution
of a rank test can often be computed analytically. Rank-based methods have
sometimes been advertised as assumption-free; this is not true. Rank methods
have their own strengths and weakness. For example, the power of two-
sample rank tests for equality of medians can be very low when the two
samples have different spreads. Conover (1980) is a standard introduction to
nonparametric statistics.

We computed approximate test sizes for F under nonconstant variance us-
ing a method given in Box (1954). When our distributional assumptions and
the null hypothesis are true, then our observed F -statistic Fobs is distributed
as F with g − 1 and N − g degrees of freedom, and

P (Fobs > FE,g−1,N−g) = E .

If the null is true but we have different variances in the different groups, then
Fobs/b is distributed approximately as F (ν1, ν2), where

b =
N − g
N(g − 1)

∑
i(N − ni)σ2i∑
i(ni − 1)σ2i

,

ν1 =
[
∑

i(N − ni)σ2i ]2

[
∑

i niσ
2
i ]

2 +N
∑

i(N − 2ni)σ4i
,

ν2 =
[
∑

i(ni − 1)σ2i ]
2∑

i(ni − 1)σ4i
.
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Thus the actual Type I error rate of the usual F -test under nonconstant vari-
ance is approximately the probability that an F with ν1 and ν2 degrees of
freedom is greater than FE,g−1,N−g/b.

The Durbin-Watson statistic was developed in a series of papers (Durbin
and Watson 1950, Durbin and Watson 1951, and Durbin and Watson 1971).
The distribution of DW is complicated in even simple situations. Ali (1984)
gives a (relatively) simple approximation to the distribution of DW.

There are many more methods to test for serial correlation. Several fairly
simple related tests are called runs tests. These tests are based on the idea that
if the residuals are arranged in time order, then positive serial correlation will
lead to “runs” in the residuals. Different procedures measure runs differently.
For example, Geary’s test is the total number of consecutive pairs of residuals
that have the same sign (Geary 1970). Other runs include maximum number
of consecutive residuals of the same sign, the number of runs up (residuals
increasing) and down (residuals decreasing), and so on.

In some instances we might believe that we know the correlation struc-
ture of the errors. For example, in some genetics studies we might believe
that correlation can be deduced from pedigree information. If the correlation
is known, it can be handled simply and directly by using generalized least
squares (Weisberg 1985).

We usually have to use advanced methods from times series or spatial
statistics to deal with correlation. Anderson (1954), Durbin (1960), Pierce
(1971), and Tsay (1984) all deal with the problem of regression when the
residuals are temporally correlated. Kriging is a class of methods for dealing
with spatially correlated data that has become widely used, particularly in
geology and environmental sciences. Cressie (1991) is a standard reference
for spatial statistics. Grondona and Cressie (1991) describe using spatial
statistics in the analysis of designed experiments.

6.6 Problems

As part of a larger experiment, 32 male hamsters were assigned to four Exercise 6.1
treatments in a completely randomized fashion, eight hamsters per treatment.
The treatments were 0, 1, 10, and 100 nmole of melatonin daily, 1 hour prior
to lights out for 12 weeks. The response was paired testes weight (in mg).
Below are the means and standard deviations for each treatment group (data
from Rollag 1982, data set Melatonin). What is the problem with these
data and what needs to be done to fix it?

Melatonin Mean SD
0 nmole 3296 90
1 nmole 2574 153

10 nmole 1466 207
100 nmole 692 332

Bacteria in solution are often counted by a method known as serial dilu- Exercise 6.2
tion plating. Petri dishes with a nutrient agar are inoculated with a measured
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amount of solution. After 3 days of growth, an individual bacterium will
have grown into a small colony that can be seen with the naked eye. Count-
ing original bacteria in the inoculum is then done by counting the colonies on
the plate. Trouble arises because we don’t know how much solution to add.
If we get too many bacteria in the inoculum, the petri dish will be covered
with a lawn of bacterial growth and we won’t be able to identify the colonies.
If we get too few bacteria in the inoculum, there may be no colonies to count.
The resolution is to make several dilutions of the original solution (1:1, 10:1,
100:1, and so on) and make a plate for each of these dilutions. One of the
dilutions should produce a plate with 10 to 100 colonies on it, and that is the
one we use. The count in the original sample is obtained by multiplying by
the dilution factor.

Suppose that we are trying to compare three different Pasteurization treat-
ments for milk. Fifteen samples of milk are randomly assigned to the three
treatments, and we determine the bacterial load in each sample after treat-
ment via serial dilution plating. The following table gives the counts (data
set Pasteurization).

Treatment Count
1 26× 102 29× 102 20× 102 22× 102 32× 102

2 35× 103 23× 103 20× 103 30× 103 27× 103

3 29× 105 23× 105 17× 105 29× 105 20× 105

Test the null hypothesis that the three treatments have the same effect on
bacterial concentration.

In order to determine the efficacy and lethal dosage of cardiac relaxants,Exercise 6.3
anesthetized guinea pigs are infused with a drug (the treatment) till death
occurs. The total dosage required for death is the response; smaller lethal
doses are considered more effective. There are four drugs, and ten guinea
pigs are chosen at random for each drug. Lethal dosages follow (data set
LethalDosage).

1 18.2 16.4 10.0 13.5 13.5 6.7 12.2 18.2 13.5 16.4
2 5.5 12.2 11.0 6.7 16.4 8.2 7.4 12.2 6.7 11.0
3 5.5 5.0 8.2 9.0 10.0 6.0 7.4 5.5 12.2 8.2
4 6.0 7.4 12.2 11.0 5.0 7.4 7.4 5.5 6.7 5.5

Determine which drugs are equivalent, which are more effective, and which
less effective.

Four overnight delivery services are tested for “gentleness” by shippingExercise 6.4
fragile items. The breakage rates observed are given below (data set Breakage):
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Treatment Rate
A 17 20 15 21 28
B 7 11 15 10 10
C 11 9 5 12 6
D 5 4 3 7 6

You immediately realize that the variance is not stable. Find an approximate
95% confidence interval for the transformation power using the Box-Cox
method.

Consider the following four plots. Describe what each plot tells you Exercise 6.5
about the assumptions of normality, independence, and constant variance.
(Some plots may tell you nothing about assumptions.)
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An instrument called a “Visiplume” measures ultraviolet light. By com-Exercise 6.6
paring absorption in clear air and absorption in polluted air, the concentration
of SO2 in the polluted air can be estimated. The EPA has a standard method
for measuring SO2, and we wish to compare the two methods across a range
of air samples. The recorded response is the ratio of the Visiplume reading to
the EPA standard reading. The four experimental conditions are: measure-
ments of SO2 in an inflated bag (n = 9), measurements of a smoke generator
with SO2 injected (n = 11), measurements at two coal-fired plants (n = 5 and
6). We are interested in whether the Visiplume instrument performs the same
relative to the standard method across all experimental conditions, between
the coal-fired plants, and between the generated smoke and the real coal-fired
smoke. The data follow (McElhoe and Conner 1986, data set Visiplume):
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Condition Ratio
Bag 1.055 1.272 .824 1.019 1.069 .983 1.025

1.076 1.100
Smoke 1.131 1.236 1.161 1.219 1.169 1.238 1.197

1.252 1.435 .827 3.188
Plant no. 1 .798 .971 .923 1.079 1.065
Plant no. 2 .950 .978 .762 .733 .823 1.011
We wish to study the competition of grass species: in particular, big Problem 6.1

bluestem (from the tall grass prairie) versus quack grass (a weed). We set
up an experimental garden with 24 plots. These plots were randomly al-
located to the six treatments: nitrogen level 1 (200 mg N/kg soil) and no
irrigation; nitrogen level 1 and 1cm/week irrigation; nitrogen level 2 (400
mg N/kg soil) and no irrigation; nitrogen level 3 (600 mg N/kg soil) no ir-
rigation; nitrogen level 4 (800 mg N/kg soil) and no irrigation; and nitrogen
level 4 and 1 cm/week irrigation. Big bluestem was seeded in these plots
and allowed to establish itself. After one year, we added a measured amount
of quack grass seed to each plot. After another year, we harvest the grass
and measure the fraction of living material in each plot that is big bluestem.
We wish to determine the effects (if any) of nitrogen and/or irrigation on the
ability of quack grass to invade big bluestem. (Based on Wedin 1990, data
set Quackgrass.)

N level Irrigation Percent Bluestem
1 No 97 96 92 95
1 Yes 83 87 78 81
2 No 85 84 78 79
3 No 64 72 63 74
4 No 52 56 44 50
4 Yes 48 58 49 53

(a) Do the data need a transformation? If so, which transformation?

(b) Provide an Analysis of Variance for these data. Are all the treatments
equivalent?

(c) Are there significant quadratic effects of nitrogen under nonirrigated
conditions?

(d) Is there a significant effect of irrigation?

(e) Under which conditions is big bluestem best able to prevent the inva-
sion by quack grass? Is the response at this set of conditions signifi-
cantly different from the other conditions?

Tajima (1987) describes an experiment examining the effect of a freeze- Problem 6.2
thaw cycle on the potency of semen used for artificial insemination in chick-
ens. Four semen mixtures are prepared. Each mixture consists of equal vol-
umes of semen from Rhode Island Red and White Leghorn roosters. Mixture
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1 has both varieties fresh, mixture 4 has both varieties frozen, and mixtures
2 and 3 each have one variety fresh and the other frozen. Sixteen batches of
Rhode Island Red hens are inseminated with the mixtures, using a balanced
completely randomized design. The response is the fraction of chicks from
each batch that have white feathers (white feathers indicate a White Leghorn
father). The observed proportions ranged from .19 to .95.

(a) What problems would you anticipate from these data?
(b) How would you expect to address them?

Even good cookies harden over time. This experiment was conducted toProblem 6.3
determine if adding raffinose (an inhibitor of sucrose crystallization) would
improve cookie texture.

Two-hundred twenty cookies are baked. Half of them are made with a
control recipe, while the other half include some raffinose. The 110 cookies
of each recipe are then randomly divided into 11 groups of ten each. Each
group of 10 is put in a plastic bag. On the next day, one bag is chosen at
random from each recipe, and the 10 cookies in that bag are measured for
texture. The texture measurement is the force required to push a 1.27 cm
diameter probe into the cookie. This is repeated on each successive day until
the last bag of cookies has been measured on day 11.

For this question, our interest is in modeling how control-recipe cookies
harden over time. The control data are shown below, and the full data set is
CookieTexture.

Day Force

1 89.5 79.8 127.6 64.7 90.1 67.1 61.7 52.4 104.1 111.4
2 130.5 159.0 204.1 168.9 123.2 134.6 135.1 119.5 109.8 118.2
3 288.4 375.0 239.2 185.8 188.2 180.7 233.4 242.9 165.9 331.0
4 172.7 369.1 453.6 239.0 269.4 370.2 452.8 563.9 390.5 296.2
5 412.1 315.3 471.1 236.0 806.5 290.7 315.0 314.0 434.6 534.1
6 545.7 443.2 414.6 333.6 277.7 557.5 339.8 801.5 377.0 464.2
7 424.4 554.2 620.6 559.2 671.6 681.2 735.3 324.5 439.7 476.0
8 792.3 495.9 864.7 652.3 584.1 688.2 926.2 671.4 536.6 482.9
9 870.7 1148.2 860.1 704.1 489.2 1440.2 840.3 583.1 463.4 647.3

10 915.4 703.1 899.7 1285.2 770.5 1457.9 1169.1 965.8 614.1 785.6
11 1257.1 909.3 1003.0 497.5 692.7 1012.8 975.4 1080.4 472.8 562.7

Water in a cylindrical object will be ejected out if the water in the cylinderProblem 6.4
is above a hole in the side. We expect that the distance the water shoots out
the side will increase as the depth of the water above the hole increases. In
this experiment, the cylinder is a 2 liter plastic soda bottle with a hole in
the side. We fill the bottle (with the hole covered) 30 times and measure
the distance the water is ejected after the hole is uncovered. The runs are
randomly assigned to 10 depths (6, 7, 8, ... 15 cm). Data are shown in the
following table (from X. Meng, pers. comm., data set WaterEjection).
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Ejection distances (cm) for 10 depths (cm)
15 14 13 12 11 10 9 8 7 6

16.4 14.4 13.0 12.7 12.0 10.8 10.8 11.2 6.7 3.4
16.4 15.3 14.0 14.0 11.8 12.0 10.5 10.0 4.2 5.0
16.2 15.0 14.3 13.5 12.2 12.0 11.0 10.0 6.5 5.5

(a) Find a good polynomial fit for these data. Are there outliers or other
problems? Does your model make physical sense (for example, what does it
predict for the distance at a depth of 1 cm)?
(b) My (perhaps naive) intuition suggests that distance should be directly pro-
portional to ejection velocity, and ejection velocity should be directly propor-
tional to depth. Thus my intuition suggests that a model with a linear term
and no intercept should fit the data. How well does this model work? Which
model do you prefer?

What happens to the t-statistic as one of the values becomes extremely Question 6.1
large? Look at the data set consisting of the five numbers 0, 0, 0, 0, K, and
compute the t-test for testing the null hypothesis that these numbers come
from a population with mean 0. What happens to the t-statistic as K goes to
infinity?

Why would we expect the log transformation to be the variance-stabilizing Question 6.2
transformation for the data in Exercise 6.2?
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Chapter 7

Determining Sample Sizes

Earlier chapters have mostly dealt with analyzing experimental results. In
this chapter we turn to design and consider the issues of choosing and assess-
ing sample sizes. You will need to choose sample sizes regardless of how
you analyze the data (that is, regardless of whether you use frequentist or
Bayesian methods).

As we know, an experimental design is determined by the units, the treat-
ments, and the assignment mechanism. Once we have chosen a pool of exper-
imental units, decided which treatments to use, and settled on a completely
randomized design, the major thing left to decide is the sample sizes for the
various treatments. Choice of sample size is important because we want our Decide how large

an experiment is
needed

experiment to be as small as possible to save time and money, but big enough
to get the job done. What we need is a way to figure out how large an exper-
iment needs to be to meet our goals; a bigger experiment would be wasteful,
and a smaller experiment won’t meet our needs. Unfortunately, far too many
experiments are still sized by dividing available resources by the cost per
unit.

Sample size selection is presented as a problem of selecting the sample
size so that a goal is achieved, or, more realistically, so that a goal is achieved
with a sufficiently high probability. There are many potential goals, but they
fall into two general categories: goals that deal with precision of estimation
and goals that deal with (un)certainty of model selection. Precision goals
are typically something like “the 95% confidence interval for estimating the
difference in means between treatments 1 and 2 will be no longer than 1.5.”
For model comparison, the goal is typically stated in terms of power, that is,
the probability of rejecting the null hypothesis when a certain alternative is
true. There are also Bayesian analogues.

What is an appropriate level of power? There is no hard and fast rule. A
power of 80% is a reasonable lower bound, and I would certainly not want
to design for less than 70% power. On the other hand, there are substantial Appropriate

powerdiminishing returns once power is more than 90 or 95%; you can add a lot of
units without increasing power very much. Something in the range of 80%
to 90% is the usual recommendation for design power.
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The width of a confidence interval depends on the desired coverage, the
error variance, and the sample size, so we must know the error variance at
least roughly before we can compute the required sample size. The power
depends on E , the sample sizes, the error variance, and the actual values of
the means under the alternative. If we have no idea about the size of the error
variance, then we cannot say how wide our intervals will be, and we cannot
plan an appropriate sample size. If we have no idea what the means might be
under the alternative, then we cannot do power analysis.

The only way to do statistical sample size selection is by specifying and
exploiting prior information about parameters in the models. This is true
for frequentists as well as Bayesians.

Example 7.1 VOR in ataxia patients
Spinocerebellar ataxias (SCA’s) are inherited, degenerative, neurological

diseases. Clinical evidence suggests that eye movements and posture are
affected by SCA. There are several distinct types of SCA’s, and we would
like to determine if the types differ in observable ways that could be used
to classify patients and measure the progress of the disease. One response
believed to be associated with SCA is the “amplitude of the vestibulo-ocular
reflex for 20 deg/s2 velocity ramps;” let’s just call it VOR. VOR deals with
how your eyes move when trying to focus on a fixed target while you are
seated on a chair on a turntable that is rotating increasingly quickly.

We need to choose sample sizes to help us meet three goals regarding
VOR in SCA types 1, 5, and 6: first, 95% confidence intervals for pairwise
comparisons should be no longer that .5 on the log scale; second, we want
power .9 when testing at the E = .01 that these three SCA types have the
same mean VOR; third, we want power .95 when testing at the .05 level that
the mean response in SCA type 1 is the same as the average of the means of
types 5 and 6.

We must specify the means and error variance to compute power, so we
use those from the preliminary data. Note that there is only one subject in
SCA 6, so our knowledge there is pretty slim and our computed sample sizes
involving SCA 6 will not have a very firm foundation.

We have preliminary observations on a total of seventeen patients from
SCA groups 1, 5, and 6, with sample sizes 5, 11, and 1. The response appears
to have stable variance on the log scale, on which scale the group means of
VOR are 2.82, 3.89, and 3.04, and the variance is .075. Thus it looks like the
average response (on the original scale) in SCA 5 is about three times that of
SCA 1, while the average response of SCA 6 is only about 25% higher than
that of SCA 1.
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7.1 Sample Size for Confidence Intervals

We can compute confidence intervals for means of treatment groups and con-
trasts between treatment groups. One sample size criterion is to choose the
sample sizes so that confidence intervals of interest are no wider than a max-
imum allowable width W (margin of error no greater than W/2). For the
mean of group i, a 1− EI confidence interval has width Width of

confidence
interval2 tEI/2,N−g

√
MSE/ni ;

for a contrast, the confidence interval has width

2 tEI/2,N−g
√

MSE

√∑
i

w2
i

ni
.

In principle, the required sample size can be found by equating either of
these widths with W and solving for the sample sizes. In practice, we don’t
know MSE until the experiment has been performed, so we must anticipate a
reasonable value for MSE when planning the experiment.

Assuming that we use equal sample sizes ni = n, we find that Calculating
sample size

n ≈
4 t2EI/2,g(n−1) MSE

∑
w2
i

W 2
.

This is an approximation because nmust be a whole number and the quantity
on the right can have a fractional part; what we want is the smallest n such
that the left-hand side is at least as big as the right-hand side. The sample size
n appears in the degrees of freedom for t on the right-hand side, so we don’t
have a simple formula for n. We can compute a reasonable lower bound for
n by substituting the upper EI/2 percent point of a normal for t2EI/2,g(n−1).
Then increase n from the lower bound until the criterion is met.

Example 7.2 VOR in ataxia patients, continued
Example 7.1 gave a requirement that 95% confidence intervals for pair-

wise differences should be no wider than .5. The preliminary data had an
MSE of .075, so that is a plausible value for future data. The starting approx-
imation is then

n ≈ 4× 4× .075× (12 + (−1)2)

.52
= 9.6 ,

so we round up to 10 and start there.
Rather than doing the computations by hand, let’s use R and a function

from cfcdae:

1 > sample.size.t.interval(.5,.075,2,3,.05)
[1] 11

2 > sample.size.t.interval(.5,.15,2,3,.05)
[1] 20
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Line 1 shows the sample size computation when the width is set to .5, the
error variance is .075, the sum of squared coefficients is 2, there are three
groups, and the error rate is .05. The required sample size is 11, just one
more than our starting approximation.

In this computation we used the error variance from existing data, which
was .075 based on 14 degrees of freedom. As we will see in Chapter 10,
there is a lot of variability in that estimate, and the true error variance could
easily be twice as large. Line 2 shows the computation with a double error
variance, yielding a required sample size of 20.

Now the experimenter faces a choice. Sample size 11 is probably big
enough, but if she wants to be reasonably sure of meeting the design goal for
however the MSE may turn out in future data, she will need to use almost
twice as many units.

Note from the example that doubling the assumed MSE does not quiteSample size
affects df and
t-percent point

double the required sample size. This is because increasing the sample size
also increases the degrees of freedom and thus reduces the percent point of t
that we use. This effect is strongest for small sample sizes.

7.2 Power and Sample Size Analysis for ANOVA

While we prefer to use p-values for analysis, power analysis requires us to
work with fixed-level tests for a precise alternative hypothesis. In a fixed
level test, we either reject the null hypothesis at the pre-specified level, or we
fail to reject the null hypothesis. If we reject a true null hypothesis, we have
made a Type I error, and if we fail to reject a false null hypothesis, we have
made a Type II error. The probability of making a Type I error is EI ; EI is
completely under our control. We choose a Type I error rate EI (5%, 1%,Power is

probability of
rejecting a false
null hypothesis

etc.), and reject H0 if the p-value is less than EI . The probability of making
a Type II error is EII ; the probability of rejecting H0 when H0 is false is
1− EII and is called power. The Type II error rate EII depends on virtually
everything: EI , g, σ2, the αi’s, and ni’s. Most books use the symbols α and
β for the Type I and II error rates. We use E for error rates, and use subscripts
here to distinguish types of errors.

It is more or less true that we can fix all but one of the interrelated pa-
rameters and solve for the missing one. For example, we may choose EI , g,
σ2, and the αi’s and ni and then solve for 1 − EII . This is called a power
analysis, because we are determining the power of the experiment for the al-
ternative specified by the particular αi’s. We may also choose EI , g, 1−EII ,
σ2 and the αi’s and then solve for the sample sizes. This, of course, is calledFind minimum

sample size that
gives desired
power

a sample size analysis, because we have specified a required power and now
find a sample size that achieves that power. For example, consider a situation
with three diets, and EI is .05. How large should N be (assuming equal ni’s)
to have a 90% chance of rejecting H0 when σ2 is 9 and the treatment mean
responses are -7, -5, 3 (αi’s are -4, -2, and 6)?

The use of power or sample size analysis begins by deciding on interest-
ing values of the treatment effects and likely ranges for the error variance.
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“Interesting” values of treatment effects could be determined in a variety of Use prior
knowledge of

system
ways. For example, they could be anticipated effects, or they could be ef-
fects seen in a previous study, or they could be consensus scientific opinion,
or they could be effects that are of a size to be practically important; in any
case, we want to be able to detect interesting effects. For each combination of
treatment effects, error variance, sample sizes, and Type I error rate, we may
compute the power of the experiment. Sample size computation amounts to
repeating this exercise again and again until we find the smallest sample sizes
that give us at least as much power as required. Thus what we do is set up
a set of circumstances that we would like to detect with a given probability,
and then design for those circumstances.

Life is not always so straightforward. We could have several different
precise alternatives for which we would like to have adequate power, and
we do not know σ exactly. Thus we should perform a sensitivity analysis, Sensitivity

analysistrying various combinations of interesting alternatives and reasonable values
for σ. This will give us a range for the sample sizes. You could design for
the average situation, or you could design for the worst case scenario.

The ANOVA F -statistic is the ratio of the mean square for treatments to
the mean square for error. When the null hypothesis is true, the F -statistic
follows anF -distribution with degrees of freedom from the two mean squares.
We reject the null when the observed F -statistic is larger than the upper EI F -statistic follows

noncentral
F -distribution

when null is false

percent point of the F -distribution. When the null hypothesis is false, the
F -statistic follows a noncentral F -distribution. Power, the probability of re-
jecting the null when the null is false, is the probability that the F -statistic
(which follows a noncentral F -distribution when the alternative is true) ex-
ceeds a cutoff based on the usual (central) F distribution.

This is illustrated in Figure 7.1. The solid line gives a typical null distri-
bution for the F -test. The vertical line is at the 5% cutoff point; 5% of the Power computed

with noncentral Farea under the null curve is to the right, and 95% is to the left. This 5% is the
Type I error rate, or EI . The dashed curve is the distribution of the F -ratio
for one alternative. We would reject the null at the 5% level if our F -statistic
is greater than the cutoff. The probability of this happening is the area under
the alternative distribution curve to the right of the cutoff (the power); the
area under the alternative curve to the left of the cutoff is the Type II error
rate EII .

The noncentral F -distribution has numerator and denominator degrees of
freedom the same as the ordinary (central) F, and it also has a noncentrality
parameter ζ defined by Noncentrality

parameter
measures

distance from null
ζ =

∑
i niα

2
i

σ2
.

The αis used in the formula for noncentrality satisfy
∑
niαi = 0. Another

way to think of the noncentrality parameter is to replace the data yij by their
expected values µi and fit the null (single mean) model; the numerator of ζ
will be the error sum of squares.

The noncentrality parameter measures how far the treatment means are
from being equal (α2

i ) relative to the variation of yi• (σ2/ni). The ordinary
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Figure 7.1: Null distribution (sold line) and alternative distribution
(dashed line) for an F -test, with the 5% cutoff marked.

central F -distribution has ζ = 0, and the bigger the value of ζ, the more
likely we are to reject H0.

Power is higher when EI is larger, when ζ is larger (this can be either
treatment means farther apart or smaller error variance), when error degrees
of freedom are larger, or when numerator degrees of freedom are smaller (for
a fixed value of ζ).

Example 7.3 VOR in ataxia patients, continued
We earlier expressed the goal of having power .9 when testing at the .01

level the null hypothesis that the three SCA groups all had the same mean
VOR. This is an incomplete specification of the problem; we can only com-
pute power when we have a specific set of alternative means (or the non-
centrality parameter that corresponds to those means). Thus we will need to
specify those alternative means before computing power or sample size.

Here are two potential specifications. Suppose that a difference of 50%
(.4 on the log scale) is considered clinically relevant. If we design for sit-
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uations where the maximum difference between two means is .4, then we
will ensure that our sample sizes are big enough when the differences are
.4 or larger. The mean triples (1, 1.4, 1.4) and (1, 1.2, 1.4) both represent
scenarios where there is a difference of .4 on the log scale. We also need to
specify the error variance. As with our confidence interval example, we use
the previously estimated MSE of .075 and also .15 (which is plausible given
the variability in MSE).

The function sample.size.f.test from cfcdae will do the nec-
essary computations (there are many other sample size calculators available):

1 > sample.size.f.test(.9,alpha=.01,means=c(1,1.4,1.4),sigma2=.075)
$nis
[1] 14 14 14

$power
[1] 0.904201

2 > sample.size.f.test(.9,alpha=.01,means=c(1,1.2,1.4),sigma2=.075)
$nis
[1] 18 18 18

$power
[1] 0.901666

3 > sample.size.f.test(.9,alpha=.01,means=c(1,1.4,1.4),sigma2=.15)
$nis
[1] 27 27 27

$power
[1] 0.9127837

4 > sample.size.f.test(.9,alpha=.01,means=c(1,1.2,1.4),sigma2=.15)
$nis
[1] 35 35 35

$power
[1] 0.9080998

4 > sample.size.f.test(.9,alpha=.01,ncp1=((-.2)ˆ2+0+(.2)ˆ2)/.075,ngrps=3)
$nis
[1] 18 18 18

$power
[1] 0.901666

Lines 1 and 2 compute the sample size for the two configurations of means
when the error variance is .075, and lines 3 and 4 do parallel computations
when the error variance is .15. The results returned are the minimum sam-
ple sizes and the actual power with those sample sizes. When the required
sample size is small, the actual power can be considerably greater than the
requested power. As with the confidence interval example, doubling the pro-
posed error variance nearly doubles the required sample sizes.

Note that line 2 needed a larger sample size to obtain power .9 than did
line 1. In fact, the noncentrality parameter for line 1 is as large as it can be
and still have the maximum difference between means equal to .4. There are
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other configurations that also achieve this, for example, (1, 1, 1.4). On the
other hand, the noncentrality parameter for line 2 is as small as it can be and
still have the maximum difference between two means equal to 4. Thus these
two configurations bookend the possibilities with a maximum difference of
.4.

Line 5 shows an alternate set of arguments for sample.size.f.test.
Instead of passing the means and the error variance, you may pass the number
of groups (g) and the noncentrality parameter computed when n = 1.

Here is a useful trick for choosing sample size. Sometimes it is difficult
to specify an interesting alternative completely; that is, we can’t specify all
the means or effects αi, but we can say that any configuration of means that
has two means that differ by an amount D or more would be interesting. TheSpecify minimum

difference smallest possible value for the noncentrality parameter when this condition
is met is nD2/(2σ2), corresponding to two means D units apart and all the
other means in the middle (with zero αi’s). If we design for this alternative,
then we will have at least as much power for any other alternative with two
treatments D units apart. This is essentially what we did in line 5 of the
example.

Some people talk about observed power; they shouldn’t. Observed power
is the power that you compute if you take the results of an experiment (treat-
ment means yi•, MSE, sample sizes, and so on) and use those results to com-Observed power
pute power. Observed power is a monotone function of the p-value for the
ANOVA. Data sets with a small p-value will have high observed power, and
those with a larger p-value will have low observed power. The observed
power tells you nothing that the p-value did not already tell you.

7.3 Power for a Contrast

The Analysis of Variance F -test is sensitive to all departures from the null
hypothesis of equal treatment means. A contrast is sensitive to particular de-
partures from the null. In some situations, we may be particularly interested
in one or two contrasts, and less interested in other contrasts. In that case,
we might wish to design our experiment so that the contrasts of particular
interest had adequate power.

Suppose that we have a contrast with coefficients {wi}. Test the null
hypothesis that the contrast has expected value zero by using an F -test (the
sum of squares for the contrast divided by the MSE). The F -test has 1 andNoncentrality

parameter for a
contrast

N − g degrees of freedom and noncentrality parameter

(
∑g

i=1wiαi)
2

σ2
∑g

i=1w
2
i /ni

.

We now use software for 1 numerator degree of freedom to compute power.

Example 7.4 VOR in ataxia patients, continued
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Suppose that we are particularly interested in comparing the VOR for
SCA 1 to the average VOR for SCA 5 and 6 using a contrast with coefficients
(1, -.5, -.5). We want to know the power for this contrast when testing at the
.05 level when the means are actually (1, 1.4, 1.4) or (1, 1.2, 1.4) and the
error variance is either .075 or .15.

In R, we cannot use the sample.size.f.test function, because it
links numerator degrees of freedom, denominator degrees of freedom, and
noncentrality parameter in a way that is incorrect for a contrast. Instead, we
use the power.f.test function and set those quantities directly.

1 > ncp1a <- (1*1 - .5*1.4 - .5*1.4)ˆ2/.075/(1+.5ˆ2+.5ˆ2)
2 > ncp1b <- (1*1 - .5*1.2 - .5*1.4)ˆ2/.075/(1+.5ˆ2+.5ˆ2)
3 > n <- 5:20;power.f.test(ncp=n*ncp1a,df1=1,df2=3*(n-1),alpha=.05)

[1] 0.6877270 0.7794260 0.8468854 0.8953215 0.9293914 0.9529386 0.9689671
[8] 0.9797332 0.9868797 0.9915739 0.9946282 0.9965984 0.9978594 0.9986608
[15] 0.9991667 0.9994841

4 > n <- 5:20;power.f.test(ncp=n*ncp1b,df1=1,df2=3*(n-1),alpha=.05)
[1] 0.4521937 0.5357938 0.6099223 0.6747138 0.7306307 0.7783538 0.8186855
[8] 0.8524744 0.8805618 0.9037462 0.9227620 0.9382684 0.9508460 0.9609982
[15] 0.9691556 0.9756827

Lines 1 and 2 compute the noncentrality parameters for n = 1 for the two
configurations of means. The actual noncentrality parameters will be n times
these values. Lines 3 and 4 then compute the power for a range of sample
sizes from 5 to 20.

We wanted power .95. We get that power for the sixth and thirteenth
sample sizes, corresponding to sample sizes of 10 and 17. The sample size is
smaller for the first configuration of means, because the average of the SCA
5 and 6 means is 1.4 (.4 from SCA 1) in that configuration, compared to 1.3
(.3 from SCA 1) in the second configuration. This leads to more power and
a lower required sample size.

7.4 Sample Size for Bayesian Analysis

Bayesian analysis uses a prior distribution on parameters. Bayesian design,
including sample size selection, also uses a prior distribution on parameters.
The first thing to note is that the design prior and analysis prior need not be
the same. In fact, you probably want them to be different. We often use
weakly informative priors when doing analysis. The advantage of a weakly
informative prior is that it is more palatable to a broader range of researchers,
so the results stemming from that prior are also likely to be broadly accept-
able. On the other hand, we want the best information available when de- Design prior and

analysis priorsigning the experiment. Such a prior will be much tighter than the weakly
informative analysis prior, but it is almost surely much broader than the sin-
gle point priors (that is, precise, completely specified alternatives) used by
frequentists when doing sample size analysis.

Bayesian sample size analysis involves choosing sample sizes so that we
either achieve a goal on average, or the probability of achieving a goal is
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acceptably high. This probability is computed on the basis of three distribu-
tions: the prior used in the design of the experiment, the prior used in analyz-
ing the experiment, and the distribution of yet-to-be observed data given the
parameter values (the likelihood). In contrast, frequentists only deal with the
likelihood. This multi-layering of distributions means that doing Bayesian
sample size analysis is more computationally intensive than the correspond-
ing frequentist exercise.

As with the frequentist situation, the goals generally revolve around pre-
cision or model selection. Unlike the frequentist setting, however, there are
several ways to specify precision or model selection goals.

7.4.1 Precision

A full Bayesian, decision-theoretic selection of sample size for estimation
requires the statistician to make a decision (n, ω(x1, . . . , xn)), consisting of
a sample size n and a method ω for estimating the quantity of interest. There
is also a loss associated with any decision. For example, we might assume
that the loss is c1(ω(x1, . . . , xn) − µ)2 + c2n. This says that we lose c1Full Bayesian

solution
minimizes
expected costs

times our squared error of estimation (the cost of not estimating µ exactly)
plus c2 times the sample size (the cost of collecting the data). Based on
the likelihood and the prior distributions, the full decision-theoretic approach
says to choose the sample size n and estimator ω that minimize the expected
loss. (If we use squared error loss as shown above, the estimator will be
the posterior expected value.) In many cases, the expected loss is roughly
c1V/n + c2n, leading to a sample size of approximately n =

√
c1V/c2.

The cost (loss) per unit c2 is often fairly obvious, but the cost of estimation
error is often very difficult to specify, making the decision theoretic approach
difficult to implement.

In the absence of a fully specified loss function, consider choosing sam-
ple size to meet a precision goal analogous to those we used in the frequentist
formulation. In the very simplest of Bayesian settings, one can compute the
precision of an estimate analytically. For example, suppose we have a prior
that µ ∼ N(0, σµ), and we observe data yi, i = 1, ..., n that are N(µ, σy). In
that case, the posterior is normal, and the posterior standard deviation of µ is√

1
n
σ2
y

+ 1
σ2
µ

With σµ and σy specified, we simply compute twice the normal percent point
times this posterior standard deviation and solve for the n that gives us a
credible interval that meets our goal.

In the usual situation where the standard deviations are not known, we
need a procedure that will work on average across all the potential values
of both standard deviations and data. In general, this is an intractable prob-
lem, but Joseph and Bélisle (1997) discuss some solutions based on work
of Adcock (1988). For a single normal mean, Adcock proposes the follow-
ing likelihood and priors. Assume that conditional on µ and σε, the data areAdcock’s priors
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independent and follow a normal distribution with that mean and standard
deviation. Assume that 1/σ2ε is distributed as 1/(νσ20) times a chi-square
distribution with ν degrees of freedom. Finally, assume that the prior for µ is
normal with mean µ0 and variance σ2ε /n0. Note first that the prior variability
for µ is proportional to that of the data in the likelihood. This seems unlikely
in practice, but nevertheless, Adcock’s method works fairly well. Note sec-
ond that the assumptions on the prior can be interpreted as the prior on µ
provides n0 units worth of information.

Suppose that we choose to use an interval of length `. Because the stan-
dard deviations vary from data set to data set, the best interval of length `will
have coverage that varies from data set to data set. The Average Coverage
Criterion says to choose n large enough that the average coverage (averaging
over potential values of σ and data) meets our coverage goal.

Using Adcock’s assumptions, if we want an interval of length W with
average coverage 1− E , the sample size should be:

n ≥
4 σ20 t

2
E/2,ν

W 2
− n0

If we have a separate-means problem and we assume that sample sizes are Adcock’s method
for Average

Coverage
the same and all means have the same prior information (same n0), then for
a contrast the average coverage criterion is

n ≥
4 σ20

∑
w2
i t

2
E/2,ν

W 2
− n0

Note that the t cutoff does not depend on n. This will lead to greater required
n than we saw for the frequentist approach if prior information is low (that
is, if n0 and/or ν are small), but it can lead to smaller required n if prior
information is high (n0 and/or ν large).

There are other criteria besides average coverage. For example, the Av-
erage Length Criterion works in the opposite direction. It says to always
choose an interval with the desired coverage. These intervals will have vary-
ing lengths depending on the data, so we choose the sample size so that the
average length meets our goal. The average length criterion leads to a con-
siderably more complex sample size calculation.

Example 7.5 VOR in ataxia patients, continued
Let’s use the average coverage criterion to select a sample size for the

pairwise differences in the VOR situation, where we want a width of .5 and
coverage of 95%. Our prior information is that the MSE of pilot data was
.075 with 14 degrees of freedom.
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1 > sample.size.bayes.interval(.5,.075,14,1,2)
[1] 11

2 > sample.size.bayes.interval(.5,.075,14,3,2)
[1] 9

3 > sample.size.bayes.interval(.5,.075,24,1,2)
[1] 10

4 > sample.size.bayes.interval(.5,.075,4,1,2)
[1] 18

Line 1 gets the Bayesian sample size determination based on a needed width
of .5, an expected error variance of .075, 14 degrees of freedom in our vari-
ance prior, 1 units worth of prior information on the contrast mean, a sum of
squared contrast coefficients of 2, and a default error rate of .05. The calcu-
lated sample size is 11, which is the same as we obtained for a confidence
interval. This 11, however, is based on averaging across some smaller vari-
ances and some larger variances, which lead to smaller and larger required
sample sizes.

Line 2 shows the trivial effect that having more prior information about
the contrast mean: every additional unit’s worth of information we have from
the prior is one less we need in the posterior. Lines 3 and 4 illustrate the effect
of having more or less information (degrees of freedom) in our estimate of
the error variance.

One can still determine the sample size needed to reach a goal of specified
average coverage at a given length, even when the specific assumptions of
the Adcock method are not true, but it is more complicated and requires
simulation. That is, the process is slow and not precise like a formula (making
it more precise makes it slower). Basically, we estimate the average coverage
for an interval width and a set of sample sizes. Then we keep trying different
sample sizes until we find the smallest one that meets our criterion. EachSimulation-based

coverage
estimates

determination of coverage for a given sample size involves some number M
of simulation runs. For each of the M runs:

• Randomly select parameter values from the (design) prior;

• Randomly select data distributed according to these parameter values;

• Fit the model to the data using the (analysis) prior, obtaining a sample
from the posterior distribution of the quantity of interest;

• Determine the coverage of an interval of the specified length.

Average the M sample coverages to estimate the average coverage for the
sample size.

This simulation approach works in models that meet our typical assump-
tions (albeit slowly), but it also works for non-normally distributed data, dataSimulation works

broadly with non-constant error structures, correlated data, and so on. We simply
need to be able to generate data from the model of interest, fit the model of
interest, and tolerate the time it takes to do the repeated simulations.

The simulation approach can be slow, but you may be spending a lot of
time and money running your experiment, so it is worth some time invest-
ment up front to get the sample sizes correct.
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7.4.2 Model Selection

A full Bayesian, decision-theoretic selection of sample size for model selec-
tion requires the statistician to make a decision (n, ω(x1, . . . , xn)), consist-
ing of a sample size n and a method ω for selecting the model based on data
and the priors. There is a loss associated with any decision. For example,
we might assume a loss c1 when we select model 1 when model 2 is correct,
a loss c2 when we select model 2 when model 1 is correct, and a loss c3n
for the cost of collecting data. Based on the likelihood and the prior distri- Full Bayesian

solution
minimizes

expected costs

butions, the full decision-theoretic approach says to choose the sample size
n and method ω that minimize the expected loss. (The method ω will be se-
lection via Bayes factor with the cutoff determined by the relative costs and
prior probabilities of the models.) This can also be adapted to optional col-
lection of additional data: at any sample size n, collect another data point if
the expected loss with an additional data point is less than the expected loss
with the current sample size.

To implement the decision-theoretic approach, you need to be able to
specify the three costs, the (design) priors for the parameters, and the prior
probabilities for the models. This full specification is particularly valuable
in high-stakes situations such as clinical trials, where the loss function could
be quite complex and account for many factors, for example, disease preva-
lence, where you need to be more certain about decisions that will affect
more people; see Berry (2006). However, we will not always have a com-
plete specification of the needed quantities (especially the losses), so less
form approaches are also needed.

The Bayes factor is the standard Bayesian tool for selecting between two
models for the data, so selecting a sample size based on its expected be-
havior under different models has been the primary approach to sample size
selection. For example, when sampling from the prior distribution under the Sample size via

Bayes factor
cutoff

alternative (model 2), we might select a sample size so that the Bayes factor
BF21 will be 3 or greater with probability 80%. In general, we select the
sample size so that when sampling under the alternative we have probability
1− EII of having BF21 be at least K.

As we have seen before, an analytical solution to the Bayesian problem
is only available in the simplest models, so we will need to use simulation to
determine the sample size. Simulation is slow, but it is adaptable to all kinds
of models. In general, the approach is to determine the probability that the
Bayes factor meets our goal for a given sample size, and then vary the sample
size until we find the one that is just large enough to meet the goal with the
required probability. Each probability determination is done via simulation.
For each of M iterations we:

• Randomly select parameter values from the (design) prior for the alter-
native;

• Randomly select data distributed according to these parameter values;

• Fit the model to the data using the (analysis) prior, obtaining the Bayes
factor;
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Estimate the probability as the fraction of simulated Bayes factors that exceed
K.

Example 7.6 VOR in ataxia patients, continued
Let’s simulate the distribution of the Bayes factor to determine a sample

size that gives us probability .95 that the Bayes factor will be 3 or greater
using criteria analogous to Example 7.4. We have three groups, we have an
existing MSE = .075 based on 14 degrees of freedom, and we would like
to determine the sample size for a configuration of means (0,.4,.4). Assume
that yij is N(µi, σ0), µi is N(µ0i, σµ), and we can produce samples from the
distributions for σ0 and σµ.

1 > BFfrac <- function(K,nis,mu0,sigma.mu,sigma0,M=1000) {
count <- 0
g <- length(nis)
x <- factor(rep(1:g,nis))
N <- sum(nis)
for(i in 1:M) {
mus <- rnorm(g,mu0,sigma.mu[i])
y <- rnorm(N,rep(mus,nis),sigma0[i])
fit <- lmBF(y˜x,data.frame(x,y),progress=FALSE)
if(extractBF(fit)[1] > K) count <- count+1

}
count/M

}
2 > BFfrac(3,rep(10,3),c(0,.4,.4),rep(.0001,1000),rep(.075ˆ.5,1000),1000)

[1] 0.788
3 > BFfrac(3,rep(15,3),c(0,.4,.4),rep(.0001,1000),rep(.075ˆ.5,1000),1000)

[1] 0.961
4 > BFfrac(3,rep(14,3),c(0,.4,.4),rep(.0001,1000),rep(.075ˆ.5,1000),1000)

[1] 0.95
5 > BFfrac(3,rep(14,3),c(0,.4,.4),rep(.0001,1000),sqrt(.075*14/rchisq(1000,14)),1000)

[1] 0.88
6 > BFfrac(3,rep(18,3),c(0,.4,.4),rep(.0001,1000),sqrt(.075*14/rchisq(1000,14)),1000)

[1] 0.945
7 > BFfrac(3,rep(18,3),c(0,.4,.4),rep(.1,1000),sqrt(.075*14/rchisq(1000,14)),1000)

[1] 0.894
8 > BFfrac(3,rep(20,3),c(0,.4,.4),rep(.1,1000),sqrt(.075*14/rchisq(1000,14)),1000)

[1] 0.907
9 > BFfrac(3,rep(22,3),c(0,.4,.4),rep(.1,1000),sqrt(.075*14/rchisq(1000,14)),1000)

[1] 0.922
10 > BFfrac(3,rep(25,3),c(0,.4,.4),rep(.1,1000),sqrt(.075*14/rchisq(1000,14)),1000)

[1] 0.935
11 > BFfrac(3,rep(28,3),c(0,.4,.4),rep(.1,1000),sqrt(.075*14/rchisq(1000,14)),1000)

[1] 0.953

Line 1 creates a function to simulate the rate at which the Bayes factor
achieves a goal. The arguments of the function are the Bayes factor goal K,
the sample sizes in the treatment groups, the prior means µ0, samples from
the distribution of σµ, samples from the distribution of σ0, and the number of
iterations in the simulation.

Line 2 represents a situation very similar to the frequentist case. We use a
tiny σµ, meaning that µ is essentially known and equal to its prior mean, and
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we assume that σ0 is known. We set the prior means equal to (0,.4,.4) and
use the sample size that gave us power .95 power. We see that the probability
that the Bayes factor is greater than 3 is less than .8; BF21 > 3 is a more
stringent condition than p < .05. Lines 3 and 4 find a sample size that yields
a probability of at least .95.

Line 5 makes things more realistic by assuming that we do not know σ0
exactly. Now we take samples from a prior distribution for σ0 that matches
our knowledge from the previous data anlysis. This gives us σ0 values rang-
ing from about .2 to about .45 (

√
.075 = .274). Line 6 shows that we need to

increase the sample size to (roughly) 18 to get the probability up to .95.
Finally, lines 7–11 consider the situation where we do not know the mean

exactly and instead let them vary around µ0 with a standard deviation of
.1. Now we need a sample size of 28 to get a probability of .95. What is
happening is that when the configuration of means selects means that are
farther apart than suggested by µ0, then the probability is increased, but not
by a lot. Conversely, when the means are closer together than suggested by
µ0, then the probability is decreased, and possibly by a lot. Thus we need a
larger sample size to counter the instances where the means are more similar
that suggested by µ0.

If we had used the frequentist sample size calculation when our prior
information is really more like what is represented in this example, we would
have produced an experiment that did not meet our power requirements.

7.5 More about Units and Measurement Units

Thinking about sample size, cost, and power brings us back to some issues
involved in choosing experimental units and measurement units. The basic
problems are those of dividing fixed resources (there is never enough money,
time, material, etc.) and trying to get the most bang for the buck.

Consider first the situation where there is a fixed amount of experimental
material that can be divided into experimental units. In agronomy, the limited
resource might be an agricultural field of a fixed size. In textiles, the limited
resource might be a bolt of cloth of fixed size. The problem is choosing
into how many units the field or bolt should be divided. Larger units have Subdividing

spatial unitsthe advantage that their responses tend to have smaller variance, since these
responses are computed from more material. Their disadvantage is that you
end up with fewer units to average across. Smaller units have the opposite
properties; there are more of them, but they have higher variance.

There is usually some positive spatial association between neighboring
areas of experimental material. Because of that, the variance of the average
of k adjacent spatial units is greater than the variance of the average of k More little units

generally betterrandomly chosen units. (How much greater is very experiment specific.) This
greater variance for contiguous blocks implies that randomizing treatments
across more little units will lead to smaller variances for treatment averages
and comparisons than using fewer big units.
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There are limits to this splitting, of course. For example, there may be an
expensive or time-consuming analytical measurement that must be made on
each unit. An upper bound on time or cost thus limits the number of units that
can be considered. A second limit comes from edge guard wastage. When
units are treated and analyzed in situ rather then being physically separated,
it is common to exclude from analysis the edge of each unit. This is done
because treatments may spill over and have effects on neighboring units; ex-
cluding the edge reduces this spillover. The limit arises because as the units
become smaller and smaller, more and more of the unit becomes edge, and
we eventually we have little analyzable center left.

A second situation occurs when we have experimental units and mea-
surement units. Are we better off taking more measurements on fewer unitsMore units or

measurement
units?

or fewer measurement on more units? In general, we have more power and
shorter confidence intervals if we take fewer measurements on more units.
However, this approach may have a higher cost per unit of information.

For example, consider an experiment where we wish to study the possi-
ble effects of heated animal pens on winter weight gain. Each animal will be
a measurement unit, and each pen is an experimental unit. We have g treat-Costs may vary

by unit type ments with n pens per treatment (N = gn total pens) and r animals per pen.
The cost of the experiment might well be represented asC1+gnC2+gnrC3.
That is, there is a fixed cost, a cost per pen, and a cost per animal. The cost
per pen is no doubt very high. Let σ21 be the variation from pen to pen, and let
σ22 be the variation from animal to animal. Then the variance of a treatment
average is

σ21
n

+
σ22
nr
.

The question is now, “What values of n and r give us minimal variance of a
treatment average for fixed total cost?” We need to know a great deal about
the costs and sources of variation before we can complete the exercise.

7.6 Allocation of Units for Two Special Cases

We have considered computing power and sample size for balanced alloca-
tions of units to treatments. Indeed, Chapter 6 gave some compelling reasons
for favoring balanced designs. However, there are some situations where un-
equal sample sizes could increase the power for alternatives of interest. We
examine two of these.

Suppose that one of the g treatments is a control treatment, say treatment
1, and we are only interested in determining whether the other treatments
differ from treatment 1. That is, we wish to compare treatment 2 to control,Comparison with

control treatment 3 to control, . . ., treatment g to control, but we don’t compare
noncontrol treatments. This is the standard setup where Dunnett’s test is
applied. For such an experiment, the control plays a special role (it appears in
all contrasts), so it makes sense that we should estimate the control response
more precisely by putting more units on the control. In fact, we can show that

Draft of March 1, 2021



7.7 Further Reading and Extensions 223

we should choose group sizes so that the noncontrol treatments sizes (nt) are
equal and the control treatment size (nc) is about nc = nt

√
g − 1.

A second special case occurs when the g treatments correspond to nu-
merical levels or doses. For example, the treatments could correspond to four
different temperatures of a reaction vessel, and we can view the differences Allocation for

polynomial
contrasts

in responses at the four treatments as linear, quadratic, and cubic temperature
effects. If one of these effects is of particular interest, we can allocate units
to treatments in such a way to make the standard error for that selected effect
small.

Suppose that we believe that the temperature effect, if it is nonzero, is
essentially linear with only small nonlinearities. Thus we would be most
interested in estimating the linear effect and less interested in estimating the
quadratic and cubic effects. In such a situation, we could put more units
at the lowest and highest temperatures, thereby decreasing the variance for
the linear effect contrast. We would still need to keep some observations
in the intermediate groups to estimate quadratic and cubic effects, though
we wouldn’t need as many as in the high and low groups since determining
curvature is assumed to be of less importance than determining the presence
of a linear effect.

Note that we need to exercise some caution. If our assumptions about
shape of the response and importance of different contrasts are incorrect, we
could wind up with an experiment that is much less informative than the equal
sample size design. For example, suppose we are near the peak of a quadratic Sample sizes

based on
incorrect

assumptions can
lower power

response instead of on an essentially linear response. Then the linear contrast
(on which we spent all our units to lower its variance) is estimating zero, and
the quadratic contrast, which in this case is the one with all the interesting
information, has a high variance.

7.7 Further Reading and Extensions

When the null hypothesis is true, the treatment and error sums of squares
are distributed as σ2 times chi-square distributions. Mathematically, the ratio
of two independent chi-squares, each divided by their degrees of freedom,
has an F -distribution; thus the F -ratio has an F -distribution when the null
is true. When the null hypothesis is false, the error sum of squares still has
its chi-square distribution, but the treatment sum of squares has a noncentral
chi-square distribution. Here we briefly describe the noncentral chi-square.

If Z1, Z2, · · ·, Zn are independent normal random variables with mean 0
and variance 1, then Z2

1 +Z2
2 + · · ·+Z2

n (a sum of squares) has a chi-square Noncentral
chi-square;

noncentrality
distribution with n degrees of freedom, denoted by χ2

n. If the Zi’s have vari-
ance σ2, then their sum of squares is distributed as σ2 times a χ2

n. Now
suppose that the Zi’s are independent with means δi and variance σ2. Then
the sum of squares Z2

1 +Z2
2 + · · ·+Z2

n has a distribution which is σ2 times a
noncentral chi-square distribution with n degrees of freedom and noncentral-
ity parameter

∑n
i=1 δ

2
i /σ

2. Let χ2
n(ζ) denote a noncentral chi-square with n
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degrees of freedom and noncentrality parameter ζ. If the noncentrality pa-
rameter is zero, we just have an ordinary chi-square.

In Analysis of Variance, the treatment sum of squares has a distribution
that is σ2 times a noncentral chi-square distribution with g − 1 degrees of
freedom and noncentrality parameter

∑g
i=1 niα

2
i /σ

2. See Appendix A. The
mean square for treatments thus has a distribution

MStrt ∼
σ2

g − 1
χ2
g−1

(∑g
i=1 niα

2
i

σ2

)
.

The expected value of a noncentral chi-square is the sum of its degrees of
freedom and noncentrality parameter, so the expected value of the mean
square for treatments is σ2 +

∑g
i=1 niα

2
i /(g − 1). When the null is false,

the F -ratio is a noncentral chi-square divided by a central chi-square (each
divided by its degrees of freedom); this is a noncentral F -distribution, with
the noncentrality of the F coming from the noncentrality of the numerator
chi-square.
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7.8 Problems

Find the smallest sample size giving power of at least .7 when testing Exercise 7.1
equality of six groups at the .05 level when ζ = 4n.

We are planning an experiment comparing three fertilizers. We will have Exercise 7.2
six experimental units per fertilizer and will do our test at the 5% level. One
of the fertilizers is the standard and the other two are new; the standard fer-
tilizer has an average yield of 10, and we would like to be able to detect the
situation when the new fertilizers have average yield 11 each. We expect the
error variance to be about 4. What sample size would we need if we want
power .9?

What is the probability of rejecting the null hypothesis when there are Exercise 7.3
four groups, the sum of the squared treatment effects is 6, the error variance
is 3, the group sample sizes are 4, and E is .01?

I conduct an experiment doing fixed-level testing with E = .05; I know Exercise 7.4
that for a given set of alternatives my power will be .85. True or False?

1. The probability of rejecting the null hypothesis when the null hypoth-
esis is false is .15.

2. The probability of failing to reject the null hypothesis when the null
hypothesis is true is .05.

Consider two experiments. The first has two treatments with four units Exercise 7.5
in each and a noncentrality parameter of 20. The second has six treatments
with two units in each and also has a noncentrality parameter of 20. Which
experiment has greater power? Explain your answer.

(a) We are considering an experiment with n = 20 units, with 5 allocated Exercise 7.6
to each of g = 4 treatments. When considering power, we are planning
for treatment means of 7, 9, 11, 13 and σ2 = 10. Give the noncentrality
parameter and degrees of freedom for this test.
(b) Suppose that we consider a different experiment, one with 4 units for
each of g = 5 treatments (n = 20 again) and we are considering power
for the treatment means 7, 9, 10, 11, 13 and σ2 = 10. Give the noncentrality
parameter and degrees of freedom for this test
(c) Which test is more powerful?

We can run an experiment with three treatments, four units per treatment, Exercise 7.7
and error variance 2; or we can run an experiment with three treatments,
two units per treatment, and error variance 1. (The extra expense of the less
variable method made us reduce the sample size.) We should have the same
treatment effects in both cases. Which experiment has more power, and why?

We are interested in the effects of soy additives to diets on the blood con- Problem 7.1
centration of estradiol in premenopausal women. We have historical data on
six subjects, each of whose estradiol concentration was measured at the same
stage of the menstrual cycle over two consecutive cycles. On the log scale,

Draft of March 1, 2021



226 Determining Sample Sizes

the error variance is about .109. In our experiment, we will have a pretreat-
ment measurement, followed by a treatment, followed by a posttreatment
measurement. Our response is the difference (post − pre), so the variance
of our response should be about .218. Half the women will receive the soy
treatment, and the other half will receive a control treatment.

How large should the sample size be if we want power .9 when testing
at the .05 level for the alternative that the soy treatment raises the estradiol
concentration 25% (about .22 log units)?

Nondigestible carbohydrates can be used in diet foods, but they may haveProblem 7.2
effects on colonic hydrogen production in humans. We want to test to see if
inulin, fructooligosaccharide, and lactulose are equivalent in their hydrogen
production. Preliminary data suggest that the treatment means could be about
45, 32, and 60 respectively, with the error variance conservatively estimated
at 35. How many subjects do we need to have power .95 for this situation
when testing at the EI = .01 level?

Consider the situation of Exercise 3.5. The data we have appear to de-Problem 7.3
pend linearly on delay with no quadratic component. Suppose that the true
expected value for the contrast with coefficients (1,-2,1) is 1 (representing a
slight amount of curvature) and that the error variance is 60. What sample
size would be needed to have power .9 when testing at the .01 level?

Suppose that I have planned an experiment with three treatments, 20 unitsProblem 7.4
per treatment, and anticipated error standard deviation σ = 10. Will my
power increase more if I spend money to double my sample size (to 40 units
per treatment), or spend money to halve my σ to 5? Explain your answer.

There are three treatments with treatment effects –1, 0, and 1. For aProblem 7.5
particular error variance of σ2, we need 20 units per treatment to achieve
power .8 when testing at the .05 significance level.

(a) Approximately how many units will we need per treatment to get
power .8 when testing at the .05 level if we instead assume that the treatment
effects are –0.5, 0 and 0.5?
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(b) Approximately how many units will we need per treatment to get
power .8 when testing at the .05 level if the treatment effects are –1, 0, and 1
but the error variance is 2σ2?

You are designing a great experiment for your boss. It has four treatments Problem 7.6
and an anticipated error variance of 3. Your boss gives you an alternative
mean scenario, and you work out that you need 10 units per treatment to
achieve 90% power when testing at error rate 0.01. You’re all set to send
the instructions off to the technicians when you boss rushes in and confesses,
“Oops, 3 was the anticipated error standard deviation, not the variance. The
anticipated error variance is 9.” Approximately how many units are you going
to need per treatment for the same alternative to achieve 90% power when
testing at 0.01. Explain your answer.
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Chapter 8

Factorial Treatment Structure

We have been working with completely randomized designs, where g treat-
ments are assigned at random toN units. Up till now, the treatments have had
no structure; they were just g treatments. Factorial treatment structure ex- Factorials

combine the
levels of two or
more factors to

create treatments

ists when the g treatments are the combinations of the levels of two or more
factors. We call these combination treatments factor-level combinations or
factorial combinations to emphasize that each treatment is a combination of
one level of each of the factors. We have not changed the randomization; we
still have a completely randomized design. It is just that now we are con-
sidering treatments that have a factorial structure. We will learn that there
are compelling reasons for preferring a factorial experiment to a sequence of
experiments investigating the factors separately.

8.1 Factorial Structure

It is best to start with some examples of factorial treatment structure.

• Nelson, Kriby, and Johnson (1990) studied the effects of six dietary
supplements on the occurrence of leg abnormalities in young chickens.
The six treatments were the combinations of two levels of phosphorus
supplement and three levels of calcium supplement. The phosphorus
supplement alone is not a treatment, and neither is the calcium supple-
ment. The combination of phosphorus and calcium supplements is a
treatment in this design.

• Ellering (pers. comm.) studied corrosion-prevention coatings for metal
guitar strings, examining how extraction rate (which is another way of
looking at application time), curing time, and curing temperature affect
the retention of the coating after a salt water bath. There are two levels
of rate (6 or 12 inches/minute), four levels of curing temperature (20,
60, 90, or 120 degrees C), and two levels of curing time (30 or 60
minutes), for a total of 16 treatments applied to 48 steel samples.
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Table 8.1: Number of sprouting barley seeds out of 100, by water
used for springing and age of seeds. Data from Hareland and
Madson (1989); data set SproutingBarley.

Age of Seeds (weeks)
ml H2O 1 3 6 9 12

4
11
9
6

7
16
17

9
19
35

13
35
28

20
37
45

8
8
3
3

1
7
3

5
9
9

1
10
9

11
15
25

• Van de Ven (pers. comm.) studied the effect of thickness and surface
treatment on the transmission of laser light through a piece of clear
PVC (polyvinyl chloride). The thickness factor had six levels, and the
surface treatment had three levels (no sanding, sand the front, sand the
front and back). Combined, there are 18 treatments.

• Finally, Hunt and Larson (1990) studied the effects of sixteen treat-
ments on zinc retention in the bodies of rats. The treatments were the
combinations of two levels of zinc in the usual diet, two levels of zinc
in the final meal, and four levels of protein in the final meal. Again, it
is the combination of factor levels that makes a factorial treatment.

We begin our study of factorial treatment structure by looking at two-
factor designs. We may present the responses of a two-way factorial as aTwo-factor

designs table with rows corresponding to the levels of one factor (which we call fac-
tor A) and columns corresponding to the levels of the second factor (factor
B). For example, Table 8.1 shows the results of an experiment on sprouting
barley. Barley seeds are divided into 30 lots of 100 seeds each. The 30 lots
are divided at random into ten groups of three lots each, with each group
receiving a different treatment. The ten treatments are the factorial combina-
tions of amount of water used for sprouting (factor A) with two levels, and
age of the seeds (factor B) with five levels. The response measured is the
number of seeds sprouting.

We use the notation yijk to indicate responses in the two-way factorial.
In this notation, yijk is the kth response in the treatment formed from the ithMultiple

subscripts denote
factor levels and
replication

level of factor A and the jth level of factor B. Thus in Table 8.1, y2,5,3 = 25.
For a four by three factorial design (factor A has four levels, factor B has three
levels), we could tabulate the responses as in Table 8.2. This table is just a
convenient representation that emphasizes the factorial structure; treatments
were still assigned to units at random.

Notice in both Tables 8.1 and 8.2 that we have the same number of re-
sponses in every factor-level combination. This is called balance. BalanceBalanced data

have equal
replication

turns out to be important for the standard analysis of factorial responses.
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Table 8.2: A two-way factorial treatment structure.
B1 B2 B3

A1
y111

...
y11n

y121
...

y12n

y131
...

y13n

A2
y211

...
y21n

y221
...

y22n

y231
...

y23n

A3
y311

...
y31n

y321
...

y32n

y331
...

y33n

A4
y411

...
y41n

y421
...

y42n

y431
...

y43n

We will assume for now that our data are balanced with n responses in
every factor-level combination.

Chapter 9 will consider analysis of unbalanced factorials.

8.2 Factorial Analysis: Main Effect and Interaction

When our treatments have a factorial structure, we may also use a factorial
analysis of the data. The major concepts of this factorial analysis are main
effect and interaction.

Consider a two-way factorial where factor A has four levels and factor B
has three levels, as in Table 8.2. There are g = 12 treatments, with 11 degrees
of freedom between the treatments. We use i and j to index the levels of
factors A and B. The expected values in the twelve treatments may be denoted
µij , coefficients for a contrast in the twelve means may be denotedwij (where
as usual

∑
ij wij = 0), and the contrast sum is

∑
ij wijµij . Similarly, yij•

is the observed mean in the ij treatment group, and yi•• and y•j• are the Treatment, row,
and column

means
observed means for all responses having level i of factor A or level j of B,
respectively. It is often convenient to visualize the expected values, means,
and contrast coefficients in matrix form, as in Table 8.3.

For the moment, forget about factor B and consider the experiment to be
a completely randomized design just in factor A (it is completely randomized
in factor A). Analyzing this design with four “treatments,” we may compute
a sum of squares with 3 degrees of freedom. The variation summarized by Factor A ignoring

factor Bthis sum of squares is denoted SSA and depends on just the level of factor A.
The expected value for the mean of the responses in row i is µ + αi, where
we assume that

∑
i αi = 0.
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Table 8.3: Matrix arrangement of (a) expected values, (b) means,
and (c) contrast coefficients in a four by three factorial.

(a)
µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33

µ41 µ42 µ43

(b)
y11• y12• y13•
y21• y22• y23•
y31• y32• y33•
y41• y42• y43•

(c)
w11 w12 w13

w21 w22 w23

w31 w32 w33

w41 w42 w43

Now, reverse the roles of A and B. Ignore factor A and consider the ex-
periment to be a completely randomized design in factor B. We have an ex-Factor B ignoring

factor A periment with three “treatments” and treatment sum of squares SSB with 2
degrees of freedom. The expected value for the mean of the responses in
column j is µ+ βj , where we assume that

∑
j βj = 0.

The effects αi and βj are called the main effects of factors A and B,
respectively. The main effect of factor A describes variation due solely toA main effect

describes
variation due to a
single factor

the level of factor A (row of the response matrix), and the main effect of
factor B describes variation due solely to the level of factor B (column of the
response matrix). We have analogously that SSA and SSB are main-effects
sums of squares.

The variation described by the main effects is variation that occurs from
row to row or column to column of the data matrix. The example has twelve
treatments and 11 degrees of freedom between treatments. We have de-
scribed 5 degrees of freedom using the A and B main effects, so there mustInteraction is

variation not
described by
main effects

be 6 more degrees of freedom left to model. These 6 remaining degrees of
freedom describe variation that arises from changing rows and columns si-
multaneously. We call such variation interaction between factors A and B,
or between the rows and columns, and denote it by SSAB.

Here is another way to think about main effect and interaction. The main
effect of rows tells us how the response changes when we move from one
row to another, averaged across all columns. The main effect of columns
tells us how the response changes when we move from one column to an-
other, averaged across all rows. The interaction tells us how the change in re-
sponse depends on columns when moving between rows, or how the change
in response depends on rows when moving between columns. Interaction be-
tween factors A and B means that the change in mean response going from
level i1 of factor A to level i2 of factor A depends on the level of factor B
under consideration. We can’t simply say that changing the level of factor A
changes the response by a given amount; we may need a different amount of
change for each level of factor B.

We can make our description of main-effect and interaction variation
more precise by using contrasts. Any contrast in factor A (ignoring B) has
four coefficients w?i and observed value w?({yi••}). This is a contrast in the
four row means. We can make an equivalent contrast in the twelve treatment
means by using the coefficients wij = w?i /3. This contrast just repeats w?i
across each row and then divides by the number of columns to match up
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Table 8.4: Example main-effects and interaction contrast
coefficients for a four by three factorial design.

A

-3 -3 -3
-1 -1 -1
1 1 1
3 3 3

1 1 1
-1 -1 -1
-1 -1 -1
1 1 1

-1 -1 -1
3 3 3

-3 -3 -3
1 1 1

B

-1 0 1
-1 0 1
-1 0 1
-1 0 1

1 -2 1
1 -2 1
1 -2 1
1 -2 1

AB

3 0 -3
1 0 -1

-1 0 1
-3 0 3

-1 0 1
1 0 -1
1 0 -1

-1 0 1

1 0 -1
-3 0 3
3 0 -3

-1 0 1

-3 6 -3
-1 2 -1
1 -2 1
3 -6 3

1 -2 1
-1 2 -1
-1 2 -1
1 -2 1

-1 2 -1
3 -6 3

-3 6 -3
1 -2 1

with the division used when computing row means. Factor A has four levels,
so three orthogonal contrasts partition SSA. There are three analogous or- Main-effects

contraststhogonal wij contrasts that partition the same variation. (See Question 8.1.)
Table 8.4 shows one set of three orthogonal contrasts describing the factor A
variation; many other sets would do as well.

The variation in SSB can be described by two orthogonal contrasts be-
tween the three levels of factor B. Equivalently, we can describe SSB with or-
thogonal contrasts in the twelve treatment means, using a matrix of contrast
coefficients that is constant on columns (that is, w1j = w2j = w3j = w4j

for all columns j). Table 8.4 also shows one set of orthogonal contrasts for
factor B.

Inspection of Table 8.4 shows that not only are the factor A contrasts
orthogonal to each other, and the factor B contrasts orthogonal to each other, A contrasts

orthogonal to B
contrasts for

balanced data

but the factor A contrasts are also orthogonal to the factor B contrasts. This
orthogonality depends on balanced data and is the key reason why balanced
data are easier to analyze.

There are 11 degrees of freedom between the twelve treatments, and the
A and B contrasts describe 5 of those 11 degrees of freedom. The 6 addi-
tional degrees of freedom are interaction degrees of freedom; sample inter-
action contrasts are also shown in Table 8.4. Again, inspection shows that Interaction

contraststhe interaction contrasts are orthogonal to both sets of main-effects contrasts.
Thus the 11 degrees of freedom between-treatment sum of squares can be
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partitioned using contrasts into SSA, SSB, and SSAB.
Look once again at the form of the contrast coefficients in Table 8.4.

Row-main-effects contrast coefficients are constant along each row, and add
to zero down each column. Column-main-effects contrasts are constant downContrast

coefficients
satisfy zero-sum
restrictions

each column and add to zero along each row. Interaction contrasts add to zero
down columns and along rows. This pattern of zero sums will occur again
when we look at parameters in factorial models.

8.3 Advantages of Factorials

Before discussing advantages, let us first recall the difference between facto-
rial treatment structure and factorial analysis. Factorial analysis is an optionFactorial structure

versus analysis we have when the treatments have factorial structure; we can always ignore
main effects and interaction and just analyze the g treatment groups.

It is easiest to see the advantages of factorial treatment structure by com-
paring it to a design wherein we only vary the levels of a single factor. This
second design is sometimes referred to as “one-at-a-time.” The sproutingOne-at-a-time

designs data in Table 8.1 were from a factorial experiment where the levels of sprout-
ing water and seed age were varied. We might instead use two one-at-a-time
designs. In the first, we fix the sprouting water at the lower level and vary the
seed age across the five levels. In the second experiment, we fix the seed age
at the middle level, and vary the sprouting water across two levels.

Factorial treatment structure has two advantages:

1. When the factors interact, factorial experiments can estimate the inter-
action. One-at-at-time experiments cannot estimate interaction. Use
of one-at-a-time experiments in the presence of interaction can lead to
serious misunderstanding of how the response varies as a function of
the factors.

2. When the factors do not interact, factorial experiments are more ef-
ficient than one-at-a-time experiments, in that the units can be used
to assess the (main) effects for both factors. Units in a one-at-a-time
experiment can only be used to assess the effects of one factor.

There are two times when you should use factorial treatment structure:
(1) when your factors interact, and (2) when your factors do not interact.

Factorial structure is a win, whether or not we have interaction.
The argument for factorial analysis is somewhat less compelling. We

usually wish to have a model for the data that is as simple as possible. When
there is no interaction, then main effects alone are sufficient to describe the
means of the responses. Such a model (or data) is said to be additive. AnAdditive model

has only main
effects

additive model is simpler (in particular, uses fewer degrees of freedom) than
a model with a mean for every treatment. When interaction is moderate com-
pared to main effects, the factorial analysis is still useful. However, in some
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experiments the interactions are so large that the idea of main effects as the
primary actors and interaction as fine tuning becomes untenable. For such
experiments it may be better to revert to an analysis of g treatment groups,
ignoring factorial structure.

Example 8.1 Pure interactive response
Consider a chemistry experiment involving two catalysts where, un-

known to us, both catalysts must be present for the reaction to proceed. The
response is one or zero depending on whether or not the reaction occurs. The
four treatments are the factorial combinations of Catalyst A present or ab-
sent, and Catalyst B present or absent. We will have a response of one for
the combination of both catalysts, but the other three responses will be zero.
While it is possible to break this down as main effect and interaction, it is
clearly more comprehensible to say that the response is one when both cat-
alysts are present and zero otherwise. Note here that the factorial treatment
structure was still a good idea, just not the main-effects/interactions analysis.

8.4 Visualizing Interaction

An interaction plot, also called a profile plot, is a graphic for assessing the rel-
ative size of main effects and interaction; an example is shown in Figure ??. Interaction plots

connect-the-dots
between

treatment means

Consider first a two-factor factorial design. We construct an interaction plot
in a “connect-the-dots” fashion. Choose a factor, say A, to put on the hori-
zontal axis. For each factor level combination, plot the pair (i, yij•). Then
“connect-the-dots” corresponding to the points with the same level of factor
B; that is, connect (1, y1j•), (2, y2j•), up to (a, yaj•). In our four by three
prototype factorial, the level of factor A will be a number between one and
four; there will be three points plotted above one, three points plotted above
two, and so on; and there will be three “connect-the-dots” lines, one for each
level of factor B.

For additive data, the change in response moving between levels of factor
A does not depend on the level of factor B. In an interaction plot, that simi-
larity in change of level shows up as parallel line segments. Thus interaction Interaction plot

shows relative
size of main
effects and
interaction

is small compared to the main effects when the connect-the-dots lines are
parallel, or nearly so. Even with visible interaction, the degree of interaction
may be sufficiently small that the main-effects-plus-interaction description
is still useful. It is worth noting that we sometimes get visually different
impressions of the interaction by reversing the roles of factors A and B.

Example 8.2 Chick body weights
Table 8.5 shows the treatment means for the six treatments in the Nelson,

Kriby, and Johnson (1990) experiment. We can use cfcdae::interactplot()
to visualize the interaction as shown on line 1.
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Table 8.5: Average chick body weights (in grams) under
mineral supplements. Data from Nelson, Kriby, and
Johnson (1990); data set ChickBodyWeight.

Calcium %
Phosphorus % .6 .9 1.2
.25 584 489 453
.50 616 606 621
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Figure 8.1: Interaction plot of chick body weights data with calcium
on the horizontal axis.

1 > with(ChickBodyWeight,interactplot(Ca,P,weight))
2 > with(ChickBodyWeight,interactplot(P,Ca,weight))

We have put the calcium factor on the horizontal axis and have phosphorus
levels indicate the separate traces; see the first panel of Figure 8.1. Here, in-
teraction is seemingly clear. At the upper level of phosphorus, chick weight
does not depend on calcium. At the lower level of phosphorus, weight de-
creases with increasing calcium. Thus the effect of changing calcium levels
depends on the level of phosphorus.

It is important to know that reversing the roles of horizontal factor and
trace factor does not change the information presented in the interaction plot,
but you might find that one order is more understandable than another. For
example, line 2 produces the second panel of Figure 8.1. Somehow, to me,
the first version of the plot is more understandable.

Interaction is only “seemingly” clear in Figure 8.1, because the basic
interaction plot does not tell us anything about variability. If the standard
error of those treatment means is 100, then what looks like interaction could
simply be random variation. The observed means that we plot are subject toInterpret “parallel”

in light of
variability

error, so the line segments will not be exactly parallel—even if the true means
are additive. The degree to which the lines are not parallel must be interpreted
in light of the likely size of the variation in the observed means. As the data
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Table 8.6: Coating retention after salt water bath, in percent.
Temperature in degrees C, time in minutes, rate in inches/minute.
Data from N. Ellering, data set StringCoating.

Temperature
Time Rate 20 60 90 120
30 6 3.6 7.3 10.8 39.3

3.4 4.9 5.7 47.9
2.3 1.7 6.8 34.9

30 12 2.7 3.0 3.0 7.0
7.2 4.1 2.7 4.0
5.4 5.4 6.2 7.1

60 6 34.2 37.1 93.2 92.2
46.2 48.9 87.2 95.8
37.2 48.5 96.0 91.2

60 12 23.5 29.5 52.3 82.1
17.0 34.5 47.8 84.7
15.1 36.6 48.8 86.6

become more variable, greater departures from parallel line segments become
more likely, even for truly additive data.

Example 8.3 String coating retention
Table 8.6 shows the percent retention of coating for the 48 units tested

in the guitar string data. This is a three-factor model (four by two by two).
For more than two factors, we can either look at two factors at a time (one
horizontal factor and one trace factor), or we can use one horizontal factor
and plot a trace for each combination of two or more factors.

We can include pointwise (uncorrected for multiple comparisons) con-
fidence intervals for each treatment mean in an interaction plot by using a
confidence argument.

1 > with(StringCoating,interactplot(temp.factor,time.factor:rate.factor,pct.retained,
confidence=.95))

2 > with(StringCoating,interactplot(temp.factor,time.factor:rate.factor,pct.retained,
confidence=.95,pooled=FALSE))

3 > with(StringCoating,interactplot(temp.factor,rate.factor,pct.retained,
confidence=.95))

4 > with(StringCoating,interactplot(temp.factor,rate.factor,pct.retained,
confidence=.95,sigma2=14.1,df=32))

Line 1 creates the interaction plot shown in panel 1 of Figure 8.2. Note that
we get traces for combinations of two (or more) variables by entering their in-
teraction as the trace variable (here, time.factor:rate.factor). We
can clearly see that the deviations from parallel line segments are far beyond
sampling variation.

Line 2 produces a similar plot (panel 2 of Figure 8.2), except instead
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Table 8.7: Zinc retention after a diet with two levels of zinc, and a
last meal with two levels of zinc and four levels of protein. Data from
Hunt and Larson (1990), data set ZincRetention.

Meal Diet Meal Protein
Zinc Zinc 1 2 3 4
1 1 52 73 76 80
1 2 74 89 89 88
2 1 48 44 59 64
2 2 62 56 69 79

of using a pooled estimate of variance across all treatments (which is the
default), it uses error variances estimated separately for each treatment; this is
chosen via pooled=FALSE. Unpooled variances will be a more reasonable
representation when the error variance is not constant, and it does not appear
to be constant in these data. Note, however, that confidence intervals with
individually-estimated variances will typically be wider and more variable,
because each of these estimates of variance is done on relatively few degrees
of freedom.

interactplot only knows about the factors included in its arguments;
if there are other factors that you do not include in its arguments, any vari-
ation due to those factors will appear to be error variation, probably making
the confidence intervals too wide. That is, part of the mean structure will
taken as part of the error variance, making the error variance appear to be too
large. Line 3 uses temperature as the horizontal factor but only uses rate as
a trace factor (instead of both rate and time). Panel 3 of Figure 8.2 shows
the resulting plot, and it does have much wider confidence intervals. Line 4
shows that you can tell interactplot what error mean square and error
degrees of freedom to use for confidence intervals via the sigma2 and df
arguments. In practice, the values for sigma2 and df will not be known
until you fit the full model to the data.

Example 8.4 Zinc retention
Finally, let’s look at the zinc retention data of Hunt and Larson (1990);

treatment means are shown in Table 8.7. Because we only have treatment
means and no measure of variability, any judgement we make regarding in-
teraction is somewhat tenuous.

1 > with(ZincRetention,interactplot(m.protein,m.zinc:d.zinc,retention))
2 > with(ZincRetention,interactplot(m.protein,m.zinc,retention))
3 > with(ZincRetention,interactplot(m.protein,d.zinc,retention))
4 > with(ZincRetention,interactplot(m.zinc,d.zinc,retention))

These commands produce all two-way interaction plots (line 1–3), and a
three-way interaction plot with mean protein on the horizontal axis (line 4).
These plots are in the four panels of Figure 8.3. The first two panels look
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Figure 8.2: Interaction plots of StringCoating data with the
temperature factor on the horizontal axis. Panels 1 and 2 show traces
for the combinations of the time and rate factors, with panel 1 using a
pooled estimate of variance, and panel 2 using separate estimates of
variance for each treatment. Panels 3 and 4 show traces for the rate
factor only. Panel 3 is misleading, because it includes variation
caused by time and its interactions in the confidence intervals. Panel
4 corrects this by using a separately specified residual variance.

fairly parallel. These two panels include diet zinc as one of the factors, sug-
gesting that diet zinc does not interact with either factor. In contrast, panel
3 suggests a possible interaction between meal protein and meal zinc: there
seems to be a much larger difference in response between levels of meal zinc
at level 2 of meal protein. Of course, we do not have standard errors, so this
could just be random variation.

The fourth panel is the three factor interaction plot. Traces 1 and 2 have
level 1 of meal zinc but differ on diet zinc. These lines look roughly parallel,
because while diet zinc has an effect on the mean, it seems to have the same
effect at every level of meal protein when meal zinc is 1. Similarly, traces
3 and 4 have level 2 of meal zinc and look roughly parallel. Joining these
observations with the fact that the gap between traces 1 and 2 is roughly the
same as the gap between traces 3 and 4, we would conclude that there is little
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Figure 8.3: Interaction plots of zinc retention data. Panel 1: meal
zinc horizontal, diet zinc as trace; panel 2: meal protein horizontal,
diet zinc as trace; panel 3: meal protein horizontal, meal zinc as
trace; panel 4: meal protein horizontal, combinations of meal zinc
and diet zinc as trace.

evidence for a three factor interaction.

8.5 Models with Parameters

Let us now look at the factorial analysis model for a two-way factorial treat-
ment structure. Factor A has a levels, factor B has b levels, and there areA has a levels, B

has b levels, n
replications

n experimental units assigned to each factor-level combination. The kth re-
sponse at the ith level of A and jth level of B is yijk. The model is

yijk = µ+ αi + βj + αβij + εijk ,

where i runs from 1 to a, j runs from 1 to b, k runs from 1 to n, and the εijk’sFactorial model
are independent and normally distributed with mean zero and variance σ2.
The αi, βj , and αβij parameters in this model are fixed, unknown constants.
There is a total of N = nab experimental units.
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responses overall mean row effects[
y111 y121
y211 y221
y311 y321

]
=

[
µ µ
µ µ
µ µ

]
+

[
α1 α1

α2 α2

α3 α3

]
+

column effects interaction effects[
β1 β2
β1 β2
β1 β2

]
+

[
αβ11 αβ12
αβ21 αβ22
αβ31 αβ32

]
+

random errors[
ε111 ε121
ε211 ε221
ε311 ε321

]

Display 8.1: Breakdown of a three by two table into factorial
effects.

Another way of viewing the model is that the table of responses is broken
down into a set of tables which, when summed element by element, give the
response. Display 8.1 is an example of this breakdown for a three by two
factorial with n = 1.

The term µ is called the overall mean; it is the expected value for the
responses averaged across all treatments. The term αi is called the main
effect of A at level i. It is the average effect (averaged over levels of B) for Main effects
level i of factor A. Since the average of all the row averages must be the
overall average, these row effects αi must sum to zero. The same is true for
βj , which is the main effect of factor B at level j. The term αβij is called the
interaction effect of A and B in the ij treatment. Do not confuse αβij with Interaction effects
the product of αi and βj ; they are different ideas. The interaction effect is a
measure of how far the treatment means differ from additivity. Because the
average effect in the ith row must be αi, the sum of the interaction effects in
the ith row must be zero. Similarly, the sum of the interaction effects in the
jth column must be zero.

The expected value of the response for treatment ij is

E yijk = µ+ αi + βj + αβij .

There are ab different treatment means, but we have 1 + a + b + ab pa- Expected value
rameters, so we have vastly overparameterized. Recall that in Chapter 3 we
had to choose a set of restrictions to make treatment effects well defined; we
must again choose some restrictions for factorial models. We will use the
following set of restrictions on the parameters: Zero-sum

restrictions on
parameters
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µ̂ = y•••

α̂i = yi•• − µ̂ = yi•• − y•••
β̂j = y•j• − µ̂ = y•j• − y•••

α̂βij = yij• − µ̂− α̂i − β̂j
= yij• − yi•• − y•j• + y•••

Display 8.2: Estimators for main effects and
interactions in a two-way factorial.

0 =

a∑
i=1

αi =

b∑
j=1

βj =

a∑
i=1

αβij =

b∑
j=1

αβij .

This set of restrictions is standard and matches the description of the param-
eters in the preceding paragraph. The αi values must sum to 0, so at most
a − 1 of them can vary freely; there are a − 1 degrees of freedom for fac-
tor A. Similarly, the βj values must sum to 0, so at most b − 1 of them can
vary freely, giving b− 1 degrees of freedom for factor B. For the interaction,Main-effect and

interaction
degrees of
freedom

we have ab effects, but they must add to 0 when summed over i or j. We can
show that this leads to (a− 1)(b− 1) degrees of freedom for the interaction.
Note that the parameters obey the same restrictions as the corresponding con-
trasts: main-effects contrasts and effects add to zero across the subscript, and
interaction contrasts and effects add to zero across rows or columns.

When we add the degrees of freedom for A, B, and AB, we get a − 1
+ b − 1 + (a − 1)(b − 1) = ab − 1 = g − 1. That is, the ab − 1 degreesMain effects and

interactions
partition between
treatments
variability

of freedom between the means of the ab factor level combinations have been
partitioned into three sets: A, B, and the AB interaction. Within each factor-
level combination there are n − 1 degrees of freedom about the treatment
mean. The error degrees of freedom are N − g = N − ab = (n − 1)ab,
exactly as we would get ignoring factorial structure.

The laser transmission data had a six by three factorial structure with
n = 5. Thus there are 5 degrees of freedom for factor A, 2 degree of freedom
for factor B, 10 degrees of freedom for the AB interaction, and 72 degrees of
freedom for error.

Display 8.2 gives the formulae for estimating the effects in a balanced
two-way factorial. Estimate µ by the mean of all the data y•••. Estimate
µ + αi by the mean of all responses that had treatment A at level i, yi••.
To get an estimate of αi itself, subtract our estimate of µ from our estimateEstimating

factorial effects of µ + αi. Do similarly for factor B, using y•j• as an estimate of µ + βj .
We can extend this basic idea to estimate the interaction terms αβij . The
expected value in treatment ij is µ+αi + βj +αβij , which we can estimate
by yij•, the observed treatment mean. To get an estimate of αβij , simply
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Table 8.8: Total free amino acids in cheddar cheese after 56 days of
ripening under four nonstarter bacteria treatments. Data from P.
Swearingen; data set CheeseAminoAcid56.

Control R50#10 R21#2 Both
1.697 2.032 2.211 2.091
1.601 2.017 1.673 2.255
1.830 2.409 1.973 2.987

subtract the estimates of the lower order parameters (parameters that contain
no additional subscripts beyond those found in this term) from the estimate
of the treatment mean.

We examine the estimated effects to determine which treatment levels
lead to large or small responses, and where factors interact (that is, which
combinations of levels have large interaction effects).

Example 8.5 Nonstarter bacteria in cheddar cheese
Cheese is made by bacterial fermentation of Pasteurized milk. Most

of the bacteria are purposefully added; these are the starter cultures. Some
“wild” bacteria are also present in cheese; these are nonstarter bacteria. This
experiment explores how intentionally-added nonstarter bacteria affect cheese
quality. We use two strains of nonstarter bacteria: R50#10 and R21#2. Our
four treatments will be control, addition of R50, addition of R21, and addi-
tion of a blend of R50 and R21. Twelve cheeses are made, three for each of
the four treatments, with the treatments being randomized to the cheeses. Af-
ter 56 days of ripening, each cheese is measured for total free amino acids (a
measure of bacterial activity related to cheese quality). Responses are given
in Table 8.8.

Let’s estimate the effects in these data. The four treatment means are

y11• = (1.697 + 1.601 + 1.830)/3 = 1.709 Control
y21• = (2.032 + 2.017 + 2.409)/3 = 2.153 R50
y12• = (2.211 + 1.673 + 1.973)/3 = 1.952 R21
y22• = (2.091 + 2.255 + 2.987)/3 = 2.444 Blend.

The grand mean is the total of all the data divided by 12,

y••• = 24.776/12 = 2.065 ;

the R50 (row or first factor) means are

y1•• = (1.709 + 1.952)/2 = 1.831

y2•• = (2.153 + 2.444)/2 = 2.299 ;

and the R21 (column or second factor) means are

y•1• = (1.709 + 2.153)/2 = 1.931

y•2• = (1.952 + 2.444)/2 = 2.198 .
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Using the formulae in Display 8.2 we have the estimates

µ̂ = y••• = 2.065

α̂1 = 1.831− 2.065 = −.234
α̂2 = 2.299− 2.065 = .234

β̂1 = 1.931− 2.065 = −.134

β̂2 = 2.198− 2.065 = .134

.

Finally, use the treatment means and the previously estimated effects to get
the estimated interaction effects:

α̂β11 = 1.709− (2.065 +−.234 +−.134) = .012

α̂β21 = 2.153− (2.065 + .234 +−.134) = −.012

α̂β12 = 1.952− (2.065 +−.234 + .134) = −.012

α̂β22 = 2.444− (2.065 + .234 + .134) = .012 .

Of course, these computations are trivial using R:

1 > fit <- lm(freeAminoAcid˜r50*r21,data=CheeseAminoAcid56)
2 > fit <- lm(freeAminoAcid˜r50+r21+r50:r21,data=CheeseAminoAcid56)
3 > summary(fit)

...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.06467 0.08694 23.748 1.05e-08 ***
r501 -0.23383 0.08694 -2.690 0.0275 *
r211 -0.13367 0.08694 -1.537 0.1627
r501:r211 0.01217 0.08694 0.140 0.8922
...

4 > model.effects(fit,"r50")
no yes

-0.2338333 0.2338333
5 > model.effects(fit,"r21")

no yes
-0.1336667 0.1336667

6 > model.effects(fit,"r50:r21")
no yes

no 0.01216667 -0.01216667
yes -0.01216667 0.01216667

Lines 1 and 2 fit the same factorial model. Line 1 uses the shortcut notation
factor1*factor2, which expands into main effects and interaction, as was done
explicitly in line 2. Note that interaction is indicated by two or more factors
joined by a colon.

The summary in line 3 only prints information for non-redundant coeffi-
cients, verifying what we computed by hand. Lines 4–6 use model.effects
to print all the coefficients, even the redundant ones. This is not terribly help-
ful when there are only two levels, but it can save time when there are more
levels.
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It is also possible to get predicted values and standard errors of prediction
using functions in the effects package.

7 > int.effect <- effects::effect(’r50:r21’,fit)
8 > int.effect

r50*r21 effect
r21

r50 no yes
no 1.709333 1.952333
yes 2.152667 2.444333

9 > plot(int.effect)
10 > int.effect$se

[1] 0.1738849 0.1738849 0.1738849 0.1738849
11 > r21.effect <- effects::effect(’r21’,fit)

NOTE: r21 is not a high-order term in the model
12 > r21.effect

r21 effect
r21

no yes
1.931000 2.198333

Line 7 extracts the interaction “effect.” This is actually a linear combination
of what we call model effects or coefficients yielding the fitted value for
the margin of factor level combinations indicated by the factor; some call
this the “least squares mean”. For this two-factor interaction, the effect is
µ̂+ α̂i + α̂j + α̂βij . Line 8 prints the “effect”, which in this case is the table
of treatment means. Line 9 produces a nice plot, Figure 8.4, related to an
interaction plot, that can help you visualize the fitted values. The effect
function also computes standard errors for the fitted values, which we extract
in line 10. Looking at the effect for a term that is included in a higher order
interaction can be very misleading. Line 11 shows that you get a warning
when you try to do that. This effect is shown in line 12.

8.6 The Analysis of Variance for Balanced Factorials

We have described the Analysis of Variance as an algorithm for partitioning
variability in data, a method for testing null hypotheses, and a method for
comparing models for data. The same roles hold in factorial analysis, but we
now have more null hypotheses to test and/or models to compare.

We partition the variability in the data by using ANOVA. There is a
source of variability for every term in our model; for a two-factor analy- ANOVA source

for every term in
model

sis, these are factor A, factor B, the AB interaction, and error. In a one-factor
ANOVA, we obtained the sum of squares for treatments by first squaring an
estimated effect (for example, α̂i2), then multiplying by the number of units
receiving that effect (ni), and finally adding over the index of the effect (for Sum of squares
example, add over i for αi). The total sum of squares was found by sum-
ming the squared deviations of the data from the overall mean, and the error
sum of squares was found by summing the squared deviations of the data
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Figure 8.4: Effect plot for the two-factor interaction of the 56-day
cheese amino acid data.

Term Sum of Squares Degrees of Freedom

A
a∑
i=1

bn(α̂i)
2 a− 1

B
b∑

j=1

an(β̂j)
2 b− 1

AB
a,b∑

i=1,j=1

n(α̂βij)
2 (a− 1)(b− 1)

Error
a,b,n∑

i=1,j=1,k=1

(yijk − yij•)2 ab(n− 1)

Total
a,b,n∑

i=1,j=1,k=1

(yijk − y•••)2 abn− 1

Display 8.3: Sums of squares in a balanced two-way factorial.

from the treatment means. We follow exactly the same program for balanced
factorials, obtaining the formulae in Display 8.3.
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The sums of squares must add up in various ways. For example

SST = SSA + SSB + SSAB + SSE .

Also recall that SSA, SSB, and SSAB must add up to the sum of squares be- SS partitions
tween treatments, when considering the experiment to have g = ab treat-
ments, so that

a,b∑
i=1,j=1

n(yij• − y•••)2 = SSA + SSB + SSAB .

These identities can provide useful checks on ANOVA computations.
We display the results of an ANOVA decomposition in an Analysis of

Variance table. As before, the ANOVA table has columns for source, degrees
of freedom, sum of squares, mean square, and F . For the two-way factorial, Two-factor

ANOVA tablethe sources of variation are factor A, factor B, the AB interaction, and error,
so the table looks like this:

Source DF SS MS F

A a-1 SSA SSA/(a− 1) MSA/MSE

B b-1 SSB SSB/(b− 1) MSB/MSE

AB (a-1)(b-1) SSAB SSAB/[(a− 1)(b− 1)] MSAB/MSE

Error (n-1)ab SSE SSE/[(n− 1)ab]

Tests or model comparisons require assumptions on the errors. We have
assumed that the errors εijk are independent and normally distributed with Normality needed

for testingconstant variance. When the assumptions are true, the sums of squares as
random variables are independent of each other and the tests discussed below
are valid.

To test the null hypothesis H0 : α1 = α2 = · · · = αa = 0 against the
alternative that some αi’s are not zero, we use the F -statistic MSA/MSE with
a − 1 and ab(n − 1) degrees of freedom. This is a test of the main effect of F -tests for

factorial null
hypotheses

A. The p-value is calculated as before. To test H0 : β1 = β2 = · · · = βb = 0
against the alternative hypothesis that at least one β is nonzero, use the F -
statistic MSB/MSE, with b− 1 and ab(n− 1) degrees of freedom. Similarly,
the test statistic for the null hypothesis that the αβ interaction terms are all
zero is MSAB/MSE, with (a− 1)(b− 1) and ab(n− 1) degrees of freedom.
Alternatively, these tests may be viewed as comparisons between models that
include and exclude the terms under consideration.

It usually does not make sense to test the null hypothesis that the coeffi-
cients of a main effect are zero if we include in the model an interaction
that includes the main effect.

Thus we would usually only test the main effect of A if the AB interaction
is not needed in, or excluded from, the model. We will return to this is more
detail when we discuss hierarchy and unbalanced designs.
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Example 8.6 Nonstarter bacteria, continued
We compute sums of squares using the effects of Example 8.5 and the

formulae of Display 8.3.

SSR50 = 6× ((−.234)2 + .2342) = .656

SSR21 = 6× ((−.134)2 + .1342) = .214

SSR50.R21 = 3× (.0122 + (−.012)2 + (−.012)2 + .0122) = .002

Computing SSE is more work:

SSE = (1.697− 1.709)2 + (2.032− 2.153)2 + (2.211− 1.952)2

+ (2.091− 2.444)2 + · · ·+ (2.987− 2.444)2 = .726 .

We have a = 2 and b = 2, so the main effects and the two-factor interaction
have 1 degree of freedom each; there are 12−4 = 8 error degrees of freedom.
Combining, we get the ANOVA table:

Source DF SS MS F p-value
R50 1 .656 .656 7.23 .028
R21 1 .214 .214 2.36 .16
R50.R21 1 .002 .002 .02 .89
Error 8 .726 .091

The large p-values indicate that we have no evidence that R21 interacts with
R50 or causes a change in total free amino acids. The p-value of .028 indi-
cates modest evidence that R50 may affect total free amino acids.

It is common to test the null hypotheses (or compare models) in just the
way we have described here. But we just did three tests! Don’t we needBonferroni

adjustment? to consider multiple comparisons? How about a Bonferroni adjustment or
similar? I think that we should consider a Bonferroni correct, but common
practice ignores the issue.

Getting the ANOVA table for a factorial model is straightforward in R.

13 > anova(fit)
Analysis of Variance Table

Response: freeAminoAcid
Df Sum Sq Mean Sq F value Pr(>F)

r50 1 0.65614 0.65614 7.2335 0.02752 *
r21 1 0.21440 0.21440 2.3636 0.16275
r50:r21 1 0.00178 0.00178 0.0196 0.89217
Residuals 8 0.72566 0.09071

8.7 General Factorial Models

The model and analysis of a multi-way factorial are similar to those of a
two-way factorial. Consider a four-way factorial with factors A, B, C and D,
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which match with the letters α, β, γ, and δ. The model is

yijklm = µ+ αi + βj + γk + δl
+ αβij + αγik + αδil + βγjk + βδjl + γδkl
+ αβγijk + αβδijl + αγδikl + βγδjkl
+ αβγδijkl
+ εijklm .

The first line contains the overall mean and main effects for the four factors;
the second line has all six two-factor interactions; the third line has three-
factor interactions; the fourth line has the four-factor interaction; and the last
line has the error. Just as a two-factor interaction describes how a main effect
changes depending on the level of a second factor, a three-factor interaction Multi-factor

interactionslike αβγijk describes how a two-factor interaction changes depending on
the level of a third factor. Similarly, four-factor interactions describe how
three-factor interactions depend on a fourth factor, and so on for higher order
interactions.

We still have the assumption that the ε’s are independent normals with
mean 0 and variance σ2. Analogous with the two-factor case, we restrict our Zero-sum

restrictions on
parameters

effects so that they will add to zero when summed over any subscript. For
example,

0 =
∑
l

δl =
∑
k

βγjk =
∑
j

αβδijl =
∑
i

αβγδijkl .

These zero-sum restrictions make the model parameters unique. The abcd
− 1 degrees of freedom between the abcd treatments are assorted among the
terms as follows. Each term contains some number of factors—one, two,
three, or four—and each factor has some number of levels—a, b, c, or d. To Degrees of

freedom for
general factorials

get the degrees of freedom for a term, subtract one from the number of levels
for each factor in the term and take the product. Thus, for the ABD term, we
have (a− 1)(b− 1)(d− 1) degrees of freedom.

Effects in the model are estimated analogously with how we estimated
effects for a two-way factorial, building up from overall mean, to main ef-
fects, to two-factor interactions, to three-factor interactions, and so on. The
estimate of the overall mean is µ̂ =

∑
ijklm yijklm/N = y•••••. Main-effect Main effects and

two-factor
estimates as

before

and two-factor interaction estimates are just like for two-factor factorials, ig-
noring all factors but the two of interest. For example, to estimate a main
effect, say the kth level of factor C, we take the mean of all responses that
received the kth level of factor C, and subtract out the lower order estimated
effects, here just µ̂:

γ̂k = y••k•• − µ̂ .

For a three-way interaction, say the ijkth level of factors A, B, and C, we Multi-way effects
for general

factorials
take the mean response at the ijk combination of factors A, B, and C, and
then subtract out the lower order terms—the overall mean; main effects of A,
B, and C; and two-factor interactions in A, B, and C:

α̂βγijk = yijk•• − (µ̂+ α̂i + β̂j + γ̂k + α̂βij + α̂γik + β̂γjk) .
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Simply continue this general rule for higher order interactions.
The rules for computing sums of squares follow the usual pattern: square

each effect, multiply by the number of units that receive that effect, and addSums of squares
for general
factorials

over the levels. Thus,

SSABD =
∑
ijl

nc(α̂βδijl)
2 ,

and so on.
As with the two-factor factorial, the results of the Analysis of Variance

are summarized in a table with the usual columns and a row for each term in
the model. We test the null hypothesis that the effects in a given term are allANOVA and

F -tests for
multi-way factorial

zeroes by taking the ratio of the mean square for that term to the mean square
for error and comparing this observed F to the F -distribution with the corre-
sponding numerator and denominator degrees of freedom. Alternatively, we
can consider these F -tests to be tests of whether a given term is needed in a
model for the data.

It is clear by now that the computations for a multi-way factorial are
tedious at best and should be performed on a computer using statistical soft-
ware. However, you might be stranded on a desert island (or in an exam
room) and need to do a factorial analysis by hand. Here is a technique for
multi-way factorials that reorganizes the computations required for comput-
ing factorial effects; some find this easier for hand work. The general ap-Alternate

computational
algorithm

proach is to compute an effect, subtract it from the data, and then compute
the next effect on the differences from the preceding step. This way we only
need to subtract out lower order terms once, and it is easier to keep track of
things.

First compute the overall mean µ̂ and subtract it from all the data values.
Now, compute the mean of the differences at each level of factor A. Because
we have already subtracted out the overall mean, these means are the esti-Estimate marginal

means and
subtract

mated effects for factor A. Now subtract these factor A effects from their
corresponding entries in the differences. Proceed similarly with the other
main effects, estimating and then sweeping the effects out of the differences.
To get a two-factor interaction, get the two-way table of difference means.
Because we have already subtracted out the grand mean and main effects,
these means are the two-factor interaction effects. Continue by computing
two-way means and sweeping the effects out of the differences. Proceed up
through higher order interactions. As long as we proceed in a hierarchical
fashion, we will obtain the desired estimated effects.

Example 8.7 Faulting in Concrete Pavement
Faulting is a difference in height on two sides of a concrete pavement

joint. Many factors can influence the amount of faulting as the pavement
ages. This study examines four factors: the thickness of the base layer (5, 10,
or 15 inches), the resilience of the subgrade layer (5,000, 10,000, or 20,000
psi), the ratio of water to cement in the mix (.33, .42, .55), and the pres-
ence of dowel pins between successive pavement slabs (yes or no). The re-
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Table 8.9: Concrete faulting in inches after 20 year design life. Factors
are subgrade resilience modulus (5,000, 10,000, or 20,000 psi); base
thickness (5, 10, or 15 inches); water/cement ratio (.33, .42, .55); and
dowels in joints (yes or no). Simulated data from N. Funk; data set
ConcreteFaulting.

Subgrade modulus/Base
5,000 10,000 20,000

Ratio Dowels 5 10 15 5 10 15 5 10 15
.33 No .222 .189 .183 .230 .204 .196 .243 .220 .201

.220 .189 .183 .225 .202 .197 .239 .218 .210
.33 Yes .178 .142 .137 .184 .156 .149 .196 .172 .163

.173 .140 .136 .184 .153 .149 .195 .171 .161
.42 No .230 .198 .192 .238 .213 .205 .252 .229 .219

.230 .197 .195 .236 .213 .205 .249 .226 .219
.42 Yes .189 .153 .148 .196 .167 .161 .208 .184 .175

.182 .151 .146 .193 .164 .159 .204 .182 .175
.55 No .239 .208 .202 .249 .224 .217 .263 .242 .232

.234 .207 .204 .248 .221 .216 .261 .241 .231
.55 Yes .199 .163 .158 .206 .178 .171 .219 .194 .185

.195 .162 .160 .201 .176 .170 .218 .192 .185

sponse is faulting (in inches) after a 20 year life. There are two runs for each
factor-level combination, resulting in 108 observations; the data are shown
in Table 8.9.

We begin by fitting the four-factor model in line 1.
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Figure 8.5: Side-by-side plot for concrete faulting data.

1 > fit <- lm(faulting˜dowels*base*subgrade*wcratio,data=ConcreteFaulting)
2 > plot(fit)
3 > anova(fit)

Analysis of Variance Table

Response: faulting
Df Sum Sq Mean Sq F value Pr(>F)

dowels 1 0.055897 0.055897 18128.6757 < 2.2e-16 ***
base 2 0.023412 0.011706 3796.5676 < 2.2e-16 ***
subgrade 2 0.012559 0.006280 2036.6577 < 2.2e-16 ***
wcratio 2 0.007857 0.003928 1274.0901 < 2.2e-16 ***
dowels:base 2 0.000042 0.000021 6.8739 0.00219 **
dowels:subgrade 2 0.000003 0.000002 0.5676 0.57025
base:subgrade 4 0.000293 0.000073 23.7793 2.239e-11 ***
dowels:wcratio 2 0.000020 0.000010 3.2793 0.04528 *
base:wcratio 4 0.000004 0.000001 0.3468 0.84507
subgrade:wcratio 4 0.000016 0.000004 1.3288 0.27108
dowels:base:subgrade 4 0.000001 0.000000 0.1036 0.98077
dowels:base:wcratio 4 0.000003 0.000001 0.2207 0.92574
dowels:subgrade:wcratio 4 0.000018 0.000004 1.4279 0.23726
base:subgrade:wcratio 8 0.000006 0.000001 0.2545 0.97753
dowels:base:subgrade:wcratio 8 0.000019 0.000002 0.7815 0.62072
Residuals 54 0.000167 0.000003
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

4 > sidebyside(fit,left.margin=13)
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We then check the residuals visually in line 2. There are no problems ap-
parent, so we do not show the plots. However, the normal plot of residuals
does give a hint that these are simulated data; can you see it? Having decided
assumptions are reasonably well met, we do an analysis of variance in line
3. We see that most of the interactions are not significant. Only the base by
subgrade interaction is highly significant, and the dowels by base and dowels
by ratio interactions are marginally significant We can visualize the relative
size of these effects in a side-by-side plot, created in line 4 and displayed in
Figure 8.5. Only the main effects and one interaction look big compared to
error variation (although keep in mind that something can look small rela-
tive to error variation and still be statistically significant, you just need a big
enough sample size).

Figure 8.6 shows interaction plots created in lines 5–7 for the three inter-
actions that were (potentially) significant.

5 > with(ConcreteFaulting,interactplot(wcratio,dowels,faulting,confidence=.95,
sigma2=.000003,df=54))

6 > with(ConcreteFaulting,interactplot(base,subgrade,faulting,confidence=.95,
sigma2=.000003,df=54))

7 > with(ConcreteFaulting,interactplot(base,dowels,faulting,confidence=.95,
sigma2=.000003,df=54))

8 > effects::effect("base:subgrade",fit)
NOTE: base:subgrade is not a high-order term in the model
base*subgrade effect

subgrade
base 5000 10000 20000

5 0.2075833 0.2158333 0.2289167
10 0.1749167 0.1892500 0.2059167
15 0.1703333 0.1829167 0.1970833

Note that these plots include confidence intervals, with error mean square
and degrees of freedom copied from the ANOVA table. These intervals are
smaller than the numbers labeling the traces. Visually, the interaction appears
mostly as the differences across subgrade being smaller for base 5 than for
the other bases. This is verified in the effects from line 8.

It looks like the lowest faulting will be achieved with dowels, 15 inch
base, 5,000 psi resilience, and .33 ratio, but are there any other combinations
that work as well?

9 > myCF <- within(ConcreteFaulting,
{combined=conf.design::join(dowels,base,subgrade,wcratio)})

10 > fit2 <- lm(faulting˜combined,data=myCF)
11 > compare.to.best(fit2,combined,lowisbest=TRUE)

difference allowance
...

* yes:15:10000:0.33 - yes:15:5000 :0.33 0.0125 0.005251383

* yes:15:5000 :0.42 - yes:15:5000 :0.33 0.0105 0.005251383
yes:10:5000 :0.33 - yes:15:5000 :0.33 0.0045 0.005251383

best is yes:15:5000 :0.33 0.0000 NA

Line 9 creates a new factor that joins all 54 factor-level combinations into a
single factor, and line 10 refits the model using that factor. Line 11 finds all
the factor-level combinations that are not significantly different from the best
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Figure 8.6: Interaction plots for concrete faulting data: ratio by
dowels, base by subgrade, and base by dowels.

(lowest). In this case, only one other combination, replacing the 15 inch base
with a 10 inch base, cannot be distinguished from the best.

Example 8.8 Faulting in Concrete Pavement, a Bayesian glimpse
Bayesians use interaction plots and residual plots in similar ways to fre-

quentists, but fit and choose models differently. BayesFactor::anovaBF
can sift through many factorial submodels quickly.
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12 > modelBFs <- BayesFactor::anovaBF(faulting˜base*subgrade*dowels*wcratio,
data=ConcreteFaulting,whichModels="withmain")

13 > sort(modelBFs)
...
[164] dowels + base + dowels:base + subgrade + base:subgrade + wcratio +

dowels:wcratio + subgrade:wcratio: 2.716193e+113 2.81%
[165] dowels + base + dowels:base + subgrade + base:subgrade + wcratio:

3.477098e+113 4.46%
[166] dowels + base + dowels:base + subgrade + base:subgrade + wcratio +

dowels:wcratio: 6.563809e+113 2.17%

Against denominator:
Intercept only

---
Bayes factor type: BFlinearModel, JZS

Line 12 shows the call to anovaBF. Using whichModels="withmain"
says to start with the intercept-only model, and gradually add term by term,
making sure that lower order terms are always included. It returns the Bayes
factor compared to the intercept-only model for each of these models. Even
with only four factors, there are 166 potential models to consider. Line 13
sorts these Bayes factors, and we have included output for the three highest.
Here again, the model with the highest Bayes factor is the model with main
effects and the three two-factor interactions we discussed before.

Example 8.9 Faulting in Concrete Pavement, a predictive approach
We have discussed the use of AIC for model selection, and we can em-

ploy AIC to select a good model for the concrete faulting data. We want to
compare AIC for hierarchical models (models where the presence of an in-
teraction implies the presence of all terms contained in the interaction, see
Section 8.11) and choose the one with lowest AIC. The function step in R
starts with the full model, and then step by step removes the term that most
decreases AIC, with the provisos that it can only remove terms that do not
break hierarchy and that it stops removing terms if removing a term would
increase the AIC.
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14 > fit <- lm(faulting˜dowels*base*subgrade*wcratio,ConcreteFaulting)
15 > step(fit)

Start: AIC=-1337.33
faulting ˜ dowels * base * subgrade * wcratio

Df Sum of Sq RSS AIC
- dowels:base:subgrade:wcratio 8 1.9278e-05 0.00018578 -1341.5
<none> 0.00016650 -1337.3

Step: AIC=-1341.49
faulting ˜ dowels + base + subgrade + wcratio + dowels:base +

dowels:subgrade + base:subgrade + dowels:wcratio + base:wcratio +
subgrade:wcratio + dowels:base:subgrade + dowels:base:wcratio +
dowels:subgrade:wcratio + base:subgrade:wcratio

Df Sum of Sq RSS AIC
- base:subgrade:wcratio 8 6.2778e-06 0.00019206 -1353.9
- dowels:base:subgrade 4 1.2778e-06 0.00018706 -1348.8
- dowels:base:wcratio 4 2.7222e-06 0.00018850 -1347.9
<none> 0.00018578 -1341.5
- dowels:subgrade:wcratio 4 1.7611e-05 0.00020339 -1339.7

The output from step in line 15 is voluminous, and we only show part.
The first step is the full model with AIC of -1337.33, and the only term
which can be removed and maintain hierarchy is the four-factor interaction,
which yields an AIC of -1341.5. This term is removed, and we consider
all potential terms to remove next, which are the four three-factor interac-
tions. Removing one of them increases the AIC, and removing any one of
the other three reduces the AIC, with base:subgrade:wcratio yield-
ing the best AIC of -1353.9. Not shown here, but we proceed step by step re-
moving in turn dowels:base:subgrade, dowels:base:wcratio,
and base:wcratio, where we arrive at the bottom of the output below
line 15.

Step: AIC=-1373.35
faulting ˜ dowels + base + subgrade + wcratio + dowels:base +

dowels:subgrade + base:subgrade + dowels:wcratio + subgrade:wcratio +
dowels:subgrade:wcratio

Df Sum of Sq RSS AIC
<none> 0.00020033 -1373.3
- dowels:subgrade:wcratio 4 1.7611e-05 0.00021794 -1372.2
- dowels:base 2 4.2389e-05 0.00024272 -1356.6
- base:subgrade 4 2.9328e-04 0.00049361 -1284.0

At this point, removing any of the potential terms increases the AIC, and we
stop with the selected model. AIC is generally more liberal than testing, and
we see this in the additional terms selected for the model.

BIC (Bayesian Information Criterion) looks like AIC but uses log(N) as
the multiplier in the penalty for number of parameters instead of 2. Asymp-BIC
totically as the number of data points increases, BIC will choose the same
model as the Bayes factor, although they need not agree for any finite N . In
these data we have N = 108, and we can employ BIC as shown in line 16.
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16 > step(fit,k=log(108))
Start: AIC=-1192.49
faulting ˜ dowels * base * subgrade * wcratio

Df Sum of Sq RSS AIC
- dowels:base:subgrade:wcratio 8 1.9278e-05 0.00018578 -1218.1
<none> 0.00016650 -1192.5

...
Step: AIC=-1332.45
faulting ˜ dowels + base + subgrade + wcratio + dowels:base +

base:subgrade

Df Sum of Sq RSS AIC
<none> 0.0002581 -1332.5
- dowels:base 2 0.0000424 0.0003004 -1325.4
- base:subgrade 4 0.0002933 0.0005513 -1269.2
- wcratio 2 0.0078569 0.0081149 -969.4

BIC chooses the model with all main effects plus dowels:base and
base:subgrade. This is the model with the second largest Bayes fac-
tor in line 13, and its Bayes factor relative to the best model is .53, making
them reasonably equivalent in that regard.

8.8 Pooling Terms into Error

Pooling is the practice of adding sums of squares and degrees of freedom for
nonsignificant model terms to those of error to form a new (pooled together)
error term for further testing. In statistical software, this is usually done by Pooling leads to

biased estimates
of error

computing the ANOVA for a model that does not include the terms to be
pooled into error. I do not recommend pooling as standard practice, because
pooling may lead to biased estimates of the error. This bias could be negative
or positive depending on how you select terms to be pooled into error.

Pooling may be advantageous if there are very few error degrees of free-
dom. In that case, the loss of power from possible overestimation of the error
may be offset by the increase in error degrees of freedom. Only consider
pooling a term into error if Rules for pooling

1. There are 10 or fewer error degrees of freedom, and

2. The term under consideration for pooling has an F -ratio less than 2.

Otherwise, do not pool.
For unbalanced factorials or factorials using polynomial terms, refitting

with a model that only includes significant/required terms may be important.
This is because in those situations coefficients for terms in a model can de- Coefficients can

depend on terms
in model

pend on what other terms are in the model. Thus while one should test using
the full model error variance, you may need to refit with a reduced model to
get estimates of the coefficients you need to retain. See Chapter 9.
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8.9 Assumptions and Transformations

The validity of our inference procedures still depends on the accuracy of our
assumptions; factorial structure does not change that. We still need to check
for normality, constant variance, and independence and take corrective actionCheck

assumptions as required, just as we did in single-factor models. Corrective action could be
a transformation of the response, or it could be use of a GLM or some other
model instead of the standard Gaussian model.

One wrinkle that occurs for factorial data is that violations of assumptions
may sometimes follow the factorial structure. For example, we may find that
error variance is constant within a given level of factor B, but differs among
levels of factor B.

A second wrinkle with factorials is that the appropriate model for the
mean structure can depend on the scale in which we are analyzing the data.
Specifically, interaction terms may appear to be needed on one scale but not
on another. This is easily seen in the following example. Suppose that theTransformation

affects mean
structure

means for the factor level combinations follow the model

µij = M expαi expβj .

This model is multiplicative in the sense that changing levels of factor A or
B rescales the response by multiplying rather than adding to the response.
If we fit the usual factorial model to such data, we will need the interaction
term, because an additive model won’t fit multiplicative data well. For log-
transformed data, however, the mean structure is

log (µij) = log (M) + αi + βj .

Multiplicative data look additive after log transformation; no interaction term
is needed. Serendipitously, log transformations often fix nonconstant vari-
ance at the same time.

Some people find this confusing at first, and it begs the question of what
do we mean by interaction. How can the data have interaction on one scale
but not on another? Our use of the term “interaction” is not science of a
particular situation; instead, it reflects a particular formulation of the model
for the means. Data are interactive when analyzed on a particular scale if
the main-effects-only model is inadequate and one or more interaction termsInteraction

depends on scale are required. Whether or not interaction terms are needed can depend on the
scale of the response.

Example 8.10 Transmission of laser light through polyvinyl chlo-
ride.

The first section of this chapter introduced the laser transmission exper-
iment, where we measure the amount of laser light passing through a piece
of clear polyvinyl chloride. The PVC can have one of six thicknesses and
one of three surface treatments, for a total of eighteen treatments. Table 8.10
shows the data.
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Table 8.10: Percent of laser light transmitted through polyvinyl
chloride. PVC has three different thicknesses (mm) and two different
surface treatments (none, front side sanded, both sides sanded).
Data from J. Van de Ven; data set LaserTransmission.

Thickness Sanding Transmission (%)
1.57 none 92.38 92.14 92.24 92.48 92.09

front 88.77 87.08 86.84 87.03 87.66
both 86.31 84.23 84.47 83.66 79.94

3.18 none 91.03 90.55 90.41 89.97 90.94
front 85.87 86.45 88.14 87.51 82.79
both 84.52 84.67 80.09 78.45 84.96

4.78 none 89.82 89.68 90.55 89.73 90.21
front 84.47 86.26 85.82 84.52 84.09
both 83.03 78.11 83.46 78.11 81.63

6.35 none 88.57 89.20 88.24 88.57 89.15
front 85.15 83.94 82.93 82.69 84.28
both 82.02 79.94 82.31 81.97 79.51

9.53 none 87.08 87.42 86.84 87.42 87.51
front 83.80 80.86 80.62 80.67 80.18
both 78.35 78.06 81.87 80.28 78.98

12.70 none 85.87 86.16 86.89 87.27 87.13
front 78.30 83.51 82.84 80.81 79.36
none 77.77 75.65 78.30 78.93 75.55

We begin this extended example by fitting the full factorial model as
shown on line 1:

1 > fit <- lm(transmission˜thickness*sanding,data=LaserTransmission)
2 > plot(fit,which=1:2)
3 > with(LaserTransmission,interactplot(thickness,sanding,transmission,

confidence=.95,pooled=FALSE))
4 > with(LaserTransmission,interactplot(thickness,sanding,-1/(100-transmission)ˆ1.5,

confidence=.95,pooled=FALSE))
5 > fitw <- gls(transmission˜thickness*sanding,data=LaserTransmission,

weights=varIdent(form=˜1|sanding))
6 > plot(fitw)
7 > qqnorm(residuals(fitw,type="pearson"))

On line 2 we create residual plots shown in the first two panels of Figure 8.7.
These plots indicate variance that decreases with the mean. Decreasing vari-
ance is unusual, but it arises here because the percentage is capped at 100.
The mean can only approach 100 when all of the data cluster near 100; thus
the variability decreases. Line 3 creates an interaction plot with unpooled
confidence intervals (panel four of Figure 8.7. This also shows the decreas-
ing variance.

The ratio of maximum to minimum for transmission is about 1.22, so no
reasonable power transformation will fix this non-constant variance. Instead,
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Figure 8.7: Residual and interaction plots for the laser transmission
data. Panels 1–3: residual plots for the (unweighted) full factorial
model. Panel 4: interaction plot with individual treatment confidence
intervals. Panels 5–6: residual plots for the full factorial linear model
with separate variances fit by level of sanding.

we could look at reflectance as 100 minus the transmission. The ratio of max-
imum to minimum for reflectance is about 3.25, so a power transformation
has a chance to fix things.

A Box-Cox analysis of the full factorial model for reflectance suggests a
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power of –1.5. Line 4 produces the interaction plot on this scale, as shown
in panel 4 of Figure 8.7. Comparing panels 3 and 4, we note two things.
First, the variance is much more stable with the new response. Second, what
looked to be a potentially additive model on the original scale in panel 3 is
now most definitely has interaction on the new scale in panel 4. We fixed
the non-constant variance, but the new response and the interaction make the
model more difficult to interpret.

A second interpretation of panel 3 is that error variability differs by lev-
els of the sanding factor. Instead of transforming the response, explore a
model that fits separate error variances by levels of sanding, as done in line
5. Lines 6–7 produce diagnostic plots for the weighted (unequal variance)
model, shown in panels 5–6 of Figure 8.7. These plots look much better than
what we saw previously.

One can generate an “analysis of variance” for models like fitw with
fitted weights as shown in line 8 below:

8 > anova(fitw)
Denom. DF: 72

numDF F-value p-value
(Intercept) 1 1598579.0 <.0001
thickness 5 156.4 <.0001
sanding 2 362.2 <.0001
thickness:sanding 10 0.6 0.7664

Analysis of variance is quoted here for a couple of reasons. First, it is not
really partitioning variability in the data as we have discussed. However, the
tests it generates will be equivalent to F -tests in an ANOVA in the situation
where all of the weights in the gls call are equal. Second, the tests are
computed assuming that the (relative) weights of data in the fit were fixed
and known ahead of time. This is not true, so this procedure can underesti-
mate the variability of the parameter estimates and lead to p-values that are
smaller than they should be. For these data, however, the results seem fairly
clear: on this scale, the interaction is not significant, and both main effects
are significant.

The summary of the weighted fit is long (even as abbreviated here), but
contains much useful information.
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9 > summary(fitw)
Generalized least squares fit by REML

Model: transmission ˜ thickness * sanding
Data: LaserTransmission

AIC BIC logLik
312.9271 360.7371 -135.4636

Variance function:
Structure: Different standard deviations per stratum
Formula: ˜1 | sanding
Parameter estimates:

none front both
1.000000 3.768814 5.361904

Coefficients:
Value Std.Error t-value p-value

(Intercept) 84.73213 0.1629106 520.1142 0.0000
thickness1 3.08853 0.3642792 8.4785 0.0000
thickness2 1.69027 0.3642792 4.6400 0.0000
thickness3 0.56840 0.3642792 1.5603 0.1231
thickness4 -0.16773 0.3642792 -0.4605 0.6466
thickness5 -2.07060 0.3642792 -5.6841 0.0000
sanding1 -3.89477 0.2803900 -13.8905 0.0000
sanding2 -0.62417 0.2286250 -2.7301 0.0080
thickness1:sanding1 -0.20370 0.6269711 -0.3249 0.7462
thickness2:sanding1 0.00857 0.6269711 0.0137 0.9891
thickness3:sanding1 -0.53777 0.6269711 -0.8577 0.3939
thickness4:sanding1 0.47777 0.6269711 0.7620 0.4485
thickness5:sanding1 0.74163 0.6269711 1.1829 0.2407
thickness1:sanding2 0.27710 0.5112209 0.5420 0.5895
thickness2:sanding2 0.35417 0.5112209 0.6928 0.4907
thickness3:sanding2 0.35723 0.5112209 0.6988 0.4869
thickness4:sanding2 -0.14083 0.5112209 -0.2755 0.7837
thickness5:sanding2 -0.81297 0.5112209 -1.5902 0.1162
...
Residual standard error: 0.4037683
Degrees of freedom: 90 total; 72 residual

The output reminds us the model was fit using REML. The estimated error
standard deviations by levels of sanding have ratios 1:3.8:5.4, with estimated
error standard deviation .40 in the no surface treatment group. We can see
that the standard deviations of the estimated effects differ across levels of
sanding; this is to be expected with the non-constant error variability. Finally,
we had already seen that the 10 degree of freedom interaction effect was
not significant, but here we see that none of the interaction effects in this
parameterization is individually significant. It is sometimes the case that
some individual effects in a term can look significant even when the term as a
whole is not significant, particularly in terms with many degrees of freedom.

Thickness is quantitative, so we can consider polynomial (or other func-
tional) models of the factorial mean. These can be very useful, but inter-
pretation of interaction can be challenging. For interactions of a categorical
factor and a polynomial term, the interaction coefficients are adjustments to
the overall polynomial term. For the interaction of two quantitative factors,
we literally get the product of (powers of) the quantitative factors, leading to
cross-product terms in a polynomial equation.
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10 > with(LaserTransmission,interactplot(thickness,sanding,transmission,
confidence=.95,pooled=FALSE,at=sort(unique(thickness.z))))

11 > fitq5i <- gls(transmission˜poly(thickness.z,5)*sanding,data=LaserTransmission,
weights=varIdent(form=˜1|sanding),method=’ML’)

12 > summary(fitq5i)
Generalized least squares fit by maximum likelihood

Model: transmission ˜ poly(thickness.z, 5) * sanding
Data: LaserTransmission

AIC BIC logLik
294.4463 346.9423 -126.2231

Variance function:
Structure: Different standard deviations per stratum
Formula: ˜1 | sanding
Parameter estimates:

none front both
1.000000 3.768813 5.361904

Coefficients:
Value Std.Error t-value p-value

(Intercept) 84.73213 0.1629106 520.1142 0.0000
poly(thickness.z, 5)1 -19.79399 1.5455059 -12.8074 0.0000
poly(thickness.z, 5)2 2.80514 1.5455059 1.8150 0.0737
poly(thickness.z, 5)3 -0.00772 1.5455059 -0.0050 0.9960
poly(thickness.z, 5)4 0.81376 1.5455059 0.5265 0.6001
poly(thickness.z, 5)5 0.40277 1.5455059 0.2606 0.7951
sanding1 -3.89477 0.2803900 -13.8905 0.0000
sanding2 -0.62417 0.2286249 -2.7301 0.0080
poly(thickness.z, 5)1:sanding1 0.44319 2.6600134 0.1666 0.8681
poly(thickness.z, 5)2:sanding1 -2.56537 2.6600134 -0.9644 0.3381
poly(thickness.z, 5)3:sanding1 -2.88885 2.6600134 -1.0860 0.2811
poly(thickness.z, 5)4:sanding1 -0.37078 2.6600134 -0.1394 0.8895
poly(thickness.z, 5)5:sanding1 2.21932 2.6600134 0.8343 0.4069
poly(thickness.z, 5)1:sanding2 -2.43086 2.1689266 -1.1208 0.2661
poly(thickness.z, 5)2:sanding2 1.40709 2.1689266 0.6487 0.5186
poly(thickness.z, 5)3:sanding2 2.64156 2.1689266 1.2179 0.2272
poly(thickness.z, 5)4:sanding2 0.28761 2.1689266 0.1326 0.8949
poly(thickness.z, 5)5:sanding2 -0.47669 2.1689266 -0.2198 0.8267
...
Residual standard error: 0.3611414
Degrees of freedom: 90 total; 72 residual

Line 10 above does an interaction plot with a twist. In line 10, we request
that the horizontal factor be positioned at its actual values rather than simply
equally spaced in order. Panel 1 of Figure 8.8 shows this plot. Positioned in
this way, the traces show a little bit of positive curvature (convexity). Thus
we should not be surprised if we find that we need quadratic or higher order
terms to describe the response.

There are six levels of thickness, so we can fit polynomials up to order
5 in thickness (thickness.z is a non-factor quantitative version of thick-
ness). We do this in line 11. Note that we asked to use maximum likelihood
rather than REML. We need ML to compare different mean structures. Line
12 gives us summary information. Again, there are several things to note.
First, the variance ratios are the same in line 12 as in line 9; the parameter-
ization of the mean did not change our estimate of error variance. Second,
the estimate of error standard deviation is lower in line 12 (.3611) than in
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line 9 (.4038). We expect REML standard errors to be larger, because REML
adjusts for degrees of freedom in the mean model and ML does not. In fact,√

90/72.3611 = .4038. Third, none of the interaction coefficients is statisti-
cally significant in this parameterization either. Finally, it does not look like
we need any powers higher than 2.

Given that interaction never seems to be significant, let’s refit a model
that leaves out interaction. We do this in line 13, with the summary informa-
tion in line 14. We see that the error standard deviation ratios change, which
is perhaps not surprising given the different mean structure with 10 fewer
degrees of freedom. What might be surprising is that the polynomial coeffi-
cients changed from line 12 to line 14. If we were using lm (that is, equal
variances) on these balanced data, then these coefficients would not have
changed when the interaction was removed. However, using gls (and thus
unequal variances) makes the model behave as if the data were unbalanced.

One of the side effects of taking out the interaction is that the p-values
for both linear and quadratic are tiny, while those of the higher orders are
large. This suggests another refit using only linear and quadratic, as is done
in line 15 with summary information in line 16. Note that even though we
have orthogonal polynomials, the error variance ratios change slightly when
we changed the mean structure, leading to slightly changed polynomial co-
efficients.

13 > fitq5 <- gls(transmission˜poly(thickness.z,5)+sanding,data=LaserTransmission,
weights=varIdent(form=˜1|sanding),method=’ML’)

14 > summary(fitq5)
Generalized least squares fit by maximum likelihood

Model: transmission ˜ poly(thickness.z, 5) + sanding
Data: LaserTransmission

AIC BIC logLik
282.0999 309.5978 -130.0499

Variance function:
Structure: Different standard deviations per stratum
Formula: ˜1 | sanding
Parameter estimates:

none front both
1.00000 4.00653 5.63385

Coefficients:
Value Std.Error t-value p-value

(Intercept) 84.73213 0.1617469 523.8562 0.0000
poly(thickness.z, 5)1 -18.10246 0.6301332 -28.7280 0.0000
poly(thickness.z, 5)2 3.87033 0.6301332 6.1421 0.0000
poly(thickness.z, 5)3 0.28561 0.6301332 0.4532 0.6516
poly(thickness.z, 5)4 0.89550 0.6301332 1.4211 0.1591
poly(thickness.z, 5)5 -1.15364 0.6301332 -1.8308 0.0708
sanding1 -3.89477 0.2778821 -14.0159 0.0000
sanding2 -0.62417 0.2279984 -2.7376 0.0076
...
Residual standard error: 0.3631841
Degrees of freedom: 90 total; 82 residual

Line 17 does model comparison for our full factorial, additive factorial, and
additive second order factorial. We can do this because we used ML. Neither
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larger model is a statistically significant improvement on the additive second
order model.

The orthogonal polynomials are numerically and statistically stable, but
we typically want our polynomial in the original variables for ease of inter-
pretation. We do this on line 18, with summary information on line 19.

15 > fitq2 <- gls(transmission˜poly(thickness.z,2)+sanding,data=LaserTransmission,
weights=varIdent(form=˜1|sanding),method=’ML’)

16 > summary(fitq2)
Generalized least squares fit by maximum likelihood

Model: transmission ˜ poly(thickness.z, 2) + sanding
Data: LaserTransmission

AIC BIC logLik
281.5636 301.5621 -132.7818

Variance function:
Structure: Different standard deviations per stratum
Formula: ˜1 | sanding
Parameter estimates:

none front both
1.000000 3.630014 5.027434

Coefficients:
Value Std.Error t-value p-value

(Intercept) 84.73213 0.1580692 536.0445 0.0000
poly(thickness.z, 2)1 -18.16171 0.6781548 -26.7811 0.0000
poly(thickness.z, 2)2 3.84827 0.6781548 5.6746 0.0000
sanding1 -3.89477 0.2701993 -14.4144 0.0000
sanding2 -0.62417 0.2236554 -2.7908 0.0065
...
Residual standard error: 0.401867
Degrees of freedom: 90 total; 85 residual

17 > anova(fitq2,fitq5,fitq5i)
Model df AIC BIC logLik Test L.Ratio p-value

fitq2 1 8 281.5636 301.5621 -132.7818
fitq5 2 11 282.0999 309.5978 -130.0499 1 vs 2 5.463704 0.1408
fitq5i 3 21 294.4463 346.9423 -126.2231 2 vs 3 7.653618 0.6626

We are fitting the same mean structure as in line 15, but with a different pa-
rameterization. Thus the coefficients, including the intercept, can be quite
different, as we see here.
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Figure 8.8: Residual and interaction plots for the laser transmission
data. Panel 1: interaction plot with horizontal axis placed
quantitatively. Panel 2: residual plot for the additive quadratic
(weighted) model.

18 > fitq2b <- gls(transmission˜thickness.z+I(thickness.zˆ2)+sanding,
data=LaserTransmission,weights=varIdent(form=˜1|sanding),method=’ML’)

19 > summary(fitq2b)
Generalized least squares fit by maximum likelihood

Model: transmission ˜ thickness.z + I(thickness.zˆ2) + sanding
Data: LaserTransmission

AIC BIC logLik
281.5636 301.5621 -132.7818

Variance function:
Structure: Different standard deviations per stratum
Formula: ˜1 | sanding
Parameter estimates:

none front both
1.000000 3.630014 5.027434

Coefficients:
Value Std.Error t-value p-value

(Intercept) 89.16622 0.29242020 304.92497 0.0000
thickness.z -0.98436 0.08634724 -11.40005 0.0000
I(thickness.zˆ2) 0.03328 0.00586384 5.67462 0.0000
sanding1 -3.89477 0.27019933 -14.41442 0.0000
sanding2 -0.62417 0.22365539 -2.79075 0.0065
...
Residual standard error: 0.401867
Degrees of freedom: 90 total; 85 residual

20 > plot(fitq2b)

As a check, we add a residual plot in line 20, which appears in panel 2 of
Figure 8.8. Residuals still look good.

Example 8.11 Sprouting of barley seeds under water and time
treatments.
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Recall the sprouting barley data of Table 8.1. These were the counts of
sprouting barley seeds from batches of 100 that were aged a certain number
of weeks post-harvest and treated with one of two amounts of water. These
are simple counts with a two-way factorial structure.

Lines 1–2 below produce interaction plots for these data, without and
with pooled confidence limits, shown in panels 1–2 of Figure 8.9.

1 > with(SproutingBarley,interactplot(weeks.z,water,sprouting))
2 > with(SproutingBarley,interactplot(weeks.z,water,sprouting,confidence=.95))
3 > fit.lm <- lm(sprouting˜weeks*water,data=SproutingBarley)
4 > plot(fit.lm,which=1)
5 > fit.bin <- glm(cbind(sprouting,100-sprouting)˜weeks*water,data=SproutingBarley,

family=binomial())
6 > plot(fit.bin,which=1)
7 > anova(fit.bin)

...
Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev
NULL 29 302.042
weeks 4 106.491 25 195.551
water 1 103.401 24 92.150
weeks:water 4 6.247 20 85.902

Even though there is considerable variation, these plots seem to indicate a
decreasing effect of water, and increasing effect of time (weeks), and possibly
an interaction. Line 3 fits the factorial linear model to these data, with line 4
producing the residuals versus fitted plot (panel 3). There is clear increasing
variability.

A little thought reminds us that the response should be a binomial count
(X out of 100 sprouting); binomial counts have non-constant variance, so
we should not have been surprised. Line 5 refits with a binomial GLM, and
line 6 shows the residual plot (panel 4), which is much improved. Feeling
good about this model, we look at the “anova” in line 7; this produces the
analysis of deviance. We see that adding weeks to a null model uses 4 degrees
of freedom to decrease the deviance by 106.5 (highly significant); adding
water uses 1 degree of freedom to decrease the deviance by 103.4 (highly
significant); and adding the interaction term uses 4 degrees of freedom to
decrease the deviance by only 6.2 (not significant at all).

However, look at that residual deviance of 85.9 on 20 degrees of freedom.
A chi-square with 20 degrees of freedom is rarely above 40 or 45, so 85.9 is
much too large. This indicates that the variability in the data is greater than
binomial variability, so a quasibinomial model would be appropriate. We fit
this model in line 8.
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8 > fit.qbin <- glm(cbind(sprouting,100-sprouting)˜weeks*water,data=SproutingBarley,
family=quasibinomial())

9 > summary(fit.qbin)
...

Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.02946 0.13013 -15.595 1.17e-12 ***
weeks1 -0.65652 0.29700 -2.210 0.038889 *
weeks2 -0.54070 0.30326 -1.783 0.089781 .
weeks3 0.12274 0.24052 0.510 0.615417
weeks4 0.16948 0.24554 0.690 0.497976
water1 0.57027 0.13013 4.382 0.000288 ***
weeks1:water1 -0.23932 0.29700 -0.806 0.429847
weeks2:water1 0.12809 0.30326 0.422 0.677251
weeks3:water1 0.01153 0.24052 0.048 0.962247
weeks4:water1 0.20880 0.24554 0.850 0.405175
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for quasibinomial family taken to be 4.060115)
...

Line 9 shows the summary. The dispersion parameter is about 4, so the stan-
dard errors for model effects are about twice what they were in the binomial
model.

Weeks is a quantitative variable (so is water, but there are only two levels
of water so it makes little difference whether you consider water to be quan-
titative or qualitative: it’s the same degree of freedom either way), so we can
refit with a polynomial model as shown in line 10.

10 > fit.qbin <- glm(cbind(sprouting,100-sprouting)˜poly(weeks.z,4)*water,
data=SproutingBarley,family=quasibinomial())

11 > summary(fit.qbin)
...

Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.02946 0.13013 -15.595 1.17e-12 ***
poly(weeks.z, 4)1 2.99205 0.69676 4.294 0.000354 ***
poly(weeks.z, 4)2 0.21977 0.66995 0.328 0.746293
poly(weeks.z, 4)3 0.27173 0.75205 0.361 0.721654
poly(weeks.z, 4)4 0.66536 0.72954 0.912 0.372619
water1 0.57027 0.13013 4.382 0.000288 ***
poly(weeks.z, 4)1:water1 0.21636 0.69676 0.311 0.759374
poly(weeks.z, 4)2:water1 -0.67632 0.66995 -1.010 0.324786
poly(weeks.z, 4)3:water1 0.01281 0.75205 0.017 0.986577
poly(weeks.z, 4)4:water1 -0.52107 0.72954 -0.714 0.483331
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for quasibinomial family taken to be 4.060115)
...

The summary in line 11 shows an effect of water, a linear effect of weeks,
and nothing else. It’s actually a very simple model in the end.

The interaction plots appeared to show some interaction and some curva-
ture, but neither of these appears in our final model. Why? The linear model
is in the logit scale, and that gets transformed back to the probability scale
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Figure 8.9: Residual and interaction plots for the sprouting barley
data. Panels 1–2: residual versus fitted plots for the linear and
binomial GLM models. Panels 3–4: interaction plot with and without
(pooled) standard errors.

via p = exp(`)/(1 + exp(`)). For a probability less than .25 (` < −1), go-
ing from the linear predictor scale to the probability scale is essentially just
exponentiation, because the denominator 1 + exp(`) does not change much
over that range. Thus linear on the ` scale looks curved on the p scale, and
additive on the ` scale looks multiplicative on the p scale. Scale matters.

8.10 Single Replicates

Some factorial experiments are run with only one unit at each factor-level
combination (n = 1). Clearly, this will lead to trouble, because we have no
degrees of freedom for estimating error. What can we do? At this point, anal- No estimate of

pure error in
single replicates

ysis of factorials becomes art as well as science, because you must choose
among several approaches and variations on the approaches. None of these
approaches is guaranteed to work, because none provides the estimate of pure
experimental error that we can get from replication. If we use an approach
that has an error estimate that is biased upwards, then we will have a conser-
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vative procedure. Conservative in this context means that the p-value that we
compute is generally larger than the true p-value; thus we reject null hypothe-
ses less often than we should and wind up with models with fewer terms than
might be appropriate. On the other hand, if we use a procedure with an er-Biased estimates

of error lead to
biased tests

ror estimate that is biased downwards, then we will have a liberal procedure.
Liberal means that the computed p-value is generally smaller than the true
p-value; thus we reject null hypotheses too often and wind up with models
with too many terms.

The most common approach is to pool one or more high-order interaction
mean squares into an estimate of error; that is, select one or more interaction
terms and add their sums of squares and degrees of freedom to get a surrogateHigh-order

interactions can
estimate error

error sum of squares and degrees of freedom. If the underlying true interac-
tions are null (zero), then the surrogate error mean square is an unbiased
estimate of error. If any of these interactions is nonnull, then the surrogate
error mean square tends on average to be a little bigger than error. Thus, if
we use a surrogate error mean square as an estimate of error and make tests
on other effects, we will have tests that range from valid (when interaction is
absent) to conservative (when interaction is present).

This valid to conservative range for surrogate errors assumes that you
haven’t peeked at the data. It is very tempting to look at interaction mean
squares, decide that the small ones must be error and the large ones must beData snooping

makes MSE too
small

genuine effects. However, this approach tends to give you error estimates
that are too small, leading to a liberal test. It is generally safer to choose the
mean squares to use as error before looking at the data, although you can use
the pooling rules above as a fallback.

A second approach to single replicates is to use an external estimate of
error. That is, we may have run similar experiments before, and we know
what the size of the random errors was in those experiments. Thus we mightExternal

estimates of error
are possible but
risky

use an MSE from a similar experiment in place of an MSE from this exper-
iment. This might work, but it is a risky way of proceeding. The reason it
is risky is that we need to be sure that the external estimate of error is really
estimating the error that we incurred during this experiment. If the size of the
random errors is not stable, that is, if the size of the random errors changes
from experiment to experiment or depends on the conditions under which the
experiment is run, then an external estimate of error will likely be estimating
something other than the error of this experiment.

A final approach is to use one of the models for interaction described in
the next chapter. These interaction models often allow us to fit the bulk of anModel interaction
interaction with relatively few degrees of freedom, leaving the other degrees
of freedom for interaction available as potential estimates of error.

Example 8.12 CPU page faults
This is an old, but fun, data set. Some computers divide memory into

pages. When a program runs, it is allocated a certain number of pages of
RAM. The program itself may require more pages than were allocated. When
this is the case, currently unused pages are stored on disk. From time to time,
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Table 8.11: Page faults for a CPU experiment. Data set
PageFaults.

Allocation
Algorithm Sequence Size 1 2 3
1 1 1 32 48 538

2 53 81 1901
3 142 197 5689

2 1 52 244 998
2 112 776 3621
3 262 2625 10012

3 1 59 536 1348
2 121 1879 4637
3 980 5698 12880

2 1 1 49 67 789
2 100 134 3152
3 233 350 9100

2 1 79 390 1373
2 164 1255 4912
3 458 3688 13531

3 1 85 814 1693
2 206 3394 5838
3 1633 10022 17117

a page stored on disk is needed; this is called a page fault. When a page fault
occurs, one of the currently active pages must be moved to disk in order to
make room for the page that must be brought in from disk. The trick is to
choose a “good” page to send out to disk, where “good” means a page that
will not be used soon.

The experiment consists of running different programs on a computer
under different configurations and counting the number of page faults. There
were two paging algorithms to study, and this is the factor of primary interest.
A second factor with three levels was the sequence in which system routines
were initialized. Factor three was the size of the program (small, medium,
or large memory requirements), and factor four was the amount of RAM
memory allocated (large, medium, or small). We expect size, sequence, and
allocation to all affect the number of page faults and probably to interact as
well. We want to learn about the algorithm. Table 8.11 shows the number of
page faults that occurred for each of the 54 combinations.

Before fitting any models, look at the data. There is no replication, so
there is no estimate of pure error, and we will need to use some of the inter-
actions as experimental error. There are two sensible ways to move forward.
First, one can fit all main effects, two-factor, and three-factor interactions
in the model and use the four-factor interaction as a surrogate error. That
has 8 degrees of freedom, which is on the low end of acceptable. A sec-
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ond approach would be pool into error all three- and four-factor interactions
that involve algorithm, giving us 20 degrees of freedom for surrogate error.
This leaves the three-way interaction size:sequence:ram in the model, as our
introductory information implied it was likely to be important.

The second thing to notice is that the data range over several orders of
magnitude and just look multiplicative. Increasing the program size or chang-
ing the allocation seems to double or triple the number of page faults, rather
than just adding a constant number. This suggests that a log transformation
of the response is advisable, as it will turn a multiplicative data set into a
more additive data set.

Transforming the data is what we will do in the end, but let’s assume that
we had not noticed the multiplicative nature of the data and started with sur-
rogate errors on the original scale.

1 > fit2fi <- lm(faults˜(alg+ram+size+init)ˆ2+ram:size:init,data=PageFaults)
2 > plot(fit2fi,which=1)
3 > fit3fi <- lm(faults˜(alg+ram+size+init)ˆ3,data=PageFaults)
4 > plot(fit3fi,which=1)
5 > boxCox(fit2fi)
6 > boxCox(fit3fi)
7 > fit2fil <- lm(log(faults)˜(alg+ram+size+init)ˆ2+ram:size:init,data=PageFaults)
8 > plot(fit2fil,which=1)
9 > fit3fil <- lm(log(faults)˜(alg+ram+size+init)ˆ3,data=PageFaults)
10 > plot(fit3fil,which=1)

Line 1 fits the model with two-factor interactions plus the three-way inter-
action ram:size:init, and line 2 plots the residuals versus fitted values plot.
Lines 3–4 do the same for the three-factor interaction model, and the two
plots are the first two panels of Figure 8.10.

Panel 1 shows a form I call the “flopping fish.” Residuals follow a U-
shaped pattern, being high on the left and right and low in the middle. On the
left (the tail), the variation is smaller, and on the right (the head), the variation
is larger. You can only get this shape when you use a model smaller than the
full factorial model. The shape could indicate that one of the terms left out
of the model is important, but it probably means that we need to transform
the response.

You cannot really see the flopping fish in panel 2. A large number of
residuals that comprise few degrees of freedom can be surprisingly well be-
haved, and the flopping fish indication of a needed transformation is often
more visible in slightly under-fit models. Box-Cox analysis (not shown) sug-
gests that we should transform to a power slightly less than 0 for the smaller
model, and slightly greater than 0 for the full three-factor interaction model.
The logarithm seems like a good compromise.

We fit the models to log data and plot the residuals in lines 7–10; these
residual plots are panels 3–4 of Figure 8.10. They look quite good for the
smaller model and seem to indicate we over-transformed for the 3-way inter-
action model.

Line 11 produces an ANOVA for the smaller model fit to log data.

Draft of March 1, 2021



8.10 Single Replicates 273

11 > anova(fit2fil)
Response: log(faults)

Df Sum Sq Mean Sq F value Pr(>F)
alg 1 2.502 2.502 742.7233 < 2.2e-16 ***
ram 2 92.697 46.349 13759.5769 < 2.2e-16 ***
size 2 41.692 20.846 6188.5247 < 2.2e-16 ***
init 2 24.639 12.320 3657.3417 < 2.2e-16 ***
alg:ram 2 0.060 0.030 8.9120 0.001709 **
alg:size 2 0.022 0.011 3.2974 0.057853 .
alg:init 2 0.018 0.009 2.6179 0.097749 .
ram:size 4 0.504 0.126 37.4284 5.074e-09 ***
ram:init 4 9.510 2.378 705.8462 < 2.2e-16 ***
size:init 4 0.829 0.207 61.5234 5.897e-11 ***
ram:size:init 8 1.052 0.132 39.0431 1.505e-10 ***
Residuals 20 0.067 0.003

Most terms are extremely significant, the alg:ram interaction is highly signif-
icant, and the other two-way interactions with algorithm are not significant.
Line 12 shows the ANOVA for the three-way model.

12 > anova(fit3fil)
Response: log(faults)

Df Sum Sq Mean Sq F value Pr(>F)
alg 1 2.502 2.502 877.9857 1.824e-09 ***
ram 2 92.697 46.349 16265.4282 3.654e-15 ***
size 2 41.692 20.846 7315.5596 8.919e-14 ***
init 2 24.639 12.320 4323.4054 7.300e-13 ***
alg:ram 2 0.060 0.030 10.5350 0.005736 **
alg:size 2 0.022 0.011 3.8979 0.065794 .
alg:init 2 0.018 0.009 3.0947 0.101042
ram:size 4 0.504 0.126 44.2447 1.689e-05 ***
ram:init 4 9.510 2.378 834.3927 1.632e-10 ***
size:init 4 0.829 0.207 72.7278 2.511e-06 ***
alg:ram:size 4 0.004 0.001 0.3511 0.836454
alg:ram:init 4 0.026 0.007 2.2818 0.149073
alg:size:init 4 0.015 0.004 1.2778 0.354761
ram:size:init 8 1.052 0.132 46.1535 6.726e-06 ***
Residuals 8 0.023 0.003

Results here are similar to what we say in line 11, with none of the three-way
interactions involving algorithm significant. In fact, we only have 8 degrees
of freedom for error in this model, and two of the three-way interactions meet
our criteria to be pooled into error.
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13 > fit3filb <- lm(log(faults)˜(alg+ram+size+init)ˆ3-alg:ram:size-alg:size:init,
data=PageFaults)

14 > anova(fit3filb)
Response: log(faults)

Df Sum Sq Mean Sq F value Pr(>F)
alg 1 2.502 2.502 967.7896 9.683e-16 ***
ram 2 92.697 46.349 17929.1216 < 2.2e-16 ***
size 2 41.692 20.846 8063.8244 < 2.2e-16 ***
init 2 24.639 12.320 4765.6206 < 2.2e-16 ***
alg:ram 2 0.060 0.030 11.6126 0.0007664 ***
alg:size 2 0.022 0.011 4.2966 0.0320944 *
alg:init 2 0.018 0.009 3.4113 0.0583516 .
ram:size 4 0.504 0.126 48.7702 9.148e-09 ***
ram:init 4 9.510 2.378 919.7377 < 2.2e-16 ***
size:init 4 0.829 0.207 80.1667 2.243e-10 ***
alg:ram:init 4 0.026 0.007 2.5151 0.0825350 .
ram:size:init 8 1.052 0.132 50.8743 6.241e-10 ***
Residuals 16 0.041 0.003

Line 13 fits a model with these two terms pooled into error, and line 14 shows
the corresponding ANOVA. It is nearly identical to that of line 11, because
the models differ by only a single, non-significant term.

We have said that the log transformation made our data more additive.
The side-by-side plots produced in lines 15–16 are for original scale and log
scale data respectively; the plots are shown in Figure 8.11.

15 > sidebyside(fit2fi)
16 > sidebyside(fit2fil)
17 > effects::effect("alg:ram",fit2fil)

alg*ram effect
ram

alg large medium small
1 4.710091 6.227057 7.989746
2 5.190324 6.702067 8.325972

In general, the interaction coefficients are smaller relative to the main effects
on the log scale, implying that the data are more additive. In fact, if you look
at the fraction of explained variance in the model that is due to main effects,
it is 93% on the log scale and only 68% on the original scale.

Finally, to address the original question about algorithms, the only sig-
nificant interaction involving algorithm is alg:ram, so we should look at
its effects, as shown in line 17. Algorithm 2 produces more page faults,
with factors of exp(5.19 − 4.71) = 1.62, exp(6.70 − 6.23) = 1.60, and
exp(8.33 − 7.99) = 1.41 across large, medium, and small ram. Thus, algo-
rithm 2 is always worse, but algorithm 1’s advantage is not as large when the
ram size is small.

8.11 Hierarchy

A factorial model for data is called hierarchical if the presence of any term
in the model implies the presence of all lower order terms. For example, aHierarchical

models don’t skip
terms
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Figure 8.10: Residual plots for the page fault data. Panels 1–2:
residuals versus fitted values for data on the original scale using the
two-factor interaction plus ram:size:init model and three-factor
interaction models. Panels 3–4: residuals versus fitted values for data
on the log scale using the two-factor interaction plus ram:size:init
model and three-factor interaction models.
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hierarchical model including the AB interaction must include the A and B
main effects, and a hierarchical model including the BCD interaction must
include the B, C, and D main effects and the BC, BD, and CD interactions.
One potential source of confusion is that lower-order terms occur earlier in a
model and thus appear above higher-order terms in the ANOVA table; lower-
order terms are above.

One view of data analysis for factorial treatment structure is the selection
of an appropriate model for the data; that is, determining which terms are
needed, and which terms can be eliminated without loss of explanatory abil-Choose among

hierarchical
models

ity. We don’t necessarily care how those means are parameterized, we are
instead interested in what structures of means are needed. From this point of
view, always use hierarchical models when modeling factorial data. Do not
automatically test terms above (that is, lower-order to) a needed interaction.
If factors A and B interact, conclude that A and B act jointly to influence the
response; there is no need to test the A and B main effects.

From another point of view, the F -test allows us to test whether any set
of parameters is zero, even the main effects of A when the AB interaction is
in the model. Why should we not test these lower-order terms, and possibly
break hierarchy, when we have the ability to do so? The distinction is one be-
tween generic modeling of how the response depends on factors and interac-Building a model

versus testing
hypotheses

tions, and testing specific hypotheses about specific parameters (equivalently,
testing specific contrasts in the treatment means). Tests of main effects are
tests that certain very specific contrasts are zero. If those specific contrasts
are genuinely of interest, then testing main effects is appropriate, even if in-
teractions exist. Thus I only consider nonhierarchical models when I know
that the main-effects contrasts, and thus the nonhierarchical model, make
sense in the experimental context.

The problem with breaking hierarchy is that parameters depend on how
we have defined our parameters. We have defined main effect and interac-
tion parameters in a sensible way, but it is also a completely arbitrary way.
There are other sensible ways to define these parameters that lead to different
values. Thus for the same set of data, I might conclude that there is a main
effect of A, and you might conclude that there is not a main effect of A, and
we could both be correct if we are using different definitions of main effects.

We have chosen to define main effects and interactions using equally
weighted averages of treatment means, but we could instead define main ef-Are equally

weighted
averages
appropriate?

fects and interactions using unequally weighted averages. This new set of
main effects and interactions is just as valid mathematically as our usual set,
but one set may have zero main effects and the other set have nonzero main
effects. Which do we want to test? We need to know the appropriate set of
weights, or equivalently, the appropriate contrast coefficients, for the prob-
lem at hand.

Example 8.13 Unequal weights
Suppose that we have a three by two factorial design testing two antibi-

otics against three strains of bacteria. The response is the number of rats (out
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Table 8.12: Number of rats that died after exposure to three strains
of bacteria and treatment with one of two antibiotics, and factorial
decompositions using equal weighting and 1,2,1 weighting of rows.

Means Equal Weights Row Weighted

120 168
144 168
192 120

-24 24 -8
-12 12 4
36 -36 4
0 0 152

-21 21 -9
-9 9 3
39 -39 3
-3 3 153

of 500) that die from the given infection when treated with the given antibi-
otic. Our goal is to find the antibiotic with the lower death rate. Table 8.12
gives hypothetical data and two ways to decompose the means into grand
mean, row effects, column effects, and interaction effects.

The first decomposition in Table 8.12 (labeled equal weights) is our usual
factorial decomposition. The row effects and column effects add to zero,
and the interaction effects add to zero across any row or column. With this
standard factorial decomposition, the column (antibiotic) effects are zero, so
there is no average difference between the antibiotics.

On the other hand, suppose that we knew that strain 2 of bacteria was
twice as prevalent as the other two strains. Then we would probably want to
weight row 2 twice as heavily as the other rows in all averages that we make.
The second decomposition uses 1,2,1 row weights; all these factorial effects
are different from the equally weighted effects. In particular, the antibiotic
effects change, and with this weighting antibiotic 1 has a mean response 6
units lower on average than antibiotic 2 and is thus preferred to antibiotic 2.
The test of no antibiotic effect in the equally weighted example is a test of

µ11 + µ21 + µ31 − µ12 − µ22 − µ32 = 0 ,

and the test of no antibiotic effect in the row-weighted example is a test of

µ11 + 2µ21 + µ31 − µ12 − 2µ22 − µ32 = 0.

Either, or neither, of these could be what you really want, but the answer to
whether there are non-zero column effects clearly depends on how you do
the decomposition.

Analogous examples have zero column effects for weighted averages and
nonzero column effects in the usual decomposition. Note in the weighted
decomposition that column effects add to zero and the interactions add to
zero across columns, but row effects and interaction effects down columns
only add to zero with 1,2,1 weights.

If factors A and B do not interact, then the A and B main effects are
the same regardless of how we weight the means. In the absence of AB in-
teraction, testing the main effects of A and B computed using our equally Weighting

matters due to
interaction

weighted averages gives the same results as for any other weighting. Simi-
larly, if there is no ABC interaction, then testing AB, AC, or BC using the
standard ANOVA gives the same results as for any weighting.
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Table 8.13: Amylase specific activity (IU), for two varieties of
sprouted maize under different growth and analysis temperatures
(degrees C). Data from Orman (1986); data set
AmylaseActivity.

Analysis Temperature
GT Var. 40 35 30 25 20 15 13 10

25 B73 391.8 427.7 486.6 469.2 383.1 338.9 283.7 269.3
311.8 388.1 426.6 436.8 408.8 355.5 309.4 278.7
367.4 468.1 499.8 444.0 429.0 304.5 309.9 313.0

O43 301.3 352.9 376.3 373.6 377.5 308.8 234.3 197.1
271.4 296.4 393.0 364.8 364.3 279.0 255.4 198.3
300.3 346.7 334.7 386.6 329.2 261.3 239.4 216.7

13 B73 292.7 422.6 443.5 438.5 350.6 305.9 319.9 286.7
283.3 359.5 431.2 398.9 383.9 342.8 283.2 266.5
348.1 381.9 388.3 413.7 408.4 332.2 287.9 259.8

O43 269.7 380.9 389.4 400.3 340.5 288.6 260.9 221.9
284.0 357.1 420.2 412.8 309.5 271.8 253.6 254.4
235.3 339.0 453.4 371.9 313.0 333.7 289.5 246.7

Factorial effects are only defined in the context of a particular weighting
scheme for averages. As long as we are comparing hierarchical models, we
know that the parameter tests make sense for any weighting. When we testUse correct

weighting lower-order terms in the presence of an including interaction, we must use
the correct weighting.

R is fairly fanatical about enforcing hierarchy when fitting factorial mod-
els. For example, if you fit the model y˜ A+A:B, then the A:B term hasR enforces

hierarchy a(b-1) degrees of freedom instead of (a-1)(b-1), because R will automati-
cally subsume the B main effect into A:B if B is not explicitly in the model.
Thus what you get as α̂βij in the non-hierarchical model is actually equal to
β̂j + α̂βij from the full hierarchical version of the model.

Example 8.14 Amylase activity
Orman (1986) studied germinating maize. One of his experiments looked

at the amylase specific activity of sprouted maize under 32 different treatment
conditions. These treatment conditions were the factorial combinations of
analysis temperature (eight levels, 40, 35, 30, 25, 20, 15, 13, and 10 degrees
C), growth temperature of the sprouts (25 or 13 degrees C), and variety of
maize (B73 or Oh43). There were 96 units assigned at random to these 32
treatments. Table 8.13 gives the amylase specific activities in International
Units.

This is an eight by two by two factorial with replication, so we fit the full
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Figure 8.12: Plots for amylase activity data. Panel 1: residuals
versus fitted on the original scale. Panel 2: Box-Cox profile for the
factorial model fit on the original scale. Panel 3: residuals versus
fitted on the log scale. Panel 4: interaction plot of growth temperature
by variety.

factorial model.
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1 > fit <- lm(amylase˜aTemp*gTemp*variety,data=AmylaseActivity)
2 > plot(fit,which=1)
3 > boxCox(fit)
4 > fit2 <- lm(log(amylase)˜aTemp*gTemp*variety,data=AmylaseActivity)
5 > plot(fit2,which=1)
6 > anova(fit2)

Response: log(amylase)
Df Sum Sq Mean Sq F value Pr(>F)

aTemp 7 3.01613 0.43088 78.8628 < 2.2e-16 ***
gTemp 1 0.00438 0.00438 0.8016 0.3739757
variety 1 0.58957 0.58957 107.9085 2.305e-15 ***
aTemp:gTemp 7 0.08106 0.01158 2.1195 0.0539203 .
aTemp:variety 7 0.02758 0.00394 0.7212 0.6543993
gTemp:variety 1 0.08599 0.08599 15.7392 0.0001863 ***
aTemp:gTemp:variety 7 0.04764 0.00681 1.2457 0.2916176
Residuals 64 0.34967 0.00546

1 > with(AmylaseActivity,interactplot(gTemp,variety,log(amylase),confidence=.95,
sigma2=.00546,df=64))

Line 1 fits the factorial model on the original scale, and line 2 shows that there
is increasing variance (panel 1 of Figure 8.12). The Box-Cox profile (panel 2)
suggests a log transformation, and the residual variability look better after the
transformation (line 5, panel 3). (Not shown here, but the normal probability
plot of residuals looks better on the original scale.)

Analyzing on the log scale, the ANOVA is shown on line 6. The growth
temperature by variety interaction is highly significant, but the main effect of
growth temperature is not significant. Nevertheless, we retain the main effect
of growth temperature to maintain hierarchy.

What does an interaction with no main effect look like? The interaction
plot from line 7 is shown in panel 4. The change in response going from
growth temperature 13 to 15 is positive for variety 1 and negative for vari-
ety 2 (the interaction). However, the positive and negative changes cancel
each other, so the means are roughly the same at the two levels of growth
temperature (no main effect).

8.12 Problems

Diet affects weight gain. We wish to compare nine diets; these diets areExercise 8.1
the factor-level combinations of protein source (beef, pork, and grain) and
number of calories (low, medium, and high). There are eighteen test animals
that were randomly assigned to the nine diets, two animals per diet. The
mean responses (weight gain) are:

Calories
Source Low Medium High
Beef 76.0 86.8 101.8
Pork 83.3 89.5 98.2
Grain 83.8 83.5 86.2
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also given in data set WeightGain. The mean square for error was 8.75.
Analyze these data to determine an appropriate model.

An experiment was conducted to determine the effect of germination time Exercise 8.2
(in days) and temperature (degrees C) on the free alpha amino nitrogen (FAN)
content of rice malt. The values shown in the following are the treatment
means of FAN with n = 2 (data from Aniche and Okafor 1989, data set
RiceMalt).

Temperature
Days 22 24 26 28 Row Means
1 39.4 49.9 55.1 59.5 50.98
2 56.4 68.0 76.4 88.8 72.40
3 70.2 81.5 95.6 99.6 86.72

Column Means 55.33 66.47 75.70 82.63
Grand Mean 70.03

The total sum of squares was 8097. Draw an interaction plot for these data.
Compute an ANOVA table and determine which terms are needed to describe
the means.

Manufacturing integrated circuits is an enormously complicated task, as Exercise 8.3
there are many process variables that can be manipulated (thickness of this,
width of that, doping level of something else, etc). Generally speaking, many
copies of a circuit are put onto a single wafer, which is made all at once. We
have an experiment where we are varying two factors, each at two levels.
We have 20 wafers and assign each of the four factor/level combinations to
five wafers at random and make the wafer. We then choose three circuits at
random on each wafer and measure the performance of the circuit. Construct
a skeleton ANOVA table (that is, just the sources and degrees of freedom).

We have a 22 factorial design with N = 17. The (corrected) total sum of Exercise 8.4
squares is 100. Below are three different ANOVAs for these data. The first
pools the main effects and interaction into a single 3 degree of freedom term.
The others are sequential. Fill in the missing sums of squares.
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Source DF SS
A.B 3 75
Error 13 ?

Source DF SS
A 1 20
B 1 ?
A.B 1 20
Error 13 ?

Source DF SS
B 1 35
A 1 ?
A.B 1 ?
Error 13 ?

Particleboard is made from wood chips and resins. An experiment is con-Problem 8.1
ducted to study the effect of using slash chips (waste wood chips) along with
standard chips. The researchers make eighteen boards by varying the target
density (42 or 48 lb/ft3), the amount of resin (6, 9, or 12%), and the fraction
of slash (0, 25, or 50%). The response is the actual density of the boards pro-
duced (lb/ft3, data from Boehner 1975, data set ParticleBoard). Ana-
lyze these data to determine the effects of the factors on particleboard density
and how the density differs from target.

42 Target 48 Target
Resin 0% 25% 50% 0% 25% 50%
6 40.9 41.9 42.0 44.4 46.2 48.4
9 42.8 43.9 44.8 48.2 48.6 50.7
12 45.4 46.0 46.2 49.9 50.8 50.3

We have data from a four by three factorial with 24 units. Below areProblem 8.2
ANOVA tables for the data and log-transformed data, plus residual versus
predicted plots for both. What would you conclude about interaction in the
data?
Original data:

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

r 3 1136.65 378.88 35.6135 2.971e-06 ***
c 2 445.80 222.90 20.9518 0.0001217 ***
r:c 6 215.90 35.98 3.3823 0.0343903 *
Residuals 12 127.66 10.64

Response: log(y)
Df Sum Sq Mean Sq F value Pr(>F)

r 3 7.1393 2.37977 39.2914 1.751e-06 ***
c 2 3.4291 1.71454 28.3081 2.861e-05 ***
r:c 6 0.3290 0.05483 0.9052 0.5224
Residuals 12 0.7268 0.06057
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Implantable heart pacemakers contain small circuit boards called sub- Problem 8.3
strates. These substrates are assembled, cut to shape, and fired. Some of
the substrates will separate, or delaminate, making them useless. The pur-
pose of this experiment was to study the effects of three factors on the rate
of delamination. The factors were A: firing profile time, 8 versus 13 hours
with the theory suggesting 13 hours is better; B: furnace airflow, low versus
high, with theory suggesting high is better; and C: laser, old versus new, with
theory suggesting new cutting lasers are better.

A large number of raw, assembled substrates are divided into sixteen
groups. These sixteen groups are assigned at random to the eight factor-level
combinations of the three factors, two groups per combination. The sub-
strates are then processed, and the response is the fraction of substrates that
delaminate. Data from Todd Kerkow, data set PacemakerDelamination.

8 hrs 13 hrs
Low High Low High

Old .83 .68 .18 .25
.78 .90 .16 .20

New .86 .72 .30 .10
.67 .81 .23 .14

Analyze these data to determine how the treatments affect delamination.

Pine oleoresin is obtained by tapping the trunks of pine trees. Tapping Problem 8.4
is done by cutting a hole in the bark and collecting the resin that oozes out.
This experiment compares four shapes for the holes and the efficacy of acid
treating the holes. Twenty-four pine trees are selected at random from a
plantation, and the 24 trees are assigned at random to the eight combinations
of hole shape (circular, diagonal slash, check, rectangular) and acid treatment
(yes or no). The response is total grams of resin collected from the hole (data
from Low and Bin Mohd. Ali 1985, data set PineOleoresin).
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Shape
Treatment Circ. Diag. Check Rect.
Control 9 43 60 77

13 48 65 70
12 57 70 91

Acid 15 66 75 97
13 58 78 108
20 73 90 99

Analyze these data to determine how the treatments affect resin yield.

A study looked into the management of various tropical grasses for im-Problem 8.5
proved production, measured as dry matter yield in hundreds of pounds per
acre over a 54-week study period. The management variables were height
of cut (1, 3, or 6 inches), the cutting interval (1, 3, 6, or 9 weeks), and
amount of nitrogen fertilizer (0, 8, 16, or 32 hundred pounds of ammonium
sulfate per acre per year). Forty-eight plots were assigned in completely ran-
domized fashion to the 48 factor-level combinations. Dry matter yields for
the plots are shown in the table below (data from Richards 1965, data set
TropicalGrasses). Analyze these data and write your conclusions in a
report of at most two pages.

Interval
Ht. Fert. 1 3 6 9
1 0 74.1 65.4 96.7 147.1

8 87.4 117.7 190.2 188.6
16 96.5 122.2 197.9 232.0
32 107.6 140.5 241.3 192.0

3 0 61.7 83.7 88.8 155.6
8 112.5 129.4 145.0 208.1
16 102.3 137.8 173.6 203.2
32 115.3 154.3 211.2 245.2

6 0 49.9 72.7 113.9 143.4
8 92.9 126.4 175.5 207.5
16 100.8 153.5 184.5 194.2
32 115.8 160.0 224.8 197.5

Big sagebrush is often planted in range restoration projects. An exper-Problem 8.6
iment is performed to determine the effects of storage length and relative
humidity on the viability of seeds. Sixty-three batches of 300 seeds each are
randomly divided into 21 groups of three. These 21 groups each receive a
different treatment, namely the combinations of storage length (0, 60, 120,
180, 240, 300, or 360 days) and storage relative humidity (0, 32, or 45%).
After the storage time, the seeds are planted, and the response is the percent-
age of seeds that sprout (data from Welch 1996, data set BigSagebrush).
Analyze these data for the effects of the factors on viability.
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Days
Humidity 0 60 120 180 240 300 360
0% 82.1 78.6 79.8 82.3 81.7 85.0 82.7

79.0 80.8 79.1 75.5 80.1 87.9 84.6
81.9 80.5 78.2 79.1 81.1 82.1 81.7

32% 83.1 78.1 80.4 77.8 83.8 82.0 81.0
80.5 83.6 81.8 80.4 83.7 77.6 78.9
82.4 78.3 83.8 78.8 81.5 80.3 83.1

45% 83.1 66.5 52.9 52.9 52.2 38.6 25.2
78.9 61.4 58.9 54.3 51.9 37.9 25.8
81.0 61.2 59.3 48.7 48.8 40.6 21.0

Everyone likes microwave popcorn, but nobody likes unpopped kernels. Problem 8.7
Thirty-six 3 oz. bags of microwave popcorn are popped, and the number
of unpopped kernels in each bag is recorded. The 36 runs are randomly as-
signed to the twelve combinations of microwave wattage (500, 700, or 1000)
and brand (“P”, “A”, “J”, or “O”). Ovens are allowed to cool for 10 min-
utes with the door open between runs, and popping continues until there is a
three second gap between consecutive pops. Data from P. Stenberg (data set
UnpoppedKernels).

Brand 1000 700 500
A 40 33 35 11 8 5 32 23 23
J 36 19 24 5 9 7 24 37 24
O 36 40 21 6 9 8 22 26 12
P 19 20 22 7 9 8 13 19 15

Analyze these data to determine the effects of brand and wattage. What sur-
prising effect do you find?

Everyone likes old-style non-microwave popcorn, but what is the best Problem 8.8
recipe to get that light, fluffy popcorn? This experiment looks at the volume
ratio of popped popcorn to unpopped kernels. Thirty-two batches of popcorn
are produced, two each for the combinations of popcorn kernel amount (1/8
or 1/4 cup), popcorn type (generic or gourmet), oil type (canola or “popcorn”
oil), and oil amount (1 or 2 tablespoons). The following table shows the
results (data from J. McLaren, pers. comm., data set PopcornRatios).

Oil Type
Pop. Type Pop. Amt. Oil Amt. Canola Popcorn
Generic 1/8 1 24.5 24.5 28 21

2 21.5 20 22.5 17.5
1/4 1 21.5 23.5 23 24

2 22.25 24.5 24.75 22.5
Gourmet 1/8 1 17.5 20.5 20.5 17.5

2 18 18.5 16 17
1/4 1 14.5 16.25 19.25 22.75

2 21 20.25 18.25 19.25
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What factors and/or interactions influence the ratios? Analyze these data and
report your results.

In what ways can we analyze the page fault data from Example 8.12 with-Problem 8.9
out transformation and still have a valid analysis? How do the conclusions
from these other analyses compare with those from the example?

Tablets delivering medicines orally must dissolve for the dose to be deliv-Problem 8.10
ered. Generally, we want tablets that will be hard (so they do not break) but
dissolve quickly. Pharmaceutical companies can vary the pressure used to
compress the ingredients into a tablet (with higher pressures assumed to cre-
ate harder tablets) and can add a “disintegrant” to the formulation to shorten
the time until dissolution (a disintegrant is supposed to help the tablet break
up into smaller pieces when it encounters water).

In this study, 16 batches of tablets will be manufactured, with two batches
assigned at random to the factor level combinations of pressure (10 or 20 foot
pounds) and disintegrant (2, 4, 6, or 8% by weight). After manufacture, six
tablets are selected at random from each batch, and the response is the time
until dissolution when the table is placed in a Vanderkamp Disintegration
Tester (basically, it swishes the tablet around in body-temperature water). In
total, we have 96 dissolution time measurements.

Create a “skeleton ANOVA” for this experiment. This is an abbreviated
ANOVA table including only the sources and degrees of freedom.

Bacterial resistance to antibiotics is a concern, and bacteria may be adapt-Problem 8.11
ing to non-zero levels of antibiotics in sewage. We will take some sewage,
treat it with some kind of antibiotic, grow it on a plate, and then count the
bacteria that survive. Forty-eight preparations were made, three each for
the combinations of origin of sample (activated sludge or effluent), growth
medium (LB or CAGY), and antibiotic (Amoxicillin, Tetracycline, Tylosin,
or none). Bacterial counts (per µL of sample) are in the following table (data
adapted from S. Ghosh, pers. comm., data set SewageBacteria).

Origin Antibiotic LB CAGY
Sludge Amox. 760000 440000 330000 153000 188000 182000

Tetra. 17000 11000 21000 72000 65000 67000
Tylosin 620000 1380000 540000 600000 400000 860000
None 2150000 1680000 1660000 306000 273000 213000

Effluent Amox. 141 162 168 118 123 150
Tetra. 15.6 8.3 7.6 10.6 13.2 11.1
Tylosin 210 220 260 112 153 131
None 2900 1420 1440 249 290 286

(a) Analyze these data to determine the effects of the factors on bacterial
counts.
(b) There is something truly bizarre in these data; what is it?

The dye Rhodomine 6G can be adsorbed by activated carbon beads in-Problem 8.12
corporated with calcium alginate. The experiment studies how three factors
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affect the percentage of dye adsorbed. The factors are initial concentration
of dye (100, 200, or 300 mg/l), pH (7, 8, or 9), and temperature (30 or 60
degrees C). Eighteen units were randomly assigned to the factor/level combi-
nations, and the adsorption is shown in the table below (data originally from
Annadurai, Juang, and Lee 2002 via Lye 2019, data set DyeAdsorption).

Temperature/pH
30o 30o

dye 7 8 9 7 8 9
100 98.5 98.7 99.2 99.9 100.0 100.0
200 96.7 97.0 97.3 98.2 98.6 98.2
300 94.8 95.3 95.6 96.4 96.7 97.1

Analyze these data to determine the effects of the factors.

Using a cell phone while driving affects reaction time, but is it just using Problem 8.13
a cell phone, or do other factors affect reaction time? In this study, 54 male
adults aged 22–24 years were asked to drive in a simulator under various con-
ditions, and their reaction times would be measured. At some point during
the simulation, the drivers begin talking on the cell phone. After a certain
time on the phone has elapsed, the “car” ahead of the driver hits the brakes,
and the time between the leading car hitting the brakes and the driver in the
simulator hitting the brakes is the measured response.

The 54 individuals were randomized to 18 conditions, which are the fac-
tor/level combinations of: meters (10, 15, or 20; the trailing distance behind
the leading car), conditions (day or night driving), and duration (30, 60, or
90 seconds of cell phone conversation before the leading car hits the brakes).
The response is the reaction time (in milli seconds). The data are in the table
below (adapted from Al-Darrab, Khan, and Ishrat 2009 via Lye 2019, data
set ReactionTimes).

Distance
Cond. Dur. 10 15 20
Day 30 90 250 230 200 150 220 70 90 180

60 120 180 460 150 180 630 170 210 900
90 80 90 200 120 60 150 120 70 130

Night 30 350 300 190 120 150 710 140 120 760
60 100 180 180 90 210 170 110 110 120
90 200 90 290 270 120 590 120 150 710

Analyze these data to determine the effects of the factors on response time.

The dye methylene blue may be removed from aqueous solution via an Problem 8.14
oxidation reaction with persulfate. This experiment studies how the percent-
age of dye removed varies with reaction time (5, 10, 15, 20, or 25 minutes),
persulfate concentration (355, 710, or 1065 mg/l), the initial dye concentra-
tion (10, 15, or 20 mg/l), and the process temperature (60 or 70 degrees C).
The response is the color removal efficiency (CRE in precentage). There
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are 90 factor/level combinations, each observed once (you may assume a
completely randomized design). The data are in the table below (data from
Kordkandi and Forouzesh 2014 via Lye 2019, data set DyeRemoval).

Persulfate/Dye
355 710 1065

Temp Time 10 15 20 10 15 20 10 15 20
60 5 14.6 12.4 10.6 17.8 14.1 12.0 20.5 16.0 10.5

10 26.1 18.8 17.3 28.7 22.4 16.6 33.0 27.2 20.0
15 34.3 25.9 21.4 37.1 29.3 22.1 43.1 35.1 25.7
20 39.6 27.6 23.8 45.3 35.0 25.7 51.7 42.8 31.6
25 44.0 30.4 26.1 50.0 38.3 29.5 60.0 49.9 36.3

70 5 33.5 20.4 19.5 40.6 29.3 27.1 48.6 33.5 30.6
10 48.5 33.3 29.2 66.2 43.3 39.0 74.4 56.4 51.6
15 59.4 38.8 33.7 81.1 52.2 51.8 89.7 71.8 65.2
20 65.4 43.2 38.5 88.5 60.1 59.3 95.9 82.4 74.6
25 70.6 46.8 44.1 92.6 67.1 66.1 99.1 88.6 81.5

Analyze these data to determine the influential effects on dye removal.

Consider a balanced four by three factorial. Show that orthogonal con-Question 8.1
trasts in row means (ignoring factor B) are also orthogonal contrasts for all
twelve treatments when the contrast coefficients have been repeated across
rows (wij = wi). Show that a contrast in the row means and the analogous
contrast in all twelve treatment means have the same sums of squares.

In a two-way factorial, we have defined µ̂ as the grand mean of the data,Question 8.2
µ̂+ α̂i as the mean of the responses for the ith level of factor A, µ̂+ β̂j as the
mean of the responses for the jth level of factor B, and µ̂ + α̂i + β̂j + α̂βij
as the mean of the ijth factor-level combination. Show that this implies our
zero-sum restrictions on the estimated effects.

Suppose that we use the same idea, but instead of ordinary averages we
use weighted averages with vij as the weight for the ijth factor-level combi-
nation. Derive the new zero-sum restrictions for these weighted averages.
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Chapter 9

Further Topics in Factorials

This chapter addresses some additional key topics that users of factorials
should know. Some of these are simple generalizations of ideas from non-
factorial data, but others are new. Here we look at:

• Power and sample size for factorials.

• Analysis of unbalanced factorials.

• Contrasts and multiple comparisons for factorials.

• Models for interaction.

• Tools for two-series factorials.

9.1 Power and Sample Size

Chapter 7 described the computation of power and sample size for com-
pletely randomized designs. If we ignore the factorial structure and consider
our treatments simply as g treatments, then we can use the methods of Chap-
ter 7 to compute power and sample size for the overall null hypothesis of no
model effects. Recall that power depends on the Type I error rate EI , numer-
ator and denominator degrees of freedom, and the effects, sample sizes, and
error variance through the noncentrality parameter.

For factorial data, we usually test null hypotheses about main effects or
interactions in addition to the overall null hypothesis of no model effects. Compute power

for main effects
and interactions

separately

Power for these tests again depends on the Type I error rate EI , numerator
and denominator degrees of freedom, and the effects, sample sizes, and error
variance through the noncentrality parameter, so we can do the same kinds
of power and sample size computations for factorial effects once we identify
the degrees of freedom and noncentrality parameters.

We will address power and sample size only for balanced data, because
most factorial experiments are designed to be balanced, and simple formulae Power for

balanced datafor noncentrality parameters exist only for balanced data. For concreteness,
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we present the formulae in terms of a three-factor design; the generalization
to more factors is straightforward. In a factorial, main effects and interactions
are tested separately, so we can perform a separate power analysis for each
main effect and interaction. The numerator degrees of freedom are simply
the degrees of freedom for the factorial effect: for example, (b−1)(c−1) for
the BC interaction. Error degrees of freedom (N − abc) are the denominator
degrees of freedom for all our tests.

The noncentrality parameter depends on the factorial parameters, sample
size, and error variance. The algorithm for a noncentrality parameter in a
balanced design is

1. Square the factorial effects and sum them,

2. Multiply this sum by the total number of data in the design divided byNoncentrality
parameter the number of levels in the effect, and

3. Divide that product by the error variance.

For the AB interaction, this noncentrality parameter is

N
ab

∑
ij αβ

2
ij

σ2
=
nc
∑

ij αβ
2
ij

σ2
.

The factor in step 2 equals the number of data values observed at each level of
the given effect. For the AB interaction, there are n values in each treatment,
and c treatments with the same ij levels, for a total of nc observations in each
ij combination.

As in Chapter 7, minimum sample sizes to achieve a given power can
be found iteratively, literally by trying different sample sizes and finding the
smallest one that achieves the required power.

Example 9.1 Power for zinc retention
Recall the zinc retention design of Example 8.4. The treatments have a

4 (meal protein) by 2 (meal zinc) by 2 (diet zinc) structure. Assume that we
will test at the .01 level and have the following design criteria:

1. We need power .9 for detecting the situation where any two individual
levels of a main effect differ by 20.

2. We need power .8 for detecting the situation where any two individual
two-factor interaction effects differ by 10.

3. We need power .6 for detecting the situation where any two individual
three-factor interaction effects differ by 10.

We believe that the error variance is 50. The smallest sum of squared effects
where two main effects differ by 20 is 200 ((−10)2 + 102 + 0); the smallest
sum of squared effects where two two-way interaction effects differ by 10 is
100 ((−5)2 + 52 + 52 + (−5)2 + 0); and the smallest sum of squared effects
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where two three-way interaction effects differ by 10 is 200 ((−5)2 + 52 +
52 + (−5)2 + (−5)2 + 52 + 52 + (−5)2 + 0).

We can use the function mixed.power to compute power in a factorial
and thence choose our sample size.

1 > mixed.power(˜mp*mz*dz,c(4,2,2,2),list(Error=50,mp=200/3,mz=200/1,dz=200/1,
"mp:mz"=100/3,"mp:dz"=100/3,"mz:dz"=100/1,"mp:mz:dz"=200/3),alpha=.01)

num.ev den.ev num.df den.df power
Intercept 50.0000 50 1 16 0.01
mp 583.3333 50 3 16 0.94
mz 3250.0000 50 1 16 1.00
dz 3250.0000 50 1 16 1.00
mp:mz 183.3333 50 3 16 0.26
mp:dz 183.3333 50 3 16 0.26
mz:dz 850.0000 50 1 16 0.84
mp:mz:dz 183.3333 50 3 16 0.26

The arguments to mixed.power are a one-sided model (we have no data
to put on the left hand side) giving variable names and structure, in this case
a full factorial. The second argument is the number of levels for for each
factor (4, 2, 2) and the amount of replication. We start with n = 2. The
third argument is a list, where the name of the component indicates the term
in the model, and the value of the component is the sum of squared effects
for the term divided by term degrees of freedom or the variance in the case
of Error. Any of these except Error could be zero, but we have specified
non-null values for each of our terms. The last argument is simply EI .

The power for main effects already meets our requirement at n = 2, as
does the mz:dz interaction, but other three interactions fall short of their
goal.

2 mixed.power(˜mp*mz*dz,c(4,2,2,5),list(Error=50,mp=200/3,mz=200/1,dz=200/1,
"mp:mz"=100/3,"mp:dz"=100/3,"mz:dz"=100/1,"mp:mz:dz"=200/3),alpha=.01)

num.ev den.ev num.df den.df power
...
mp:mz 383.3333 50 3 64 0.88
mp:dz 383.3333 50 3 64 0.88
mz:dz 2050.0000 50 1 64 1.00
mp:mz:dz 383.3333 50 3 64 0.88

In fact, we need to raise n to 5 to meet the power goals.

It is clear that the interaction power goals are driving the sample size,
at least when we are using this conservative value for non-centrality. Two
things contribute to this. First, our conservative lower bound has the fewest
possible interaction effects non-zero. If all of the interaction effects had ab-
solute value 5, the power would be greater. Second, the multiplier for the
of squared effects in the non-centrality parameter is smaller for interaction
effects.
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3 > mixed.power(˜mp*mz*dz,c(4,2,2,5),list(Error=100,mp=200/3,mz=200/1,dz=200/1,
"mp:mz"=100/3,"mp:dz"=100/3,"mz:dz"=100/1,"mp:mz:dz"=200/3),alpha=.01)

num.ev den.ev num.df den.df power
Intercept 100.0000 100 1 64 0.01
mp 1433.3333 100 3 64 1.00
mz 8100.0000 100 1 64 1.00
dz 8100.0000 100 1 64 1.00
mp:mz 433.3333 100 3 64 0.49
mp:dz 433.3333 100 3 64 0.49
mz:dz 2100.0000 100 1 64 0.96
mp:mz:dz 433.3333 100 3 64 0.49

4 > power.f.test(ncp=5*200/100,df1=3,df2=64,alpha=.01)
[1] 0.4901104

If the error variance were 100 instead of 50, then the power values all de-
crease, although only three interactions fail to meet our goals. The last line
gives an alternative method of computing power for the three-way interaction
with n = 5, relating mixed.power to our previous power.f.test.

9.2 Unbalanced Data

Our discussion of factorials to this point has assumed balance; that is, that all
factor-level combinations have the same amount of replication. When this isBalanced versus

unbalanced data not true, the data are said to be unbalanced. The analysis of unbalanced data
is more complicated, in part because there are no simple formulae for the
quantities of interest, but also because it is not as clear what the appropriate
quantities should be.

The root cause of these complications has to do with orthogonality, or
rather the lack of it. When the data are balanced, a contrast for one main
effect or interaction is orthogonal to a contrast for any other main effect orImbalance

destroys
orthogonality

interaction. One consequence of this orthogonality is that we can estimate
effects and compute sums of squares one term at a time, and the results for
that term do not depend on what other terms are in the model. When the
data are unbalanced, the results we get for one term depend on what other
terms are in the model, so we must to some extent do all the computations
simultaneously.

The questions we want to answer do not change because the data are
unbalanced. We still want to determine which terms are required to model
the response adequately, and we may wish to test specific null hypothesesBuild models

and/or test
hypotheses

about model parameters. We made this distinction for balanced data in Sec-
tion 8.11, even though the test statistics for comparing models or testing hy-
potheses are the same. For unbalanced data, this distinction actually leads to
different tests.

Our discussion will be divided into two parts: building models and test-
ing hypotheses about parameters. We will consider only exact approaches
for computing sums of squares and doing tests. There are approximate meth-Use exact

methods ods for unbalanced factorials that were popular before the easy availability
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Figure 9.1: Residuals versus predicted plot and box plot by weeks
for corrosion data.

of computers for doing all the hard computations. But when you have the
computational horsepower, you might as well use it to get exact results.

9.2.1 Sums of squares in unbalanced data

We have formulated the sum of squares for a term in a balanced ANOVA
model as the difference in error sum of squares for a reduced model that
excludes the term of interest, and that same model with the term of interest
included. The term of interest is said to have been “adjusted for” the terms SS adjusted for

terms in reduced
model

in the reduced model. We also presented simple formulae for these sums of
squares. When the data are unbalanced, we still compute the sum of squares
for a term as a difference in error sums of squares for two models, but there
are no simple formulae to accomplish that task. Furthermore, precisely which Terms in model

affect SStwo models are used doesn’t matter in balanced data so long as they only
differ by the term of interest, but which models are used does matter for
unbalanced data.

Models are usually specified as a sequence of terms. For example, in
a three-factor design we might specify (1, A, B, C) for main effects, or (1,
A, B, AB, C) for main effects and the AB interaction. The “1” denotes the
overall grand mean µ that is included in all models. The sum of squares for a SS(B|1, A) is SS

of B adjusted for
1 and A

term is the difference in error sums of squares for two models that differ only
by that term. For example, if we look at the two models (1, A, C) and (1, A,
B, C), then the difference in error sums of squares will be the sum of squares
for B adjusted for 1, A, and C. We write this as SS(B|1, A,C).

Example 9.2 Anti-corrosion coatings
Aluminum corrosion is a major issue in the aerospace industry, and a

great deal of work has gone into finding coatings that will prevent, or at least
delay, corrosion. Electrochemistry states that only the more reactive of two
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Table 9.1: Open circuit potential (volts) for 64 coated and weathered
aluminum samples. Data from T. Chen; data set Corrosion.

Weeks
Coating Weathering 0 1 2 3
30% B117 -1.019 -0.776 -0.763 -0.762

-1.063 -0.801 -0.748 -0.714
D5894 -1.052 -0.777 -0.763 -0.728

-1.108 -0.884 -0.828 -0.813
40% B117 -1.069 -0.868 -0.781 -0.829

-1.083 -0.851 -0.739 -0.723
D5894 -1.154 -0.895 -0.754 -0.699

-1.211 -0.889 -0.754 -1.319
45% B117 -1.095 -0.889 -0.776 -0.789

-1.166 -0.992 -0.907 -0.897
D5894 -1.326 -1.153 -0.812 -0.785

-1.200 -0.997 -0.930 -0.808
Commercial B117 -1.148 -0.923 -0.705 -0.727

-1.077 -0.903 -0.838 -0.753
D5894 -1.101 -0.855 -0.722 -0.699

-1.055 -0.862 -0.717 -0.758

metals will react when two joined metals are in a corrosive environment. For
this reason, coatings that are magnesium rich continue to be developed for
aluminum. These are called “sacrificial coatings,” because they are literally
consumed while protecting the aluminum underneath.

This experiment compares a commercially available coating to three ex-
perimental coatings, when weathered according to two different protocols for
corrosive conditions (B117 or D5894), maintained for four different lengths
of time (0, 1, 2, or 3 weeks). The three experimental coatings differ in
the concentration of magnesium pigment: 30%, 40%, or 45%. (Too high
a Mg concentration can degrade other desirable properties such as adhesion
or durability.)

Sixty-four aluminum samples are randomly assigned to the thirty-two
combinations of coating, weathering, and time. After treatment, each sample
is tested for its “open circuit potential” (OCP). Lower (more negative) values
are better. Data are shown in Table 9.1.

We begin by fitting the three-factor model to the complete, balanced
dataset.

1 > fit <- lm(ocp˜weeks*coating*weathering,data=Corrosion)
2 > plot(fit,which=1)
3 > with(Corrosion,boxplot(ocp˜weeks))

The residual plot (panel one of Figure 9.1) shows two outliers. Recall that
there are two units per treatment in these data, so one true outlier can look like
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two. The boxplot produced in line 3 (panel two of Figure 9.1) shows that the
outlier is an incredibly low (good) value of OCP observed after three weeks
of weathering. This value is better than all but one of the other responses,
including those for units that were not weathered at all. It thus seems to be
physically implausible. We will analyze without this data point and request
that the experimenter determine whether there was a transcription error (or
some other issue) on this response.

Removing one outlier makes this dataset unbalanced.

4 > anova(tmpfit <- lm(ocp˜coating,data=Corrosion,subset=(1:64)!=32))
Df Sum Sq Mean Sq F value Pr(>F)

coating 3 0.13783 0.045944 1.8688 0.1447
Residuals 59 1.45052 0.024585

5 > model.effects(tmpfit,"coating")
30 40 45 commercial

0.0430250 0.0063625 -0.0771625 0.0277750
6 > anova(tmpfit <- lm(ocp˜weeks+coating,data=Corrosion,subset=(1:64)!=32))

Df Sum Sq Mean Sq F value Pr(>F)
weeks 3 1.26278 0.42093 127.202 < 2.2e-16 ***
coating 3 0.14026 0.04675 14.129 5.696e-07 ***
Residuals 56 0.18531 0.00331

7 > model.effects(lm(tmpfit,"coating")
30 40 45 commercial

0.04092325 0.01266776 -0.07926425 0.02567325
8 > anova(tmpfit <- lm(ocp˜weathering+coating,data=Corrosion,subset=(1:64)!=32))

Df Sum Sq Mean Sq F value Pr(>F)
weathering 1 0.01037 0.010367 0.4175 0.5207
coating 3 0.13768 0.045892 1.8480 0.1485
Residuals 58 1.44031 0.024833

9 > model.effects(tmpfit,"coating")
30 40 45 commercial

0.043237288 0.005725636 -0.076950212 0.027987288
10 > anova(tmpfit <- lm(ocp˜weeks+weathering+coating,data=Corrosion,

subset=(1:64)!=32))
Df Sum Sq Mean Sq F value Pr(>F)

weeks 3 1.26278 0.42093 129.8914 < 2.2e-16 ***
weathering 1 0.00736 0.00736 2.2713 0.1375
coating 3 0.13998 0.04666 14.3986 4.858e-07 ***
Residuals 55 0.17823 0.00324

11 > model.effects(tmpfit,"coating")
30 40 45 commercial

0.04110938 0.01210937 -0.07907813 0.02585937

Lines 4–11 show ANOVA tables and effects for coating for various other
terms preceding coating in the model. Note that all of these sums of squares
for coating differ, and all of the fitted effects for coating differ. This is a result
of the lack of balance.
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12 > anova(tmpfit <- lm(ocp˜weeks*weathering+coating,data=Corrosion,
subset=(1:64)!=32))

Df Sum Sq Mean Sq F value Pr(>F)
weeks 3 1.26278 0.42093 134.3364 < 2.2e-16 ***
weathering 1 0.00736 0.00736 2.3490 0.1314
coating 3 0.13998 0.04666 14.8913 4.033e-07 ***
weeks:weathering 3 0.01530 0.00510 1.6274 0.1943
Residuals 52 0.16294 0.00313

13 > model.effects(tmpfit,"coating")
30 40 45 commercial

0.04074410 0.01320519 -0.07944340 0.02549410
14 > anova(tmpfit <- lm(terms(ocp˜weeks*weathering+coating,keep.order=TRUE),

data=Corrosion,subset=(1:64)!=32))
Df Sum Sq Mean Sq F value Pr(>F)

weeks 3 1.26278 0.42093 134.3364 < 2.2e-16 ***
weathering 1 0.00736 0.00736 2.3490 0.1314
weeks:weathering 3 0.01475 0.00492 1.5687 0.2081
coating 3 0.14053 0.04684 14.9500 3.85e-07 ***
Residuals 52 0.16294 0.00313

15 > model.effects(tmpfit,"coating")
30 40 45 commercial

0.04074410 0.01320519 -0.07944340 0.02549410

Line 12 shows that R reorders terms in the model so that main effects enter
first (then two-factor interactions, and so on). That means that you need to
tell R that you insist on your chosen order for the terms if you want to have
an interaction in the model before a main effect. Line 14 shows how to do
that using the terms function with keep.order=TRUE. Again, the sum
of squares for coating differs from the previous quantities calculated. Note,
however, that the coefficients in lines 13 and 15 are the same; coefficients
depend on what terms are in the model, but not on the order in which the
terms were entered.

The simplest choice for a sum of squares is sequential sums of squares.
This is called Type I in SAS, and that terminology is also widely used. ForType I SS is

sequential sequential sums of squares, we specify a model and the sum of squares for
any term is adjusted for those terms that precede it in the model. If the
model is (1, A, B, AB, C), then the sequential sums of squares are SS(A|1),
SS(B|1, A), SS(AB|1, A,B), and SS(C|1, A,B,AB). Notice that if you
specify the terms in a different order, you get different sums of squares; theType I SS

depends on order
of terms

sequential sums of squares for (1, A, B, C, AB) are SS(A|1), SS(B|1, A),
SS(C|1, A,B), and SS(AB|1, A,B,C). The anova function in R produces
sequential sums of squares.

Two models that include the same terms in different orders will have
the same estimated treatment effects and interactions. However, models thatEstimated effects

don’t depend on
order of terms

include different terms may have different estimated effects for the terms they
have in common. Thus (1, A, B, AB, C) and (1, A, B, C, AB) will have the
same α̂i’s, but (1, A, B, AB, C) and (1, A, B, C) may have different α̂i’s. We
saw this in Example 9.2.
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9.2.2 Building models

Building models means deciding which main effects and interactions are
needed to describe the data adequately. I build hierarchical models. In a
hierarchical model, the inclusion of any interaction in a model implies the Compare

hierarchical
models

inclusion of any term that is “above” it, where we say that a factorial term U
is above a factorial term V if every factor in term U is also in term V. The goal
is to find the hierarchical model that includes all terms that must be included,
but does not include any unnecessary terms.

Our approach to computing sums of squares when model-building is to
use as the reduced model for term U the largest hierarchical model M that
does not contain U. This is called Type II in SAS, and the SAS terminology
is widely used. In two-factor models, this might be called “Yates’ fitting Type II SS or

Yates’ fitting
constants

constants” or “each adjusted for the other.”
Consider computing Type II sums of squares for all the terms in a three-

factor model. The largest hierarchical models not including ABC, BC, and
C are (1, A, B, C, AB, AC, BC), (1, A, B, C, AC, AB), and (1, A, B, AB),
respectively. Thus for Type II sums of squares, the three-factor interaction is Type II adjusts for

largest hierarchal
model not

including term

adjusted for all main effects and two-factor interactions, a two-factor interac-
tion is adjusted for all main effects and the other two-factor interactions, and
a main effect is adjusted for the other main effects and their interactions,
or SS(ABC|1, A,B,C,AB,AC,BC), SS(BC|1, A,B,C,AB,AC), and
SS(C|1, A,B,AB). In Example 9.2, the Type II sum of squares for coat-
ing is .14053.

It is important to point out that the denominator mean square used for
testing is MSE from the full model. We do not pool “unused” terms into Use MSE from full

modelerror. Thus, the Type II SS for C is SS(C|1, A,B,AB), but the error mean
square for testing is from the model (1, A, B, C, AB, AC, BC, ABC).

Example 9.3 Anti-corrosion coatings, continued
While it is mildly instructive to generate Type II sums of squares by forc-

ing the proper ordering of terms in a model, it is also unnecessarily tedious.

16 > fit2 <- lm(ocp˜weeks*coating*weathering,data=Corrosion,
subset=(1:64)!=32)

17 > car::Anova(fit2,type=2)
Anova Table (Type II tests)

Response: ocp
Sum Sq Df F value Pr(>F)

weeks 1.26103 3 147.6457 < 2.2e-16 ***
coating 0.14053 3 16.4539 1.406e-06 ***
weathering 0.00706 1 2.4812 0.1254
weeks:coating 0.02912 9 1.1363 0.3681
weeks:weathering 0.01538 3 1.8009 0.1676
coating:weathering 0.02210 3 2.5871 0.0708 .
weeks:coating:weathering 0.02347 9 0.9162 0.5242
Residuals 0.08826 31

Line 16 fits the full model with the outlier removed, and we can get the full
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Table 9.2: A highly unbalanced two by two factorial.
B

A Low High
Low 2.7 7.9 26.3 -1.9 30.6 21.5

3.8 27.2 20.9 20.6 14.6
High 26.1 41.1 46.7 57.8 38 39.3

Type II ANOVA table by using the Anova function from the car package
with the argument type=2, as in line 17. Note that the sum of squares
for coating (.14053) is the same as what we found on line 14, with coating
adjusted for weeks, weathering, and weeks:weathering.

We begin by asking whether we need the three factor interaction. It is
not significant, so we can now look at the two-factor interactions. None of
them is significant, so we now look at the main effects. Weeks and coating
are both significant, but weather is not. We would thus include main effects
of weeks and coating in our final model, but not other terms.

Note that the coating:weathering interaction is approaching significance.
If it had been significant, we would have decided to include coating, weath-
ering, and coating:weathering without ever testing coating and weathering
individually. That is, we would maintain hierarchy and not even consider
eliminating an included term for a significant interaction.

Type I sums of squares for the terms in a model will sum to the overall
model sum of squares with g − 1 degrees of freedom. This is not true for
Type II sums of squares, as can be seen in Line 17; the model sum of squares
is 1.5001, but the Type II sums of squares add to 1.4987.

The Type II approach to model building is not foolproof. The following
example shows that in some situations the overall model can be highly sig-
nificant, even though none of the individual terms in the model is significant.

Example 9.4 Unbalanced data puzzle
Consider the data in Table 9.2. These data are highly unbalanced.

1 > fit <- lm(y˜A*B,data=HighlyUnbalanced)
2 > car::Anova(fit,type=2)
Anova Table (Type II tests)

Sum Sq Df F value Pr(>F)
A 485.29 1 4.3187 0.05807 .
B 254.63 1 2.2660 0.15614
A:B 65.24 1 0.5806 0.45967
Residuals 1460.79 13
3 > anova(lm(y˜A:B,data=HighlyUnbalanced))

Df Sum Sq Mean Sq F value Pr(>F)
A:B 3 2876.9 958.96 8.5341 0.002164 **
Residuals 13 1460.8 112.37

Line 1 fits the two-way model for these data, and line 2 shows the Type II
ANOVA. Nothing appears significant here, although the main effect of A has
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a p-value under .06. However, look at the ANOVA for the model in line 3.
This model lumps all three between-treatments degrees of freedom into a sin-
gle term (analogous to a four-level factor), and this three degree of freedom
term is very significant. We thus have a model that is highly significant, but
none of the terms seems to be significant (at least not according to Type II).
That is a little disturbing.

What has actually happened in these data is that either A or B alone
explains a large amount of variation, but they are in some sense explaining
the same variation. This can be seen in lines 4 and 5.

4 > anova(lm(y˜A*B,data=HighlyUnbalanced))
Df Sum Sq Mean Sq F value Pr(>F)

A 1 2557.00 2557.00 22.7555 0.0003658 ***
B 1 254.63 254.63 2.2660 0.1561423
A:B 1 65.24 65.24 0.5806 0.4596671
Residuals 13 1460.79 112.37

5 > anova(lm(y˜B*A,data=HighlyUnbalanced))
Df Sum Sq Mean Sq F value Pr(>F)

B 1 2326.35 2326.35 20.7029 0.0005451 ***
A 1 485.29 485.29 4.3187 0.0580671 .
B:A 1 65.24 65.24 0.5806 0.4596671
Residuals 13 1460.79 112.37

Thus B is not needed if A is already present, A is not needed if B is already
present, and the interaction is never needed. But we need something!

In summary, Type II is usually a good way of building a model, but you Test full model too
should also check on the total predictive capacity of the model to ensure
that a good model is not being hidden due to high correlation between factor
effects.

9.2.3 Testing hypotheses

In some situations we may wish to test specific hypotheses about treatment
means rather than building a model to describe the means. Many of these
hypotheses can be expressed in terms of the factorial parameters, but recall Standard tests

are for equally
weighted factorial

parameters

that the parameters we use in our factorial decomposition carry a certain
amount of arbitrariness in that they assume equally weighted averages. When
the hypotheses of interest correspond to our usual, equally weighted factorial
parameters, testing is reasonably straightforward; otherwise, special purpose
contrasts must be used.

Let’s review how means and parameters correspond in the two-factor sit-
uation. Let µij be the mean of the ijth treatment:

µij = µ+ αi + βj + αβij

with
0 =

∑
i

αi =
∑
j

βj =
∑
i

αβij =
∑
j

αβij .

Let nij be the number of observations in the ijth treatment. Form row and
column averages of treatment means using equal weights for the treatment
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means:Row and column
averages of
treatment
expected values µi• =

b∑
j=1

µij/b

= µ+ αi ,

µ•j =

a∑
i=1

µij/a

= µ+ βj .

The null hypothesis that the main effects of factor A are all zero (αi ≡ 0)
is the same as the null hypothesis that all the row averages of the treatment
means are equal (µ1• = µ2• = · · · = µa•). This is also the same as the null
hypothesis that all factor A main-effects contrasts evaluate to zero.

Testing the null hypothesis that the main effects of factor A are all zero
(αi ≡ 0) is accomplished with an F -test. We compute the sum of squares
for this hypothesis by taking the difference in error sum of squares for twoTest equally

weighted
hypotheses using
Type III SS or
standard
parametric

models: the full model with all factors and interactions, and that model with
the main effect of factor A deleted, or SS(A|1, B,C,AB,AC,BC,ABC)
in a three-factor model. This reduced model is not hierarchical; it includes
interactions with A but not the main effect of A. Similarly, we compute a
sum of squares for any other hypothesis that a set of factorial effects is all
zero by comparing the sum of squares for the full model with the sum of
squares for the model with that effect removed. This may be called “standard
parametric,” “Yates’ weighted squares of means,” or “fully adjusted”; in SAS
it is called Type III.

Example 9.5 Unbalanced data puzzle, continued
Let us continue Example 9.4. If we wish to test the null hypothesis that

αi ≡ 0 or βj ≡ 0, we need to use Type III tests, as shown in line 6.

6 > car::Anova(fit,type=3)
Anova Table (Type III tests)

Sum Sq Df F value Pr(>F)
(Intercept) 5019.8 1 44.6726 1.508e-05 ***
A 500.0 1 4.4492 0.05488 .
B 265.5 1 2.3625 0.14826
A:B 65.2 1 0.5806 0.45967
Residuals 1460.8 13

None of the null hypotheses about main effects or interaction is anywhere
near as significant as the overall model; all have p-values greater than .05.

How can this be so when we know that there are large differences be-
tween treatment means in the data? Consider for a moment the test for factor
A main effects. The null hypothesis is that the factor A main effects are zero,
but no constraint is placed on factor B main effects or the interactions. We
can fit the data fairly well with the αi’s equal to zero, so long as we can
manipulate the βj’s and αβij’s to take up the slack. Similarly, when testing
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factor B, no constraint is placed on factor A main effects or AB interactions.
These three tests of A, B, and AB do not test that all three null hypotheses
are true simultaneously. For that we need to test the overall model with 3
degrees of freedom, and that test is highly significant.

When we test the null hypothesis that a contrast in treatment effects is
zero, we are testing the null hypothesis that a particular linear combination
of treatment means is zero with no other restrictions on the cell means. This Contrast SS are

Type IIIis equivalent to testing that the single degree of freedom represented by the
contrast can be removed from the full model, so the contrast has been ad-
justed for all other effects in the model. Thus the sum of squares for any
contrast is a Type III sum of squares.

Example 9.6 Anti-corrosion coatings, continued
Continuing Example 9.2, the Type III ANOVA can be found at line 18.

18 > car::Anova(fit2,type=3)
Anova Table (Type III tests)

Sum Sq Df F value Pr(>F)
(Intercept) 49.162 1 17268.0770 < 2.2e-16 ***
weeks 1.265 3 148.1638 < 2.2e-16 ***
coating 0.141 3 16.5663 1.319e-06 ***
weathering 0.006 1 2.0064 0.16661
weeks:coating 0.029 9 1.1499 0.35970
weeks:weathering 0.017 3 1.9485 0.14233
coating:weathering 0.022 3 2.6005 0.06978 .
weeks:coating:weathering 0.023 9 0.9162 0.52424
Residuals 0.088 31

19 > linear.contrast(fit2,weathering,c(-1,1))
estimates se t-value p-value lower-ci upper-ci

1 -0.0191875 0.01354607 -1.416463 0.166611 -0.04681489 0.008439889

The Type III sum of squares for weathering (which has 1 degree of freedom)
is .006, different from both Types I and II. The F is 2.0064 with a p-value
of .16661. Line 19 computes a linear contrast for weathering (it has a single
degree of freedom, so there is really only one possible contrast). Notice that
it has exactly the same p-value as we see in the Type III ANOVA, and the
ANOVA F for weathering is the square of the contrast t-statistic.

In this example, Type II and Type III tests are giving the same results:
only main effects of weeks and coating are needed.

9.2.4 Empty cells

The problems of unbalanced data are immensely increased when one or more
of the cells are empty, that is, when there are no data for some factor-level
combinations. The model-building/Type II approach to analysis doesn’t re-
ally change. We can just keep comparing hierarchical models. However, any- Empty cells make

factorial effects
ambiguous

thing depending on the parameters, including estimation and the hypothesis
testing/Type III approach, becomes very problematic, because the parameters
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Table 9.3: A three-by-two table of means with one empty cell, and
two different decompositions of the means into “grand mean”, row,
column, and interaction effects.

196 124
156 309

47

156.0 -23.0 23.0
4.0 59.0 -59.0

76.5 -53.5 53.5
-80.5 -5.5 5.5

133.0 .0 .0
27.0 36.0 -36.0
99.5 -76.5 76.5

-126.5 40.5 -40.5

about which we are making inference are no longer uniquely defined, even
when we are sure we want to work with equal weighting.

When there are empty cells, there are infinitely many different sets of
factorial effects that fit the observed treatment means exactly; these different
sets of effects disagree on what they fit for the empty cells. Consider theMultiple sets of

parameters with
different fits for
empty cells

three-by-two table of means with one empty value, and two different factorial
decompositions of the means into grand mean, row, column, and interaction
effects shown in Figure 9.3. Both of these factorial decompositions meet
the usual zero-sum requirements, and both add together to match the table
of means exactly. The first is what would be obtained if the empty cell had
mean 104, and the second if the empty cell had mean -34.

Because the factorial effects are ambiguous, it makes no sense to test hy-
potheses about the factorial model parameters. For example, are the column
effects above zero or nonzero? What does make sense is to look at simpleUse contrasts to

analyze data with
empty cells

effects and to set up contrasts that make factorial-like comparisons where
possible. For example, levels 1 and 2 of factor A are complete, so we can
compare those two levels with a contrast. Note that the difference of row
means is 72.5, and α2 − α1 is 72.5 in both decompositions. We might also
want to compare level 1 of factor B with level 2 of factor B for the two lev-
els of factor A that are complete. There are many potential ways to choose
interesting contrasts for designs with empty cells.

9.3 Contrasts and Multiple Comparisons for Facto-
rial Data

Contrasts allow us to examine particular ways in which treatments differ.
With factorial data, we can use contrasts to look at how specific main ef-
fects differ and to see patterns in interactions. Indeed, we have seen that theUse contrasts to

explore the
response

usual factorial ANOVA can be built from sets of contrasts. Chapters 4 and 5
discussed contrasts and multiple comparisons in the context of single factor
analysis. These procedures carry over to factorial treatment structures with
little or no modification.

In this section we will discuss contrasts in the context of a three-way
factorial; generalization to other numbers of factors is straightforward. The
factors in our example experiment are drug (one standard drug and two new
drugs), dose (four levels, equally spaced), and administration time (morning
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Expected value
∑
ijk

wijk µijk

Variance σ2
∑
ijk

w2
ijk

nijk

Sum of squares
(
∑

ijk wijk yijk•)
2∑

ijk w
2
ijk/nijk

Confidence interval
∑
ijk

wijk yijk• ± tE/2,N−abc

×
√

MSE
∑

ijk w
2
ijk/nijk

F -test
(
∑

ijk wijk yijk•)
2

MSE
∑

ijk w
2
ijk/nijk

Display 9.1: Contrast formulae for a three-way factorial.

or evening). We will usually assume balanced data, because contrasts for
balanced factorial data have simpler orthogonality relationships.

We saw in one-way analysis that the arithmetic of contrasts is not too
hard; the big issue was finding contrast coefficients that address an interest-
ing question. The same is true for factorials. Suppose that we have a set Inference for

contrasts remains
the same

of contrast coefficients wijk. We can work with this contrast for a factorial
just as we did with contrasts in the one-way case using the formulae in Dis-
play 9.1. These formulae are nothing new, merely the application of our usual
contrast formulae to the design with g = abc treatments. We still need to find
meaningful contrast coefficients.

Pairwise comparisons are differences between two treatments, ignoring
the factorial structure. We might compare the standard drug at the lowest Pairwise

comparisonsdose with morning administration to the first new drug at the lowest dose
with evening administration. As we have seen previously with pairwise com-
parisons, there may be a multiple testing issue to consider, and our pairwise
multiple comparisons procedures (for example, HSD) carry over directly to
the factorial setting.

A simple effect is a particular kind of pairwise comparison. A simple Simple effects are
pairwise

differences that
vary just one

factor

effect is a difference between two treatments that have the same levels of all
factors but one. A comparison between the standard drug at the lowest dose
with morning administration and the standard drug at the lowest dose with
evening administration is a simple effect. Differences of main effects are
averages of simple effects.

The structure of a factorial design suggests that we should also consider
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contrasts that reflect the design, namely main-effect contrasts and interaction
contrasts. In general, we use contrasts with coefficient patterns that mimic
those of factorial effects. A main-effect contrast is one where the coeffi-Main-effect and

interaction
contrasts
examine factorial
components

cients wijk depend only on a single index; for example, k for a factor C
contrast. That is, two contrast coefficients are equal if they have the same
k index. These coefficients will add to zero across k for any i and j. For
interaction contrasts, the coefficients depend only on the indices of factors in
the interaction in question and satisfy the same zero-sum restrictions as their
corresponding model terms. Thus a BC interaction contrast has coefficients
wijk that depend only on j and k and add to zero across j or k when the other
subscript is kept constant. For an ABC contrast, the coefficients wijk must
add to zero across any subscript.

We can use pairwise multiple comparisons procedures such as HSD for
marginal means. Thus to compare all levels of factor B using HSD, we treat
the means y•j•• as b treatment means each with sample size acn and do mul-
tiple comparisons with abc(n − 1) degrees of freedom for error. The samePairwise multiple

comparisons
work for marginal
means

approach works for two-way and higher marginal tables of means. For exam-
ple, treat y•jk• as bc treatment means each with sample size an and abc(n−1)
degrees of freedom for error. Pairwise multiple comparisons procedures also
work when applied to main effects—for example, β̂j—but most do not work
for interaction effects due to the additional zero sum restrictions. (Bonferroni
does work.)

Please note: simple-effects, main-effects, and interaction contrasts are
examples of contrasts that are frequently useful in analysis of factorial data;
there are many other kinds of contrasts.

Use contrasts that address your questions. Don’t be put off if a contrast
that makes sense to you does not fit into one of these neat categories.

Example 9.7 Factorial contrasts
Let’s look at some factorial contrasts for our three-way drug test exam-

ple. Coefficients wijk for these contrasts are shown in Table 9.4. Suppose
that we want to compare morning and evening administration times averaged
across all drugs and doses. The first contrast in Table 9.4 has coefficients -1
for evening and 1 for morning and thus makes the desired comparison. This is
a main-effect contrast (coefficients only depend on administration time, fac-
tor C). We can get the same information by using a contrast with coefficients
(1, -1) and the means y••k• or effects γ̂k.

The response presumably changes with drug dose (factor B), so it makes
sense to examine dose as a quantitative effect. To determine the linear effect
of dose, use a main-effect contrast with coefficients -3, -1, 1, and 3 for doses
1 through 4 (Appendix Table C.6); this is the second contrast in Table 9.4.
As with the first example, we could again get the same information from a
contrast in the means y•j•• or effects β̂j using the same coefficients. The
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Table 9.4: Example contrasts.
Morning versus Evening

Morning/Dose Evening/Dose
Drug 1 2 3 4 Drug 1 2 3 4

1 1 1 1 1 1 -1 -1 -1 -1
2 1 1 1 1 2 -1 -1 -1 -1
3 1 1 1 1 3 -1 -1 -1 -1

Linear in Dose
Morning/Dose Evening/Dose

Drug 1 2 3 4 Drug 1 2 3 4
1 -3 -1 1 3 1 -3 -1 1 3
2 -3 -1 1 3 2 -3 -1 1 3
3 -3 -1 1 3 3 -3 -1 1 3

Linear in Dose by Morning versus Evening
Morning/Dose Evening/Dose

Drug 1 2 3 4 Drug 1 2 3 4
1 -3 -1 1 3 1 3 1 -1 -3
2 -3 -1 1 3 2 3 1 -1 -3
3 -3 -1 1 3 3 3 1 -1 -3

Linear in Dose by Morning versus Evening
by Drug 2 versus Drug 3

Morning/Dose Evening/Dose
Drug 1 2 3 4 Drug 1 2 3 4

1 0 0 0 0 1 0 0 0 0
2 -3 -1 1 3 2 3 1 -1 -3
3 3 1 -1 -3 3 -3 -1 1 3

Linear in Dose for Drug 1
Morning/Dose Evening/Dose

Drug 1 2 3 4 Drug 1 2 3 4
1 -3 -1 1 3 1 -3 -1 1 3
2 0 0 0 0 2 0 0 0 0
3 0 0 0 0 2 0 0 0 0

simple coefficients -3, -1, 1, and 3 are applicable here because the doses are
equally spaced and balance gives equal sample sizes.

A somewhat more complex question is whether the linear effect of dose is
the same for the two administration times. To determine this, we compute the
linear effect of dose from the morning data, and then subtract the linear effect
of dose from the evening data. This is the third contrast in Table 9.4. This
is a two-factor interaction contrast; the coefficients add to zero across dose
or administration time. Note that this contrast is literally the elementwise
product of the two corresponding main-effects contrasts.

A still more complex question is whether the dependence of the linear
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effect of dose on administration times is the same for drugs 2 and 3. To de-
termine this, we compute the linear in dose by administration time interaction
contrast for drug 2, and then subtract the corresponding contrast for drug 3.
This three-factor interaction contrast is the fourth contrast in Table 9.4. It
is formed as the elementwise product of the linear in dose by administration
time two-way contrast and a main-effect contrast between drugs 2 and 3.

Finally, the last contrast in Table 9.4 is an example of a useful contrast
that is not a simple effect, main effect, or interaction contrast. This contrast
examines the linear effect of dose for drug one, averaged across time.

The interaction contrasts in Example 9.7 illustrate an important specialProducts of
main-effect
contrasts

case of interaction contrasts, namely, products of main-effect contrasts. These
products allow us to determine if an interesting contrast in one main effect
varies systematically according to an interesting contrast in a second main
effect.

We can reexpress a main-effect contrast in the individual treatment means
yijk• in terms of a contrast in the factor main effects or the factor marginal
means. For example, a contrast in factor C can be reexpressed as

∑
ijk

wijk yijk• =
∑
k

w11k

∑
ij

yijk•


=

∑
k

wk y••k•

=
∑
k

wk γ̂k ,

where wk = abw11k. Because scale is somewhat arbitrary for contrast coef-Contrasts for
treatment means
or marginal
means

ficients, we could also use wk = w11k and still get the same kind of informa-
tion. For balanced data, two main-effect contrasts for the same factor with
coefficients wk and w?k are orthogonal if∑

k

wk w
?
k = 0 .

We can also express an interaction contrast in the individual treatment
means as a contrast in marginal means or interaction effects. For example,Interaction

contrasts of
means or effects

suppose wijk is a set of contrast coefficients for a BC interaction contrast.
Then we can rewrite the contrast in terms of marginal means or interaction
effects: ∑

ijk

wijk yijk• =
∑
jk

wjk y•jk•

=
∑
jk

wjk β̂γjk
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where aw1jk = wjk. Two interaction contrasts for the same interaction with
coefficients wjk and w?jk are orthogonal if∑

jk

wjk w
?
jk = 0 .

For balanced data, the formulae in Display 9.1 can be simplified by re-
placing the sample size nijk by the common sample size n. The formulae can Simplied formulae

for main-effect
and interaction

contrasts

be simplified even further for main-effect and interaction contrasts, because
they can be rewritten in terms of the effects or marginal means of interest in-
stead of using all treatment means. Consider a main-effect contrast in factor
C with coefficients wk; the number of observations at the kth level of factor
C is abn. We have for the contrast

∑
k wk y••k•:

Expected value
∑

k wk γk

Variance
∑

k w
2
k σ

2/(abn)

Sum of squares
(
∑

k wk y••k•)
2∑

k w
2
k/(abn)

Confidence interval
∑

k wk y••k•±
tE/2,N−abc

√
MSE

∑
k w

2
k/(abn)

F -test
(
∑

k wk y••k•)
2

MSE
∑

k w
2
k/(abn)

The simplification is similar for interaction contrasts. For example, the BC
interaction contrast

∑
jk wjk y•jk• has sum of squares

(
∑

jk wjk y•jk•)
2∑

jk w
2
jk/(an)

(an is the “sample size” at each jk combination).
The perceptive reader may have noticed that we can do a lot of F -tests in

the analysis of a factorial, but we haven’t been talking about multiple com-
parisons adjustments for the F -tests. Why this resounding silence, when
we were so careful to describe and account for multiple testing for pairwise
comparisons? I have no good answer; common statistical practice seems F -tests in

factorial ANOVA
not usually

adjusted for
multiple

comparisons

inconsistent in this regard. What common practice does is treat each main
effect and interaction as a separate “family” of hypotheses and make multi-
ple comparisons adjustments within a family but not between families.

We sometimes use an informal multiple comparisons correction when
building hierarchical models. Suppose that we have a three-way factorial,
and only the three-way interaction is significant, with a p-value of .04; the
main-effects and two-factor interactions are not near significance. I would
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probably conclude that the low p-value for the three-way interaction is due
to chance rather than interaction effects. I conclude this because I usually
expect main effects to be bigger than two-factor interactions, and two-factor
interactions to be bigger than three-factor interactions. I thus interpret anBe wary of

isolated
significant
interactions

isolated, marginally significant three-way interaction as a null result. I know
that isolated three-way interaction can occur, but it seems less likely to me
than chance occurrence of a moderately low p-value.

Somewhat more quantitatively, a significant interaction in a hierarchical
model forces the inclusion of lower-order terms, so instead of merely testing
an individual term U, we could consider testing the composite of U and all
of the lower-order terms that are included in U that would not have been
included in the model but for the significance of U. For example, consider
a four factor model with apparently significant terms A, B, C, D, AB, and
ABCD. If we do not include ABCD in the model, we only have five terms.
If we include ABCD, we must also include AC, AD, BC, BD, CD, ABC,
ABD, ACD, BCD as well as ABCD. Thus before I throw all 10 additional
terms in the model simply because ABCD was significant, I can also test
the composite of those 10 terms. This adds a “step down” aspect to our
approach and helps guard against the random small p-value in higher-order
terms that imply the inclusion of multiple additional terms. This helps protect
the experimentwise error rate.

9.4 Modeling Interaction

Analysis of factorially structured data should be more than just an enumer-
ation of which main effects and interactions are significant. We should look
closely at the data to try to determine what the data are telling us by under-Look at more than

just significance
of main effects
and interactions

standing the main effects and interactions in the data. For example, reporting
that factor B only affects the response at the high level of factor A is more
informative than reporting that factors A and B have significant main effects
and interactions. One of my pet peeves is an analysis that just reports signif-
icant terms.

An interaction is a deviation from additivity. If the effect of going from
dose 1 to dose 2 changes from drug 2 to drug 3, then there is an interac-
tion between drug and dose. Similarly, if the interaction of drug and dose
is different in morning and evening applications, then there is a three-factorModels for

interaction help to
understand data

interaction between drug, dose, and time. Try to understand and model any
interaction that may be present in your data. This is often not easy, but when
it can be done it leads to much greater insight into what the data have to
say. As Tolstoy should have said, “Additive data sets are all alike; every
non-additive data set is non-additive in its own way.” This section discusses
several specific models for interaction; there are many others.
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9.4.1 One-cell interaction

A one-cell interaction is a common type of interaction where most of the ex-
periment is additive, but one treatment deviates from the additive structure.
The name “cell” comes from the idea that one cell in the table of treatment A single unusual

treatment can
make all

interactions
significant

means does not follow the additive model. More generally, there may be
one or a few cells that deviate from a relatively simple model. If the devia-
tion from the simple model in these few cells is great enough, all the usual
factorial interaction effects can be large and statistically significant.

Understanding one-cell interaction is easy: the data follow a simple model
except for a single cell or a few cells. Finding a one-cell interaction is harder.
It requires a careful study of the interaction effects or plots or a more sophis-
ticated estimation technique than the least squares we have been using (see
Daniel 1976 or Oehlert 1994). Be warned, large one-cell interactions can be
masked or hidden by other large one-cell interactions.

One-cell interactions can sometimes be detected by examination of in-
teraction effects. A table of interaction effects adds to zero across rows or
columns. A one-cell interaction shows up in the effects as an entry with a
large absolute value. The other entries in the same row and column are mod-
erate and of the opposite sign, and the remaining entries are small and of
the same sign as the interacting cell. For example, a three by four factorial
with all responses 0 except for 12 in the (2,2) cell has interaction effects as
follows: Characteristic

pattern of effects
for a one-cell

interaction1 -3 1 1
-2 6 -2 -2
1 -3 1 1

Rearranging the rows and columns to put the one-cell interaction in a corner
emphasizes the pattern:

6 -2 -2 -2
-3 1 1 1
-3 1 1 1

Example 9.8 One-cell interaction
Consider the data in Table 9.5 (Table 1 of Oehlert 1994). These data are

responses from an experiment with four factors, each at two levels labeled
low and high, and replicated twice. A standard factorial ANOVA of these
data shows that all main effects and interactions are highly significant, and
analysis of the residuals reveals no problems.
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Table 9.5: Data from a replicated four-factor experiment. All factors
have two levels, labeled low and high. Data set OneCell.

D
A B C low high
low low low 26.1 27.5 23.5 21.1
low low high 22.8 23.8 30.6 32.5
low high low 22.0 20.2 28.1 29.9
low high high 30.0 29.3 38.3 38.5
high low low 11.4 11.0 20.4 22.0
high low high 22.3 20.2 28.7 28.8
high high low 18.9 16.4 26.6 26.5
high high high 29.6 29.8 34.5 34.9

1 > fit <- lm(response˜A*B*C*D,data=OneCellExample)
2 > anova(fit)

Df Sum Sq Mean Sq F value Pr(>F)
A 1 120.90 120.90 117.4511 8.871e-09 ***
B 1 204.02 204.02 198.1979 1.970e-10 ***
C 1 472.78 472.78 459.2896 3.288e-13 ***
D 1 335.40 335.40 325.8336 4.621e-12 ***
A:B 1 18.00 18.00 17.4863 0.0007050 ***
A:C 1 24.85 24.85 24.1421 0.0001559 ***
B:C 1 27.38 27.38 26.5987 9.541e-05 ***
A:D 1 15.12 15.12 14.6934 0.0014664 **
B:D 1 10.81 10.81 10.5027 0.0051192 **
C:D 1 6.48 6.48 6.2951 0.0232492 *
A:B:C 1 11.52 11.52 11.1913 0.0041075 **
A:B:D 1 34.03 34.03 33.0601 2.985e-05 ***
A:C:D 1 50.00 50.00 48.5732 3.161e-06 ***
B:C:D 1 22.11 22.11 21.4803 0.0002754 ***
A:B:C:D 1 13.78 13.78 13.3880 0.0021183 **
Residuals 16 16.47 1.03

In an attempt to understand the interaction, we make an interaction plot on
line 3, as shown in Figure 9.2. The lines look parallel, except the treatment
with all factors low deviates from the pattern. Note that casual inspection of
the data could have suggested that the treatment with mean 11.2 is the inter-
acting cell, but that is incorrect. Line 4 creates a dummy (indicator) variable
that is all zero except for the treatment with all factors low.
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3 > with(OneCellExample,interactplot(A:B,C:D,response))
4 > all.low <- rep(0,32);alllow[1:2] <- 1
5 > fit2 <- lm(response˜A+B+C+D+all.low+A:B:C:D,data=OneCellExample)
6 > anova(fit2)

Df Sum Sq Mean Sq F value Pr(>F)
A 1 120.90 120.90 117.4511 8.871e-09 ***
B 1 204.02 204.02 198.1979 1.970e-10 ***
C 1 472.78 472.78 459.2896 3.288e-13 ***
D 1 335.40 335.40 325.8336 4.621e-12 ***
all.low 1 217.35 217.35 211.1485 1.229e-10 ***
A:B:C:D 10 16.74 1.67 1.6263 0.1861
Residuals 16 16.47 1.03

Line 5 fits a model that includes main effects of the factor, the one-cell in-
dicator variable, and all the rest of the interaction in the data rolled up into
one term. Note that inclusion of the indicator variable makes the model non-
orthogonal; the data are still balanced, but the model we fit is not the sim-
ple orthogonal effects model, and we need to treat it similarly to a situation
where the data are unbalanced. The (Type I) ANOVA on line 6 shows that
the dummy variable is highly significant, and there is no indication of other
interaction remaining in the data.

If we want to look at coefficients, we need to refit the model using only
the terms of interest, because inclusion of unneeded terms will affect the co-
efficients.

7 > fit3 <- lm(response˜A+B+C+D+all.low,data=OneCellExample)
8 > summary(fit3)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 25.0330 0.2087 119.962 < 2e-16 ***
A1 1.1580 0.2087 5.549 7.94e-06 ***
B1 -3.3108 0.2087 -15.866 6.88e-15 ***
C1 -4.6295 0.2087 -22.186 < 2e-16 ***
D1 -4.0233 0.2087 -19.280 < 2e-16 ***
all.low 12.5727 0.9638 13.045 6.45e-13 ***

Residual standard error: 1.13 on 26 degrees of freedom
Multiple R-squared: 0.976,Adjusted R-squared: 0.9714
F-statistic: 211.5 on 5 and 26 DF, p-value: < 2.2e-16

It looks like the interacting treatment is about 12.6 units higher than the ad-
ditive model fit to the rest of the data would suggest.

9.4.2 Quantitative factors

A second type of interaction that can be easily modeled occurs when one
or more of the factors have quantitative levels (doses). First consider the Polynomial

models for
quantitative

factors

situation when the interacting factors are all quantitative. Suppose that the
doses for factor A are zAi, and those for factor B are zBj . We can build a
polynomial regression model for cell means as

µij = θ0 +
a−1∑
r=1

θArz
r
Ai +

b−1∑
s=1

θBsz
s
Bj +

a−1∑
r=1

b−1∑
s=1

θArBsz
r
Aiz

s
Bj .
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Figure 9.2: Interaction plot for data in Table 9.5.

Polynomial terms in zAi model the main effects of factor A, polynomial terms
in zBj model the main effects of factor B, and cross product terms model the
AB interaction. Models of this sort are most useful when relatively few of
the polynomial terms are needed to provide an adequate description of the
response.

A polynomial term zrAiz
s
Bj is characterized by its exponents (r, s). A

term with exponents (r, s) is “above” a term with exponents (u, v) if r ≤ u
and s ≤ v; we also say that (u, v) is below (r, s). The mnemonic here isLower powers are

above higher
powers

that in an ANOVA table, simpler terms (such as main effects) are above more
complicated terms (such as interactions). This is a little confusing, because
we also use the phrase higher order for the more complicated terms, but
higher order terms appear below the simpler terms.

A term in this polynomial model is needed if its own sum of squares is
large, or if it is above a term with a large sum of squares. This preserves aUse hierarchical

polynomial
models

polynomial hierarchy. Non-hierarchical polynomial models only make sense
when there is an unambiguous zero for the variable. For example, a non-
hierarchical, quadratic-only model in degrees F becomes a model with linear
and quadratic terms when re-expressed in degrees C. Even for things like
mass or length where there is an unambiguous zero, we often need to recenter
the variables to make the problem numerically stable. For example, in an
experiment where the factor length ranges from 99.9 to 100.1 meters, we
will be much better off subtracting 100 from the length and working with
polynomials on the base factor ranging from –.1 to .1.

The Type II sum of squares for a term is the difference in error sums of
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squares for two models: the model with all terms that are not below the term
of interest and the model of all terms that are not below the term of interest
plus the term of interest. Thus, the sum of squares for the term z2Aiz

1
Bi is the Computing

polynomial sums
of squares

error sum of squares for the model with terms zAi, z2Ai, zBi and zAizBi, less
the error sum of squares for the model with terms zAi, z2Ai, zBi, zAizBi, and
z2Aiz

1
Bi.

Computation of the polynomial sums of squares can usually be accom-
plished in statistical software with one command. Recall, however, that the
polynomial coefficients θ depend on what other polynomial terms are in a
given regression model. Thus if we determine that only linear and quadratic Compute

polynomial
coefficients for

final model
including only

selected terms

terms are needed, we must refit the model with just those terms to find their
coefficients when the higher order terms are omitted. In particular, you
should not use coefficients from the full model when predicting with a model
with fewer terms. Use the full model MSE for determining which terms to in-
clude, but use coefficients computed for a model including just your selected
terms.

Example 9.9 Amylase activity, continued
Recall the amylase specific activity data of Example 8.14. The three

factors are analysis temperature, growth temperature, and variety. On the
log scale, the analysis temperature by growth temperature interaction (both
quantitative variables) was marginally significant. Let us explore the main
effects and interactions using quantitative variables. We begin by fitting using
orthogonal polynomials as shown on lines 1–2.
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1 > fit <- lm(log(amylase)˜poly(aTemp.z,7)*poly(gTemp.z,1)*variety,
data=AmylaseActivity)

2 > summary(fit)
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.805966 0.007544 769.610 < 2e-16 ***
poly(aTemp.z, 7)1 0.935612 0.073916 12.658 < 2e-16 ***
poly(aTemp.z, 7)2 -1.445585 0.073916 -19.557 < 2e-16 ***
poly(aTemp.z, 7)3 -0.204923 0.073916 -2.772 0.007280 **
poly(aTemp.z, 7)4 0.053281 0.073916 0.721 0.473641
poly(aTemp.z, 7)5 -0.001156 0.073916 -0.016 0.987566
poly(aTemp.z, 7)6 0.058510 0.073916 0.792 0.431536
poly(aTemp.z, 7)7 -0.052764 0.073916 -0.714 0.477924
poly(gTemp.z, 1) 0.066178 0.073916 0.895 0.373976
variety1 0.078367 0.007544 10.388 2.31e-15 ***
poly(aTemp.z, 7)1:poly(gTemp.z, 1) 1.844241 0.724228 2.546 0.013298 *
poly(aTemp.z, 7)2:poly(gTemp.z, 1) 0.092453 0.724228 0.128 0.898820
poly(aTemp.z, 7)3:poly(gTemp.z, 1) 1.671746 0.724228 2.308 0.024224 *
poly(aTemp.z, 7)4:poly(gTemp.z, 1) 0.772194 0.724228 1.066 0.290325
poly(aTemp.z, 7)5:poly(gTemp.z, 1) -0.813064 0.724228 -1.123 0.265775
poly(aTemp.z, 7)6:poly(gTemp.z, 1) 0.307444 0.724228 0.425 0.672615
poly(aTemp.z, 7)7:poly(gTemp.z, 1) 0.474707 0.724228 0.655 0.514517
poly(aTemp.z, 7)1:variety1 -0.033144 0.073916 -0.448 0.655382
poly(aTemp.z, 7)2:variety1 0.137003 0.073916 1.853 0.068422 .
poly(aTemp.z, 7)3:variety1 -0.046678 0.073916 -0.632 0.529962
poly(aTemp.z, 7)4:variety1 0.029442 0.073916 0.398 0.691721
poly(aTemp.z, 7)5:variety1 -0.061100 0.073916 -0.827 0.411531
poly(aTemp.z, 7)6:variety1 0.002074 0.073916 0.028 0.977707
poly(aTemp.z, 7)7:variety1 0.030507 0.073916 0.413 0.681185
poly(gTemp.z, 1):variety1 0.293245 0.073916 3.967 0.000186 ***
poly(aTemp.z, 7)1:poly(gTemp.z, 1):variety1 -0.011619 0.724228 -0.016 0.987250
poly(aTemp.z, 7)2:poly(gTemp.z, 1):variety1 0.165103 0.724228 0.228 0.820396
poly(aTemp.z, 7)3:poly(gTemp.z, 1):variety1 -1.976362 0.724228 -2.729 0.008195 **
poly(aTemp.z, 7)4:poly(gTemp.z, 1):variety1 -0.055415 0.724228 -0.077 0.939247
poly(aTemp.z, 7)5:poly(gTemp.z, 1):variety1 0.746643 0.724228 1.031 0.306445
poly(aTemp.z, 7)6:poly(gTemp.z, 1):variety1 0.017989 0.724228 0.025 0.980261
poly(aTemp.z, 7)7:poly(gTemp.z, 1):variety1 -0.281487 0.724228 -0.389 0.698809

Here are a few things to note.

1. None of the terms involving powers 4 or higher in analysis temperature
is significant.

2. The cubic-in-analysis-temperature by linear-in-growth-temperature by
variety term is significant.

3. No terms in the analysis-temperature by variety interaction are signifi-
cant.

4. The linear-by-linear and cubic-by-linear terms in the analysis-temperature
by growth-temperature interaction are modestly significant.

We can quantify item 1 by refitting using only the first three powers and com-
paring the models.
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3 > fit123 <- lm(log(amylase)˜poly(aTemp.z,3)*poly(gTemp.z,1)*variety,
data=AmylaseActivity)

4 > anova(fit123,fit)
Analysis of Variance Table

Model 1: log(amylase) ˜ poly(aTemp.z, 3) * poly(gTemp.z, 1) * variety
Model 2: log(amylase) ˜ poly(aTemp.z, 7) * poly(gTemp.z, 1) * variety
Res.Df RSS Df Sum of Sq F Pr(>F)

1 80 0.38735
2 64 0.34967 16 0.03768 0.431 0.9683

Line 4 shows that the 16 degrees of freedom for powers 4–7 are not signifi-
cant overall.

Item two brings a quandary. That cubic-in-analysis-temperature by linear-
in-growth-temperature by variety term looks significant, but because we want
to work with hierarchical polynomials, including that term means that we
must also include five other (non-significant) terms: linear-in-analysis-temperature
by linear-in-growth-temperature by variety, quadratic-in-analysis-temperature
by linear-in-growth-temperature by variety, and linear-, quadratic-, and cubic-
in-analysis-temperature by variety. We can test whether that one apparently
significant term is sufficient to justify five other non-significant terms by fit-
ting and comparing a reduced model without those six degrees of freedom.

5 > fit123red1 <- lm(log(amylase)˜poly(aTemp.z,3)*poly(gTemp.z,1)+
variety*poly(gTemp.z,1),data=AmylaseActivity)

6 > anova(fit123red1,fit123,fit)
Analysis of Variance Table

Model 1: log(amylase) ˜ poly(aTemp.z, 3) * poly(gTemp.z, 1) + variety *
poly(gTemp.z, 1)

Model 2: log(amylase) ˜ poly(aTemp.z, 3) * poly(gTemp.z, 1) * variety
Model 3: log(amylase) ˜ poly(aTemp.z, 7) * poly(gTemp.z, 1) * variety
Res.Df RSS Df Sum of Sq F Pr(>F)

1 86 0.45037
2 80 0.38735 6 0.06302 1.9224 0.0906 .
3 64 0.34967 16 0.03768 0.4310 0.9683

In this case, the combined six degree of freedom term is not significant, with
a p-value of .09.

Item three is consistent with what we saw when we considered analysis
temperature as an eight level categorical factor; no individual polynomial
terms within it are significant.

Item four illustrates a bothersome phenomenon—the averaging involved
in multi-degree-of-freedom mean squares can obscure some interesting ef-
fects in a cloud of uninteresting effects. The seven degree-of-freedom growth
temperature by analysis temperature interaction is marginally significant with
a p-value of .054, but two of the individual degrees of freedom in that seven
degree-of-freedom bundle are rather more significant. We now test whether
the linear-, quadratic-, and cubic by linear effects are significant when con-
sidered together as a three degree of freedom effect (recall that quadratic by
linear is not significant by itself).
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7 > fit123red2 <- lm(log(amylase)˜poly(aTemp.z,3)+poly(gTemp.z,1)+
variety*poly(gTemp.z,1),data=AmylaseActivity)

8 > anova(fit123red2,fit123red1,fit123,fit)
Analysis of Variance Table

Model 1: log(amylase) ˜ poly(aTemp.z, 3) + poly(gTemp.z, 1) + variety *
poly(gTemp.z, 1)

Model 2: log(amylase) ˜ poly(aTemp.z, 3) * poly(gTemp.z, 1) + variety *
poly(gTemp.z, 1)

Model 3: log(amylase) ˜ poly(aTemp.z, 3) * poly(gTemp.z, 1) * variety
Model 4: log(amylase) ˜ poly(aTemp.z, 7) * poly(gTemp.z, 1) * variety

Res.Df RSS Df Sum of Sq F Pr(>F)
1 89 0.51500
2 86 0.45037 3 0.06463 3.9431 0.01207 *
3 80 0.38735 6 0.06302 1.9224 0.09060 .
4 64 0.34967 16 0.03768 0.4310 0.96825

These three degrees of freedom are jointly significant with a p-value of about
.01.

Orthogonal polynomials are a good choice for model selection, but they
are less understandable once we want to look at model coefficients. For that,
it makes sense to go back to ordinary polynomials.

9 > fit2 <- lm(log(amylase)˜(aTemp.z+I(aTemp.zˆ2)+I(aTemp.zˆ3))*gTemp.z+
variety*gTemp.z,data=AmylaseActivity)

10 > summary(fit2)
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.105e+00 4.589e-01 13.306 < 2e-16 ***
aTemp.z -1.039e-01 6.559e-02 -1.585 0.116704
I(aTemp.zˆ2) 6.847e-03 2.815e-03 2.432 0.017085 *
I(aTemp.zˆ3) -1.154e-04 3.722e-05 -3.101 0.002608 **
gTemp.z -5.603e-02 2.303e-02 -2.433 0.017051 *
variety1 -1.641e-02 2.453e-02 -0.669 0.505274
aTemp.z:gTemp.z 7.775e-03 3.292e-03 2.362 0.020438 *
I(aTemp.zˆ2):gTemp.z -3.293e-04 1.413e-04 -2.331 0.022115 *
I(aTemp.zˆ3):gTemp.z 4.404e-06 1.868e-06 2.358 0.020655 *
gTemp.z:variety1 4.988e-03 1.231e-03 4.052 0.000111 ***

If we let zA denote the level of analysis temperature, and we let zB denote
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the level of growth temperature, then our model for the mean is

µij1 = 6.105− .1039zA + .006847z2A − .0001154z3A − .05603zB −
.05603zB − .01641 + .007775zAzB − .0003293z2AzB +

.000004404z3AzB + .004988zB

= 6.089− .1039zA + .006847z2A − .0001154z3A − .05603zB −
.06102zB + .007775zAzB − .0003293z2AzB +

.000004404z3AzB

µij2 = 6.105− .1039zA + .006847z2A − .0001154z3A − .05603zB −
.05603zB + .01641 + .007775zAzB − .0003293z2AzB +

.000004404z3AzB − .004988zB

= 6.121− .1039zA + .006847z2A − .0001154z3A − .05603zB −
.05104zB + .007775zAzB − .0003293z2AzB +

.000004404z3AzB

When there is a combination of quantitative factors and categorical fac-
tors as in the preceding example, we will usually have a choice of how to
parameterize the model. Typically this choice is between a “separate” poly-
nomial model for each level of the categorial factor (or combination of levels
of categorical factors) and a model that can be though of as a central poly-
nomial model and deviations from the central model for each level of the
categorial factor. For example, consider

µij = θj +
a−1∑
r=1

θArjz
r
Ai

and

µij = θ0 + βj +
a−1∑
r=1

θAr0z
r
Ai +

a−1∑
r=1

θβArjz
r
Ai ,

where θj = θ0 + βj , θArj = θAr0 + θβArj , and the parameters have the zero
sum restrictions

∑
j βj = 0 and

∑
j θβArj = 0.

In both forms there is a separate polynomial of degree a − 1 in zAi for
each level of factor B. The only difference between these models is how the
regression coefficients are expressed. In the first version the constant terms Alternate forms

for regression
coefficients

of the model are expressed as θj ; in the second version the constant terms
are expressed as an overall constant θ0 plus deviations βj that depend on
the qualitative factor. In the first version the coefficients for power r are
expressed as θArj ; in the second version the coefficients for power r are
expressed as an overall coefficient θAr0 plus deviations θβArj that depend
on the qualitative factor. These are analogous to having treatment means µi
written as µ+ αi, an overall mean plus treatment effects.
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In the preceding example, we wrote two formulae for µij1 and µij2. In
both cases, the first version was the central version, where we expressed the
intercept and the slope for zB as a central value and a deviation from the
central value, and the second version was the combined version where we
assemble the corresponding coefficients into a single value.

Example 9.10 Transmission of laser light through polyvinyl chlo-
ride, continued

Let’s return briefly to the laser transmission data of Example 9.10. These
data did not show an interaction on the original scale, but if instead of model-
ing the variance we had moved ahead by modeling transformed reflectance,
we would have wound up with the model on line 1 and summarized on line 2.

1 > fitbc <- lm(-1/(100-transmission)ˆ1.5˜(thickness.z+I(thickness.zˆ2))*sanding,
data=LaserTransmission)

2 > summary(fitbc)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.232e-02 8.202e-04 -39.410 < 2e-16 ***
thickness.z 3.107e-03 2.764e-04 11.239 < 2e-16 ***
I(thickness.zˆ2) -1.325e-04 1.877e-05 -7.058 5.21e-10 ***
sanding1 1.545e-02 1.160e-03 13.322 < 2e-16 ***
sanding2 5.984e-03 1.160e-03 5.159 1.73e-06 ***
thickness.z:sanding1 -2.174e-03 3.909e-04 -5.560 3.36e-07 ***
thickness.z:sanding2 -7.491e-04 3.909e-04 -1.916 0.058870 .
I(thickness.zˆ2):sanding1 1.050e-04 2.655e-05 3.953 0.000164 ***
I(thickness.zˆ2):sanding2 3.480e-05 2.655e-05 1.311 0.193667
...

You can rearrange this model to be a different quadratic curve for each level
of sanding. For example, for sanding level 1 (both), the intercept is –.03232
+ .01545 = –.01687; the linear coefficient is .003107 – .002174 = .000933;
and the quadratic coefficient is –.0001325 + .0001050 = –.0000275. You can
request this parameterization directly in R as shown on line 3–4.

3 > fitbc2 <- lm(-1/(100-transmission)ˆ1.5˜0+sanding+thickness.z:sanding+
I(thickness.zˆ2):sanding,data=LaserTransmission)

4 > summary(fitbc2)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
sandingboth -1.687e-02 1.421e-03 -11.876 < 2e-16 ***
sandingfront -2.634e-02 1.421e-03 -18.541 < 2e-16 ***
sandingnone -5.376e-02 1.421e-03 -37.843 < 2e-16 ***
sandingboth:thickness.z 9.330e-04 4.788e-04 1.949 0.05479 .
sandingfront:thickness.z 2.358e-03 4.788e-04 4.924 4.40e-06 ***
sandingnone:thickness.z 6.029e-03 4.788e-04 12.593 < 2e-16 ***
sandingboth:I(thickness.zˆ2) -2.755e-05 3.251e-05 -0.847 0.39931
sandingfront:I(thickness.zˆ2) -9.770e-05 3.251e-05 -3.005 0.00354 **
sandingnone:I(thickness.zˆ2) -2.722e-04 3.251e-05 -8.373 1.38e-12 ***

Not only does this save you some computations, it also gives a standard error
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for the combined coefficients. In this case, sanding level 1 does not look very
quadratic.

I usually find it easier to choose my model using the regular main effects
and interactions parameterization, but it is sometimes more interpretable if
you can rearrange the model directly into intercepts and polynomial terms.

9.4.3 Tukey one-degree-of-freedom for nonadditivity

The Tukey one-degree-of-freedom model for interaction is also called trans-
formable nonadditivity, because interaction of this kind can usually be re-
duced or even eliminated by transforming the response by an appropriate Transformable

nonadditivity is
reduced on the

correct scale

power. (Some care needs to be taken when using this kind of transformation,
because the transformation to reduce interaction could introduce nonconstant
variance.) The form of a Tukey interaction is similar to that of a linear by
linear interaction, but the Tukey model can be used with non-quantitative
factors.

The Tukey model can be particularly useful in single replicates, where
we have no estimate of pure error and generally must use high-order interac-
tions as surrogate error. If we can transform to a scale that removes much of
the interaction, then using high-order interactions as surrogate error is much
more palatable.

In a two-factor model, Tukey interaction has the form αβij = ηαiβj/µ,
for some multiplier η. If interaction is of this form, then transforming the
responses with a power 1 − η will approximately remove the interaction.
You may recall our earlier admonition that an interaction effect αβij was Tukey interaction

is a scaled
product of main

effects

not the product of the main effects; well, the Tukey model of interaction for
the two-factor model is a multiple of just that product. The Tukey model
adds one additional parameter η, so it is a one degree of freedom model for
nonadditivity. The form of the Tukey interaction for more general models
is discussed in Section 9.6, but it is always a single degree of freedom scale
factor times a combination of other model parameters.

There are several algorithms for fitting a Tukey interaction and testing
its significance. The following algorithm is fairly general, though somewhat
obscure. Algorithm to fit a

Tukey
one-degree-of-

freedom
interaction

1. Fit a preliminary model; this will often be an additive model.

2. Get the predicted values from the preliminary model; square them and
divide their squares by twice the mean of the data.

3. Fit the data with a model that includes the preliminary model and the
rescaled squared predicted values as explanatory variables.

4. The improvement sum of squares going from the preliminary model to
the model including the rescaled squared predicted values is the single
degree of freedom sum of squares for the Tukey model.

5. Test for significance of a Tukey type interaction by dividing the Tukey
sum of squares by the error mean square from the model including
squared predicted terms.
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6. The coefficient for the rescaled squared predicted values is η̂, an es-
timate of η. If Tukey interaction is present, transform the data to the
power 1− η̂ to remove the Tukey interaction.

The transforming power 1−η found in this way is approximate and can often
be improved slightly.

Example 9.11 CPU page faults, continued
Recall the CPU page fault data from Example 8.12. We originally ana-

lyzed those data on the log scale because they simply looked multiplicative.
Would we have reached the same conclusion via a Tukey interaction analy-
sis?

On line 1 we fit the additive model as a preliminary model.

1 > fit <- lm(faults˜alg+init+size+ram,data=PageFaults)
2 > rspv <- predict(fit)ˆ2/mean(PageFaults$faults)/2
3 > fit2 <- lm(faults˜alg+init+size+ram+rspv,data=PageFaults)
4 > anova(fit2)

Df Sum Sq Mean Sq F value Pr(>F)
alg 1 11671500 11671500 13.106 0.0007432 ***
init 2 59565822 29782911 33.444 1.258e-09 ***
size 2 216880816 108440408 121.769 < 2.2e-16 ***
ram 2 261546317 130773159 146.847 < 2.2e-16 ***
rspv 1 215332859 215332859 241.801 < 2.2e-16 ***
Residuals 45 40074226 890538

5 > coef(fit2)
(Intercept) alg1 init1 init2 size1
-426.0884967 -47.0589702 -215.3516316 191.5639849 -208.0754407

size2 ram1 ram2 rspv
548.8711338 -269.9239726 693.5339301 0.8987778

Line 2 generates the rescaled squared predicted values, line 3 fits the model
including the rescaled squared predicted values, and line 4 does an ANOVA.
rspv is highly significant. We get its coefficient on line 5. One minus the
coefficient is .1, which is close to the log transformation. Thus the Tukey
procedure is giving us something similar to what we decided before.

Note that if your preliminary model has interactions, R will try to move
rspv ahead of any interactions in the model. Thus you will either need to
(a) use terms with keep.order set to true to force rspv to be the last
term in the model, or (b) compute a Type II ANOVA to get rspv adjusted
for all other terms, or (c) use anova to compare the models with and without
rspv.

9.4.4 Hidden Additivity

The hidden additivity model of Franck, Nielsen, and Osborne (2013) is ap-
propriate for two-factor models with a single replication. The idea is that the
levels of one factor (A) can be partitioned into two sets. Within each subset
of levels, there is an additive model for (the subset of levels of) A and B,
but the B effects can differ between the two subsets. Thus there are row (A)
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effects and two sets of column (B) effects, one set of B effects for each subset
of rows. If we invent a pseudo-factor C that indicates the groups of rows in
A, then the model is equivalent to A+B+C:B.

The trick, of course, is that we do not know what the subsets are, or even
if such subsets exist. If this kind of interaction is present, it can usually be
detected graphically in the interaction plot. The approach taken in Franck,
Nielsen, and Osborne (2013) is to consider all partitions of the levels of A
into two subsets and find the partition that yields the highest sum of squares
for the interaction term. Test that sum of squares in the usual way, but do a
Bonferroni correction to adjust for multiple comparisons.

Example 9.12 Big Sagebrush Seed Viability
Consider the big sagebrush seed viability data of Problem 8.6. Suppose

that instead of having access to all the data, we are only given access to the
treatment means shown in this table:

Days
Humidity 0 60 120 180 240 300 360
0% 81 80 79 79 81 85 83
32% 82 80 82 79 83 80 81
45% 81 63 57 52 51 39 24

We would, by default, use the two factor interaction term as a surrogate error.

1 > sagemeans <- aggregate(viability˜storage+humidity,BigSagebrush,mean)
2 > anova(lm(viability˜storage+humidity,sagemeans))
Analysis of Variance Table

Response: viability
Df Sum Sq Mean Sq F value Pr(>F)

storage 6 596.2 99.37 0.8612 0.5492679
humidity 2 3825.5 1912.74 16.5757 0.0003524 ***
Residuals 12 1384.7 115.39

Line 1 collects the treatment means for the data, and line 2 does an ANOVA
with the interaction as error. Relative humidity is fairly significant, but stor-
age time is not.
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3 > sagemeanstab <- matrix(sagemeans[,3],nr=3,byrow=TRUE)
4 > sageout <- hiddenf::HiddenF(sagemeanstab)
5 > anova(sageout)

The ACMIF test for the hidden additivity form of interaction
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

group 1 3825.4 3825.4 1064.1241 5.520e-08
col 6 596.2 99.4 27.6432 0.0004036
row 1 0.1 0.1 0.0186 0.8960723
group:col 6 1363.2 227.2 63.1988 3.692e-05
Residuals 6 21.6 3.6
C.Total 20 5806.5
(Pvalues in ANOVA table are NOT corrected for multiplicity.)

6 > sageout$adjpvalue
[1] 0.0001107486

7 > plot(sageout)

The HiddenF function in the hiddenf package fits the hidden additivity
model, but it takes as input a matrix of means rather than variables indicating
rows and columns. Line 3 creates that matrix of means, line 4 fits the hidden
additivity model, and line 5 shows the ANOVA. The line for column (stor-
age) is the same in both ANOVAs, and the lines for row and group sum to
the SS and df for humidity. The hidden additivity interaction term accounts
for 1363.2 of the 1398.7 (98%) of the residual sum of squares in the additive
model. The residual mean square decreases from 115.4 in the additive model
to 3.6 in the hidden additivity model. With this decrease, both the overall
storage effect and interaction are highly significant.

Line 6 shows the p-value after Bonferroni adjustment; there are only three
potential groupings, so this just multiplies the interaction p-value by three.
This kind of interaction is highly significant even after adjustment. Finally,
line 7 plots the results (see Figure 9.3), showing how humidities 1 and 2 are
similar and very dissimilar to humidity 3.

9.5 Two-Series Factorials

A two-series factorial design is one in which all the factors have just two
levels. For k factors, we call this a 2k design, because there are 2k differentAll factors have

exactly two levels
in two-series
factorials

factor-level combinations. Similarly, a design with k factors, each with three
levels, is a three-series design and denoted by 3k. Two-series designs are
somewhat special, because they are the smallest designs with k factors. They
are often used when screening many factors.

Because two-series designs are so common, there are special notations
and techniques associated with them. The two levels for each factor are gen-
erally called low and high. These terms have clear meanings if the factors areLevels called low

and high quantitative, but they are often used as labels even when the factors are not
quantitative. Note that “off” and “on” would work just as well, but low and
high are the usual terms.
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Figure 9.3: Hidden additivity plot for Big Sagebrush treatment
means.

There are two methods for denoting a factor-level combination in a two-
series design. The first uses letters and is probably the more common. Denote Lower-case

letters denote
factors at high

levels

a factor-level combination by a string of lower-case letters: for example, bcd.
We have been using these lower-case letters to denote the number of levels
in different factors, but all factors in a two-series design have two levels, so
there should be no confusion. Letters that are present correspond to factors
at their high levels, and letters that are absent correspond to factors at their
low levels. Thus ac is the combination where factors A and C are at their
high levels and all other factors are at their low levels. Use the symbol (1)
to denote the combination where all factors are at their low levels. Denote Do not confuse

treatments like bc
with effects like

BC

the mean response at a given factor-level combination by y with a subscript,
for example yab. Do not confuse the factor-level combination bc with the
interaction BC; the former is a single treatment, and the latter is a contrast
among treatments.

The second method uses numbers and generalizes to three-series and
higher-order factorials as well. A factor-level combination is denoted by k
binary digits, with one digit giving the level of each factor: a zero denotes Binary digits, 1 for

high, 0 for lowa factor at its low level, and a one denotes a factor at its high level. Let xA
(either 0 or 1) be the level of factor A, xB the level of factor B, and so on.
The collection of digits indicates a treatment (factor-level combination). For
three factors, describe the treatment as xCxBxA. Thus 000 is all factors at
low level, the same as (1), and 110 is factors B and C at high level, the same
as bc. This generalizes to other factorials by using more digits. For example,
we use the digits 0, 1, and 2 to denote the three levels of a three-series.

Note that you could just as easily use the digits in the order A, B, C; you
just need to keep track of the order you are using. This order might seem
more natural, but the order C, B, A has a slight advantage of interpretation
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Table 9.6: Pluses and minuses for a 23 design.
A B C

(1) – – –
a + – –
b – + –
ab + + –
c – – +
ac + – +
bc – + +
abc + + +

we will see shortly.

It is customary to arrange the factor-level combinations of a two-series
factorial in standard order. Standard order will help us keep track of factor-
level combinations when we later modify two-series designs. Standard orderStandard order

prescribes a
pattern for listing
factor-level
combinations

for a two-series design begins with (1). Then proceed through the remainder
of the factor-level combinations with factor A varying fastest, then factor B,
and so on. In standard order, factor A will repeat the pattern low, high; factor
B will repeat the pattern low, low, high, high; factor C will repeat the pattern
low, low, low, low, high, high, high, high; and so on though other factors. In
general, the jth factor will repeat a pattern of 2j−1 lows followed by 2j−1

highs. For a 24, standard order is (1), a, b, ab, c, ac, bc, abc, d, ad, bd, abd,
cd, acd, bcd, and abcd.

When using binary digits (in the order suggested above, for example,
CBA) to indicate factor levels, we find that standard order is numerical order.
That is, standard order for a 23 design is 000, 001, 010, 011, 100, 101, 110,
111. This is the reason for using the reverse order of the digits.

Two-series factorials form the basis of several designs we will consider
later, and one of the tools we will use is a table of pluses and minuses. ForTable of + and –
a 2k design, build a table with 2k rows and k columns. The rows are labeled
with factor-level combinations in standard order, and the columns are labeled
with the k factors. In principle, the body of the table contains +1’s and−1’s,
with +1 indicating a factor at a high level, and −1 indicating a factor at a
low level. In practice, we use just plus and minus signs to denote the factor
levels. Table 9.6 shows this table for a 23 design.

9.5.1 Contrasts

One nice thing about a two-series design is that every main effect and inter-
action is just a single degree of freedom, so we may represent any main effect
or interaction by a single contrast. For example, the main effect of factor A
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in a 23 can be expressed as

α̂2 = −α̂1

= (y2••• − y••••)/2

=
1

8
(ya + yab + yac + yabc − y(1) − yb − yc − ybc)

=
1

8
(−y(1) + ya − yb + yab − yc + yac − ybc + yabc) ,

which is a contrast in the eight treatment means with plus signs where A is
high and minus signs where A is low. Similarly, the sum of squares for A can Two-series effects

are contrastsbe written

SSA = 4nα̂1
2 + 4nα̂2

2

=
n

8
(ya + yab + yac + yabc − y(1) − yb − yc − ybc)2

=
n

8
(−y(1) + ya − yb + yab − yc + yac − ybc + yabc)

2 ,

which is the sum of squares for the contrast wA with coefficients +1 where Effect contrasts
same as columns

of pluses and
minuses

A is high and −1 where A is low (or .25 and −.25, or −17.321 and 17.321,
as the sum of squares is unaffected by a nonzero multiplier for the contrast
coefficients). Note that this contrastwA has exactly the same pattern of pluses
and minuses as the column for factor A in Table 9.6.

The difference

y2••• − y1••• = α̂2 − α̂1 = 2α̂2

is the total effect of factor A. The total effect is the average response where Total effect
A is high, minus the average response where A is low, so we can also obtain
the total effect of factor A by rescaling the contrast wA

y2••• − y1••• =
1

4

∑
ijk

wAijk yijk• ,

where the divisor of 4 is replaced by 2k−1 for a 2k design.

The columns of Table 9.6 give us contrasts for the main effects. Interac-
tions in the two-series are also single degrees of freedom, so there must be Interaction

contrasts are
products of

main-effects
contrasts

contrasts for them as well. We obtain these interaction contrasts by taking el-
ementwise products of main-effects contrasts. For example, the coefficients
in the contrast for the BC interaction are the products of the coefficients for
the B and C contrasts. A three-way interaction contrast is the product of the
three main-effects contrasts, and so on. This is most easily done by referring
to the columns of Table 9.6, with + and − interpreted as +1 and −1. We
show these contrasts for a 23 design in Table 9.7.
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Table 9.7: All contrasts for a 23 design.
A B C AB AC BC ABC

(1) – – – + + + –
a + – – – – + +
b – + – – + – +
ab + + – + – – –
c – – + + – – +
ac + – + – + – –
bc – + + – – + –
abc + + + + + + +

9.5.2 Single replicates

As with all factorials, a single replication in a two-series design means that
we have no degrees of freedom for error. We can apply any of the usual Single replicates

need an estimate
of error

methods for single replicates to a two-series design, but there are also meth-
ods developed especially for single replicate two-series. We describe three
of these methods. The first is graphically based and is subjective; it does
not provide p-values. The second is just slightly more complicated (it can
be done by hand, if need be), but it does allow at least approximate testing;
however, it assumes effect sparsity, as defined below. The third is computa-
tionally intensive, but it produces tests with good error control and no need
for the effect sparsity assumption.

The first two methods are based on the idea that if our original data are
independent and normally distributed with constant variance, then the effectsEffects are

independent with
constant variance

contrasts in Table 9.7 give us results that are also independent and normally
distributed with constant variance. The expected value of any of these con-
trasts is zero if the corresponding null hypothesis of no main effect or interac-
tion is true. If that null hypothesis is not true, then the expected value of the
contrast is not zero. So, when we look at the results, contrasts corresponding
to null effects should look like an independent sample from a normal distri-
bution with mean zero and constant variance, and contrasts corresponding toSignificant effects

are outliers non-null effects will also be independent with the same variance, but they
will have different means and should look like outliers.

We now need a technique to identify outliers, and to do that we need to
assume that most of the data are not outliers. That is, we need to assume
that there are relatively few effects that are not null. This is effect sparsity.
The first two techniques will work poorly if there are many non-null effects,We assume effect

sparsity because we won’t have a good basis for deciding what null behavior is.
The first method is graphical and is attributed to Daniel (1959). Simply

make a half-normal probability plot of the absolute values of the observed
contrasts and look for outliers. We use absolute values, because don’t careHalf-normal plot

of effects about the signs of the effects when determining which ones are outliers. A
half-normal probability plot plots the sorted absolute values on the horizontal
axis against the sorted expected scores from a half-normal distribution (that
is, the expected value of ith smallest absolute value from a sample of size
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2k − 1 from a normal distribution) on the vertical axis. If all the effects are
null, this plot should look roughly linear. Non-null effects should appear as
outliers to the right.

The choice of whether to put the data on the horizontal and normal scores
on the vertical, or vice versa, is arbitrary, but we use this orientation to be
analogous with a second graphical presentation we will see shortly. In addi-
tion, you can instead use a normal plot of effects instead of a half-normal plot
of absolute effects, but I usually find the half-normal plots easier to interpret.

The second method computes a pseudo-standard error (PSE) for the con-
trasts, allowing us to do t-tests. Lenth (1989) computes the PSE in two steps.
First, let s0 be 1.5 times the median of the absolute values of the contrast re- Lenth’s

pseudo-standard
error

sults. Second, delete any contrasts results whose absolute values are greater
than 2.5s0, and let the PSE be 1.5 times the median of the remaining abso-
lute contrast results. Treat the PSE as a standard error for the contrasts with
(2k − 1)/3 degrees of freedom, and do t-tests. These can be individual tests,
or you can do simultaneous tests using a Bonferroni correction.

The third method is the permutation (randomization) step up test of Basso
and Salmaso (2006). Denote one of the factorial effects generically as β̂i, for
i = 1, ..., 2k − 1. Sort the squared effects into order: β̂2(1) ≤ β̂2(2) ≤ · · · ≤ Basso-Salmaso

permutation test
β̂2(2k−1). Form 2k − 2 test statistics:

h2 =
β̂2(2)

β̂2(1)

h3 =
β̂2(3)

β̂2(1) + β̂2(2)
...

...

h2k−1 =
β̂2(2k−1)

β̂2(1) + β̂2(2) + · · ·+ β̂2(2k−2)

Start with h2 and work your way toward h2k−1, testing in a step up fashion.
That is, if you ever decide that β̂(i) is non-zero, then you are deciding that all
effects from β̂(i) through β̂(2k−1) are also non-zero.

The null distribution for hi is that created by randomly permuting the
data and then computing hi on the permuted data (call it h̃i to indicate that
it is computed on permuted data). In general, we generate a large number of
permutations, say 10,000, and compute h̃i on each of them. The p-value for
hi is the fraction of h̃i values that exceed hi. We are potentially doing 2k − 2
tests, so we use a Bonferroni correction to control the experimentwise error
rate. Given the step up nature of the procedure, we might expect that Basso-
Salmaso also controls the strong familywise error rate; simulation studies
suggest that it does. Note that this test involves simulation to get critical
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Table 9.8: Performance index for ramp meters at one ramp on I-94.
Minimum release rate, demand increment, and maximum release
rate in vehicles per hour; maximum wait in minutes. Data adapted
from A. Beegala; data set RampMeters.

Max. wait/Min. release
3.5 6

Demand Max. release 150 350 150 350
125 1650 6.9 11.5 36.8 69.0

1800 6.9 17.3 29.9 69.0
250 1650 10.4 13.8 39.1 66.7

1800 18.4 5.7 42.6 59.8

values, so it is possible to get different results on successive applications of
the procedure if an effect is near the critical value.

One common presentation for the results of either the PSE or Basso-
Salmaso results is to make a half-normal plot of the effects and then either (1)
mark or label the points that correspond to significant effects or (2) indicate
the individual and/or simultaneous PSE cutoffs for significance on the plot.Half-normal or

Pareto plot of
results

Recognizing that with PSE or Basso-Salmaso we no longer need to visually
seek outliers, a second common presentation is to use a Pareto plot instead of
a half-normal plot. In the Pareto plot, the half-normal score plotting positions
are replaced by the ranks of the (absolute) effects. The plot itself can be a bar
chart of the effects or a set of horizontal line segments ending in the plotting
point. We can add labels or cutoffs to the Pareto plot in the same way we do
for a half-normal plot.

Example 9.13 Ramp meters
Ramp meters are stop lights on the entrance ramps to freeways in urban

settings. They are used to control the number of cars trying to merge onto
the freeway at any given time. Proper use of a ramp meter can lead to shorter
overall waiting times and fewer accidents. This experiment considers the
effects of four factors on a performance index for the ramp. The experimental
factors are minimum release rate (150 or 350 vehicles per hour), maximum
allowed waiting time (3.5 or 6 minutes), maximum release rate on the ramp
(1650 or 1800 vehicles per hour), and an increment in demand above normal
traffic (125 or 250 vehicles/hour). The performance index is a combination
of the number of vehicles that need to wait longer than the desired maximum,
the total time waited above the desired maximum, and the total distance the
queue on the ramp extends beyond the beginning of the ramp.

This experiment is not performed on the driving public, but rather is per-
formed using a traffic simulator for the entire transportation system in a re-
gion. The simulator is extremely complex and includes many random inputs,
so the response to adjusting parameters like the ramp meter parameters can
only be determined by experiment. Data for this experiment are in Table 9.8.

We begin by fitting the full factorial model, as shown on line 1.
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1 > fit <- lm(PI˜minRel*maxWait*maxRel*Incr,data=RampMeters)
2 > TwoSeriesPlots(fit,pse=FALSE,alpha=.01,type="normal")
3 > TwoSeriesPlots(fit,pse=TRUE,alpha=.01,type="normal")
4 > TwoSeriesPlots(fit,pse=TRUE,alpha=.05,type="normal")
5 > TwoSeriesPlots(fit,pse=TRUE,alpha=.05,type="pareto")

The TwoSeriesPlots function can plot either half-normal or Pareto plots.
Terms significant by the Basso-Salmaso test are marked with a solid dot. You
may also request the Lenth PSE individual and simultaneous critical values
be marked (by vertical lines), and any additional terms significant according
to the individual PSE test be labeled (although they will not have solid dot
markings).

Line 2 creates the half-normal plot at the .01 level with only the Basso-
Salmaso test, as shown in panel one of Figure 9.4. Maximum wait time,
minimum release rate, and their interaction are significant. The line matches
the non-significant points. Line 3 adds PSE information to the plot, as shown
in panel two. The dashed and dotted lines show the individual and simulta-
neous (Bonferroni) critical values for the Lenth procedure. Two additional
terms are significant according to Lenth, and these are labeled on the plot,
although they retain open dots. Line 4 creates an analogous plot for the .05
level (panel three); here the null terms fit the null line very well. Finally, line
5 creates the analogous Pareto plot instead of a half-normal plot (panel four).

Historically, subjective consideration of the half-normal plot was our
first-line tool for analyzing single replicates of two-series designs. However,
with the Basso-Salmaso and PSE procedures to select significant terms, the
somewhat cleaner Pareto presentation is preferred by some.

An interesting feature of two-series factorials can be seen if you look
at a data set consisting of all zeroes except for a single nonzero value. All
factorial effects for such a data set are equal in absolute value, but some will A single nonzero

response yields
effects equal in
absolute value

be positive and some negative, depending on which data value is nonzero
and the pattern of pluses and minuses. What this means is that a situation
where many of the two-series effects are roughly equal in size and do not
trend down toward zero probably indicates an outlier in the data, or possibly
a strong one-cell interaction.

With some careful study of the pattern of signs of the two-series effects
and the pattern of pluses and minuses in the two-series contrasts, you can
usually determine which point is the outlier. For example, suppose that c has
a positive value and all other responses are zero. Looking at the row for c in
Table 9.7, the effects for C, AB, and ABC should be positive, and the effects
for A, B, AC, and BC should be negative. Similarly, if bc had a negative value
and all other responses were zero, then the row for bc shows us that A, AB,
AC, and ABC would be positive, and B, C, and BC would be negative. The
patterns of positive and negative effects are unique for all combinations of
which response is nonzero and whether the response is positive or negative.

Example 9.14 Ramp meters, continued.
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Figure 9.4: Half-normal and Pareto plots for ramp meter data and
for the outlier contaminated ramp meter data.

Suppose that the fourth value of the ramp meter data had been recorded
as 690 instead of 69.0. Line 6 refits the model using the contaminated re-
sponse.
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6 > fit2 <- lm(PI2˜minRel*maxWait*maxRel*Incr,data=RampMeters)
7 > TwoSeriesPlots(fit2,pse=TRUE,alpha=.05,type="normal")
8 > TwoSeriesPlots(fit2,pse=TRUE,alpha=.05,type="pareto")

Lines 7 and 8 create the half-normal and Pareto plots for the contaminated
data, as shown in panels five and six of Figure 9.4. The vertical banding of
the effects is clear. Note, however, that this outlier is extreme; the vertical
banding is not always this obvious.

9.6 Further Reading and Extensions

A good expository discussion of imbalance can be found in Herr (1986);
more advanced treatments can be found in texts on linear models, such as
Hocking (1985).

The computational woes of imbalance are less for proportional balance.
In a two-factor design, we have proportional balance if nij/N = ni•/N ×
n•j/N . For example, treatments at level 1 of factor A might have replication
4, and all other treatments have replication 2. Under proportional balance,
contrasts in one main effect or interaction are orthogonal to contrasts in any
other main effect or interaction. Thus the order in which terms enter a model
does not matter, and ordinary, Type II, and Type III sums of squares all agree.
Balanced data are obviously a special case of proportional balance. For more
than two factors, the rule for proportional balance is that the fraction of the
data in one cell should be the product of the fractions in the different margins.

When we have specific hypotheses that we would like to test, but they
do not correspond to standard factorial terms, then we must address them
with special-purpose contrasts. This is reasonably easy for a single degree
of freedom. For hypotheses with several degrees of freedom, we can form
multidegree of freedom sums of squares for a set of contrasts using methods
described in Hocking (1985) and implemented in many software packages.
Alternatively, we may use Bonferroni to combine the tests of individual de-
grees of freedom.

It is somewhat instructive to see the hypotheses tested by approaches
other than Type III. Form row and column averages of treatment means using
weights proportional to cell counts:

µi? =
b∑

j=1

nijµij/ni•

µ?j =
a∑
i=1

nijµij/n•j ;

and form averages for each row of the column weighted averages, and
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weighted averages for each column of the row weighted averages:

(µ?j)i? =
b∑

j=1

nijµ?j/ni•

(µi?)?j =

a∑
i=1

nijµi?/n•j .

Thus there is a (µ?j)i? value for each row i, formed by taking a weighted
average of the column weighted averages µ?j . The values may differ between
rows because the counts nij may differ between rows, leading to different
weighted averages.

Consider two methods for computing a sum of squares for factor A. We
can calculate the sum of squares for factor A ignoring all other factors; this
is SAS Type I for factor A first in the model, and is also called “weighted
means.” This sum of squares is the change in error sum of squares in going
from a model with just a grand mean to a model with row effects and is
appropriate for testing the null hypothesis

µ1? = µ2? = · · · = µa? .

Alternatively, calculate the sum of squares for factor A adjusted for factor B;
this is a Type II sum of squares for a two-way model and is appropriate for
testing the null hypothesis

µ1? = (µ?j)1?; µ2? = (µ?j)2?; . . . ; µa? = (µ?j)a? .

That is, the Type II null hypothesis for factor A allows the row weighted
means to differ, but only because they are different weighted averages of the
column weighted means.

Daniel (1976) is an excellent source for the analysis of two-series de-
signs, including unreplicated two-series designs. Much data-analytic wisdom
can be found there.

One way of understanding Tukey models is to suppose that we have a
simple structure for values µij = µ + αi + βj . Let’s divide through by µ
and assume that row and column effects are relatively small compared to the
mean. We now have µij = µ(1+αi/µ+βj/µ). But instead of working with
data on this scale, suppose that we have these data raised to the 1/λ power.
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Then the observed mean structure looks like

(1 +
αi
µ

+
βj
µ

)1/λ ≈ 1 +
αi
µ

+
βj
µ

+
1− λ
2µ2λ2

(α2
i + 2αiβj + β2j )

= 1 +
αi
µ

+
1− λ
2µ2λ2

α2
i +

βj
µ

+
1− λ
2µ2λ2

β2j +
1− λ
µ2λ2

αiβj

≈ 1 +
αi
µ

+
1− λ
2µ2λ2

α2
i +

βj
µ

+
1− λ
2µ2λ2

β2j +

(1− λ)(
αi
µ

+
1− λ
2µ2λ2

α2
i )(

βj
µ

+
1− λ
2µ2λ2

β2j )

= (µ+ ri + cj + (1− λ)
ricj
µ

)
1

µ
,

where the first approximation is via a Taylor series and

ri =
αi
µ

+
1− λ
2µ2λ2

α2
i

cj =
βj
µ

+
1− λ
2µ2λ2

β2j .

Thus when we see mean structure of the form µ+ ri + cj + (1− λ)ricj/µ,
we should be able to recover an additive structure by taking the data to the
power λ. That is, the transformation power is one minus the coefficient of
the cross product term. The cross products ricj/µ are called the comparison
values, because we can compare the residuals from the additive model to
these comparison values to see if Tukey style interaction is present.

Here is why our algorithm works for assessing Tukey interaction. We
are computing the improvement sum of squares for adding a single degree of
freedom term X to a model M . In any ANOVA or regression, the improve-
ment sum of squares obtained by adding the X to M is the same as the sum
of squares for the single degree of freedom model consisting of the residuals
ofX fit toM . For the Tukey interaction procedure in a two-way factorial, the
predicted values have the form µ̂+ α̂i+ β̂j , so the rescaled squared predicted
values equal

µ̂

2
+ (α̂i +

α̂i
2

2µ̂
) + (β̂j +

β̂j
2

2µ̂
) +

α̂iβ̂j
µ̂

.

If we fit the additive model to these rescaled squared predicted values, the
residuals will be α̂iβ̂j/µ̂. These residuals are exactly the comparison values,
so the sum of squares for the squared predicted values entered last will be
equal to the sum of squares for the comparison values.

What do we do for comparison values in more complicated models; for
example, three factors instead of two? For two factors, the comparison values
are the product of the row and column effects divided by the mean. The
comparison values for other models are the sums of the cross products of all
the terms in the simple model divided by the mean. For example:
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Simple Model Tukey Interaction

µ+ αi + βi + γk η(
αiβj
µ

+
αiγk
µ

+
βiγk
µ

)

µ+ αi + βi + γk + δl η(
αiβi
µ

+
αiγk
µ

+
αiδi
µ

+
βiγk
µ

+

βiδl
µ

+
γkδl
µ

)

µ+ αi + βi + αβij + γk η(
αiβi
µ

+
αiγk
µ

+
αiαβij
µ

+
βiγk
µ

+

βiαβij
µ

+
γkαβij
µ

)

Once we have the comparison values, we can get their coefficient and the
Tukey sum of squares by adding the comparison values to our ANOVA model.
In all cases, using the rescaled squared predicted values from the base model
accomplishes the same task.

There are several further models of interaction that can be useful, par-
ticularly for designs with only one data value per treatment. (See Cook and
Weisberg 1982, section 2.5, for a fuller discussion.) Mandel (1961) intro-
duced the row-model, column-model, and slopes-model. These are general-
izations of the Tukey model of interaction, and take the forms

Row-model: µij = µ+ αi + βj + ζjαi

Column-model: µij = µ+ αi + βj + ξiβj

Slopes-model: µij = µ+ αi + βj + ζjαi + ξiβj .

Clearly, the slopes-model is just the union of the row- and column models.
These models have the restrictions that∑

j

ζj =
∑
i

ξi = 0 ,

so they represent b− 1, a− 1, and a+ b− 2 degrees of freedom respectively
in the (a− 1)(b− 1) degree of freedom interaction. The Tukey model is the
special case where ζj = ηβj or ξi = ηαi. It is not difficult to verify that
the row- and column models of interaction are orthogonal to the main effects
and each other (though not to the Tukey model, which they include, or the
slopes-model, which includes both of them).

The interpretation of these models is not too hard. The row model states
that mean value of each treatment is a linear function of the row effects,
but the slope (1 + ζj) and intercept (µ + βj) differ from column to column.
Similarly, the column model states that the mean value of each treatment is
a linear function of the column effects, but the slope (1 + ξi) and intercept
(µ+ αi) differ from row to row.
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Johnson and Graybill (1972) proposed a model of interaction that does
not depend on the main effects:

αβij = δviuj ,

with the restrictions that
∑

i vi =
∑

j uj = 0, and
∑

i v
2
i =

∑
j u

2
j = 1. This

more general structure can model several forms of nonadditivity, including
one cell interactions and breakdown of the table into separate additive parts.
The components δ, vi, and uj are computed from the singular value decom-
position of the residuals from the additive model. See Cook and Weisberg
for a detailed discussion of this procedure.

9.7 Problems

Three ANOVA tables are given for the results of a single experiment. Exercise 9.1
These tables give sequential (Type I) sums of squares. Construct a Type II
ANOVA table. What would you conclude about which effects and interac-
tions are needed?

DF SS MS
a 1 1.9242 1.9242
b 2 1584.2 792.1
a.b 2 19.519 9.7595
c 1 1476.7 1476.7
a.c 1 17.527 17.527
b.c 2 191.84 95.92
a.b.c 2 28.567 14.284
Error 11 166.71 15.155

DF SS MS
b 2 1573 786.49
c 1 1428.7 1428.7
b.c 2 153.62 76.809
a 1 39.777 39.777
b.a 2 69.132 34.566
c.a 1 27.51 27.51
b.c.a 2 28.567 14.284
Error 11 166.71 15.155

DF SS MS
c 1 1259.3 1259.3
a 1 9.0198 9.0198
c.a 1 0.93504 0.93504
b 2 1776.1 888.04
c.b 2 169.92 84.961
a.b 2 76.449 38.224
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c.a.b 2 28.567 14.284
Error 11 166.71 15.155

A single replicate of a 24 factorial is run. The results in standard orderExercise 9.2
are 1.106, 2.295, 7.074, 6.931, 4.132, 2.148, 10.2, 10.12, 3.337, 1.827, 8.698,
6.255, 3.755, 2.789, 10.99, and 11.85 (data set TwoSeriesDataA). Ana-
lyze the data to determine the important factors and find which factor-level
combination should be used to maximize the response.

Here are two sequential (Type I) ANOVA tables for the same data. Com-Exercise 9.3
plete the second table. What do you conclude about the significance of row
effects, column effects, and interactions?

DF SS MS
r 3 3.3255 1.1085
c 3 112.95 37.65
r.c 9 0.48787 0.054207
ERROR 14 0.8223 0.058736

DF SS MS
c 3 116.25 38.749
r 3
c.r 9
ERROR 14

We have an unbalanced three-way factorial design with factors A, B, andExercise 9.4
C. I compute both Type II and Type III ANOVAs. Which of the following
mean squares will be the same in the two tables (be sure to explain why)?

(a) MSAB .

(b) MSABC .

(c) MSE .

An experiment investigated the release of the hormone ACTH from ratProblem 9.1
pituitary glands under eight treatments: the factorial combinations of CRF (0
or 100 nM; CRF is believed to increase ACTH release), calcium (0 or 2 mM
of CaCl2), and Verapamil (0 or 50 µM; Verapamil is thought to block the
effect of calcium). Thirty-six rat pituitary cell cultures are assigned at ran-
dom to the factor-level combinations, with control (all treatments 0) getting
8 units, and other combinations getting 4. The data follow (Giguere, Lefevre,
and Labrie 1982, data set Verapamil). Analyze these data and report your
conclusions.
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Treatment ACTH
Control 1.73 1.57 1.53 2.1

1.31 1.45 1.55 1.75
V (Verapamil) 2.14 2.24 2.15 1.87
CRF 4.72 2.82 2.76 4.44
CRF + V 4.36 4.05 6.08 4.58
Ca (Calcium) 3.53 3.13 3.47 2.99
Ca + V 3.22 2.89 3.32 3.56
CRF + Ca 13.18 14.26 15.24 11.18
CRF + Ca + V 19.53 16.46 17.89 14.69

Consumers who do not regularly eat yogurt are polled and asked to rate Problem 9.2
on a 1 to 9 scale the likelihood that they would buy a certain yogurt product at
least once a month; 1 means very unlikely, 9 means very likely. The product
is hypothetical and described by three factors: cost (“C”—low, medium, and
high), sensory quality (“S”—low, medium, and high), and nutritional value
(“N”—low and high). The plan was to poll three consumers for each product
type, but it became clear early in the experiment that people were unlikely
to buy a high-cost, low-nutrition, low-quality product, so only one consumer
was polled for that combination. Each consumer received one of the eighteen
product descriptions chosen at random. The data follow (data set Yogurt):

CSN Scores CSN Scores
HHH 2.6 2.5 2.9 HHL 1.5 1.6 1.5
HMH 2.3 2.1 2.3 HML 1.4 1.5 1.4
HLH 1.05 1.06 1.05 HLL 1.01
MHH 3.3 3.5 3.3 MHL 2.2 2.0 2.1
MMH 2.6 2.6 2.3 MML 1.8 1.7 1.8
MLH 1.2 1.1 1.2 MLL 1.07 1.08 1.07
LHH 7.9 7.8 7.5 LHL 5.5 5.7 5.7
LMH 4.5 4.6 4.0 LML 3.8 3.3 3.1
LLH 1.7 1.8 1.8 LLL 1.5 1.6 1.5

Analyze these data for the effects of cost, quality, and nutrition on likeli-
hood of purchase.

Modern ice creams are not simple recipes. Many use some type of gum to Problem 9.3
enhance texture, and a non-cream protein source (for example, whey protein
solids). A food scientist is trying to determine how types of gum and pro-
tein added change a sensory rating of the ice cream. She runs a five by five
factorial with two replications using five gum types and five protein sources.
Unfortunately, six of the units did not freeze properly, and these units were
not rated. Ice creams are rated by a trained panel, with higher ratings being
better (data set IceCream).
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Protein
Gum 1 2 3 4 5

1 3.5 3.6 2.1 4.0 3.1
3.0 2.9 4.5

2 7.2 6.8 6.7 7.5 6.8
4.8 6.9 9.3

3 4.1 5.8 4.5 5.3 4.1
5.6 4.8 4.6 7.3 5.3

4 5.3 4.8 5.0 6.7 5.2
3.2 7.2 6.7 4.2

5 4.5 5.1 5.0 4.9 4.5
2.7 3.7 4.5 4.7

Analyze these data to determine if protein and/or gum have any effect on
the sensory rating. Determine which, if any, proteins and/or gums differ in
their sensory ratings.

Here is the output of three different ANOVAs on the same set of (unbal-Problem 9.4
anced) data.

WARNING: summaries are sequential
DF SS MS F P-value

CONSTANT 1 480.19 480.19 67.98994 8.5625e-13
a 3 194.58 64.86 9.18355 2.1171e-05
b 3 40.143 13.381 1.89460 0.13565
a.b 9 48.572 5.3969 0.76414 0.64955
ERROR1 96 678.01 7.0626

WARNING: summaries are sequential
DF SS MS F P-value

CONSTANT 1 480.19 480.19 67.98994 8.5625e-13
b 3 217.67 72.555 10.27307 6.2893e-06
a 3 17.058 5.686 0.80508 0.49406
b.a 9 48.572 5.3969 0.76414 0.64955
ERROR1 96 678.01 7.0626

WARNING: SS are Type III sums of squares
DF SS MS F P-value

CONSTANT 1 22.288 22.288 3.15575 0.078828
a 3 19.816 6.6055 0.93527 0.42682
b 3 21.207 7.0691 1.00091 0.39596
a.b 9 48.572 5.3969 0.76414 0.64955
ERROR1 96 678.01 7.0626
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What do you conclude about the significance of the effects? (You may
assume that all assumptions about normality, constant variance, etc are met.)

Gums are used to alter the texture and other properties of foods, in part Problem 9.5
by binding water. An experiment studied the water-binding of various car-
rageenan gums in gel systems under various conditions. The experiment had
factorial treatment structure with four factors. Factor 1 was the type of gum
(kappa, mostly kappa with some lambda, and iota). Factor 2 was the concen-
tration of the gum in the gel in g/100g H20 (level 1 is .1; level 2 is .5; and
level 3 is 2 for gums 1 and 2, and 1 for gum 3). The third factor was type of
solute (NaCl, Na2SO4, sucrose). The fourth factor was solute concentration
(ku/kg H20). For sucrose, the three levels were .05, .1, and .25; for NaCl and
Na2SO4, the levels were .1, .25, and 1. The response is the water-binding
for the gel in mOsm (data from Rey 1981, data set WaterBinding). This
experiment was completely randomized. There were two units at each factor-
level combination except solute concentration 3, where all but one combina-
tion had four units.

Analyze these data to determine the effects and interactions of the factors.
Summarize your analysis and conclusions in a report.
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G. conc. 1 G. conc. 2 G. conc. 3
S. S. conc. kappa k&l iota kappa k&l iota kappa k&l iota

NaCl 1 99.7 97.6 99.0 100.0 104.7 107.3 123.0 125.7 117.3
98.3 103.7 98.0 104.3 105.7 106.7 116.3 121.7 117.3

2 239.0 239.7 237.0 249.7 244.7 243.7 277.0 266.3 268.0
236.0 246.7 237.7 255.7 245.7 247.7 262.3 276.3 266.7

3 928.7 940.0 899.3 937.0 942.7 953.3 968.0 992.7 1183.7
930.0 961.3 941.0 938.7 988.0 991.0 975.7 1019.0 1242.0
929.0 939.7 944.3 939.7 945.7 988.7 972.7 1018.7 1133.0
930.0 931.3 919.0 924.3 933.0 965.7 968.0 1021.0 1157.0

Na2SO4 1 87.3 80.0 88.0 92.3 94.5 86.7 104.3 115.7 101.0
89.0 89.3 89.0 97.7 94.3 95.3 104.0 118.0 104.3

2 203.7 204.0 203.0 209.0 210.7 203.7 218.0 241.0 214.7
204.0 206.3 201.7 209.3 210.0 209.0 221.5 232.7 222.7

3 695.0 653.0 668.7 688.7 697.7 726.7 726.0 731.0 747.7
679.7 642.7 686.7 701.3 701.7 744.7 747.7 790.3 897.0
692.7 686.0 665.0 698.0 698.0 741.0 736.7 799.7 812.7
688.0 646.0 688.3 711.7 698.7 708.7 743.7 806.0 885.0

Sucrose 1 55.0 56.7 54.7 61.7 62.7 63.7 90.7 99.0 72.7
55.3 56.0 56.3 62.0 64.0 65.0 99.3 102.3 75.0

2 123.7 109.7 105.0 113.3 115.0 114.3 229.3 213.4 123.7
106.0 111.0 105.7 115.0 115.7 116.7 193.7 196.3 132.7

3 283.3 271.7 258.3 277.3 279.3 282.0 426.5 399.7 291.7
276.0 275.3 268.0 277.0 283.0 279.3 389.3 410.3 308.0
266.0 267.3 273.3 281.3 282.7 420.0 360.0 310.0
263.0 268.7 272.7 279.0 281.0 421.7 409.3 303.3

Expanded/extruded wheat flours (think breakfast cereals or cheese puffs)Problem 9.6
have air cells that vary in size, and the size may depend on the variety of
wheat used to make the flour, the location where the wheat was grown, and
the temperature at which the flour was extruded. An experiment has been
conducted to assess these factors. The first factor is the variety of wheat
used (Butte 86, 2371, or Grandin). The second factor is the growth location
(MN or ND). The third factor is the temperature of the extrusion (120oC or
180oC). The response is the area in mm2 of the air cells (data from Sutheer-
awattananonda 1994, data set AirCells).

Analyze these data and report your conclusions; variety and temperature
effects are of particular interest.
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Temp. Loc. Var. Area
1 1 1 4.63 10.37 7.53
1 1 2 6.83 7.43 2.99
1 1 3 11.02 13.87 2.47
1 2 1 3.44 5.88
1 2 2 2.60 4.48
1 2 3 4.29 2.67
2 1 1 2.80 3.32
2 1 2 3.01 4.51
2 1 3 5.30 3.58
2 2 1 3.12 2.58 2.97
2 2 2 2.15 2.62 3.00
2 2 3 2.24 2.80 3.18

Anticonvulsant drugs may be effective because they encourage the ef- Problem 9.7
fect of the neurotransmitter GABA (γ-aminobutyric acid). Calcium transport
may also be involved. The present experiment randomly assigned 48 rats
to eight experimental conditions. These eight conditions are the factor-level
combinations of three factors, each at two levels. The factors are the an-
ticonvulsant Trifluoperazine (brand name Stelazine) present or absent, the
anticonvulsant Diazepam (brand name Valium) present or absent, and the
calcium-binding protein calmodulin present or absent. The response is the
amount of GABA released when brain tissues are treated with 33 mM K+

(data based on Table I of de Belleroche, Dick, and Wyrley-Birch 1982, data
set GABA).

Tri Dia Cal GABA
A A A 1.19 1.33 1.34 1.23 1.24 1.23 1.28 1.32

P 1.07 1.44 1.14 .87 1.35 1.19 1.17 .89
P A .58 .54 .63 .81

P .61 .60 .51 .88
P A A .89 .40 .89 .80 .65 .85 .45 .37

P 1.21 1.20 1.40 .70 1.10 1.09 .90 1.28
P A .19 .34 .61 .30

P .34 .41 .29 .52

Analyze these data and report your findings. We are interested in whether the
drugs affect the GABA release, by how much, and if the calmodulin changes
the drug effects.

In a study of patient confidentiality, a large number of pediatricians was Problem 9.8
surveyed. Each pediatrician was given a “fable” about a female patient less
than 18 years old. There were sixteen different fables, the combinations of
the factors complaint (drug problem or sexually transmitted disease), age (14
years or 17 years), the length of time the pediatrician had known the family
(less than 1 year or more than 5 years), and the maturity of patient (immature
for age or mature for age). The response at each combination of factor levels
is the fraction of doctors who would keep confidentiality and not inform the
patient’s parents (data modeled on Moses 1987, data set CALM). Analyze
these data to determine which factors influence the pediatrician’s decision.
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C A L M Response C A L M Response
1 1 1 1 .445 2 1 1 1 .578
1 1 1 2 .624 2 1 1 2 .786
1 1 2 1 .360 2 1 2 1 .622
1 1 2 2 .493 2 1 2 2 .755
1 2 1 1 .513 2 2 1 1 .814
1 2 1 2 .693 2 2 1 2 .902
1 2 2 1 .534 2 2 2 1 .869
1 2 2 2 .675 2 2 2 2 .902

A consulting client comes to me with an unbalanced, two-factor designProblem 9.9
(factor A has 4 levels, factor B has 3 levels). He has done type II sums of
squares and type III sums of squares; nothing is significant. He also did a
one-way anova between the 12 treatments and found significant differences.
He is very puzzled and asks what he did wrong in using his statistics software
to get these bizarre results. What should I tell him?

An animal nutrition experiment was conducted to study the effects ofProblem 9.10
protein in the diet on the level of leucine in the plasma of pigs. Pigs were
randomly assigned to one of twelve treatments. These treatments are the
combinations of protein source (fish meal, soybean meal, and dried skim
milk) and protein concentration in the diet (9, 12, 15, or 18 percent). The
response is the free plasma leucine level in mcg/ml (data from Windels 1964,
data set PlasmaLeucine).

Meal 9% 12% 15% 18%
Fish 27.8 31.5 34.0 30.6

23.7 28.5 28.7 32.7
32.8 28.3 33.7

Soy 39.3 39.8 38.5 42.9
34.8 40.0 39.2 49.0
29.8 39.1 40.0 44.4

Milk 40.6 42.9 59.5 72.1
31.0 50.1 48.9 59.8
34.6 37.4 41.4 67.6

Analyze these data to determine the effects of the factors on leucine level.

Fat acidity is a measure of flour quality that depends on the kind of flour,Problem 9.11
how the flour has been treated, and how long the flour is stored. In this exper-
iment there are two types of flour (Patent or First Clear); the flour treatment
factor (extraction) has eleven levels, and the flour has been stored for one of
six periods (0, 3, 6, 9, 15, or 21 weeks). We observe only one unit for each
factor-level combination. The response is fat acidity in mg KOH/100 g flour
(data from Nelson 1961, data set FatAcidity). Analyze these data. Of
particular interest are the effect of storage time and how that might depend
on the other factors.
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Extraction
T W 1 2 3 4 5 6 7 8 9 10 11

P 0 12.7 12.3 15.4 13.3 13.9 30.3 123.9 53.4 29.4 11.4 19.0
3 11.3 16.4 18.1 14.6 10.5 27.5 112.3 48.9 31.4 11.6 29.1
6 16.5 24.3 27.2 10.9 11.6 34.1 117.5 52.9 38.3 15.8 17.1
9 10.9 30.8 24.5 13.5 13.2 33.2 107.4 49.6 42.9 17.8 15.9
15 12.5 30.6 26.5 15.8 13.3 36.2 109.5 51.0 15.2 18.2 13.5
21 15.2 36.3 36.8 14.4 13.1 43.2 98.6 48.2 58.6 22.2 17.6

FC 0 36.5 38.5 38.4 27.1 35.0 38.3 274.6 241.4 21.8 34.2 34.2
3 35.4 68.5 63.6 41.4 34.5 76.8 282.8 231.8 47.9 33.9 33.2
6 35.7 93.2 76.7 50.2 34.0 96.4 270.8 223.2 65.2 38.9 35.2
9 33.8 95.0 113.0 44.9 36.1 94.5 271.6 200.1 75.0 39.0 34.7
15 43.0 156.7 160.0 30.2 33.0 75.8 269.5 213.6 88.9 37.9 33.0
21 53.0 189.3 199.3 41.0 45.5 143.9 136.1 198.9 104.0 39.2 37.1

Artificial insemination is an important tool in agriculture, but freezing se- Problem 9.12
men for later use can reduce its potency (ability to produce offspring). Here
we are trying to understand the effect of freezing on the potency of chicken
semen. Four semen mixtures are prepared, consisting of equal parts of either
fresh or frozen Rhode Island Red semen, and either fresh or frozen White
Leghorn semen. Sixteen batches of Rhode Island Red hens are assigned at
random, four to each of the four treatments. Each batch of hens is insemi-
nated with the appropriate mixture, and the response measured is the fraction
of the hatching eggs that have white feathers and thus White Leghorn fathers
(data from Tajima 1987, data set ChickenSemen). Analyze these data to
determine how freezing affects potency of chicken semen.

RIR WL Fraction
Fresh Fresh .435 .625 .643 .615
Frozen Frozen .500 .600 .750 .750
Fresh Frozen .250 .267 .188 .200
Frozen Fresh .867 .850 .846 .950

Explore the interaction in the pacemaker delamination data introduced in Problem 9.13
Problem 8.3.

Explore the interaction in the tropical grass production data introduced Problem 9.14
in Problem 8.5.

Explore the interaction in the dye adsorption data introduced in Prob- Problem 9.15
lem 8.12.

Explore the interaction in the dye removal data introduced in Problem 8.14. Problem 9.16

Explore the interaction in the reaction time data introduced in Prob- Problem 9.17
lem 8.13.

One measure of the effectiveness of cancer drugs is their ability to reduce Problem 9.18
the number of viable cancer cells in laboratory settings. In this experiment,
the A549 line of malignant cells is plated onto petri dishes with various con-
centrations of the drug cisplatin. After 7 days of incubation, half the petri
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dishes at each dose are treated with a dye, and the number of viable cell
colonies per 500 mm2 is determined as a response for all petri dishes (after
Figure 1 of Alley, Uhl, and Lieber 1982, data set Cisplatin). The dye is
supposed to make the counting machinery more specific to the cancer cells.

Cisplatin (ng/ml)
0 .15 1.5 15 150 1500

Conventional 200 178 158 132 63 40
Dye added 56 50 45 63 18 14

Analyze these data for the effects of concentration and dye. What can you
say about interaction?

We have a 24 factorial with a sin-
gle replication. Looking at the
Daniel plot we see A and B are
significant; C and D are probably
significant; and maybe AB (it’s
the next one) is significant.

Problem 9.19
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B, C, and D we get a residual
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An experiment studied the effects of starch source, starch concentration,Problem 9.20
and temperature on the strength of gels. This experiment was completely
randomized with sixteen units. There are four starch sources (adzuki bean,
corn, wheat, and potato), two starch percentages (5% and 7%), and two tem-
peratures (22oC and 4oC). The response is gel strength in grams (data from
Tjahjadi 1983, data set GelStrength).
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Temperature Percent Bean Corn Wheat Potato
22 5 62.9 44.0 43.8 34.4

7 110.3 115.6 123.4 53.6
4 5 60.1 57.9 58.2 63.0

7 147.6 180.7 163.8 92.0

Analyze these data to determine the effects of the factors on gel strength.

We have a 24 experiment on the mass of a nanoscale polymer. We pro- Problem 9.21
duce 16 polymer layers by varying the factors A — concentration of solution;
B — number of coats; C — speed of coating machine; D — flow rate of so-
lution. There are four plots below. The plots in the first row are for data
on the original scale, while the plots in the second row are plots on the log
scale. For each scale we show a Daniel Plot (with α set to .3 so lots of terms
are labelled) and a residuals versus predicted plot for the main effects only
model.
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Explain which scale you would choose and why.

Heavy metals should be removed from the waste water stream before it Problem 9.22
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is released into the environment. This experiment examines how five factors
affect the removal of zinc and copper from water via liquid-liquid extraction.
There are five factors under consideration: pH of initial solution (4.5 or 6.5),
initial concentration of the metal (25 or 75 mg/l), concentration of the ex-
tractant (5 or 10 % by volume), medium of the solution (sulfate or chloride),
and stirring rate (400 or 500 rpm). The 32 factor/level combinations were
assigned to 32 independent runs, and two responses were measured: percent
removal of zinc and percent removal of copper.

The data for the experiment are in the following two tables (data from
Berrama, Benaouag, Kaouah, and Bendjama 2013 via Lye 2019, data set
CopperZinc).

Zn Pct. removed Extractant/Initial Conc./pH
5 10

25 75 25 75
Stirring Medium 4.5 6.6 4.5 6.6 4.5 6.6 4.5 6.6

400 Sulfate 90.1 93.4 83.7 85.9 96.7 97.0 93.7 98.3
Chloride 95.9 97.2 95.0 96.6 99.3 99.0 91.9 97.3

500 Sulfate 98.0 94.8 88.0 94.5 97.0 97.0 89.5 93.4
Chloride 94.4 95.4 89.3 88.1 98.0 96.8 85.8 90.1

Cu Pct. removed Extractant/Initial Conc./pH
5 10

25 75 25 75
Stirring Medium 4.5 6.6 4.5 6.6 4.5 6.6 4.5 6.6

400 Sulphate 96.5 96.7 96.1 96.8 98.4 98.8 98.5 98.8
Chloride 95.8 95.9 95.3 99.5 98.4 98.6 98.1 98.2

500 Sulphate 96.1 96.7 96.0 97.4 94.3 98.2 98.5 98.9
Chloride 96.2 96.7 95.7 98.4 98.5 98.5 98.0 98.2

Analyze these data to determine the effects of the factors on removal of met-
als from solution.

Burning coal containing sulfur produces acid rain, so this experimentProblem 9.23
studies a process to remove sulfur from coal. There are five factors, each
at two levels: pH (1.5 or 2.5), particle size (180 or 500 um), Fe2+ (0 or 60
mmol), pulp density (2 or 10%), and leaching time (6 or 14 days). Thirty-two
units are assigned at random to the factor/level combinations. The response
of interest is percentage of sulfur removed, as shown in the following table
(data from Golshani, Jorjani, Chelgani S. Chehreh, and Heidari 2013 via Lye
2019, data set SulfurRemoval).

Draft of March 3, 2021



9.7 Problems 347

Iron/Size/pH
0 60

180 500 180 500
Time Density 1.5 2.5 1.5 2.5 1.5 2.5 1.5 2.5

6 2 29.76 25.56 28.87 24.65 29.75 24.35 26.24 22.47
10 34.52 29.85 35.88 25.36 34.26 34.62 31.35 24.08

14 2 42.31 38.03 40.76 35.31 42.88 39.27 39.92 37.53
10 48.47 38.50 43.78 37.58 53.12 51.97 48.82 46.82

Analyze these data to determine the effects of the factors on removal of met-
als from solution.

Wax from crude oil may settle out and literally gum up the works. This Problem 9.24
experiment considers how four factors affect the deposition of wax from
Malaysian crude oil. The factors are speed of rotation (0 or 600 rpm), cold
finger temperature (5 or 15 C), duration (2 or 24 h), and inhibitor concentra-
tion (200 or 5000 ppm). The 16 factor/level combinations are run in random
order, and the response is the amount of wax deposited (in g). Data from
Ridzuan, Adam, and Yaacob (2016) via Lye (2019), data set WaxDeposit.

Duration/Temp./Rotation
2 24

5 15 5 15
Inhibitor 0 600 0 600 0 600 0 600

200 1.9 1.8 0.80 1.0 2.65 2.8 1.40 1.6
5000 1.5 2.1 0.75 0.9 2.50 3.0 1.05 1.2

Analyze these data to determine the effects of the factors.

Ginger contains an essential oil that we would like to extract without Problem 9.25
using a solvent, in this case by using a microwave. This experiment considers
eight different treatments for extracting this oil. These treatments are the
factor/level combinations of duration (10 or 30 minutes), wattage (288 or
640), and preparation (crushed or sliced). The response is the oil yield (in
%). Sixteen samples of ginger are randomly assigned to the eight factor/level
combinations, two per combination. The data are in the table below (data
from Shah and Garg 2014 via Lye 2019, data set GingerOil).

Type Sliced Crushed
Wattage 288 640 288 640

Duration 10 30 10 30 10 30 10 30
0.10 0.26 0.14 0.35 0.22 0.20 0.28 0.44
0.12 0.25 0.14 0.32 0.24 0.17 0.31 0.46

Analyze these data paying particular attention to the interactions that are
present.

A study uses computational fluid dynamics (CFD) to calculate the diffu- Question 9.1
sion time for moisture. There are four factors, each at two levels (length of
the opening, radius of the opening, temperature, and relative humidity). The
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physics are calculated for the 16 different situations and the diffusion time
(response) computed. The responses are wildly different, but only length and
radius appear to be significant when analyzing the log diffusion times.

This is a “computer experiment,” which means that if we redo one of the
sixteen factor/level runs we will get exactly the same response. Put another
way, σ2 is apparently zero.

What are the inferential consequences of an experiment with apparently
no error?

Show how to construct simultaneous confidence intervals for all pairwiseQuestion 9.2
differences of interaction effects α̂βij using Bonferroni. Hint: first find the
variances of the differences.

Determine the condition for orthogonality of two main-effects contrastsQuestion 9.3
for the same factor when the data are unbalanced.

Show that an interaction contrast wij in the means yij•• equals the corre-Question 9.4
sponding contrast in the interaction effects α̂βij .
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Chapter 10

Random and Mixed Effects
Models

Random effects are another approach to designing experiments and model-
ing data. Random effects are appropriate when the treatments are random
samples from a population of potential treatments. They are also useful for Random effects

for randomly
chosen

treatments and
subsamples

random subsampling from populations, even if we did not apply a treatment
per se. Random-effects models make the same kinds of decompositions into
overall mean, treatment effects, and random error that we have been using,
but random-effects models assume that the treatment effects are random vari-
ables. Also, the focus of inference is often on the variance of the population
of potential treatment effects, not the individual treatment effects themselves.
This chapter introduces random-effects models along with mixed effects,
nesting, and the Hasse diagram to visualize the model.

10.1 Models for Random Effects

A company has 50 machines that make cardboard cartons for canned goods,
and they want to understand the variation in strength of the cartons. They Carton

experiment one, a
single random

factor

choose ten machines at random from the 50 and make 40 cartons on each ma-
chine, assigning 400 lots of feedstock cardboard at random to the ten chosen
machines. The resulting cartons are tested for strength. This is a completely
randomized design, with ten treatments and 400 units; we will refer to this as
carton experiment one.

We have been using models for data that take the form

yij = µi + εij = µ+ αi + εij .

The parameters of the mean structure (µi, µ, and αi) have been treated as
fixed, unknown numbers with the treatment effects summing to zero, and
the primary thrust of our inference has been learning about these mean pa-
rameters. These sorts of models are called fixed-effects models, because the Fixed effects
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treatment effects are fixed numbers.
These fixed-effects models are not appropriate for our carton strength

data. It still makes sense to decompose the data into an overall mean, treat-
ment effects, and random error, but the fixed-effects assumptions don’t make
much sense here for a couple of reasons. First, we are trying to learn about
and make inferences about the whole population of machines, not just these
ten machines that we tested in the experiment, so we need to be able to makeRandom-effects

designs study
populations of
treatments

statements for the whole population, not just the random sample that we used
in the experiment. Second, we can learn all we want about these ten ma-
chines, but a replication of the experiment will give us an entirely different
set of machines. Learning about α1 in the first experiment tells us nothing
about α1 in the second experiment—they are probably different machines.
We need a new kind of model.

The basic random effects model begins with the usual decomposition:

yij = µ+ αi + εij .

We assume that the errors εij are independent and normally distributed with
mean 0 and variance σ2, as we did in fixed effects. For random effects,Treatment effects

are random in
random-effects
models

we also assume that the treatment effects αi are independent and normally
distributed with mean 0 and variance σ2α, and that the αi’s and the εij’s are
independent of each other. Random effects models do not require that the
sum of the αi’s be zero.

The variance of yij is σ2α + σ2. The terms σ2α and σ2 are called compo-
nents of variance or variance components. Thus the random-effects model isVariance

components sometimes called a components of variance model. The correlation between
yij and ykl is

Cor(yij , ykl) =

 0 i 6= k
σ2α/(σ

2
α + σ2) for i = k and j 6= l

1 i = k and j = l
.

The correlation is nonzero when i = k because the two responses share a
common value of the random variable αi. The correlation between two re-Intraclass

correlation sponses in the same treatment group is called the intraclass correlation. An-
other way of thinking about responses in a random-effects model is that they
all have mean µ, variance σ2α +σ2, and a correlation structure determined byRandom effects

can be specified
by correlation
structure

the variance components. The additive random-effects model and the corre-
lation structure approach are nearly equivalent (the additive random-effects
model can only induce positive correlations, but the general correlation struc-
ture model allows negative correlations).

The parameters of the random effects model are the overall mean µ, the
error variance σ2, and the variance of the treatment effects σ2α; the treatment
effects αi are random variables, not parameters. We want to make inferencesTests and

confidence
intervals for
parameters

about these parameters; we are often not as interested in making inferences
about the αi’s and εij’s, which will be different in the next experiment any-
way. Typical inferences would be point estimates or confidence intervals for
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the variance components, or a test of the null hypothesis that the treatment
variance σ2α is 0.

Now extend carton experiment one. Suppose that machine operators may
also influence the strength of the cartons. In addition to the ten machines
chosen at random, the manufacturer also chooses ten operators at random.
Each operator will produce four cartons on each machine, with the cardboard Carton

experiment two,
two random

factors

feedstock assigned at random to the machine-operator combinations. We
now have a two-way factorial treatment structure with both factors random
effects and completely randomized assignment of treatments to units. This is
carton experiment two.

The model for two-way random effects is

yijk = µ+ αi + βj + αβij + εijk ,

where αi is a main effect for factor A, βj is a main effect for factor B, αβij
is an AB interaction, and εijk is random error. The model assumptions are
that all the random effects αi, βj , αβij , and εijk are independent, normally Two-factor model
distributed, with mean 0. Each effect has its own variance: Var(αi) = σ2α,
Var(βj) = σ2β , Var(αβij) = σ2αβ , and Var(εijk) = σ2. The variance of yijk
is σ2α + σ2β + σ2αβ + σ2, and the correlation of two responses is the sum
of the variances of the random components that they share, divided by their
common variance σ2α + σ2β + σ2αβ + σ2.

This brings us to another way that random effects differ from fixed ef-
fects. In fixed effects, we have a table of means onto which we impose a
structure of equally weighted main effects and interactions. There are other
plausible structures based on unequal weightings that can have different main
effects and interactions, so testing main effects when interactions are present
in fixed effects makes sense only when we are truly interested in the specific,
equally-weighted null hypothesis corresponding to the main effect. Random
effects set up a correlation structure among the responses, with autonomous
contributions from the different variance components. It is reasonable to ask Hierarchy less

important in
random-effects

models

if a main-effect contribution to correlation is absent even if interaction con-
tribution to correlation is present. Similarly, equal weighting is about the
only weighting that makes sense in random effects; after all, the row effects
and column effects are chosen randomly and exchangeably. Why weight one
row or column more than any other? So for random effects, we more or less
automatically test for main effects, even if interactions are present.

We can, of course, have random effects models with more than two fac-
tors. Suppose that there are many batches of glue, and we choose two of them Carton

experiment three,
three random

factors

at random. Now each operator makes two cartons on each machine with each
batch of glue. We now have 200 factor-level combinations assigned at ran-
dom to the 400 units. This is carton experiment three.

The model for three-way random effects is

yijkl = µ+ αi + βj + αβij + γk + αγik + βγjk + αβγijk + εijkl ,

where αi, βj , and γk are main effects; αβij , αγik, βγik, and αβγijk are Three-factor
model
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interactions; and εijkl is random error. The model assumptions remain that
all the random effects are independent and normally distributed with mean 0.
Each effect has its own variance: Var(αi) = σ2α, Var(βj) = σ2β , Var(γk) = σ2γ ,
Var(αβij) = σ2αβ , Var(αγik) = σ2αγ , Var(βγjk) = σ2βγ , Var(αβγijk) = σ2αβγ ,
and Var(εijkl) = σ2. Generalization to more factors is straightforward.

10.2 Why Use Random Effects?

The carton experiments described above are all completely randomized de-
signs: the units are assigned at random to the treatments. The difference
from what we have seen before is that the treatments have been randomly
sampled from a population. Why should anyone design an experiment that
uses randomly chosen treatments?

The answer is that we are trying to draw inferences about the popula-
tion from which the treatments were sampled. Specifically, we are trying toRandom effects

study variances in
populations

learn about variation in the treatment effects. Thus we want to design an ex-
periment that looks at variation in a population by looking at the variability
that arises when we sample from the population. When you want to study
variances and variability, think random effects.

Random-effects models are also used in subsampling situations. Revise
carton experiment one. The manufacturer still chooses ten machines at ran-Use random

effects when
subsampling

dom, but instead of making new cartons, she simply goes to the warehouse
and collects 40 cartons at random from those made by each machine. It still
makes sense to model the carton strengths with a random effect for the ran-
domly chosen machine and a random error for the randomly chosen cartons
from each machine’s stock; that is precisely the random effects model.

In the subsampling version of the carton example, we have done no ex-
perimentation in the sense of applying randomly assigned treatments to units.
Instead, the stochastic nature of the data arises because we have sampled
from a population. The items we have sampled are not exactly alike, so theSubsampling

induces random
variation

responses differ. Furthermore, the sampling was done in a structured way
(in the example, first choose machines, then cartons for each machine) that
produces some correlation between the responses. For example, we expect
cartons from the same machine to be a bit similar, but cartons from different
machines should be unrelated. The pattern of correlation for subsampling is
the same as the pattern of correlation for randomly chosen treatments applied
to units, so we can use the same models for both.

10.3 Nesting Versus Crossing

The vitamin A content of baby food carrots may not be consistent. To eval-
uate this possibility, we go to the grocery store and select four jars of carrots
at random from each of the three brands of baby food that are sold in our
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region. We then take two samples from each jar and measure the vitamin A
in every sample for a total of 24 responses.

It makes sense to consider decomposing the variation in the 24 responses Multiple sources
of variationinto various sources. There is variation between the brands, variation be-

tween individual jars for each brand, and variation between samples for every
jar.

It does not make sense to consider jar main effects and brand by jar in-
teraction. Jar one for brand A has absolutely nothing to do with jar one for No jar effect

across brandsbrand B. They might both have lots of vitamin A by chance, but it would just
be chance. They are not linked, so there should be no jar main effect across
the brands. If the main effect of jar doesn’t make sense, then neither does
a jar by brand interaction, because that two-factor interaction can be inter-
preted as how the main effect of jar must be altered at each level of brand to
obtain treatment means.

Main effects and interaction are appropriate when the treatment factors
are crossed. Two factors are crossed when treatments are formed as the Crossed factors

form treatments
with their

combinations

combinations of levels of the two factors, and we use the same levels of the
first factor for every level of the second factor, and vice versa. All factors we
have considered until the baby carrots have been crossed factors. The jar and
brand factors are not crossed, because we have different jars (levels of the jar
factor) for every brand.

The alternative to crossed factors is nested factors. Factor B is nested in
factor A if there is a completely different set of levels of B for every level Factor B nested

in A has different
levels for every

level of A

of A. Thus the jars are nested in the brands and not crossed with the brands,
because we have a completely new set of jars for every brand. We write
nested models using parentheses in the subscripts to indicate the nesting. If
brand is factor A and jar (nested in brand) is factor B, then the model is
written

yijk = µ+ αi + βj(i) + εk(ij) .

The j(i) indicates that the factor corresponding to j (factor B) is nested in the
factor corresponding to i (factor A). Thus there is a different βj for each level
i of A. In terms of term labels, this is sometimes written as B(A) to indicate
that factor B is nested in factor A.

Note that we wrote εk(ij), nesting the random errors in the brand-jar com-
binations. This means that we get a different, unrelated set of random errors Errors are nested
for each brand-jar combination. In the crossed factorials we have used until
now, the random error is nested in the all-way interaction, so that for a three-
way factorial the error εijkl could more properly have been written εl(ijk).
Random errors are always nested in some model term; we’ve just not needed
to deal with it before now.

Nested factors can be random or fixed, though they are usually random
and often arise from some kind of subsampling. As an example of a factor Nested factors

are usually
random

that is fixed and nested, consider a company with work crews, each crew
consisting of four members. Members are nested in crews, and we get the
same four crew members whenever we look at a given crew, making member
a fixed effect.
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When we have a chain of factors, each nested in its predecessor, we say
that the design is fully nested. The baby carrots example is fully nested,
with jars nested in brand, and sample nested in jar. Another example comesFully nested

design from genetics. There are three subspecies. We randomly choose five males
from each subspecies (a total of fifteen males); each male is mated with four
females (of the same subspecies, a total of 60 females); we observe three
offspring per mating (a total of 180 offspring); and we make two measure-
ments on each offspring (a total of 360 measurements). Offspring are nested
in females, which are nested in males, which are nested in subspecies.

10.4 Why Nesting?

We may design an experiment with nested treatment structure for several rea-
sons. Subsampling produces small units by one or more layers of selection
from larger bundles of units. For the baby carrots we went from brands to
jars to samples, with each layer being a group of units from the layer be-Unit generation,

logistics, and
constraints may
lead to nesting

neath it. Subsampling can be used to select treatments as well as units. In
some experiments crossing is theoretically possible, but logistically imprac-
tical. There may be two or three clinics scattered around the country that can
perform a new diagnostic technique. We could in principle send our patients
to all three clinics to cross clinics with patients, but it is more realistic to send
each patient to just one clinic. In other experiments, crossing simply cannot
be done. For example, consider a genetics experiment with females nested
in males. We need to be able to identify the father of the offspring, so we
can only breed each female to one male at a time. However, if females of the
species under study only live through one breeding, we must have different
females for every male.

We do not simply choose to use a nested model for an experiment. WeModels must
match designs use a nested model because the treatment structure of the experiment was

nested, and we must build our models to match our treatment structure.

10.5 Crossed and Nested Factors

Designs can have both crossed and nested factors. One common source of
this situation is that “units” are produced in some sense through a nestingUnits with nesting

crossed with
treatments

structure. In addition to the nesting structure, there are treatment factors, the
combinations of which are assigned at random to the units in such a
way that all the combinations of nesting factors and treatment factors get an
equal number of units.

Example 10.1 Gum arabic
Gum arabic is used to lengthen the shelf life of emulsions, including

soft drinks, and we wish to see how different gums and gum preparations
affect emulsion shelf life. Raw gums are ground, dissolved, treated (possible
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treatments include pasteurization, demineralization, and acidification), and
then dried; the resulting dry powder is used as an emulsifier in food products.

Gum arabic comes from acacia trees; we obtain four raw gum samples
from each of two varieties of acacia tree (a total of eight samples). Each
sample is split into two subsamples. One of the subsamples (chosen at ran-
dom) will be demineralized during treatment, the other will not. The sixteen
subsamples are now dried, and we make five emulsions from each subsample
and measure as the response the time until the ingredients in the emulsion
begin to separate.

This design includes both crossed and nested factors. The samples of raw
gum are nested in variety of acacia tree; we have completely different sam-
ples for each variety. The subsamples are nested in the samples. Subsample
is now a unit to which we apply one of the two levels of the demineralization
factor. Because one subsample from each sample will be demineralized and
the other won’t be, each sample occurs with both levels of the demineraliza-
tion treatment factor. Thus sample and treatment factor are crossed. Simi-
larly, each variety of acacia occurs with both levels of demineralization so
that variety and treatment factor are crossed. The five individual emulsions
from a single subsample are nested in that subsample, or equivalently, in the
variety-sample-treatment combinations. They are measurement units.

If we let variety, sample, and demineralization be factors A, B, and C,
then an appropriate model for the responses is

yijkl = µ+ αi + βj(i) + γk + αγik + βγjk(i) + εl(ijk) .

Not all designs with crossed and nested factors have such a clear idea
of unit. For some designs, we can identify the sources of variation among Treatments and

units not always
clear

responses as factors crossed or nested, but identifying “treatments” randomly
assigned to “units” takes some mental gymnastics.

Example 10.2 Cheese tasting
Food scientists wish to study how urban and rural consumers rate ched-

dar cheeses for bitterness. Four 50-pound blocks of cheddar cheese of differ-
ent types are obtained. Each block of cheese represents one of the segments
of the market (for example, a sharp New York style cheese). The raters are
students from a large introductory food science class. Ten students from
rural backgrounds and ten students from urban backgrounds are selected at
random from the pool of possible raters. Each rater will taste eight bites of
cheese presented in random order. The eight bites are two each from the four
different cheeses, but the raters don’t know that. Each rater rates each bite
for bitterness.

The factors in this experiment are background, rater, and type of cheese.
The raters are nested in the backgrounds, but both background and rater are
crossed with cheese type, because all background-cheese type combinations
and all rater/cheese type combinations occur. This is an experiment with both
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crossed and nested factors. Perhaps the most sensible formulation of this as
treatments and units is to say that bites of cheese are units (nested in type of
cheese) and that raters nested in background are treatments applied to bites
of cheese.

If we let background, rater, and type be factors A, B, and C, then an
appropriate model for the responses is

yijkl = µ+ αi + βj(i) + γk + αγik + βγjk(i) + εl(ijk) .

This is the same model as Example 10.1, even though the structure of units
and treatments is very different!

These two examples illustrate some of the issues of working with designs
having both crossed and nested factors. You need toSteps to build a

model
1. Determine the sources of variation,

2. Decide which cross and which nest,

3. Decide which factors are fixed and which are random, and

4. Decide which interactions should be in the model.

Identifying the appropriate model with fixed-random-crossed-nested designs
can be a challenge; it takes a lot of practice.

10.6 Mixed Effects

In addition to having both crossed and nested factors, Example 10.1 has both
fixed (variety and demineralization) and random (sample) factors; Exam-
ple 10.2 also has fixed (background and cheese type) and random (rater)
factors. An experiment with both fixed and random effects is said to haveMixed effects

models have fixed
and random
factors

mixed effects. The interaction of a fixed effect and a random effect must be
random, because a new random sample of factor levels will also lead to a new
sample of interactions.

Analysis of mixed-effects models reminds me of the joke in the computer
business about standards: “The wonderful thing about standards is that thereTwo standards for

analysis of mixed
effects

are so many to choose from.” For mixed effects, there are two sets of as-
sumptions that have a reasonable claim to being standard. Unfortunately, the
two sets of assumptions lead to different analyses, and potentially different
answers.

Before stating the mathematical assumptions, let’s visualize two mecha-
nisms for producing the data in a mixed-effects model; each mechanism leads
to a different set of assumptions. By thinking about the mechanisms behindTwo mechanisms

to generate mixed
data

the assumptions, we should be able to choose the appropriate assumptions in
any particular experiment. Let’s consider a two-factor model, with factor A
fixed and factor B random, and a very small error variance so that the data
are really just the sums of the row, column, and interaction effects.

Here is one way to get the data. Imagine a table with a rows and a very
large number of columns. Our random factor B corresponds to selecting b ofMechanism 1:

sampling columns
from a table
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the columns from the table at random, and the data we observe are the items
in the table for the columns that we select.

This construction implies that if we repeated the experiment and we hap-
pened to get the same column twice, then the column totals of the data for the
repeated column would be the same in the two experiments. Put another way,
once we know the column we choose, we know the total for that column; we
don’t need to wait and see what particular interaction effects are chosen be- Restricted model

has interaction
effects that add to

zero across the
fixed levels

fore we see the column total. Thus column differences are determined by
the main effects of column; we can assume that the interaction effects in a
given column add to zero. This approach leads to the restricted model, since
it restricts the interaction effects to add to zero when summed across a fixed
effect.

The second approach treats the main effects and interactions indepen-
dently. Now we have two populations of effects; one population contains
random column main effects βj , and the other population contains ran- Mechanism 2:

independent
sampling from

effects
populations

dom interaction effects αβij . In this second approach, we have fixed row
effects, we choose column effects randomly and independently from the col-
umn main effects population, and we choose interaction effects randomly
and independently from the interaction effects population; the column and
interaction effects are also independent.

When we look at column totals in these data, the column total of the
interaction effects can change the column total of the data. Another sample
with the same column will have a different column total, because we will No zero sums

when unrestrictedhave a different set of interaction effects. This second approach leads to the
unrestricted model, because it has no zero-sum restrictions.

Choose between these models by answering the following question: if
you reran the experiment and got a column twice, would you have the same Restricted model

if repeated main
effect implies

repeated
interaction

interaction effects or an independent set of interaction effects for that re-
peated column? If you have the same set of interaction effects, use the
restricted model. If you have new interaction effects, use the unrestricted
model. I tend to use the restricted model by default and switch to the unre-
stricted model when appropriate.

We will see that the unrestricted model is more conservative in the sense
that it implies that random variability for estimated effects is at least as
large, and possibly larger, than the corresponding model using restricted
assumptions.

Example 10.3 Cheese tasting, continued
In the cheese tasting example, one of our raters is Mary; Mary likes

sharp cheddar cheese and dislikes mild cheese. Any time we happen to get
Mary in our sample, she will rate the sharp cheese higher and the mild cheese
lower. John, on the other hand, likes milder cheeses. We get the same rater
by cheese interaction effects every time we choose Mary or John, so the
restricted model is appropriate.
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Example 10.4 Particle sampling
To monitor air pollution, a fixed volume of air is drawn through disk-

shaped filters, and particulates deposit on the filters. Unfortunately, the par-
ticulate deposition is not uniform across the filter. Cadmium particulates on
a filter are measured by X-ray fluorescence. The filter is placed in an in-
strument that chooses a random location on the filter, irradiates that location
twice, measures the resulting fluorescence spectra, and converts them to cad-
mium concentrations. We compare three instruments by choosing ten filters
at random and running each filter through all three instruments, for a total of
60 cadmium measurements.

In this experiment we believe that the primary interaction between filter
and instrument arises because of the randomly chosen locations on that filter
that are scanned and the nonuniformity of the particulate on the filter. Each
time the filter is run through an instrument, we get a different location and
thus a different “interaction” effect, so the unrestricted model is appropriate.

Unfortunately, the choice between restricted and unrestricted models is
not always clear.

Example 10.5 Gum arabic, continued
Gum sample is random (nested in variety) and crosses with the fixed de-

mineralization factor. Should we use the restricted or unrestricted model? If
a gum sample is fairly heterogeneous, then at least some of any interaction
that we observe is probably due to the random split of the sample into two
subsamples. The next time we do the experiment, we will get different sub-
samples and probably different responses. In this case, the demineralization
by sample interaction should be treated as unrestricted, because we would
get a new set of effects every time we redid a sample.

On the other hand, how a sample reacts to demineralization may be a
shared property of the complete sample. In this case, we would get the same
interaction effects each time we redid a sample, so the restricted model would
be appropriate.

We need to know more about the gum samples before we can make a
reasoned decision on the appropriate model.

Here are the technical assumptions for mixed effects. For the unrestricted
model, all random effects are independent and have normal distributions withUnrestricted

model
assumptions

mean 0. Random effects corresponding to the same term have the same vari-
ance: σ2β , σ2αβ , and so on. Any purely fixed effect or interaction must add to
zero across any subscript.

The assumptions for the restricted model are the same, except for in-
teractions that include both fixed and random factors. Random effects in a
mixed-interaction term have the same variance, which is written as a fac-Restricted model

assumptions tor times the usual variance component: for example, rab σ2αβ . These effects
must sum to zero across any subscript corresponding to a fixed factor, but
are independent if the random subscripts are not the same. The zero sum
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requirement induces negative correlation among the random effects with the
same random subscripts.

The scaling factors like rab are found as follows. Get the number of levels
for all fixed factors involved in the interaction. Let r1 be the product of these Scale factors in

restricted model
variances

levels, and let r2 be the product of the levels each reduced by 1. Then the
multiplier is r2/r1. For an AB interaction with A fixed and B random, this
is (a − 1)/a; for an ABC interaction with A and B fixed and C random, the
multiplier is (a− 1)(b− 1)/(ab).

10.6.1 A matrix formulation

Here we briefly write a general matrix formulation for mixed effects
models. We will not be using this formulation directly, but those who are
comfortable with matrix algebra may find this a unifying explanation.
To be concrete, we will use a two-factor design as an example. Factor A
is fixed with three levels; factor B is random with two levels and crosses
with A; and n = 2 for a total of N = 12.

Let y be the N -vector of our data; that is, we establish an order and
put our yijkl responses into that order. In our example, we will put our
responses into the order y111, y211, y311, y121, y221, y321, y112, y212, y312,
y122, y222, y322.

Let X be a known N × p matrix, where p is the number of degrees
of freedom in the fixed effects; p = 3 in our example. Let β be a vector
of length p containing the fixed effect coefficients. In our example, β
contains the elements µ, α1, and α2 (recall that

∑
i αi = 0, so we can

represent α3 in terms of the other fixed effects as α3 = −α1 − α2). Do
not confuse this bold beta with other (non-bold) beta coefficients in the
model.

The fixed effects contribution to the model is Xβ. In our example,
the fixed effects contributions are µ+α1, µ+α2, or µ+α3 = µ−α1−α2

depending on the level of factor A for that unit. In our example,

Xβ =



1 1 0
1 0 1
1 −1 −1
1 1 0
1 0 1
1 −1 −1
1 1 0
1 0 1
1 −1 −1
1 1 0
1 0 1
1 −1 −1



(
µ
α1

α2

)
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Let Z be a known N × q matrix, where q is the total number of
random effects in the model. Sometimes it is convenient to break Z into
separate matrices corresponding to each random term in the model. In
our example, we could have Z = [Z[1]Z[2]], where Z[1] is an N × 2

matrix for the B effect and Z[2] is an N × 6 matrix for the AB effect.
Let ζ be a vector of length q containing the random coefficients. In

our example, ζ contains the elements β1, β2, αβ11, αβ21, αβ31, αβ12,
αβ22, αβ32. If we split Z into submatrices corresponding to different
random terms, we can also split ζ in an analogous way. In our example,
ζ[1] has elements β1 and β2, while ζ[2] has elements αβ11, αβ21, αβ31,
αβ12, αβ22, αβ32.

The random effects contribution to our model is Zζ (or broken out
into subcomponents by terms, like Zζ = Z[1]ζ[1]+Z[2]ζ[2] in our exam-
ple). Each row of Z (or Z[j]) corresponds to a single unit in the experi-
ment, and that row of Z creates a linear combination of the random effect
coefficients that then get added to the fixed effect contribution. In many
cases, rows of Z will consist of zeroes and ones, which are thus simply
picking up appropriate random effect coefficients and adding them to the
fixed effect contribution. However, Z can be more complicated, giving
this formulation much of its power. In our example, we would have

Z[1]ζ[1] =



1 0
1 0
1 0
0 1
0 1
0 1
1 0
1 0
1 0
0 1
0 1
0 1



(
β1
β2

)

Z[2]ζ[2] =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




αβ11
αβ21
αβ31
αβ12
αβ22
αβ32
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The elements of ζ are random. We assume that ζ[i] is independent
of ζ[j] for all i and j. Each vector ζ[i] is multivariate normal with mean
0 and variance/covariance matrix Σ[i]. In many cases, we will assume
that the elements of ζ[i] are independent with constant variance. In that
case, Σ[i] = σ2i I, where I is the identity matrix with the appropriate
dimension.

Finally, we assume there is a random error on each observation. Usu-
ally we assume these errors are independent with constant variance σ20 ,
but we can reformulate the model to include different variances, auto-
correlation, and so on.

Our complete model for the data is

y = Xβ + Zζ + ε

= Xβ + Z[1]ζ[1] + Z[2]ζ[2] + · · ·+ ε

Statistically, y is distributed multivariate normal with mean Xβ and
variance/covariance Z[1]Σ[1]Z[1]T +Z[2]Σ[2]Z[2]T +· · ·+σ20I. (The T su-
perscript indicates matrix transposition.) In our example, if we are using
unrestricted model assumptions, this variance reduces to σ2AZ

[1]Z[1]T +

σ2ABZ
[2]Z[2]T + σ20I. If we want the restricted model assumptions, then

Σ[2] = σ2ABC 6= σ2ABI, where C is a known matrix that ensures zero
variance when adding across the levels of any fixed factor for any com-
bination of levels for random factors. In that case, the variance is
σ2AZ

[1]Z[1]T + σ2ABZ
[2]CZ[2]T + σ20I.

Modern statistical software uses this X,Z formulation internally to
represent a wide range of potential models, including many that would
be very difficult to handle using the old yij•• sorts of formulae.

10.7 Developing a Model

A table of data alone does not tell us the correct model. Before we can
analyze data, we have to have a model on which to build the analysis. This
model reflects the structure of the experiment (nesting and/or crossing of Analysis depends

on modeleffects); how broadly we are trying to make inference (just these treatments
or a whole population of treatments); and whether mixed effects should be
restricted or unrestricted. Once we have answered these questions, we can
build a model. Parameters are only defined within a model, so we need the
model to make tests, compute confidence intervals, and so on.

We must decide whether each factor is fixed or random. This decision is
usually straightforward but can actually vary depending upon the goals of an
experiment. Suppose that we have an animal breeding experiment with four Fixed or random

factors?sires. Now we know that the four sires we used are the four sires that were
available; we did no random sampling from a population. If we are trying to
make inferences about just these four sires, we treat sire as a fixed effect. On
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the other hand, if we are trying to make inferences about the population of
potential sires, we would treat sires as a random effect. This is reasonable,
provided that we can consider the four sires at hand to be a random sample
from the population, even though we did no actual sampling. If these four
sires are systematically different from the population, trying to use them to
make inferences about the population will not work well.

We must decide whether each factor is nested in some other factor or
interaction. The answer is determined by examining the construction of an
experiment. Do all the levels of the factor appear with all the levels of anotherNesting or

crossing? effect (crossing), or do some levels of the factor appear with some levels of
the effect and other levels of the factor appear with other levels of the effect
(nesting)? For the cheese raters example, we see a different set of raters for
rural and urban backgrounds, so rater must be nested in background. Con-
versely, all the raters taste all the different kinds of cheese, so rater is crossed
with cheese type.

My model generally includes interactions for all effects that could inter-
act, but we will see in some designs later on (for example, split plots) that
not all possible interactions are always included in models. To some degreeWhich

interactions? the decision as to which interactions to include is based on knowledge of the
treatments and experimental materials in use, but there is also a degree of
tradition in the choice of certain models.

Finally, we must decide between restricted and unrestricted model as-
sumptions. I generally use the restricted model as a default, but we mustRestricted or

unrestricted? think carefully in any given situation about whether the zero-sum restrictions
are appropriate.

10.8 Hasse Diagrams

A Hasse diagram (Lohr 1995) is a graphical representation of a model show-
ing the nesting/crossing and random/fixed structure. We can go back and
forth between models and Hasse diagrams. I find Hasse diagrams to be use-
ful when I am trying to build my model, as I find the graphic easier to work
with and comprehend than a cryptic set of parameters and subscripts.

Figure 10.1 shows three Hasse diagrams that we will use for illustration.
First, every term in a model has a node on the Hasse diagram. A node con-Nodes for terms,

joined by lines for
above/below

sists of a label to identify the term (for example, AB), a subscript giving the
degrees of freedom for the term, and a superscript giving the number of dif-
ferent effects in a given term (for example, ab for βj(i)). Some nodes are
joined by line segments. Term U is above term V (or term V is below term
U) if you can go from U to V by moving down line segments. For example,
in Figure 10.1(b), AC is below A, but BC is not. The label for a random fac-Random terms in

parentheses tor or any term below a random factor is enclosed in parentheses to indicate
that it is random.
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Figure 10.1: Hasse diagrams: (a) two-way factorial with A fixed and
B random, A and B crossed; (b) three-way factorial with A and B
random, C fixed, all factors crossed; (c) fully nested, with B fixed, A
and C random. In all cases, A has 5 levels, B has 4 levels, and C has
2 levels.

10.8.1 Constructing a Hasse diagram

A Hasse diagram always has a node at the top for the grand mean (it could
be called M or Intercept), a node at the bottom for random error (it could Build from top

downbe called (E) or (Error)), and nodes for each factorial term in between. I
build Hasse diagrams from the top down, but to do that I need to know which
terms go above other terms. Hasse diagrams have the same above/below
relationships as ANOVA tables.

A term U is above a term V in an ANOVA table if all of the factors in term
U are in term V. Sometimes these factors are explicit; for example, factors A, Nested factors

include implicit
factors

B, and C are in the ABC interaction. When nesting is present, some of the
factors may be implicit or implied in a term. For example, factors A, B, and
C are all in the term C nested in the AB interaction. When we write the term
as C, A and B are there implicitly. We will say that term U is above term V
if all of the factors in term U are present or implied in term V.

Before we start the Hasse diagram, we must determine the factors in the
model, which are random and which are fixed, and which nest and which
cross. Once these have been determined, we can construct the diagram using
the steps in Display 10.1.

Example 10.6 Cheese tasting Hasse diagram
The cheese tasting experiment of Example 10.2 had three factors: the

fixed factor for background (two levels, labeled B), the fixed factor cheese
type (four levels, labeled C), and the random factor for rater (ten levels, ran-
dom, nested in background, labeled R). Cheese type crosses with both back-
ground and rater.
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1. Start row 0 with node M for the grand mean.

2. Put a node on row 1 for each factor that is not nested in any
term. Add lines from the node M to each of the nodes on
row 1. Put parentheses around random factors.

3. On row 2, add a node for any factor nested in a row 1 node,
and draw a line between the two. Add nodes for terms with
two explicit or implied factors and draw lines to the terms
above them. Put parentheses around nodes that are below
random nodes.

4. On each successive row, say row i, add a node for any factor
nested into a row i − 1 node, and draw a line between the
two. Add nodes for terms with i explicit or implied factors
and draw lines to the terms above them. Put parentheses
around nodes that are below random nodes.

5. When all interactions have been exhausted, add a node for
error on the bottom line, and draw a line from error to the
dangling node(s) above it.

6. For each node, add a superscript that indicates the number
of effects in the term.

7. For each node, add a subscript that indicates the degrees of
freedom for the term. Degrees of freedom for a term U are
found by starting with the superscript for U and subtracting
out the degrees of freedom for all terms above U.

Display 10.1: Steps for constructing a Hasse diagram.

Figure 10.2(a) shows the first stage of the diagram, with the Intercept
node for the mean and nodes for each factor that is not nested.

Figure 10.2(b) shows the next step. We have added rater nested in back-
ground. It is in parentheses to denote that it is random, and we have a line
up to background to show the nesting. Also in this row is the BC two-factor
interaction, with lines up to B and C.

Figure 10.2(c) shows the third stage, with the rater by cheese RC inter-
action. This is random (in parentheses) because it is below rater. It is also
below BC; B is present implicitly in any term containing R, because R nests
in B.

Figure 10.2(d) adds the node for random error. I call this stage a skeleton,
or frame-only, Hasse diagram.

Figure 10.2(e) adds the superscripts for each term. The superscript is the
number of different effects in the term and equals the product of the number
of levels of all the implied or explicit factors in a term.

Finally, Figure 10.2(f) adds the subscripts, which give the degrees of free-
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(Error)80
160

Figure 10.2: Stages in the construction of Hasse diagram for the
cheese rating example.

dom. Compute the degrees of freedom by starting with the superscript and
subtracting out the degrees of freedom for all terms above the given term.
It is easiest to get degrees of freedom by starting with terms at the top and
working down.

Perhaps the most difficult part of this text is the processing of a verbal
description of an experiment into a Hasse diagram (or model). It takes time,
and it takes practice, and a few more examples might help.

Example 10.7 Honey Bee Hasse
Many insects respond to odors (of food, for example), but their responses

may depend on many factors. In this study, scientists wish to study the ef-
fects of genetic background, type of food, and concentration of odor on a
physiological response in bees. The experiment involves 312 bees, 52 from
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each of six colonies (hives). The 52 bees from each colony are divided at
random into two groups of 26. Group 1 gets control food and group 2 gets
experimental food. Each bee is then exposed to three different concentrations
of the odor in random order, with a wash-out odor exposure between each ex-
perimental condition. Each bee is measured for its response after exposure
to each experimental condition.

The first step is to identify the factors. Factors are the “reasons” why the
responses are not all the same. In our case, the factors are the source of the
bees (the hives, H), the type of food (F), the concentration of the odor (C),
and the individual bee (B). Now we think about what is crossed and what
is nested. Each individual bee is from one hive and only gets one kind of
food. Thus bee must be nested in the hive by food interaction. Each bee sees
every concentration, so bee crosses with concentration. Similarly, everything
else crosses as well. What is fixed and what is random? Bee is probably
random, as there are many more than 52 bees in each hive. Concentration
and food are almost certainly fixed. Hive is less clear in this example. If we
are talking about just these six hives, hive is a fixed factor. If we are trying to
draw inference to the population of all potential hives and consider our six to
be a random sample, then hive would be a random factor.

If we assume that hive is fixed, we get the Hasse diagram in Figure 10.3
(a). On the other hand, with hive random we get the Hasse diagram in Fig-
ure 10.3 (b).

Note that even though we have 936 observations, we have 0 degrees of
freedom for estimating error. We would need to observe the response of each
bee to each concentration more than once to be able to estimate error.

Example 10.8 Plant growth Hasse
We are conducting an experiment on plant growth. The experiment will

be conducted at two sites, and our interest is in how the plants grow at
these particular two sites. We are interested in four specific populations
of plants, and from within each population we have randomly chosen 10
sub-populations called lines. At each site there are 8 parcels of land called
quadrats. At each site, each population is randomly assigned to two quadrats.
At each quadrat, all 10 lines from the chosen population are grown. Finally,
we take two biomass measurements from each line. This gives us a total of
320 biomass measurements.

The factors in this experiment are population, line, site, and quadrat. The
first three are fairly obvious, but quadrat will appear like a source of error.
Some quadrats may be highly productive, and others less so. We can identify
this source through the randomization, so we include it in the model. Line is
clearly nested in population, but every population sees every site, and every
line sees every site, so those pairs cross. There is a separate set of quadrats
for every population-site combination, so quadrat is nested in the population-
site interaction. The description of the experiment indicates that interest is in
these particular populations and sites; thus the population and site factors are
fixed (we are not making inference to some encompassing universe of sites
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(Error)0
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(a) (b)

Figure 10.3: Hasse diagrams for the honey bee food and odor
concentration experiment in Example 10.7: (a) hive assumed to be
fixed; (b) hive assumed to be random. H is hive, C is concentration, F
is food type, and B is individual bee.

or populations). Line, however, is random and quadrat will be random.
The Hasse diagram for this example is in Figure 10.4.

Example 10.9 Personality Types
A psychologist wishes to explore a theory about interactions between

young men and women. She has identified four male personality types and
five female personality types. Five young men of each type are selected at
random (total 20 men), and 5 young women of each type are selected at
random (total 25 women). Each of the 20 men will meet each of the 25
women for a five minute conversation. The conversation is taped, and the
psychologist rates each conversation for its degree of interaction.

The factors here are the female and male personality types as well as
the individual men and women in the experiment. The personality types are
fixed factors; there are four for men and five for women and no additional
types that these are supposed to represent. Individual men and women are
random factors. The male personality types cross with the female personality
types, and the individual males cross with the individual females. However,
males are nested in male personality type, and females are nested in female
personality type.

The Hasse diagram for this example is in Figure 10.5. Note that, again in
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Intercept1
1

S1
2 P3

4

S:P3
8 (L)36

40

(Q)8
16 (S:L)36

80

(L:Q)72
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(Error)160
320

Figure 10.4: Hasse diagram for the plant growth experiment in
Example 10.8. S is site; P is population; L is line; and Q is quadrat.

Intercept1
1

MPT3
4 FPT4

5

(B)16
20 MPT:FPT12

20 (G)20
25

(FPT:B)64
100 (MPT:G)60

100

(B:G)320
500

(Error)0
500

Figure 10.5: Hasse diagram for the conversation experiment in
Example 10.9. MPT is male personality type; FPT is female
personality type; B is man (the boys); and G is woman (the girls).

this example, there are no degrees of freedom to estimate error, because we
only get one observation for each man:woman combination.
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Intercept1
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(P)36
48

(Error)0
48

Figure 10.6: Hasse diagram for the pacemaker pins experiment in
Example 10.10. O is operator; S is substrate; and P is pin.

Example 10.10 Pacemaker Pins
Consider the situation of Problem 3.1. Cardiac pacemakers contain elec-

trical connections that are platinum pins soldered onto a substrate. The ques-
tion of interest is whether different operators produce solder joints with the
same strength. Twelve substrates are randomly assigned to our four opera-
tors. Each operator solders four pins on each substrate, and then these solder
joints are assessed by measuring the shear strength of the pins.

This question was originally about experimental units (substrates) versus
measurement units (pins). Back in that chapter, we needed to average the
measurement units to get a response for the experimental unit. However,
with mixed effects and nesting, we can create a model that encompasses all
the data.

The factors in this experiment are the operators and the substrates; we
will also include the pins as a factor, but we will see that we cannot distin-
guish pin to pin variability from measurement error. Pins are nested in sub-
strates (each pin can only belong to one substrate), and substrates are nested
in operators (each substrate was only assembled by one operator). Substrate
is a random factor, being randomly assigned to operators. If there are only
four pins per substrate, pins is a fixed factor (nested inside a random factor).
If we chose four of many pins, then pins is a random factor. The problem
description seems to imply that operator is a fixed factor (“our four opera-
tors” indicating that there are no others). The fixed/random status of pin (and
potentially operator) should be verified with the subject matter expert.

The Hasse diagram is shown in Figure 10.6. Note that the term “pin
nested in substrate” will be random whether or not we think that the factor
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pin itself is random, because pin is below substrate, and substrate is random.
Thus the Hasse diagram looks the same whether pin is fixed or random.

10.9 Random Coefficient Models

Random coefficient models are the convergence of two types of models we
have seen before: polynomial (dose response) models and random effects.
In the random effects models we have considered so far, each random effectRandom

coefficients for
polynomial terms

is simply added to an appropriate subset of units; effectively, each random
effect is multiplied by 0 or 1 depending on whether the effect should be in-
cluded in that unit. In random coefficient models, a random effect can be
multiplied by something other than 0 or 1 before being added to the unit.

Consider the honey bee experiment in Example 10.7. One of the factors
in that model was concentration. Bee was a random effect in that experi-
ment, and we included a random interaction term between concentration and
bee. In the example, we just considered concentration to be a factor with
three levels, but we could have done polynomial modeling with linear and
quadratic terms. Similarly, we could have included a linear in concentration
by bee random term, and a quadratic in concentration by bee random term.
These terms allow the overall linear and quadratic coefficients to be modified
on a bee by bee basis, with these modifications considered to be random with
mean zero and a variance to be estimated.

In the more mathematical framing of Section 10.6.1, the powers of the
quantitative predictor appear in the columns of Z.

10.10 Staggered Nested Designs

One feature of standard fully-nested designs is that we have few degrees of
freedom for the top-level terms and many for the low-level terms. For exam-Ordinary nesting

has more
degrees of
freedom for
nested terms

ple, in Figure 10.1(c), we have a fully-nested design with 4, 15, 20, and 40
degrees of freedom for A, B, C, and error. This difference in degrees of free-
dom implies that our estimates for the top-level variance components will be
more variable than those for the lower-level components. If we are equally
interested in all the variance components, then some other experimental de-
sign might be preferred.

Staggered nested designs can be used to distribute the degrees of freedom
more evenly (Smith and Beverly 1981). There are several variants of these
designs; we will only discuss the simplest. Factor A has a levels, where we’d
like a as large as feasible. A has (a−1) degrees of freedom. Factor B has twoStaggered nested

designs nest in an
unbalanced way

levels and is nested in factor A; B appears at two levels for every level of A.
B has a(2−1) = a degrees of freedom. Factor C has two levels and is nested
in B, but in an unbalanced way. Only level 2 of factor B will have two levels
of factor C; level 1 of factor B will have just one level of factor C. Factor D is
nested in factor C, but in the same unbalanced way. Only level 2 of factor C
will have two levels of factor D; level 1 of factor C will have just one level of
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Figure 10.7: Example of staggered nested design.

factor D. Any subsequent factors are nested in the same unbalanced fashion.
Figure 10.7 illustrates the idea for a four-factor model.

For a staggered nested design with h factors (counting error), there are
ha units. There is 1 degree of freedom for the overall mean, a− 1 degrees of
freedom for A, and a degrees of freedom for each nested factor below A.

10.11 Problems

Consider a four-factor model with A and D fixed, each with three levels. Exercise 10.1
Factors B and C are random with two levels each. There is a total of 72
observations. All factors are crossed. Draw the Hasse diagram.

Consider a four-factor model with A and D fixed, each with three levels. Exercise 10.2
Factors B and C are random with two levels each. B nests in A, C nests in B,
and D crosses with the others. There is a total of 72 observations. Draw the
Hasse diagram.

Consider a four-factor model with A and D fixed, each with three levels. Exercise 10.3
Factors B and C are random with two levels each. B nests in A, C nests in D,
and all other combinations cross. There is a total of 72 observations. Draw
the Hasse diagram.

Draw the Hasse diagram for each of the following experiments. Problem 10.1

(a) We are interested in the relationship between atmospheric sulfate aero-
sol concentration and visibility. As a preliminary to this study, we
examine how we will measure sulfate aerosol. Sulfate aerosol is mea-
sured by drawing a fixed volume of air through a filter and then chem-
ically analyzing the filter for sulfate. There are four brands of filter
available and two methods to analyze the filters chemically. We ran-
domly select eight filters for each brand-method combination. These
64 filters are then used (by drawing a volume of air with a known con-
centration of sulfate through the filter), split in half, and both halves are
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chemically analyzed with whatever method was assigned to the filter,
for a total of 128 responses.

(b) A research group often uses six contract analytical laboratories to de-
termine total nitrogen in plant tissues. However, there is a possibility
that some labs are biased with respect to the others. Forty-two tissue
samples are taken at random from the freezer and split at random into
six groups of seven, one group for each lab. Each lab then makes two
measurements on each of the seven samples they receive, for a total of
84 measurements.

(c) A research group often uses six contract analytical laboratories to de-
termine total nitrogen in plant tissues. However, there is a possibility
that some labs are biased with respect to the others. Seven tissue sam-
ples are taken at random from the freezer and each is split into six parts,
one part for each lab. We expect some variation among the subsamples
of a given sample. Each lab then makes two measurements on each of
the seven samples they receive, for a total of 84 measurements.

An investigative group at a television station wishes to determine if doc-Problem 10.2
tors treat patients on public assistance differently from those with private
insurance. They measure this by how long the doctor spends with the pa-
tient. There are four large clinics in the city, and the station chooses three
pediatricians at random from each of the four clinics. Ninety-six families on
public assistance are located and divided into four groups of 24 at random.
All 96 families have a one-year-old child and a child just entering school.
Half the families will request a one-year checkup, and the others will request
a preschool checkup. Half the families will be given temporary private in-
surance for the study, and the others will use public assistance. The four
groupings of families are the factorial combinations of checkup type and in-
surance type. Each group of 24 is now divided at random into twelve sets
of two, with each set of two assigned to one of the twelve selected doctors.
Thus each doctor will see eight patients from the investigation. Recap: 96
units (families); the response is how long the doctor spends with each family;
and treatments are clinic, doctor, checkup type, and insurance type. Draw the
Hasse diagram.

Eurasian water milfoil is an exotic water plant that is infesting NorthProblem 10.3
American waters. Some weevils will eat milfoil, so we conduct an exper-
iment to see what may influence weevils’ preferences for Eurasian milfoil
over the native northern milfoil. We may obtain weevils that were raised
on Eurasian milfoil or northern milfoil. From each source, we take ten ran-
domly chosen males (a total of twenty males). Each male is mated with
three randomly chosen females raised on the same kind of milfoil (a total
of 60 females). Each female produces many eggs. Eight eggs are chosen at
random from the eggs of each female (a total of 480 eggs). The eight eggs
for each female are split at random into four groups of two, with each set
of two assigned to one of the factor-level combinations of hatching species
and growth species (an egg may be hatched on either northern or Eurasian
milfoil, and after hatching grows to maturity on either northern or Eurasian
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milfoil). After the hatched weevils have grown to maturity, they are given ten
opportunities to swim to a plant. The response is the number of times they
swim to Eurasian. Draw the Hasse diagram.

City hall wishes to learn about the rate of parking meter use. They Problem 10.4
choose eight downtown blocks at random (these are city blocks, not statisti-
cal blocks!), and on each block they choose five meters at random. Six weeks
are chosen randomly from the year, and the usage (money collected) on each
meter is measured every day (Monday through Sunday) for all the meters on
those weeks. Draw the Hasse diagram.

We want to investigate the color richness of wood stain applied to various Problem 10.5
woods. We work with boards that are made of either oak, maple, or pine. The
boards can be either “new” (that is, freshly cut) or “old” (cut one year ago).
All boards are .75 inches thick, 3.5 inches wide, and 6 inches long. We have
18 boards, three from each of the species by age combinations. To each
board we will apply two stain colors (walnut or mahagony), with the colors
randomly applied to the two sides of the board. After applying the stain, all
boards are finished with a standard varnish. Each side of each board is then
evaluated for color richness.

Draw a Hasse diagram for this experiment (just the basic diagram, no
subscripts or superscripts).

Carpal tunnel syndrome is a repetitive motion disorder that produces pain Problem 10.6
in the wrists when sufferers write, type, or do other repetitive uses of their
hands. We wish to study the effects of two medications and two rest strategies
on the relief of pain. Twenty subjects are recruited, 10 men and 10 women.
Each subject will participate in the study for four weeks. During each week of
the study, a subject will use one of the four combinations of medication and
rest strategy. The order of the four combinations is randomized separately
for each subject. At the end of each week, subjects report their level of pain
as the response. We do not expect that all the medications and rest strategies
will be equally effective for all subjects.

Draw a Hasse diagram for this experiment.

MDMP (2-methoxy-3,5-dimethylpyrazine) is a chemical compound that Problem 10.7
is responsible for some off odors in wines, including the finest wines. It is
said to smell like “an old damp dishcloth that has gone moldy with slightly
coffee, slightly nutty overtones,” so you can imagine that wine makers are
eager to keep this stuff out of their wine. There is speculation that this com-
pound comes from a bacterium, and the source of the bacterium could be
oak chips or natural corks or maybe both. If it turns out to be oak chips,
some winemakers believe that toasting the oak chips before use will kill the
bacteria.

The following experiment was conducted. There are five suppliers of
oak chips. We obtain three batches of chips from each supplier. From each
batch we take two samples. One sample is randomly selected; this sample
is toasted and the other sample is left untoasted. Two barrels of wine are
produced from each sample, and four bottles of wine are sampled from each

Draft of March 4, 2021



374 Random and Mixed Effects Models

barrel. That is 240 bottles of wine, and from each of these bottles we measure
MDMP concentration.

Draw a Hasse diagram for this experiment.

A new instrument is being evaluated for measuring concentration of DNAProblem 10.8
in solution. It is not expected to be more accurate (in fact, it may be less
accurate), but it is quick and cheap. An additional quirk is that the result may
depend on the volume of sample that is used in the measurement. There is
a loaner instrument that we can try before we buy, and we will assess how
accurate the new instrument is on our particular population of samples.

We have a lab full of technicians and a storage freezer full of lots of
different sample solutions that have had their DNA concentration measured
by the current “gold standard” instrument. Three lab technicians are chosen
at random, and each technician is directed to go into the freezer and choose
five random sample solutions. Each technician then withdraws 12 aliquots
(subsamples) from each of the sample solutions. However, these aliquots
have six different volumes, so each technician has two aliquots of each of the
six volumes for each of their five sample solutions. The technicians then use
the loaner instrument to measure DNA concentrations of all of their aliquots
(this done in random order), and the response is the percentage variation in
DNA measured on the new instrument relative to the measurement on the
gold standard instrument.

Construct a Hasse diagram for this experiment.

The following experiment was conducted (seriously, something very sim-Problem 10.9
ilar to this was run . . . , you just can’t make this stuff up). Interest focusses
on whether breast size on a female hitchhiker affects the likelihood of drivers
to stop for the hitchhiker. The test hitchhiker is an “average looking confed-
erate with A cup breasts.” The three treatments are the hitchhiker as is, or
augmented with either B cup or C cup latex appliances. During three con-
secutive time slots, the woman goes to the side of a highway and sticks out
her thumb to hitchhike. The breast size is randomized to the three time slots.
In each time slot, a hidden confederate monitors the numbers of male and
female drivers that pass, and the time slot is done when 200 men and 200
women drivers have been observed. The response is whether or not a driver
stops to offer a ride. The woman does not accept any rides, and there is
hidden security available as well.

(a) Draw a Hasse diagram for this study.
(b) What statistical criticisms would you make of this study?

An opened bottle of wine will deteriorate and become undrinkable. Vari-Problem 10.10
ous products purport to help preserve opened bottles. In this experiment, we
use three different varieties (Merlot, Cabernet, and Shiraz) from each of five
randomly chosen vinyards (just labeled A through E). We obtain six bottles
of each variety from each vinyard. These six are randomly assigned to three
different wine preservation products, two bottles to each of the three prod-
ucts. The bottles are opened, one half of the wine is poured out, and then the
bottles are closed with their assigned product. Four days later, a professional
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wine judge tastes wine from each of the bottles (fully blinded) and gives a
rating on a 1–100 scale for the wine.

Draw a Hasse diagram for this experiment.

People’s tendency to go along with the crowd, also called the bandwagon Problem 10.11
effect or herd instinct, may explain part of consumer behavior. Psychologists
would like to learn more about the role of social cues in advertising. This
study examines three factors in the success of an advertisement. The first is
visual: whether the advertisement shows a single person or a group of four
enjoying the product (Champagne). The second is textual: whether the text
makes a quality statement (taste is everything) or a social statement (everyone
enjoys it). Finally, the third factor is personal. Some people are “high self-
monitoring”; high self-monitoring people use social cues to adjust their own
behavior to agree with social norms. Low self-monitoring people are more
likely to go their own way.

In this experiment, student volunteers from a large psychology class took
a questionnaire to determine their self-monitoring status. After scoring the
questionnaires, 100 high self-monitors were selected at random, and 100 low
self-monitors were selected at random. The 100 high self-monitors were
randomly assigned to the four combinations of visual and verbal cues, 25
per combination. The same was done for the low self-monitors. Volunteers
then viewed their advertisement and gave as their response their rating of the
product.

Draw the Hasse diagram for this experiment.

Poly-3-hydroxybutyrate (PHB) is a biologically produced polymer that Problem 10.12
is becoming popular because it is biodegradable. This experiment studies the
lab method used for measuring the concentration of PHB in a sample. The
overall method is to digest samples of known concentration and then measure
the concentration via gas chromotography. The procedure involves internal
standards, recalibration of instruments, various independent dilutions, and
so on. In particular, at this stage we have to deal with the possibility that
everything could interact with everything else.

We will do this on three randomly chosen days. On each day we will
make up eight samples of PHB. Each sample is randomly assigned to one of
the combinations of four concentrations and two digestion methods. Once
we have made the sample, we will measure the concentration twice on the
GC.

Draw the Hasse diagram for this experiment.

My daughters have supplied their Christmas wish lists (single spaced, Problem 10.13
double column, multipage—enough to bankrupt Bill Gates). These lists in-
clude many CDs and DVDs. You can buy these on-line or at “brick and
mortar” stores. Being an impoverished academic, I’m always looking for
good prices, so I collect some data. I randomly choose four each of CDs and
DVDs from their combined wish list. From a list of retail and online stores,
I randomly choose three brick and mortar stores and three on-line stores that
sell digital media. I then price the eight selected items at the six selected
stores.
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Construct a Hasse diagram for analyzing the collected prices.

Arthritis can cause pain that limits shoulder range of motion. This ex-Problem 10.14
periment is conducted to compare how three drugs affect arthritis pain in the
evening. In addition to studying the drugs, the experiment also looks at how
time of medication (morning or noon) and type of arm motion (up/down,
front/back, or circular) affect perceived pain.

Thirty-six women aged 55 to 65 are randomly assigned to the six fac-
tor/level combinations of drug and medication time, six women per group.
All the women stay on the medication for two weeks and then go to the
clinic for the pain study. Each woman does all three motions in randomly
assigned order and gives a pain rating for each motion. We thus have a total
of 108 pain observations.

Draw a Hasse diagram for this experiment.

Plant breeders are trying to produce good hybrid barley. As part of theProblem 10.15
study, nine “parental” lines are crossed with three inbred “tester” lines pro-
ducing 27 hybrids. The experiment is to determine the factors affecting the
yields of the 27 hybrids. The experiment is conducted in four locations
(Crookston, Waseca, Morris and St. Paul). At each location, four fields are
chosen at random. Each field is split into 27 strips, and the 27 hybrids are
randomly assigned to the 27 strips in each field. At the end of the season, the
seed yield is determined for each strip (g/strip).

For our purposes, we may consider the four locations to be a random
sample of locations. We anticipate that differences in meteorology and soils
will cause yield differences by location. Similarly, some hybrids to do better
in some locations, and so on.

Draw a Hasse diagram for this experiment.

The following experiment was conducted to study whether and how plantsProblem 10.16
adapt to environment. Three populations of the same plant species are avail-
able (MN, KS, and OK). Five plants from each population are chosen as
males (total of 15 males). Four plants from each population are chosen for
each male; these plants will be females (total of 60 females). Pollen from
each male plant is used to fertilize the flowers on its assigned female plants.
Three seeds are collected from each pollinated female (total 180 seeds).
These three seeds are randomly assigned to one of three growth environ-
ments. The response is the height of each plant after 10 weeks of growth.

Construct a Hasse diagram for this design.

An experiment is performed to determine the effects of different pasteur-Problem 10.17
ization methods on bacterial survival. We work with whole milk, 2% milk,
and skim milk. We obtain four gallons of each kind of milk from a grocery
store. These gallons are assumed to be a random sample from all potential
gallons. Each gallon is then dosed with an equal number of bacteria. (We
assume that this dosing is really equal so that dosing is not a factor of in-
terest in the model.) Each gallon is then subdivided into two parts, with the
two pasteurization methods assigned at random to the two parts. Our obser-
vations are 24 bacterial concentrations after pasteurization. Draw the Hasse
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diagram.

Consider the following study: adolescent subjects (N=119) are classified Problem 10.18
as to whether they have major depressive disorder (n=30), bipolar disorder
(n=45), or are healthy controls (n=44); all bipolar and depressive subjects are
in remission from their disorder (generally due to drug therapy). Each subject
takes three mathematics tests: WRAT-R2, PIAT, and BAFPETOA (be glad I
used the acronyms) in that order; we observe their scores and analyze for
differences.

(a) Is this a randomized, controlled experiment as we have defined one in this
course; why or why not?

(b) If this is an experiment, describe the kinds of inferences that can be made.
If this is not an experiment, describe the kinds of problems we might have
with inference.

Start with a four by three table of independent normals with mean 0 and Question 10.1
variance 1. Compute the row means and then subtract out these row means.
Find the distribution of the resulting differences and relate this to the re-
stricted model for mixed effects.
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Chapter 11

Inference for Random and
Mixed-Effects Models

Inference in random and mixed-effects models is primarily about (interval)
estimates and/or tests for the fixed effects and (interval) estimates and/or tests
for the variances of the random terms. To a lesser degree, we may be inter-
ested in predicting (estimating) the random effects themselves, but whether
this is needed is specific to the problem. This chapter discusses three ap- REML, classical,

and Bayesproaches to inference: a modern REML approach, the classical expected
mean squares approach, and the Bayesian approach. All three approaches
have advantages and disadvantages, and it pays to be aware of all three.

The classical approach is just dead easy in simple cases, becomes a bit
challenging in even modestly more complicated cases, and is very difficult
to use with unbalanced data. In its simplest form, it carries the potential risk
of negative estimates of variances. However, the classical approach provides
useful insights into a problem, and, in particular, it is a good way to consider
the issue of power (sample sizes might not be what you think they are with
random effects).

The REML approach is never really dead easy to implement or under-
stand, but it does not get significantly more difficult as the problem be-
comes more complicated, or even unbalanced. In simple, balanced situations,
REML results will be the same as classical results.

Bayesian analysis of mixed effects is practically identical to Bayesian
analysis of fixed effects. In addition, some of the more challenging things to
do well in the non-Bayesian approaches (interval estimates of variance com-
ponents in particular) are just sitting there for us in the summary of Bayesian
model fits.

Before going into the details, we need to state up front that making in-
ferences about variances is inherently more difficult than making inference
about means. This shows up in a couple of ways. First, it takes a lot of data Inference about a

variance is
difficult

to estimate a variance precisely. For example, assume that you can get data
from a normal distribution with mean 0 and variance σ2 and you want to have
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a 95% confidence interval for σ2 that is no longer than .2σ2 (roughly plus or
minus 10%). That does not seem like much to ask, but you will need a sample
size of about 800 to achieve that goal. Second, the quality of our inference for
variances (interval estimates in particular) is much more sensitive to normal-
ity than what we have experienced for means. This can substantially narrow
the range of applicability for our methods.

11.1 Restricted Maximum Likelihood

The standard frequentist methods we have discussed are are based on the as-
sumption that the data have a mean structure, but the variability from unit to
unit is independent, normally distributed, with constant variance. These as-
sumptions lead to ordinary least squares (OLS), where we choose the mean
parameters to minimize the sum of squared errors. Random and mixed-
effects models generally lead to dependent data, so the OLS assumptions
are not met. If we know the covariance structure of the data V , or we know itOrdinary versus

generalized least
squares

up to a multiple of a known matrix (that is, V = σ2V1 with V1 known), then
we can use generalized least squares (GLS) to account for the correlations.
GLS models linear combinations of the response by the same linear combi-
nations of the predictors (and errors), using linear combinations that make
the (new) errors independent with constant variance. GLS estimates might,
or might not, be the same as OLS estimates; when they differ, GLS estimates
have less variance overall.

In our random and mixed effects context, we have correlations, so OLS
is not optimal, but we do not know V1, so we need to estimate the variancesREML: estimate

variance, then
conditional GLS

as well as the mean structure. The REML approach does this in two stages.
First, we estimate the variances using REML. Then, conditional on the esti-
mated variances, we estimate the mean structure using GLS. We now have
variance estimates from step 1, and mean structure estimates (along with
standard errors) from step 2.

One important thing to note is that the standard errors for the mean struc-
ture estimates in step 2 are computed assuming that we know the correlation
in the data. However, we only have an estimate of this correlation. Using this
estimate as if it were truth hides some of the variability in the estimates. The
upshot is that the variability values we get for our mean structure estimates
in REML will in general be too small. Often this difference is ignorable, but
not always.

REML works by first getting regression residuals for the observations
modeled by the fixed effects portion of the model, ignoring at this point
any correlations or random effects. We then figure out the statistical modelREML does MLE

on regression
residuals

for these residuals, which will be normal with mean 0 (because we have re-
gressed out any contribution to the mean from the fixed effects) and a compli-
cated covariance. This covariance is a matrix formula involving the structure
of the random effects and the matrix of predictors from the fixed effects and
parameterized by the variances of the random effects. The residuals are now
linear combinations of the random effects part of the model and error part of
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11.1 Restricted Maximum Likelihood 381

Table 11.1: Frequency change in a quartz crystal as a function of type of crystal
(gold or titanium dioxide), individual crystal, environment, and intensity. Data from K.
Greden; data set QCM.

Intensity
Type Crs. Env. 1 2 3 4 5 6 7 8

Au 1 Air 1.79 3.80 6.98 11.75 10.27 34.99 62.41 101.76
Water 4.54 6.81 11.14 16.48 24.85 38.55 65.89 101.46

2 Air 0.97 3.31 7.31 13.36 27.17 44.09 106.72 166.07
Water 2.57 4.71 8.29 15.42 29.45 50.85 107.31 150.15

3 Air 1.31 3.46 8.13 16.09 34.37 67.80 132.47 185.99
Water 2.61 4.61 10.13 20.01 31.70 63.66 111.23 160.27

TiO2 1 Air 104.24 109.36 164.77 116.13 161.74 249.43 316.59 415.39
Water 53.77 96.67 103.45 119.67 162.26 184.79 253.73 299.62

2 Air 70.91 90.80 136.62 124.29 168.63 234.40 284.28 384.63
Water 12.76 22.19 31.29 45.73 71.17 104.42 165.86 244.32

3 Air 134.52 121.22 182.30 112.39 177.58 269.68 322.57 429.10
Water 19.86 44.69 48.90 59.97 90.70 117.40 265.10 238.60

the model. REML estimates the variances by doing maximum likelihood on
the likelihood function for the residuals.

The main advantage of this approach is that the MLE applied to the resid-
uals adjusts the variance estimates for the degrees of freedom used in the
fixed effects. For example, the error variance is estimated as if using a de- REML variances

less biasednominator of n− p, where p is the number of fixed effects parameters. In the
simplest case of just a common mean, the REML estimate of variance would
be the usual MSE with an n − 1 denominator. This unbiasing of the error
variance is REML’s main claim to fame.

REML makes use of a different likelihood function (for the residuals)
than ordinary likelihood (for the data). In particular, the REML likelihood
doesn’t even depend on the fixed effects coefficients, so its achieved likeli-
hood is also independent of the fixed effects. One consequence of this is that No fixed effect

inference via
REML likelihood

you cannot use REML likelihood to compare models with different fixed ef-
fects, but you can use REML likelihood to compare models with the same
fixed effects but different random effects. You can use ordinary likelihood
to compare models that have different fixed effects, but this will also yield
biased variance estimates, and we will recommend a different approach for
fixed effects.

Example 11.1 Quartz Crystal Microbalance
A quartz crystal will oscillate when an alternating current is applied.

However, the frequency of the oscillation will change if some material is
adsorbed to the surface of the crystal. This is the basis of the quartz crys-
tal microbalance (QCM), which can measure in nanogram quantities. In a
QCM, the crystal will typically be coated with some material and placed in
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Figure 11.1: Hasse diagram for the quartz crystal microbalance
experiment in Example 11.1. T is type; E is environment; I is
intensity; C is crystal.

some gaseous or liquid environment. The substance to be measured is intro-
duced to the environment, and the concentration is inferred from the change
in frequency of the crystal.

In this experiment, we have two types of crystals: those coated with gold
and those coated with titanium dioxide. We have three random crystals from
each type of coating. The environments we will use are air and water. The
main purpose of this experiment is to investigate the change in frequency
when a third factor called intensity is varied across eight levels. For each in-
dividual crystal, we make 16 observations on frequency change, one for each
of the combinations of environment and intensity. These 96 observations are
done in random order. Note, there is not actually anything being “weighed.”

There are four factors in this design: type, environment, intensity, and in-
dividual crystal. Individual crystal is random and nested in type. Otherwise,
everything crosses. Here we have not applied type to crystal, we have sub-
sampled crystals from types. Type and crystal explain variability in the data
even if they are not applied experimentally in the same way as environment
and intensity. Table 11.1 shows the data for this experiment, and Figure 11.1
gives the Hasse diagram.
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11.1 Restricted Maximum Likelihood 383

nlme::lme and lme4::lmer are two standard functions in R for fit-
ting linear mixed-effects models. lme can only estimate models that have
chains of nested effects; that restriction gives it computational efficiency so
that it can fit quite large data sets, and it makes some forms of inference more
straightforward. lmer can fit models with crossed random effects. Both
have “generalized” variants in the sense that they can fit Poisson, binomial,
and other responses with analogous mixed effects predictors. We will typi-
cally use lmer by default, but, in this example, there are non-nested random
effects (I:C and E:C), so we must use lmer.

Be aware that lme and lmer always fit using the unrestricted model
assumptions.

That is a slight exaggeration, because I have been able to coerce lme into fit-
ting the restricted assumptions in one narrow class of models, but it took
many lines of R code to do so. The classical analysis approach and the
Bayesian approach with bglmm can both do both sets of model assumptions.

In an lmer formula, a random effect is indicated by something like
(1|A) or (1|A:B). The term(s) to the left of the bar indicates the form
of the effect being added, and the term(s) to the right of the bar indicate the
different groupings of the data over which the effect should be applied. In
these two examples above, the form of the model is just “1”, indicating that
we simply add a “constant”. In this way, (1|A) is a random αi term, and
(1|A:B) is a random αβij term. There are various short cut forms as well.
For example, (1|A/B) expands to (1|A)+(1|A:B).

You may put one or more non-factors (that is, continuous, regression-
like predictors) to the left of the bar, but you may not put factors to the left
of the bar. With a continuous predictor on the left you get a random coeffi-
cients model with grouping determined by the terms to the right of the bar.
For example, (0+z|A) computes a random coefficient for the linear pre-
dictor z, separately and independently for each level of A. If there is more
than one degree of freedom to the left of the bar, the corresponding coeffi-
cients are fit assuming they can be correlated. Thus (z|A), which is the
same as (1+z|A), would fit random slopes for z and intercepts separately
for each level of A, but allowing the slopes and intercepts to be correlated
within levels of A. If you want them to be independent, you need to use
(1|A)+(0+z|A).

Line 1 attempts to fit the full model. In the QCM data set, crystal is in-
dicated as 1,2,3 for Au and 1,2,3 for TiO2 instead of 1,2,3,4,5,6. This means
that we need to use the type by crystal interaction to indicate all six crystals
individually. If we had crystal indicated as 1–6, we could have used crys-
tal by itself (although using the type by crystal interaction would not have
harmed anything).
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Figure 11.2: Residual plots for original (pane 1) and
log-transformed (panel 2) data in the quartz crystal microbalance
experiment in Example 11.1.

1 > fit <- lmer(y˜type*env*intensity+(1|type:crystal)+(1|intensity:type:crystal)+
(1|env:type:crystal)+(1|type:crystal:intensity:env),data=QCM)

Error: number of levels of each grouping factor must be < number of observations
2 > fit <- lmer(y˜type*env*intensity+(1|type:crystal)+(1|intensity:type:crystal)+

(1|env:type:crystal),data=QCM)
3 > plot(fit)
4 > fit2 <- lmer(log(y)˜type*env*intensity+(1|type:crystal)+(1|intensity:type:crystal)+

(1|env:type:crystal),data=QCM)
5 > plot(fit2)

Our first attempt did not work. Internally, R represents the variance compo-
nents as σ2 and ratios of the other variances to σ2 (for example, σ2crystal/σ

2).
There are sound theoretical and numerical reasons to do it this way, but it
does mean that we need to be able to estimate σ2. We saw in the Hasse
diagram that there were 0 degrees of freedom for error, meaning that we can-
not estimate error in the full model. What we will do is drop the all-way
interaction from the model. This will become a “surrogate” error.

Line 2 reduces the model and refits; line 3 plots the residuals as seen in
panel 1 of Figure 11.2. These residuals are smaller on the left than on the
right, indicating that the variance is non-constant. Line 4 refits with a log
transformation for the response, and line 5 plots the residuals, which look
much better (panel 2 of Figure 11.2). Line 6 shows (abbreviated) summary
information for the log model.
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11.1 Restricted Maximum Likelihood 385

6 > summary(fit2)
Linear mixed model fit by REML [’lmerMod’]
Formula: log(y) ˜ type * env * intensity + (1 | type:crystal) +

(1 | intensity:type:crystal) + (1 | env:type:crystal)
Data: QCM

REML criterion at convergence: 96.8

Random effects:
Groups Name Variance Std.Dev.
intensity:type:crystal (Intercept) 0.03050 0.1746
env:type:crystal (Intercept) 0.04563 0.2136
type:crystal (Intercept) 0.01172 0.1083
Residual 0.02273 0.1508
Number of obs: 96, groups: intensity:type:crystal, 48; env:type:crystal, 12;

type:crystal, 6

Fixed effects:
Estimate Std. Error t value

(Intercept) 3.88839 0.08141 47.76
type1 -0.93647 0.08141 -11.50
env1 0.11923 0.06355 1.88
intensity1 -1.59109 0.07814 -20.36
intensity2 -1.03496 0.07814 -13.25
...
type1:env1 -0.24470 0.06355 -3.85
type1:intensity1 -0.65449 0.07814 -8.38
type1:intensity2 -0.45537 0.07814 -5.83
...
env1:intensity1 0.02208 0.04071 0.54
env1:intensity2 -0.01030 0.04071 -0.25
...
type1:env1:intensity1 -0.32900 0.04071 -8.08
type1:env1:intensity2 -0.06807 0.04071 -1.67
...

7 > with(QCM,interactplot(intensity,type:env,log(y)))

The summary begins by recapitulating the model definition. The bulk of the
summary information is divided into two parts: estimates of random effects
and estimates of fixed effects. There is one row for each random effect giving
the grouping term (the term to the right of the bar), the form of the effect
(the term to the left of the bar), and the estimated variance and standard
deviation. Obviously, you only need one of the last two, but sometimes one
scale is needed and sometimes the other; showing both saves you a step.
(Intercept) as the form of the term corresponds to 1 to the left of the
bar. In this data set, the random effect variances are similar in size.

The fixed effects information looks similar to other summary informa-
tion we have seen before, but with two big differences. First, the summary
contains no p-values. This was a decision of the designers of lmer, and we
will later see some ways to get p-values/do testing.

The second difference is more subtle. In previous models we consid-
ered, the standard errors of the estimated effects were larger and larger as
we moved to higher and higher order interactions. This is because the sam-
ple size for an interaction coefficient is smaller for higher order interactions.
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However, the standard errors shown after line 6 are getting smaller as we go
to higher order interactions! This is because the variability affecting a term
comes from random terms below the term of interest in the Hasse diagram.
As you go farther down the diagram (to higher order interactions), fewer
random terms can be below and thus the effective variance is smaller.

There is another way in which mixed-effects model results differ from re-
sults in the same data with all factors treated as fixed, and this is completely
hidden in the usual model summary. Our predictions for random effects (“es-
timates” of the random quantities are often referred to as predictions) αi in
the random factor A will not be the same as those we would get by treat-
ing factor A as if it were fixed. In general, random effects are predicted to
be closer to zero than the corresponding fixed effect; they are shrunk toward
their known mean of 0. The amount of shrinking depends on the relative sizes
of the different variance components, with proportionally more shrinking in
a term when more of the variance in the data appears “below” the term.

One consequence is that residual plots (where the residual is the data
minus our estimates of the fixed and random effects) can often show trend,
even when nothing is wrong with the model. The more shrinking that was
done in the prediction of random effects, the more trend will be visible.

Even lacking p-values, some of the t-statistics for interaction terms look
pretty large, so examining the interaction is prudent. Line 7 produces the
interaction plot in Figure 11.3. The type effect is dramatic, and the effect of
environment is much stronger in TiO2 coated crystals. The effect of intensity
is stronger for Au coated crystals. Finally, the effect of intensity is stronger
in air for Au coated crystals and stronger in water for TiO2 coated crystals.

Information about the intensity factor (including its levels) was conspicu-
ous by its absence in the source of these data, but if we assume for the sake of
argument that the levels are equally spaced, Figure 11.3 suggests that a model
consisting of linear in intensity rather than the full 7 degree of freedom effect
might be useful. The column int.z in the QCM data set ranges from –3.5
to 3.5 in steps of 1. Centering this linear term at 0 makes it orthogonal to
other terms and improves interpretability of the resulting models.

There are several models we could investigate while considering intensity
to be quantitative. Most obviously, we can replace intensity with poly-
nomials of int.z in the fixed effects. In random effects, we can consider
the term (0+int.z|type:crystal), which fits a random slope for each
crystal. We could add this along with (1|intensity:type:crystal)
or use it to replace (1|intensity:type:crystal) entirely. If these
were fixed effects, the linear term would be redundant with the individual
level effects. However, as random effects, these are not redundant. The
(0+int.z|type:crystal term sets up a correlation where high val-
ues at one end of the intensity scale tend to go with low values at the other
end (or vice versa). This kind of correlation is totally different from that
of the (1|intensity:type:crystal) term, and the two can be used
together.

While we cannot fit the full (1|intensity:env:type:crystal)
term, we can fit a (0+int.z|env:type:crystal) term and still have
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degrees of freedom left to estimate σ2.

Lines 8–13 fit a variety of different models using these linear-in-intensity
variables.

8 > fit3 <- lmer(log(y)˜type*env*intensity+(1|type:crystal)+(0+int.z|type:crystal)+
(1|intensity:type:crystal)+(1|env:type:crystal),data=QCM)

9 > fit3b <- lmer(log(y)˜type*env*intensity+(int.z|type:crystal)+
(1|intensity:type:crystal)+(1|env:type:crystal),data=QCM)

10 > fit3c <- lmer(log(y)˜type*env*intensity+(int.z||type:crystal)+
(1|intensity:type:crystal)+(1|env:type:crystal),data=QCM)

11 > fit4 <- lmer(log(y)˜type*env*intensity+(1|type:crystal)+(0+int.z|type:crystal)+
(1|intensity:type:crystal)+(1|env:type:crystal)+(0+int.z|env:type:crystal),
data=QCM)

12 > fit5 <- lmer(log(y)˜type*env*int.z+(1|type:crystal)+(1|intensity:type:crystal)+
(1|env:type:crystal),data=QCM)

13 > fit6 <- lmer(log(y)˜type*env*int.z+(1|type:crystal)+(0+int.z|type:crystal)+
(1|intensity:type:crystal)+(1|env:type:crystal)+(0+int.z|env:type:crystal),
data=QCM)

First compare the models in lines 8–10. The models on lines 8 and 10
are actually the same model, because the double bar short cut for the ran-
dom by type:crystal term in line 10 expands to the two random by
type:crystal terms in line 8. On the other hand, the model in line 9
differs from the model in line 8 because line 9 allows the intercept and slope
(random by type:crystal) to be correlated, and line 8 does not.

Line 11 adds the linear-in-intensity random by type:crystal:env
term. Lines 12 and 13 produce models analogous to lines 4 and 11 except
that the 7 degree of freedom intensity fixed effect term is replaced by the
quantitative intensity term.

Lines 14 and 15 show partial summary information for models fit3 and
fit3b (lines 8–9).

14 > summary(fit3)
...
Random effects:
Groups Name Variance Std.Dev.
intensity.type.crystal (Intercept) 0.000000 0.00000
env.type.crystal (Intercept) 0.045798 0.21400
type.crystal int.z 0.005309 0.07286
type.crystal.1 (Intercept) 0.015534 0.12464
Residual 0.021375 0.14620
...

15 > summary(fit3b)
...
Random effects:
Groups Name Variance Std.Dev. Corr
intensity:type:crystal (Intercept) 0.000000 0.00000
env:type:crystal (Intercept) 0.045798 0.21400
type:crystal (Intercept) 0.015534 0.12464

int.z 0.005309 0.07286 -0.24
Residual 0.021375 0.14620

We see that the intercept and linear in intensity by crystal variances are the
same in the two models. In line 14 we two lines for type:crystal, indi-
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Figure 11.3: Interaction plot of intensity by type and environment for
the logged response in the quartz crystal microbalance experiment in
Example 11.1.

cating two independent terms, but in line 15 we only a single type:crystal
term, and we have an estimate for the correlation between the intercept and
slope random effects.

11.1.1 Inference for random terms

In principle, we can test the null hypothesis that a random effect has variance
of 0 using a likelihood ratio test. We do this by fitting a second simpler
model that does not include the term we want to test. We then take twice
the difference of the (REML) log likelihoods of the two models as our test
statistic. According to the theory of likelihood ratio tests, the LRT should
be treated as a chi-square random variable with degrees of freedom equal to
the difference in the number of parameters between the two model. The p-
value is then the probability that a chi-square with the appropriate degrees of
freedom is larger than the value of the LRT.

Notice the “in principle” above, because it turns out that the standard
chi-square approximation to the distribution of the LRT does not work wellREML LRT for

variance needs
adjustment

when testing a null that a variance is zero. (The reason is that the null value
is on the edge of the set of possible parameters instead of in the middle.) In
particular, it tends to produce p-values that are too big. One rough guideline
is to divide the nominal p-value by 2.

Crainiceanu and Ruppert (2004) derived the exact null distribution for the
LRT in linear mixed effects and provided an algorithm to simulate it. This
result is too complicated to explain in detail here, but it works well as long asSimulate exact

LRT distribution
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the number of fixed parameters plus the number of levels of random effects is
less than the number of data (Greven, Crainiceanu, and Kuechenhoff 2008).
The function RLRSim::exactRLRT uses this approach to approximate the
p-value for tests of random effects.

Confidence intervals for variance components derived from REML re-
sults are all approximate. The built-in confint function in R provides three
methods for computing these. One method is “Wald,” which is simply the es-
timate plus or minus a multiple of the standard error of the variance estimate.
This is very fast, but it is also usually a very poor estimate unless the variance
component has been estimated from many levels (for example, in a single
factor model the number of levels a must be large; it is not sufficient for n
to be large). The “profile” method is a confidence interval consisting of all
values for the parameter that would not be rejected as null hypothesis values
in a (restricted) likelihood ratio test. The profile interval is an improvement
over the Wald interval, because the profile interval can accommodate the in-
herent asymmetry when estimating variance components (the Wald interval
is always symmetric). However, this interval is based on the asymptotic chi-
square approximation for likelihood ratio tests, and our sample size might
not be large enough for that to work well.

The best, but also the slowest, method we have available is a paramet-
ric bootstrap. In the parametric bootstrap, we simulate repeated data sets
assuming that our current estimates of the variance components are correct. Bootstrap

confidence
intervals

We then fit the model to each of the simulated data sets and observe the dis-
tribution of the estimated variance components. For example, if we simulate
under the assumption that a variance component is equal to 2, and 95% of the
variance components range from .75 to 5 (.375 to 2.5 times the true value),
then our bootstrap confidence interval will be from 2/2.5 = .8 to 2/.375 =
5.33.

Example 11.2 Quartz Crystal Microbalance, continued.
Continuing with the crystal frequency change data from Example 11.1,

we begin on lines 1–4 by fitting the obvious model suggested by the Hasse
diagram, and then refitting three times with one of the three random terms
excluded in each of the new fits.
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1 > fit2 <- lmer(log(y)˜type*env*intensity+(1|type:crystal)+
(1|intensity:type:crystal)+(1|env:type:crystal),data=QCM)

2 > fit2noetc <- lmer(log(y)˜type*env*intensity+(1|type:crystal)+
(1|intensity:type:crystal),data=QCM)

3 > fit2noitc <- lmer(log(y)˜type*env*intensity+(1|type:crystal)+
(1|env:type:crystal),data=QCM)

4 > fit2notc <- lmer(log(y)˜type*env*intensity+
(1|intensity:type:crystal)+(1|env:type:crystal),data=QCM)

5 > logLik(fit2);logLik(fit2noetc);logLik(fit2noitc);logLik(fit2notc)
’log Lik.’ -48.39012 (df=36)
’log Lik.’ -60.33435 (df=35)
’log Lik.’ -53.96201 (df=35)
’log Lik.’ -48.4595 (df=35)

6 > 2*(-48.3901- -48.4595)
[1] 0.1388
7 > pchisq(.139,1,lower.tail=FALSE)
[1] 0.7092772

Line 5 computes the (REML) log likelihoods for these models (recall that
these are comparable because all of the models have the same fixed effects).
Removing the (1|type:crystal) effect barely changes the log likeli-
hood, but removing either of the others makes a substantial change to the
log likelihood. Line 6 computes the LRT, and line 7 computes the nominal
p-value.

In order to use RLRsim::exactRLRT to get good p-values, we need
to have three model fits: the full model, the null model with the random term
of interest removed, and the reduced model containing the effect of interest
as the only random effect.

8 > fit2etc <- lmer(log(y)˜type*env*intensity+(1|env:type:crystal),data=QCM)
9 > fit2itc <- lmer(log(y)˜type*env*intensity+(1|intensity:type:crystal),data=QCM)
10 > fit2tc <- lmer(log(y)˜type*env*intensity+(1|type:crystal),data=QCM)
11 > RLRsim::exactRLRT(fit2etc,fit2,fit2noetc)

...
RLRT = 23.888, p-value < 2.2e-16

12 > RLRsim::exactRLRT(fit2itc,fit2,fit2noitc)
...
RLRT = 11.144, p-value = 7e-04

13 > RLRsim::exactRLRT(fit2tc,fit2,fit2notc)
...
RLRT = 0.13876, p-value = 0.2753

Lines 8–10 compute the reduced models, and lines 11–13 illustrate the exact
test. The p-value for (1|type:crystal) shrinks from the nominal .71
down to the corrected .28. This is a substantial reduction (a bit more than the
rough and ready divide the p-value by 2), but the p-value is still large enough
to indicate the random effect is unneeded.

Let us repeat this testing program on fit4, the model that contains the
random effects from the Hasse diagram plus the linear in intensity by type
and crystal and by environment, type, and crystal. Lines 14–19 compute the
full and null models,
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14 > fit4 <- lmer(log(y)˜type*env*intensity+(1|type:crystal)+(0+int.z|type:crystal)+
(1|intensity:type:crystal)+(1|env:type:crystal)+(0+int.z|env:type:crystal),
data=QCM)

15 > fit4nozetc <- lmer(log(y)˜type*env*intensity+(1|type:crystal)+
(0+int.z|type:crystal)+(1|intensity:type:crystal)+(1|env:type:crystal),
data=QCM)

16 > fit4noetc <- lmer(log(y)˜type*env*intensity+(1|type:crystal)+
(0+int.z|type:crystal)+(1|intensity:type:crystal)+(0+int.z|env:type:crystal),
data=QCM)

17 > fit4noitc <- lmer(log(y)˜type*env*intensity+(1|type:crystal)+
(0+int.z|type:crystal)+(1|env:type:crystal)+(0+int.z|env:type:crystal),
data=QCM)

18 > fit4noztc <- lmer(log(y)˜type*env*intensity+(1|type:crystal)+
(1|intensity:type:crystal)+(1|env:type:crystal)+(0+int.z|env:type:crystal),
data=QCM)

19 > fit4notc <- lmer(log(y)˜type*env*intensity+(0+int.z|type:crystal)+
(1|intensity:type:crystal)+(1|env:type:crystal)+(0+int.z|env:type:crystal),
data=QCM)

and lines 20–25 compute the reduced models:

20 > fit4zetc <- lmer(log(y)˜type*env*intensity+(0+int.z|env:type:crystal),data=QCM)
21 > fit4etc <- lmer(log(y)˜type*env*intensity+(1|env:type:crystal),data=QCM)
22 > fit4itc <- lmer(log(y)˜type*env*intensity+(1|intensity:type:crystal),data=QCM)
23 > fit4ztc <- lmer(log(y)˜type*env*intensity+(0+int.z|type:crystal),data=QCM)
24 > fit4tc <- lmer(log(y)˜type*env*intensity+(1|type:crystal),data=QCM)
25 > RLRsim::exactRLRT(fit4zetc,fit4,fit4nozetc)

...
RLRT = 8.1588, p-value = 0.0012

26 > RLRsim::exactRLRT(fit4etc,fit4,fit4noetc)
...
RLRT = 40.613, p-value < 2.2e-16

27 > RLRsim::exactRLRT(fit4itc,fit4,fit4noitc)
...
RLRT = 0.9839, p-value = 0.1611

28 > RLRsim::exactRLRT(fit4ztc,fit4,fit4noztc)
...
RLRT = 2.7091, p-value = 0.0341

29 > RLRsim::exactRLRT(fit4tc,fit4,fit4notc)
...
RLRT = 0.2304, p-value = 0.2417

Then lines 26–29 compute the p-values for testing these random effects. As
before, we find there is no evidence that the (1|type:crystal) term is
needed. We also see that the (1|intensity:type:crystal) is not
needed when we have the (0+int.z|type:crystal) term. In general,
random effects involving both crystal and environment tend to be largest.

Finally, we refit using only the needed random terms on line 30,
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30 fit7 <- lmer(log(y)˜type*env*intensity+(0+int.z|type:crystal)+(1|env:type:crystal)+
(0+int.z|env:type:crystal),data=QCM)

31 > confint(fit7,method="boot",oldNames=FALSE)
Computing bootstrap confidence intervals ...

2.5 % 97.5 %
sd_int.z|env:type:crystal 1.031776e-03 0.0844182033
sd_(Intercept)|env:type:crystal 1.438325e-01 0.4458674781
sd_int.z|type:crystal 1.579681e-08 0.1469088319
sigma 9.939023e-02 0.1482196628
...

and compute parametric bootstrap confidence intervals for the random effects
on line 31. Note the method="boot" to request the bootstrap intervals,
and the oldNames=FALSE to request human readable names for the vari-
ance components. Because these are bootstrap intervals, the results will be
slightly different each time. In line 28, the (0+int.z|type:crystal)
term had a p-value of .034, and in line 31 we see that the lower bound for
the confidence interval is nearly 0. Zero can be in the confidence interval, as
we see for the (1|type:crystal) term in the fit2 model as shown on
line 32.

32 > confint(fit2,method="boot",oldNames=FALSE)
Computing bootstrap confidence intervals ...

2.5 % 97.5 %
sd_(Intercept)|intensity:type:crystal 0.1596627402 0.303183324
sd_(Intercept)|env:type:crystal 0.0733674456 0.404806555
sd_(Intercept)|type:crystal 0.0000000000 0.379323783
sigma 0.0918880577 0.158990062

...

We need to close this section with a warning:

Confidence intervals for variance components are very sensitive to non-
normality.

The coverage for your confidence interval can be far from nominal, even
when the random effects are only slightly non-normal. More data does not
solve this problem (unlike a confidence interval for a mean, where more data
does solve the problem).

11.1.2 Inference for fixed terms

You cannot use restricted likelihood to test fixed effects; it simply doesn’t
work, and there is no reason that it should work. Remember, the first thing
that REML does is remove fixed effects from the model. Because it would
be removing different fixed effects in the two cases, the log likelihoods for
the larger and smaller models are not commensurate. You could use ordinary
likelihood instead of restricted likelihood and get an LRT; that will work, but
we have other alternatives.

It is relatively straightforward to compute an “F ” statistic for a null hy-
pothesis about fixed effects using the (estimated) variance/covariance matrix.
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The numerator degrees of freedom for the F are also straightforward. If the Denominator df
for F can be

difficult
random effects are all nested in a chain, there are good heuristics for comput-
ing a denominator degrees of freedom. The lme function in R only handles
nested random effects, so an anova of an lme object produces F -tests com-
plete with numerator and denominator degrees of freedom and p-values.

However, if random effects are crossed, as they can be in lmer, none of
the denominator degree of freedom heuristics works well across the range of
possible models, and a call to anova after lmer will not produce denomi-
nator degrees of freedom or p-values.

Kenward and Roger (1997) created a method for approximating the de-
nominator degrees of freedom for F -tests of fixed effects in a mixed-effects Kenward and

Roger dfmodel, and this method is implemented in car::Anova (and in other pack-
ages as well). This will produce Type II tests of the factorial effects using the
Kenward and Roger approximation. pbkrtest::KRmodcomp lets you
compare full and nested models that differ by more than a single term.

Example 11.3 Quartz Crystal Microbalance, continued.
The crystal experiment in Example 11.1 contains three fixed factors:

type, environment, and intensity. In the context of purely fixed effects, we
would probably begin with an analysis of variance and continue with vari-
ous contrasts and pairwise comparisons. We would examine interactions and
perhaps consider polynomial modeling. We can do all of those things in the
mixed-effects context.

Lines 1 and 2 use car::Anova to get Kenward and Roger type II tests
of the fixed effects.

1 > car::Anova(fit2,test="F")
Analysis of Deviance Table (Type II Wald F tests with Kenward-Roger df)

Response: log(y)
F Df Df.res Pr(>F)

type 132.3113 1 4 0.0003261 ***
env 3.5194 1 4 0.1338965
intensity 163.2944 7 28 < 2.2e-16 ***
type:env 14.8249 1 4 0.0182978 *
type:intensity 25.3333 7 28 1.617e-10 ***
env:intensity 1.1943 7 28 0.3380488
type:env:intensity 13.9297 7 28 1.248e-07 ***

2 > car::Anova(fit7,test="F")
Analysis of Deviance Table (Type II Wald F tests with Kenward-Roger df)

Response: log(y)
F Df Df.res Pr(>F)

type 164.4238 1 8.000 1.291e-06 ***
env 2.6653 1 8.000 0.1412052
intensity 31.0984 7 32.576 1.130e-12 ***
type:env 11.2268 1 8.000 0.0100707 *
type:intensity 7.1626 7 32.576 3.344e-05 ***
env:intensity 1.5142 7 32.576 0.1972937
type:env:intensity 6.3135 7 32.576 0.0001003 ***
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The difference between lines 1 and 2 is the different random effects structures
in the two models; the different random effects structures produce different
estimates of error that go into the denominator of the F -test, thus produc-
ing somewhat different results. The conclusions are the same (as we would
hope): the three-factor interaction is highly significant, so we retain all terms.
The argument test="F" requests KR tests, and results are type II by de-
fault.

Intensity is quantitative, and the interaction plot seemed to suggest linear
in intensity might be an adequate explanation of the intensity effect (at least
when results are on the log scale).

3 > fit7 <- lmer(log(y)˜type*env*intensity+(0+int.z|type:crystal)+
(1|env:type:crystal)+(0+int.z|env:type:crystal),data=QCM)

4 > fit7lin <- lmer(log(y)˜type*env*int.z+(0+int.z|type:crystal)+
(1|env:type:crystal)+(0+int.z|env:type:crystal),data=QCM)

5 > pbkrtest::KRmodcomp(fit7,fit7lin)
F-test with Kenward-Roger approximation; computing time: 0.13 sec.
large : log(y) ˜ type * env * intensity + (0 + int.z | type:crystal) +

(1 | env:type:crystal) + (0 + int.z | env:type:crystal)
small : log(y) ˜ type * env * int.z + (0 + int.z | type:crystal) + (1 |

env:type:crystal) + (0 + int.z | env:type:crystal)
stat ndf ddf F.scaling p.value

Ftest 3.3873 24.0000 48.0000 1 0.0001586 ***

Line 4 refits replacing intensity with linear in intensity in the fixed effects.
This model uses 24 fewer degrees of freedom, and it is reasonable to ask
whether this reduced model adequately describes the mean structure. The
function pbkrtest::KRmodcomp lets you compare two different models
provided that the random effects are the same and one of the fixed effects
models is a submodel of the other. Line 5 uses that test, and we get a very
significant p-value. In fact, while the bulk of the variability is linear, there
are significant higher order effects of intensity that need to be modeled.

Finally, line 6 illustrates that we can compute linear contrasts in the
mixed-effects setting.

6 > linear.contrast(fit7,env,c(-1,1))
estimates se t-value p-value lower-ci upper-ci

1 -0.2384581 0.146064 -1.632559 0.1412052 -0.5752822 0.09836601
7 > car::Anova(fit7,test="F",type=3)

Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)

Response: log(y)
F Df Df.res Pr(>F)

(Intercept) 2834.7391 1 8.000 1.717e-11 ***
type 164.4238 1 8.000 1.291e-06 ***
env 2.6653 1 8.000 0.1412052
intensity 31.0984 7 32.576 1.130e-12 ***
type:env 11.2268 1 8.000 0.0100707 *
type:intensity 7.1626 7 32.576 3.344e-05 ***
env:intensity 1.5142 7 32.576 0.1972937
type:env:intensity 6.3135 7 32.576 0.0001003 ***

Line 7 is there to remind us that contrasts are type III effects (although in this
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example the fixed effects are orthogonal so types II and III are the same).

11.2 Classical Analysis for Mixed Effects

We will only consider the classical approach in the situation where the data
are balanced and the factors are treated as non-quantitative. In this situation,
testing in the classical approach can be succinctly described as “Ignore the Classical works

well for balanced
data

fact that you have mixed effects and do an ANOVA; then go back and modify
the tests in the ANOVA to take into account the mixed effects.” Thus the
classical analysis is sometimes called the ANOVA approach. This works
quite well in simple models, but rapidly becomes unwieldy. That said, results
of the REML and classical approaches are often identical in simple, balanced
situations.

The primary reason for continuing to think about the classical approach is
the insight it gives us into power and sample size selection for mixed effects
designs. Unfortunately, we will need to cover quite a bit of the classical Power
approach before we can talk sensibly about power. We will also see that the
Hasse diagram is more than just a pretty picture.

11.2.1 ANOVA and Expected Mean Squares

The analysis of variance for mixed effects is computed exactly the same as
for fixed effects. The ANOVA table is mostly the same. It has rows for
every term in the model and columns for source, sums of squares, degrees
of freedom, mean squares, and F-statistics; the sources, sums of squares,
degrees of freedom, and mean squares are just like for fixed effects. The ANOVA table

includes column
for EMS

F-statistics often differ, and a mixed-effects ANOVA table often includes an
additional column for expected mean squares (EMS). The EMS for a term is
literally the expected value of its mean square.

The EMS for error is σ2, exactly the same as in fixed effects. For bal-
anced single-factor data with a random treatment factor, the EMS for treat-
ments is σ2 + nσ2α.

To test the null hypothesis that σ2α = 0, we use the F-ratio MSTrt/MSE
and compare it to an F-distribution with g− 1 and N − g degrees of freedom
to get a p-value. Let’s start looking for the pattern now. To test the null
hypothesis that σ2α = 0, we try to find two expected mean squares that would Construct tests by

examining EMSbe the same if the null hypothesis were true and would differ otherwise. Put
the mean square with the larger EMS in the numerator. If the null hypothesis
is true, then the ratio of these mean squares should be about 1 (give or take
some random variation). If the null hypothesis is false, then the ratio tends
to be larger than 1, and we reject the null for large values of the ratio. In a
one-factor ANOVA there are only two mean squares to choose from, and we
use MSTrt/MSE to test the null hypothesis of no treatment variation.

It’s a bit puzzling at first that fixed- and random-effects models, which
have such different assumptions about parameters, should have the same test
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for the standard null hypothesis. However, think about the effects when the
null hypotheses are true. For fixed effects, the αi are fixed and all zero; for
random effects, the αi are random and all zero. Either way, they’re all zero.
It is this commonality under the null hypothesis that makes the two tests the
same.

Now consider a two-factor experiment with both factors random. The
sources in a two-factor ANOVA are A, B, the AB interaction, and error; theTwo-factor EMS
following table gives the general two-factor skeleton ANOVA.

Source DF EMS

A a− 1 σ2 + nσ2αβ + nbσ2α

B b− 1 σ2 + nσ2αβ + naσ2β
AB (a− 1)(b− 1) σ2 + nσ2αβ
Error N − ab = ab(n− 1) σ2

Suppose that we want to test the null hypothesis that σ2αβ = 0. The EMS
for the AB interaction is σ2 + nσ2αβ , and the EMS for error is σ2. These
differ only by the variance component of interest, so we can test this null
hypothesis using the ratio MSAB/MSE, with (a − 1)(b − 1) and ab(n − 1)
degrees of freedom.

That was pretty familiar; how about testing the null hypothesis that σ2α =
0? The only two lines that have EMS’s that differ by a multiple of σ2α are
A and the AB interaction. Thus we use the F-ratio MSA/MSAB with a − 1
and (a− 1)(b− 1) degrees of freedom to test σ2α = 0. Similarly, the test for
σ2β = 0 is MSB/MSAB with b − 1 and (a − 1)(b − 1) degrees of freedom.
Not having MSE in the denominator is a major difference from fixed effects.

The denominator mean square forF -tests in classical analysis for mixed-
effects models will not always be MSE!

Let’s press on to three random factors. The sources in a three-factor
ANOVA are A, B, and C; the AB, AC, BC, and ABC interactions; and error.Three-factor

model The following table gives the generic expected mean squares:
Source EMS

A σ2 + nσ2αβγ + ncσ2αβ + nbσ2αγ + nbcσ2α

B σ2 + nσ2αβγ + ncσ2αβ + naσ2βγ + nacσ2β
C σ2 + nσ2αβγ + nbσ2αγ + naσ2βγ + nabσ2γ

AB σ2 + nσ2αβγ + ncσ2αβ
AC σ2 + nσ2αβγ + nbσ2αγ

BC σ2 + nσ2αβγ + naσ2βγ
ABC σ2 + nσ2αβγ
Error σ2
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Testing for interactions is straightforward using our rule for finding two
terms with EMS’s that differ only by the variance component of interest.
Thus error is the denominator for ABC, and ABC is the denominator for AB,
AC, and BC. What do we do about main effects? Suppose we want to test
the main effect of A, that is, test whether σ2α = 0. If we set σ2α to 0 in the No exact F -tests

for some
hypotheses

EMS for A, then we get σ2 + nσ2αβγ + ncσ2αβ + nbσ2αγ . A quick scan of the
table of EMS’s shows that no term has σ2 + nσ2αβγ + ncσ2αβ + nbσ2αγ for its
EMS. What we see is that there is no exact F -test for the null hypothesis that
a main effect is zero in a three-way random-effects model. The lack of an
exact F -test turns out to be relatively common in models with many random
effects.

In the absence of an exact F -test, we must form an approximate F -test.
But before creating approximate tests, let’s review a bit about exact F -tests.

An exact F -test is the ratio of two positive, independently distributed ran-
dom quantities (mean squares). The denominator is distributed as a multiple Mean squares

are multiples of
chi-squares

divided by their
degrees of

freedom

τd of a chi-square random variable divided by its degrees of freedom (the
denominator degrees of freedom), and the numerator is distributed as a mul-
tiple τn of a chi-square random variable divided by its degrees of freedom
(the numerator degrees of freedom). The multipliers τd and τn are the ex-
pected mean squares; τn = τd when the null hypothesis is true, and τn > τd
when the null hypothesis is false. Putting these together gives us a test statis-
tic that has an F-distribution when the null hypothesis is true and tends to be
bigger when the null is false.

We want the approximate test to mimic the exact test as much as possible.
The approximate F -test should be the ratio of two positive, independently
distributed random quantities. When the null hypothesis is true, both quan- Approximate tests

mimic exact teststities should have the same expected value. For exact tests, the numerator
and denominator are each a single mean square. For approximate tests, the
numerator and denominator are sums of mean squares. Because the numer-
ator and denominator should be independent, we need to use different mean
squares for the two sums.

The key to the approximate test is to find sums for the numerator and
denominator that have the same expectation when the null hypothesis is true.
We can do this by inspection of the table of EMS, but we will shortly describe
a simpler way using the Hasse diagram. One helpful comment: you always
have the same number of mean squares in the numerator and denominator.

Example 11.4 Finding mean squares for an approximate test
Consider testing for no factor A effect (H0 : σ2α = 0) in a three-way

model with all random factors. Refer to the table of expected mean squares
given above.

1. The only mean square with an EMS that involves σ2α is MSA, so it must
be in the numerator.

2. The EMS for A under the null hypothesis σ2α = 0 is σ2 + nσ2αβγ +

ncσ2αβ + nbσ2αγ .
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3. We need to find a term or terms that will include ncσ2αβ and nbσ2αγ
without extraneous variance components that do not appear in the nu-
merator. We can get ncσ2αβ from MSAB, and we can get nbσ2αγ from
MSAC. Our provisional denominator is now MSAB + MSAC; its ex-
pected value is 2σ2 + 2nσ2αβγ + ncσ2αβ + nbσ2αγ .

4. The denominator now has an expected value that is σ2 + nσ2αβγ larger
than that of the numerator. We can make them equal in expectation by
adding MSABC to the numerator.

5. The numerator MSA + MSABC and denominator MSAB + MSAC have
the same expectations under the null hypothesis, and the numerator has
a larger expectation when σ2α > 0. Their ratio forms our approximate
F -test.

Now that we have the numerator and denominator, the test statistic is their
ratio. To compute a p-value, we have to know the distribution of the ratio, and
this is where the approximation comes in. We don’t know the distribution ofGet approximate

p-value using
F-distribution

the ratio exactly; we approximate it. Exact F -tests follow the F-distribution,
and we are going to compute p-values assuming that our approximate F -test
also follows an F-distribution, even though it doesn’t really. The degrees
of freedom for our approximating F-distribution come from Satterthwaite
formula (Satterthwaite 1946) shown below. These degrees of freedom will
almost never be integers, but your software won’t mind. If you only have a
table, rounding the degrees of freedom down gives a conservative result.

The simplest situation is when we have the sum of several mean squares,
say MS1, MS2, and MS3, with degrees of freedom ν1, ν2, and ν3. The ap-
proximate degrees of freedom are calculated as

ν? =
(MS1 + MS2 +MS3)

2

MS2
1/ν1 + MS2

2/ν2 +MS2
3/ν3

.

In more complicated situations, we may have a general linear combination ofSatterthwaite
approximate
degrees of
freedom

mean squares
∑

k gkMSk. This linear combination has approximate degrees
of freedom

ν? =
(
∑

k gkMSk)2∑
k g

2
kMS2

k/νk
.

Unbalanced data will lead to these more complicated forms. The approxima-
tion tends to work better when all the coefficients gk are positive.

Example 11.5 Approximate degrees of freedom
Suppose that we obtain the following ANOVA table for an experiment

with machine, operator, and glue as three crossed random factors (we called
this carton experiment three in the last chapter, data not shown):
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DF SS MS EMS
m 9 2706 300.7 σ2 + 2σ2αβγ + 4σ2αβ + 20σ2αγ + 40σ2α

o 9 8887 987.5 σ2 + 2σ2αβγ + 4σ2αβ + 20σ2βγ + 40σ2β
g 1 2376 2376 σ2 + 2σ2αβγ + 20σ2αγ + 20σ2βγ + 200σ2γ

m:o 81 1683 20.78 σ2 + 2σ2αβγ + 4σ2αβ
m:g 9 420.4 46.71 σ2 + 2σ2αβγ + 20σ2αγ

o:g 9 145.3 16.14 σ2 + 2σ2αβγ + 20σ2βγ
m:o:g 81 1650 20.37 σ2 + 2σ2αβγ
error 200 4646 23.23 σ2

We illustrate approximate tests with a test for machine. We have already
discovered that the numerator should be the sum of the mean squares for
machine and the three-way interaction; these are 300.7 and 20.37 with 9
and 81 degrees of freedom. Our numerator is 321.07, and the approximate
degrees of freedom are:

ν?n =
321.072

300.72/9 + 20.372/81
≈ 10.3 .

The denominator is the sum of the mean squares for the machine by operator
and the machine by glue interactions; these are 20.78 and 46.71 with 81 and 9
degrees of freedom. The denominator is 67.49, and the approximate degrees
of freedom are

ν?d =
67.492

20.782/81 + 46.712/9
≈ 18.4 .

The F -test is 321.07/67.49 = 4.76 with 10.3 and 18.4 approximate degrees
of freedom and an approximate p-value of .0018; this is strong evidence
against the null hypothesis of no machine to machine variation.

11.2.2 Hasse Diagrams, Test Denominators, and Expected Mean
Squares

Using the Hasse diagram, we can determine the appropriate test denominator
visually, without ever calculating the EMS for the design. We will briefly
discuss denominators, and then move on to the main topic of EMS, which
we need for power.

Recall that we considered unrestricted model assumptions, where all ran-
dom effects were independent, and restricted model assumptions, where cer-
tain sums of the random effects were constrained to be 0. When we were dis-
cussing the REML method of analysis, we only considered the unrestricted
assumptions. That was due to a limitation of lme and lmer; restricted as-
sumptions can still appropriate in some circumstances, and the classical ap-
proach can handle the restricted assumptions.
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1. The denominator for testing a term U is the leading eligible ran-
dom term below U in the Hasse diagram.

2. An eligible random term V below U is leading if there is no eli-
gible random term that is above V and below U.

3. If there are two or more leading eligible random terms, then we
must use an approximate test.

4. In the unrestricted model, all random terms below U are eligible.

5. In the restricted model, all random terms below U are eligible
except those that contain a fixed factor not found in U.

Display 11.1: Rules for finding test denominators in balanced
factorials using the Hasse diagram.

Intercept1
1

A4
5 (B)3

4

(A:B)12
20

(Error)20
40

Intercept1
1

(A)4
5 (B)3

4 C1
2

(A:B)12
20 (A:C)4

10 (B:C)3
8

(A:B:C)12
40

(Error)40
80

Intercept1
1

(A)4
5

(B)15
20

(C)20
40

(Error)40
80

(a) (b) (c)

Figure 11.4: Hasse diagrams: (a) two-way factorial with A fixed and
B random, A and B crossed; (b) three-way factorial with A and B
random, C fixed, all factors crossed; (c) fully nested, with B fixed, A
and C random. In all cases, A has 5 levels, B has 4 levels, and C has
2 levels.

Test denominators

Hasse diagrams look the same whether you use the restricted model or the
unrestricted model, but the models are different and we must therefore use
the Hasse diagram slightly differently for restricted and unrestricted models.
Display 11.1 gives the steps for finding test denominators using the Hasse
diagram. In general, you find the leading random term below the term to beFinding test

denominators tested, but only random terms without additional fixed factors are eligible in
the restricted model. If there is more than one leading random term, we have
an approximate test.
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Example 11.6 Test denominators in the restricted model
Consider the Hasse diagram in Figure 11.4(a). The next random term

below A is the AB interaction. The only fixed factor in AB is A, so AB is the
denominator for A. The next random term below B is also the AB interaction.
However, AB contains A, an additional fixed factor not found in B, so AB
is ineligible to be the denominator for B. Proceeding down, we get to error,
which is random and does not contain any additional fixed factors. Therefore,
error is the denominator for B. Similarly, error is the denominator for AB.

Figure 11.4(b) is a Hasse diagram for a three-way factorial with factors A
and B random, and factor C fixed. The denominator for ABC is error. Imme-
diately below AB is the random interaction ABC. However, ABC is not an
eligible denominator for AB because it includes the additional fixed factor C.
Therefore, the denominator for AB is error. For AC and BC, the denominator
will be ABC, because it is random, immediately below, and contains no ad-
ditional fixed factor. Next consider main effects. We see two random terms
immediately below A, the AB and AC interactions. However, AC is not an
eligible denominator for A, because it includes the additional fixed factor C.
Therefore, the denominator for A is AB. Similarly, the denominator for B is
AB. Finally consider C. There are two random terms immediately below C
(AC and BC), and both of these are eligible to be denominators for C because
neither includes an additional fixed factor. Thus we have an approximate test
for C: C and ABC in the numerator, AC and BC in the denominator. In
general, with two eligible random terms below a term of interest, the second
mean square added to the mean square of interest will be the leading eligible
random term below both of the denominator terms.

Figure 11.4(c) is a Hasse diagram for a three-factor, fully-nested model,
with A and C random and B fixed. Nesting structure appears as a vertical
chain, with one factor below another. Note that the B nested in A term is a
random term, even though B is a fixed factor. This seems odd, but consider
that there is a different set of B effects for every level of A; we have a random
set of A levels, so we must have a random set of B levels, so B nested in A
is a random term. The denominator for C is E, and the denominator for B is
C. The next random term below A is B, but B contains the fixed factor B not
found in A, so B is not an eligible denominator. The closest eligible random
term below A is C, which is the denominator for A.

When all the nested effects are random, the denominator for any term is
simply the term below it. A fixed factor nested in a random factor is some-
thing of an oddity—it is a random term consisting only of a fixed factor. It
will never be an eligible denominator in the restricted model.

Example 11.7 Test denominators in the unrestricted model
Figure 11.4(a) shows a two-factor mixed-effects design. Using the unre-

stricted model, error is the denominator for AB, and AB is the denominator
for both A and B. This is a change from the restricted model, which had error
as the denominator for B.

Using the unrestricted model in the three-way mixed effects design shown
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in Figure 11.4(b), we find that error is the denominator for ABC, and ABC is
the denominator for AB, BC, and AC; error was the denominator for AB in
the restricted model. All three main effects have approximate tests, because
there are two leading eligible random two-factor interactions below every
main effect.

In the three-way nested design shown in Figure 11.4(c), the denominator
for every term is the term immediately below it. This is again different from
the restricted model, which used C as the denominator for A.

Example 11.8 Classical tests for the quartz crystal microbalance
experiment

The full ANOVA for the crystal data, ignoring the fact that some terms
are random, is here:

1 > anova(lm(log(y)˜(type/crystal)*env*intensity,data=QCM))
Df Sum Sq Mean Sq F value Pr(>F)

type 1 84.190 84.190
env 1 1.365 1.365
intensity 7 95.711 13.673
type:crystal 4 2.545 0.636
type:env 1 5.748 5.748
type:intensity 7 14.848 2.121
env:intensity 7 0.190 0.027
type:crystal:env 4 1.551 0.388
type:crystal:intensity 28 2.344 0.084
type:env:intensity 7 2.216 0.317
type:crystal:env:intensity 28 0.636 0.023
Residuals 0 0.000

Refer back to the Hasse diagram in Figure 11.1. The classical tests are:

• Type: MSType/MSCrystal = 84.19/.636 = 132.37 with 1 and 4 degrees
of freedom.

• Environment: MSEnv/MSEnv:Crystal = 1.365/.388 = 3.518 with 1 and
4 degrees of freedom.

• Intensity: MSIntensity/MSIntensity:Crystal = 13.673/.084 = 162.77 with 7
and 28 degrees of freedom.

• Type by environment: MSTE/MSEC = 5.748/.388 = 14.81 with 1 and
4 degrees of freedom.

• Type by intensity: MSTI/MSIC = 2.121/.084 = 25.25 with 7 and 28
degrees of freedom.

• Environment by intensity: MSEI/MSEIC = .027/.023 = 1.17 with 7
and 28 degrees of freedom.

• Type by environment by intensity: MSTEI/MSEIC = .317/.023 =
13.78 with 7 and 28 degrees of freedom.
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The Kenward-Roger tests for the fixed effects in the crystal data were com-
puted before, but copied here for clarity:

2 > car::Anova(fit2,test="F")
F Df Df.res Pr(>F)

type 132.3113 1 4 0.0003261 ***
env 3.5194 1 4 0.1338965
intensity 163.2944 7 28 < 2.2e-16 ***
type:env 14.8249 1 4 0.0182978 *
type:intensity 25.3333 7 28 1.617e-10 ***
env:intensity 1.1943 7 28 0.3380488
type:env:intensity 13.9297 7 28 1.248e-07 ***

A quick glance shows that the classical and REML/KR results are within
rounding error of being identical.

We can also test random effects. Note that while the fixed effects tests
would be the same under restricted or unrestricted assumptions, the tests of
random effects will differ. REML used unrestricted assumptions, so we will
as well.

• Intensity by crystal: MSIC/MSIEC = .084/.023 = 3.65 with 28 and 28
degrees of freedom and p-value = .0005.

• Environment by crystal: MSEC/MSIEC = .388/.023 = 16.87 with 4
and 28 degrees of freedom and p-value 3.8 ×10−7.

• Crystal: (MSC + MSIEC)/(MSIC + MSEC) = (.636 + .023)/(.084 +
.388) = 1.40. We must use Satterthwaite to get degrees of freedom.
For the numerator, (.636+ .023)2/(.6362/4+ .0232/28) = 4.3; for the
denominator, (.084 + .388)2/(.0842/28 + .3882/4) = 5.9. Together,
the p-value is .34.

Recall that the corresponding three p-values from the REML analysis were
.0007, 2 ×10−16, and .28. The REML and ANOVA p-values for the ran-
dom effects are not precisely the same (as was true for fixed effects), but the
differences are not great.

One side effect of using the unrestricted model is that there are more
approximate tests, because there are more eligible denominators. The unre-
stricted model also tends to be slightly more conservative.

Expected mean squares

The rules for computing expected mean squares are given in Display 11.2.
The description of the representative element for a fixed term seems a little Representative

elements appear
in noncentrality

parameters

arcane, but we have seen this Q before in expected mean squares. For a fixed
main effect A, the representative element is

∑
i α

2
i /(a − 1) = Q(α). For a

fixed interaction AB, the representative element is
∑

ij(αβij)
2/[(a− 1)(b−

1)] = Q(αβ). These are the same forms we saw in earlier chapters when
discussing noncentrality parameters and power.
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1. The representative element for a random term is its variance
component.

2. The representative element for a fixed term is a function Q
equal to the sum of the squared effects for the term divided
by the degrees of freedom.

3. The contribution of a term is the number of data values N,
divided by the number of effects for that term (the super-
script for the term in the Hasse diagram), times the repre-
sentative element for the term.

4. The expected mean square for a term U is the sum of the
contributions for U and all eligible random terms below U
in the Hasse diagram.

5. In the unrestricted model, all random terms below U are
eligible.

6. In the restricted model, all random terms below U are eli-
gible except those that contains a fixed factor not found in
U.

Display 11.2: Rules for computing expected mean
squares in balanced factorials using the Hasse diagram.

Example 11.9 Expected mean squares in the restricted model
Consider the term A in Figure 11.4(b). In the restricted model, the eligi-

ble random terms below A are AB and E; AC and ABC are ineligible due to
the inclusion of the additional fixed factor C. Thus the expected mean square
for A is

σ2 +
80

20
σ2αβ +

80

5
σ2α = σ2 + 4σ2αβ + 16σ2α .

For term C in Figure 11.4(b), all random terms below C are eligible, so the
EMS for C is

σ2 +
80

40
σ2αβγ +

80

8
σ2βγ +

80

10
σ2αγ +

80

2
Q(γ) =

σ2 + 2σ2αβγ + 10σ2βγ + 8σ2αγ + 40Q(γ) .

For term A in Figure 11.4(c), the eligible random terms are C and E; B is
ineligible. Thus the expected mean square for A is

σ2 +
80

40
σ2γ +

80

5
σ2α = σ2 + 2σ2γ + 16σ2α .
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Intercept1
1

(A)1
2 (B)1

2 (C)1
2 (D)1

2

(A:B)1
4 (A:C)1

4 (A:D)1
4 (B:C)1

4 (B:D)1
4 (C:D)1

4

(A:B:C)1
8 (A:B:D)1

8 (A:C:D)1
8 (B:C:D)1

8

(A:B:C:D)1
16

(Error)16
32

Figure 11.5: Hasse diagram for a four-way factorial with all random
effects.

Example 11.10 Expected mean squares in the unrestricted model
We now recompute two of the expected mean squares from Example 11.9

using the unrestricted model. There are four random terms below A in Fig-
ure 11.4(b); all of these are eligible in the unrestricted model, so the expected
mean square for A is

σ2 +
80

40
σ2αβγ +

80

20
σ2αβ +

80

10
σ2αγ +

80

5
σ2α =

σ2 + 2σ2αβγ + 4σ2αβ + 8σ2αγ + 16σ2α .

This includes two additional contributions that were not present in the re-
stricted model.

For term A in Figure 11.4(c), B, C, and E are all eligible random terms.
Thus the expected mean square for A is

σ2 +
80

40
σ2γ + +

80

20
σ2β +

80

5
σ2α = σ2 + 2σ2γ + 4σ2β + 16σ2α .

Term B contributes to the expected mean square of A in the unrestricted
model.

We can figure out approximate tests by using the rules for expected mean
squares and the Hasse diagram. Consider testing C in Figure 11.4(b). AC
and BC are both eligible random terms below C, so both of their expected
mean squares will appear in the EMS for C; thus both AC and BC need to be
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in the denominator for C. However, putting both AC and BC in the denom-
inator double-counts the terms below AC and BC, namely ABC and error.
Therefore, we add ABC to the numerator to match the double-counting.

Here is a more complicated example: testing a main effect in a four-factor
model with all factors random. Figure 11.5 shows the Hasse diagram. Sup-Use Hasse

diagrams to find
approximate tests

pose that we wanted to test A. Terms AB, AC, and AD are all eligible random
terms below A, so all would appear in the EMS for A, and all must appear in
the denominator for A. If we put AB, AC, and AD in the denominator, then
the expectations of ABC, ABD, and ACD will be double-counted there. Thus
we must add them to the numerator to compensate. With A, ABC, ABD, and
ACD in the numerator, ABCD and error are quadruple-counted in the numer-
ator but only triple-counted in the denominator, so we must add ABCD to the
denominator. We now have a numerator (A + ABC + ABD + ACD) and a
denominator (AB + AC + AD + ABCD) with expectations that differ only by
a multiple of σ2α.

Estimates of Variance Components

We can get point estimates for variance components by setting the observed
mean squares for random terms equal to the formulae for their expected mean
squares and solving the resulting linear equations for the unknown variance
components. The resulting estimates of the variance components are unbi-
ased (good), but they can be negative (embarrassing). In simple, balanced
designs where all the estimates are positive, these ANOVA estimates of vari-
ance components often agree with REML estimates.

Example 11.11 ANOVA estimates of variance components for the
quartz crystal data

Begin by equating the observed mean squares for random effects with
their theoretical expectations:

.023 = σ2 + σ2IEC

.388 = σ2 + σ2IEC + 8σ2EC

.084 = σ2 + σ2IEC + 2σ2IC

.636 = σ2 + σ2IEC + 8σ2EC + 2σ2IC + 16σ2C

This gives us

σ̂2EC = (.388− .023)/8 = .0456

σ̂2IC = (.084− .023)/2 = .0305

σ̂2C = (.636 + .023− .388− .084)/16 = .0117

In this balanced, relatively simple design, the ANOVA estimates agree with
the REML estimates.

You can see a relationship between the formulae for variance componentNumerator MS’s
are added,
denominator MS’s
are subtracted in
estimates
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estimates and test numerators and denominators: mean squares in the test
numerator are added in estimates, and mean squares in the test denominator
are subtracted. Thus a variance component with an exact test will have an
estimate that is just a difference of two mean squares.

11.2.3 Power

We are finally at a place where we can talk about power in mixed effects
designs. Null hypotheses can be about either a fixed effect or a random effect.
Let’s begin with a fixed effect.

Consider a fixed effect for which there is an exact F -test as the ratio of
two mean squares: F = MS1/MS2 with degrees of freedom ν1 and ν2. EMS2
will be some linear combination of variance components with sum τ . EMS1 Noncentrality

parameterwill be τ plus some multiple of the Q contribution for the term being tested;
that is, EMS1 = τ + kQ for some multiplier k.

The noncentrality parameter is ν1kQ/τ .

The measure of variability used in the denominator of the noncentrality pa-
rameter is the EMS of MS used in the denominator of the test; this will often
not be σ2.

Once we have the noncentrality parameter, degrees of freedom, and E ,
we can compute power using software for the noncentral F distribution.

Example 11.12 Power for environment in the quartz crystal exper-
iment

Consider an experiment with the structure of the quartz crystal experi-
ment. There are a levels of intensity, b levels of environment, c levels of
type, d crystals per type, and n measurements per crystal at each intensity-
environment combination (in the actual crystal data, these values are 8, 2,
2, 3, and 1). With the unrestricted assumptions, the test for environment is
MSEnv/MSEnv:Cr with b − 1 and (b − 1)c(d − 1) degrees of freedom. The
EMS for environment is

EMSEnv = σ2 + nσ2IEC + naσ2EC + nacdQ

and the noncentrality parameter is

ζ =
(b− 1)nacdQ

σ2 + nσ2IEC + naσ2EC

Suppose that we want power .95 under the following assumptions: a = 8,
b = 2, c = 2, σ2 = .01, σ2IEC = .02, σ2EC = .05, Q = .01, and E = .05. In
this case, the non-centrality parameter is

ζ =
(2− 1)n× 8× 2× d× 1

.01 + n× .02 + 8n× .05
=

.16nd

.01 + .02n+ .4n
=

.16nd

.01 + .42n
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In Chapter 7, when we wanted to make the power arbitrarily close to 1,
all we needed to make the noncentrality parameter arbitrarily large was to
increase the sample size n. If we try increasing n here, ζ will never get any
larger than

ζ? =
(b− 1)acdQ

σ2IEC + aσ2EC
=
.16d

.42

Using d = 3 as in the real experiment, our largest possible non-centrality
parameter is 1.14. Using this ζ, an F -test with 1 and 4 degrees of freedom
and E = .05 has power .13. That is not nearly big enough. Instead of sending
n off to infinity, let’s put n back to 1 and try increasing d (the number of
crystals per type) instead. The non-centrality parameter is .16d/.43 = .37d,
and the degrees of freedom will be 1 and 2(d− 1). Trying various values of
d, we find that we need d = 36 to get power at least .95.

The function cfcdae::mixed.power() can automate much of this.

1 > mixed.power(˜I*E*(T/C),c(8,2,2,3,1),
list(E=.01,"I:E:C"=.02,Error=.01,"E:C"=.05),random="C",restrict=FALSE)

num.ev den.ev num.df den.df power
Intercept 0.43 0.43 1.0 4.0 0.05
I 0.03 0.03 7.0 28.0 0.05
E 0.91 0.43 1.0 4.0 0.13
T 0.43 0.43 1.0 4.0 0.05
I:E 0.03 0.03 7.0 28.0 0.05
C 0.46 0.46 4.6 4.6 0.05
I:T 0.03 0.03 7.0 28.0 0.05
E:T 0.43 0.43 1.0 4.0 0.05
I:C 0.03 0.03 28.0 28.0 0.05
E:C 0.43 0.03 4.0 28.0 0.94
I:E:T 0.03 0.03 7.0 28.0 0.05
I:E:C 0.03 0.01 28.0 0.0 NaN

2 > mixed.power(˜I*E*(T/C),c(8,2,2,3,1000),
list(E=.01,"I:E:C"=.02,Error=.01,"E:C"=.05),random="C",restrict=FALSE)

num.ev den.ev num.df den.df power
...
E 900.01 420.01 1.0 4.0 0.13
...

3 > mixed.power(˜I*E*(T/C),c(8,2,2,35,1),
list(E=.01,"I:E:C"=.02,Error=.01,"E:C"=.05),random="C",restrict=FALSE)

num.ev den.ev num.df den.df power
...
E 6.03 0.43 1.0 68.0 0.94
...

4 > mixed.power(˜I*E*(T/C),c(8,2,2,36,1),
list(E=.01,"I:E:C"=.02,Error=.01,"E:C"=.05),random="C",restrict=FALSE)

num.ev den.ev num.df den.df power
...
E 6.19 0.43 1.0 70.0 0.95
...

Line 1 shows the basic usage. The first argument is the right hand side of a
formula, with the model expressed as you would assuming that everything is
fixed. The second argument is number of levels for each factor. Take care that
you enter the factors in the order that R enters them; terms(˜ formula)
can show you if you are unsure. The third argument is a list with named
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components for non-zero variance components or Q elements. Note that you
need to quote the component names that contain a colon. The random ar-
gument is a (possibly NULL) character vector giving the names of random
factors. By default this function uses the restricted model assumptions; you
can select unrestricted by opting for restrict=FALSE. The default E is
.05; you can change that with an alpha= argument.

The output of mixed.power gives the power for every term in the
model except Error. The power will equal E unless you have set the rep-
resentative element for that term to something greater than 0.

Line 1 shows the results when we use the number of levels in the actual
crystal experiment. Power for environment is .13. Line 2 tries to increase
power by increasing n to 1000; that does not work. In line 3 we have put n
back to 1 and increased d to 35, and that is not quite enough. Line 4 shows
we achieve our desired .95 power when we use d = 36.

In mixed effects, you often need to increase the number of levels of a
random factor in order to achieve the desired power.

If the term we are testing has an approximate test, you will need to com-
pute the expected mean squares for all of the terms that are used, and you will
need to compute approximate degrees of freedom for the numerator and de-
nominator based on the expected mean squares instead of using the observed
mean squares. Combining these, we compute power based on the noncentral-
ity parameter ν1kQ/τ where τ is the sum of the denominator expected mean
squares and ν1 is the approximate degrees of freedom for the numerator.

Power for random effects is similar to power for fixed effects, but it does
not involve a noncentral F. Suppose that we wish to compute the power for Power for random

effects uses
central F

testing the null hypothesis that σ2η = 0, and that we have two mean squares
with expectations EMS1 = τ +kσ2η and EMS2 = τ and degrees of freedom ν1
and ν2. The test for σ2η is the F-ratio MS1/MS2.

When the null hypothesis is true, the F-ratio has an F-distribution with ν1
and ν2 degrees of freedom. We reject the null when the observed F-statistic
is greater than FE,ν1,ν2 . When the null hypothesis is false, the observed F-
statistic is distributed as (τ + kσ2η)/τ times a (central) F with ν1 and ν2
degrees of freedom. Thus the power is the probability that an F with ν1 and
ν2 degrees of freedom exceeds τ/(τ + kσ2η)FE,ν1,ν2 .

When choosing the sample size to achieve a desired power for testing
a random effect, you will again need to consider increasing the number of
levels of one or more random effects; you cannot rely on increasing only n
to get the power you need.

Example 11.13 Power for σ2
Env:Crystal in the quartz crystal experi-

ment
Consider an experiment with the structure of the quartz crystal experi-

ment. There are a levels of intensity, b levels of environment, c levels of
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type, d crystals per type, and n measurements per crystal at each intensity-
environment combination (in the actual crystal data, these values are 8, 2, 2,
3, and 1). With the unrestricted assumptions, the test for the environment by
crystal variance component is MSEnv:Cr/MSInt:Env:Cr with (b− 1)c(d− 1) and
(a − 1)(b − 1)c(d − 1) degrees of freedom. The EMS for environment by
crystal is

EMSEnv:Cry = σ2 + nσ2IEC + naσ2EC

and the EMS for intensity by environment by crystal is

EMSInt:Env:Cry = σ2 + nσ2IEC

Suppose that we want power .95 under the following assumptions: a = 8,
b = 2, c = 2, σ2 = .01, σ2IEC = .02, σ2EC = .005, and E = .05. The factor
is

EMSEC

EMSIEC
=
.01 + n× .02 + n× 8× .005

.01 + n× .02
=
.01 + .06n

.01 + .02n

The largest the multiplier can be is 3 (at infinite n). With a multiplier of 3
and d = 3 as in the real data set, the power is .47, which is much too small.

The other thing we can do is increase d; this does not change the multi-
plier, but it does change the degrees of freedom in the F distribution, and that
will eventually be enough to achieve our power. With n = 1, the multiplier is
7/3 and the minimum d to get power .95 is d = 19; for n = 2, the multiplier
is 13/5 and the minimum is d = 15; for n = 3 we need d = 14; and so on.
We can also see this using mixed.power

5 > mixed.power(˜I*E*(T/C),c(8,2,2,3,1),
list("I:E:C"=.02,Error=.01,"E:C"=.005),random="C",restrict=FALSE)

num.ev den.ev num.df den.df power
...
E:C 0.07 0.03 4 28 0.35
...

5 > mixed.power(˜I*E*(T/C),c(8,2,2,3,1000),
list("I:E:C"=.02,Error=.01,"E:C"=.005),random="C",restrict=FALSE)

num.ev den.ev num.df den.df power
...
E:C 60.01 20.01 4 28 0.47
...

5 > mixed.power(˜I*E*(T/C),c(8,2,2,19,1),
list("I:E:C"=.02,Error=.01,"E:C"=.005),random="C",restrict=FALSE)

num.ev den.ev num.df den.df power
...
E:C 0.07 0.03 36.0 252.0 0.95
...

5 > mixed.power(˜I*E*(T/C),c(8,2,2,15,2),
list("I:E:C"=.02,Error=.01,"E:C"=.005),random="C",restrict=FALSE)

num.ev den.ev num.df den.df power
...
E:C 0.13 0.05 28.0 196.0 0.95
...
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1. Make a Hasse diagram for the model.

2. Identify the base term and base factors for the mean of interest.

3. The variance of the mean of interest will be the sum over all con-
tributing terms T of

σ2T
product of superscripts of all base factors above T

superscript of term T

4. In the unrestricted model, all random terms contribute to the vari-
ance of the mean of interest.

5. In the restricted model, all random terms contribute to the vari-
ance of the mean of interest except those that contain a fixed fac-
tor not found in the base term.

Display 11.3: Steps for determining the variance of a marginal
mean.

11.2.4 Variances of Means and Contrasts

REML software will compute the variance/covariance matrix of the esti-
mated coefficients; from this you can compute the estimated variance of a
mean or contrast from the data. This is what we need most of the time, but
if you want to choose your sample size to get a confidence interval of a cer-
tain length, you need to be able to compute the variances and covariances of
means without having any data. We can use the Hasse diagram to get these
variances.

Treatment means make sense for combinations of fixed factors, but are
generally less interesting for random effects. Consider the Hasse diagrams
in Figure 11.6. All are three-way factorials with a = 3, b = 4, c = 5, and Look at treatment

means for fixed
factors

n = 2. In panels (a) and (c), factors A and B are fixed. Thus it makes sense
to consider means for levels of factor A (yi•••), for levels of factor B (y•j••),
and for AB combinations (yij••). In panel (b), only factor A is fixed, so only
means yi••• are usually of interest.

It is tempting to use the denominator mean square for A as the variance
for means yi•••. This does not work! We must go through the steps given in
Display 11.3 to compute variances for means. We can use the denominator Do not use

denominator
mean squares as

variances for
means

mean square for A when computing the variance for a contrast in factor A
means; simply substitute the denominator mean square as an estimate of vari-
ance into the usual formula for the variance of a contrast. Similarly, we can
use the denominator mean square for the AB interaction when we compute
the variance of an AB interaction contrast, but this will not work for means
yij•• or paired differences or other combinations that are not interaction con-
trasts.

Display 11.3 gives the steps required to compute the variance of a mean.
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Figure 11.6: Hasse diagrams for three three-way factorials. (a) C
random; (b) B and C random; (c) C random and nested in A.

For a mean yi•••, the base term is A and the base factor is A; for a mean
yij••, the base term is AB and the base factors are A and B.

Example 11.14 Variances of means
Let’s compute variances for some means in the models of Figure 11.6

using restricted model assumptions. Consider first the mean yi•••. The base
term is A, and the base factor is A. In panel (a), there will be contributions
from C, AC, and E (but not BC or ABC because they contain the additional
fixed factor B). The variance is

σ2γ
1

5
+ σ2αγ

3

15
+ σ2

3

120
.

In panel (b), there will be contributions from all random terms (A is the only
fixed term). Thus the variance is

σ2β
1

4
+ σ2γ

1

5
+ σ2αβ

3

12
+ σ2αγ

3

15
+ σ2βγ

1

20
+ σ2αβγ

3

60
+ σ2

3

120
.

Finally, in panel (c), there will be contributions from C and E (but not BC).
The variance is

σ2γ
3

15
+ σ2

3

120
.

Now consider a mean y•j•• in model (c). The contributing terms will be
C, BC, and E, and the variance is

σ2γ
1

15
+ σ2βγ

4

60
+ σ2

4

120
.
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1. Identify the base term and base factors for the means of interest.

2. Determine whether the subscripts agree or disagree for each base
factor.

3. The covariance of the means will be the sum over all contributing
terms T of

σ2T
product of superscripts of all base factors above T

superscript of term T

4. In the unrestricted model, all random terms contribute to the co-
variance except those that are below a base factor with disagree-
ing subscripts.

5. In the restricted model, all random terms contribute to the co-
variance except those that contain a fixed factor not found in the
base term and those that are below a base factor with disagreeing
subscripts.

Display 11.4: Steps for determining the covariance between
two marginal means.

Finally, consider the variance of yij••; this mean does not make sense in
panel (b). In panel (a), all random terms contribute to the variance, which is

σ2γ
1

5
+ σ2αγ

3

15
+ σ2βγ

4

20
+ σ2αβγ

3× 4

60
+ σ2

3× 4

120
.

In panel (c), all random terms contribute, but the variance here is

σ2γ
3

15
+ σ2βγ

3× 4

60
+ σ2

3× 4

120
.

The variance of a difference is the sum of the individual variances minus
twice the covariance. We thus need to compute covariances of means in Need covariances

to get variance of
a difference

order to get variances of differences of means. Display 11.4 gives the steps
for computing the covariance between two means, which are similar to those
for variances, with the additional twist that we need to know which of the
subscripts in the means agree and which disagree. For example, the factor A
subscripts in yi••• − yi′••• disagree, but in yij•• − yij′••, j 6= j′, the factor
A subscripts agree while the factor B subscripts disagree.

Example 11.15 Covariances of means
Now compute covariances for some means in the models of Figure 11.6

using restricted model assumptions. Consider the means yi••• and yi′•••.
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The base term is A, the base factor is A, and the factor A subscripts disagree.
In model (a), only term C contributes to the covariance, which is

σ2γ
1

5

Using the variance for yi••• computed in Example 11.14, we find

Var(yi••• − yi′•••) = Var(yi•••) + Var(yi′•••)− 2× Cov(yi•••, yi′•••)

= 2× (σ2γ
1

5
+ σ2αγ

1

5
+ σ2

1

40
)− 2× σ2γ

1

5

= 2× (σ2αγ
1

5
+ σ2

1

40
)

= EMSAC(
1

40
+

1

40
) .

The last line is what we would get by using the denominator for A and ap-
plying the usual contrast formulae with a sample size of 40 in each mean.

In model (b), B, C, and BC contribute to the covariance, which is

σ2β
1

4
+ σ2γ

1

5
+ σ2βγ

1

20

and leads to

Var(yi••• − yi′•••) = Var(yi•••) + Var(yi′•••)− 2× Cov(yi•••, yi′•••)

= 2× (σ2αβ
1

4
+ σ2αγ

1

5
+ σ2αβγ

1

20
+ σ2

1

40
)

In panel (c), all the random terms are below A, so none can contribute to
the covariance, which is thus 0.

Consider now y•j••− y•j′•• in model (c). Only the term C contributes to
the covariance, which is

σ2γ
1

15
;

and leads to

Var(y•j•• − y•j′••) = Var(y•j••) + Var(y•j′••)− 2× Cov(y•j••, y•j′••)

= 2× (σ2βγ
1

15
+ σ2

1

30
)

=
2

30
EMSBC ;

which is what would be obtained by using the denominator for B in the stan-
dard contrast formulae for means with sample size 30.

Things get a little more interesting with two-factor means, because we
can have the first, the second, or both subscripts disagreeing, and we can get
different covariances for each. Of course there are even more possibilities
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Table 11.2: Covariances and variances of differences of two-factor
means yij•• for models (a) and (c) of Figure 11.6 as a function of
which subscripts disagree.

Covariance Variance of difference

(a) A 1
5σ

2
γ + 1

5σ
2
βγ 2× (15σ

2
αγ + 1

5σ
2
αβγ + 1

10σ
2)

(a) B 1
5σ

2
γ + 1

5σ
2
αγ 2× (15σ

2
βγ + 1

5σ
2
αβγ + 1

10σ
2)

(a) A and B 1
5σ

2
γ 2× (15σ

2
αγ + 1

5σ
2
βγ + 1

5σ
2
αβγ + 1

10σ
2)

(c) A 0 2× (15σ
2
γ + 1

5σ
2
βγ + 1

10σ
2)

(c) B 1
5σ

2
γ 2× (15σ

2
βγ + 1

10σ
2)

(c) A and B 0 2× (15σ
2
γ + 1

5σ
2
βγ + 1

10σ
2)

with three-factor means. Consider covariances for AB means in panel (a) of
Figure 11.6. If the A subscripts differ, then only C and BC can contribute
to the covariance; if the B subscripts differ, then C and AC contribute to
the covariance; if both differ, then only C contributes to the covariance. In
panel (c), if the A subscripts differ, then no terms contribute to covariance;
if the B subscripts differ, then only C contributes to covariance. Table 11.2
summarizes the covariances and variances of differences of means for these
cases.

11.3 Bayesian Analysis of Mixed Effects

Bayesians already assume that every unknown is a random variable, so there
is little difference between fixed and random effects. When using bglmm,
the principal difference is that fixed effects are forced to sum to zero, and
random effects are not. The bglmm function also has the option to impose
the zero sum restricted assumptions for all mixed effects.

Example 11.16 Quartz Crystal Microbalance, continued.
We begin in line 1 by doing a Bayesian fit model 2 using unrestricted

model assumptions.

Draft of March 4, 2021



416 Inference for Random and Mixed-Effects Models

1 > fit2bayes <- bglmm(log(y)˜type*env*intensity+(1|type:crystal)+
(1|intensity:type:crystal)+(1|env:type:crystal),data=QCM)

2 > summary(fit2bayes)[,c(1,3,4,8:10)]
mean sd 2.5% 97.5% n_eff Rhat

(Intercept) 3.89000 0.1840 3.52000 4.27000 1620 1.000
type1 -0.89600 0.2170 -1.24000 -0.42200 833 1.000
env1 0.11000 0.0890 -0.06320 0.29000 2060 1.000
intensity1 -1.58000 0.0829 -1.74000 -1.41000 3130 1.000
intensity2 -1.03000 0.0843 -1.19000 -0.85700 3150 1.000
...
type1:env1 -0.23500 0.0921 -0.40700 -0.03820 2100 1.000
type1:intensity1 -0.63000 0.0818 -0.79200 -0.46800 3030 1.000
type1:intensity2 -0.43500 0.0816 -0.59500 -0.27200 2640 1.000
...
env1:intensity1 0.00960 0.0278 -0.04370 0.06910 4000 1.000
env1:intensity2 -0.00471 0.0281 -0.06500 0.05150 4000 1.000
...
type1:env1:intensity1 -0.30800 0.0423 -0.39100 -0.22300 4000 1.000
type1:env1:intensity2 -0.06380 0.0408 -0.14300 0.01650 4000 1.000
...
sigma0 0.15700 0.0213 0.12300 0.20600 850 1.000
...
sigma.type:crystal 0.30600 0.3140 0.03170 1.08000 518 1.010
sigma.intensity:type:crystal 0.18200 0.0394 0.11300 0.26500 693 1.000
sigma.env:type:crystal 0.28300 0.1180 0.13400 0.57800 1230 1.000

Line 2 shows an extract of the summary of the results. Comparing the esti-
mates and standard errors for the fixed effects here and via REML in Exam-
ple 11.1 we see that the estimates are generally very similar, but the standard
errors for the intercept and the main effect of type are substantially larger in
the Bayesian fit. The reason for this can be seen by examining the estimated
random effects, where we see that the Bayesian approach has estimated a
much larger crystal to crystal variance.

The bglmm function can also fit with restricted model assumptions for
mixed terms, and we do that in line 3.

Draft of March 4, 2021



11.4 Further Reading and Extensions 417

3 > fit2bayesrest <- bglmm(log(y)˜type*env*intensity+(1|type:crystal)+
(1|intensity:type:crystal)+(1|env:type:crystal),data=QCM,
adapt_delta = .99,restrictmixed = TRUE)

4 > summary(fit2bayesrest)[,c(1,3,4,8:10)]
mean sd 2.5% 97.5% n_eff Rhat

(Intercept) 3.890000 0.0307 3.83000 3.9500 4000 1.000
type1 -0.880000 0.4250 -1.59000 0.0396 243 1.010
env1 0.117000 0.0299 0.05950 0.1770 4000 1.000
intensity1 -1.580000 0.0794 -1.74000 -1.4300 4000 1.000
intensity2 -1.030000 0.0767 -1.18000 -0.8770 4000 1.000
...
type1:env1 -0.213000 0.2060 -0.57600 0.2230 327 1.010
type1:intensity1 -0.627000 0.0851 -0.79300 -0.4600 4000 0.999
type1:intensity2 -0.437000 0.0849 -0.60100 -0.2690 4000 1.000
...
env1:intensity1 0.004810 0.0397 -0.07700 0.0954 3550 0.999
env1:intensity2 -0.001170 0.0410 -0.08410 0.0893 4000 1.000
...
type1:env1:intensity1 -0.254000 0.0853 -0.42000 -0.0847 2890 1.000
type1:env1:intensity2 -0.053200 0.0686 -0.19000 0.0804 4000 1.000
...
sigma0 0.291000 0.0271 0.24300 0.3490 2390 1.000
...
sigma.type:crystal 0.841000 0.9400 0.13400 3.3800 588 1.010
sigma.intensity:type:crystal 0.081600 0.0534 0.01090 0.2040 102 1.030
sigma.env:type:crystal 0.558000 0.6620 0.04820 2.4100 607 1.010

5 > bayes_factor(fit2bayes,fit2bayesrest)
The estimated Bayes factor in favor of x1 over x2 is equal to: 2058268

Line 4 gives an extract of the summary of the fit. Comparing this with the
output of line 2 shows several differences. First, three of the four variances
are estimated to be substantially larger in the restricted model. In fact, the
95% posterior intervals for σ0 do not even overlap. The fitted fixed effects
are very similar in these two Bayesian fits as well, but the standard errors are
once again very different.

I would have guessed that the intensity:type:crystal and env:type:crystal
interactions would, in a sense, be functions of the individual crystal, thus
making the restricted assumptions appropriate. However, line 5 computes
the Bayes factor for these two models, and the unrestricted model is over-
whelmingly preferred.

11.4 Further Reading and Extensions

We have only scratched the surface of the subject of random effects. Searle
(1971) provides a review, and Searle, Casella, and McCulloch (1992) provide
book-length coverage.

In the single-factor situation, there is a simple formula for the EMS for
treatments when the data are unbalanced: σ2 + n′σ2α, where

n′ =
1

a− 1
[N − 1

N

a∑
i=1

n2i ] .
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The formula for n′ reduces to n for balanced data.
Expected mean squares do not depend on normality, though the chi-

square distribution for mean square and F-distribution for test statistics do
depend on normality. Tukey (1956) and Tukey (1957b) work out variances
for variance components, though the notation and algebra are rather heavy
going.

The Satterthwaite formula is based on matching the mean and variance of
an unknown distribution to that of an approximating distribution. There are
quite a few other possibilities; Johnson and Kotz (1970) describe the major
ones.

11.5 Problems

We wish to examine the average daily weight gain by calves sired by fourExercise 11.1
bulls selected at random from a population of bulls. Bulls denoted A through
D were mated with randomly selected cows. Average daily weight gain by
the calves is given below (data set Sires).

A B C D
1.46 1.17 .98 .95
1.23 1.08 1.06 1.10
1.12 1.20 1.15 1.07
1.23 1.08 1.11 1.11
1.02 1.01 .83 .89
1.15 .86 .86 1.12

a) Test the null hypothesis that there is no sire to sire variability in the re-
sponse.
b) Find 90% interval estimates for the error variance and the sire to sire vari-
ance.

A 24-head machine fills bottles with vegetable oil. Five of the headsExercise 11.2
are chosen at random, and several consecutive bottles from these heads were
taken from the line. The net weight of oil in these bottles is given in the fol-
lowing table (data set Bottles, originally from Swallow and Searle 1978):

Head
1 2 3 4 5

15.70 15.69 15.75 15.68 15.65
15.68 15.71 15.82 15.66 15.60
15.64 15.75 15.59
15.60 15.71

15.84

Is there any evidence for head to head variability? Estimate the head to head
and error variabilities (both point and 99% interval estimates).

The burrowing mayfly Hexagenia can be used as an indicator of waterExercise 11.3
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quality (it likes clean water). Before starting a monitoring program using
Hexagenia we take three samples from each of ten randomly chosen locations
along the upper Mississippi between Lake Peppin and the St. Anthony Lock
and Dam. We use these data to estimate the within location and between
location variability in Hexagenia abundance. An ANOVA follows; the data
are in hundreds of insects per square meter.

DF SS MS
Location 9 11.59 1.288
Error 20 1.842 0.0921

Give a point estimate for the between location variance in Hexagenia abun-
dance.

We are operating a bioreactor. In our experiment, we take three ran- Exercise 11.4
dom runs of the reactor. From each run of the reactor we take three random
samples and measure the product. Our interest focusses on the variability
between runs and the variability between samples within run. Here is an
ANOVA from the data.

DF SS MS F P-value
Run 2 1.4283e+05 71415 3.00148 0.12491
Error 6 1.4276e+05 23793

Estimate the run to run variance.

I am curious about the role of the First Year Experience course (required Exercise 11.5
of all freshmen) on student retention in our college. The 2450 incoming
freshmen self select into 100 groups (half with 24 students and half with 25
students). The 100 sections are divided into 4 groups of 25 at random. These
four groups are assigned to the factor level combinations of medium (online
versus face to face) and freedom (student choice about which units to do or no
student choice). Two years later, when students would be entering their third
year of college, we determine how many of the 2450 students have returned
for their third year.
How many error degrees of freedom does this design have? Justify your
answer.

Anecdotal evidence suggests that some individuals can tolerate alcohol Exercise 11.6
better than others. As part of a traffic safety study, you are planning an exper-
iment to test for the presence of individual to individual variation. Volunteers
will be recruited who have given their informed consent for participation
after having been informed of the risks of the study. Each individual will
participate in two sessions one week apart. In each session, the individual
will arrive not having eaten for at least 4 hours. They will take a hand-eye
coordination test, drink 12 ounces of beer, wait 15 minutes, and then take a
second hand-eye coordination test. The score for a session is the change in
hand-eye coordination. There are two sessions, so n = 2. We believe that the
individual to individual variation σ2α will be about the same size as the error
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σ2. If we are testing at the 1% level, how many individuals should be tested
to have power .9 for this setup?

Five tire types (brand/model combinations like Goodyear/Arriva) in theProblem 11.1
size 175/80R-13 are chosen at random from those available in a metropolitan
area, and six tires of each type are taken at random from warehouses. The
tires are placed (in random order) on a machine that will test tread durabil-
ity and report a response in thousands of miles. The data follow (data set
Tires):

Brand Miles
1 55 56 59 55 60 57
2 39 42 43 41 41 42
3 39 41 43 40 43 43
4 44 44 42 39 40 43
5 46 42 45 42 42 44

Compute a 99% interval estimate for the ratio of type to type variability to
tire within type variability (σ2α/σ

2). Do you believe that this interval actually
has 99% coverage? Explain.

Milk is tested after Pasteurization to assure that Pasteurization was effec-Problem 11.2
tive. This experiment was conducted to determine variability in test results
between laboratories, and to determine if the interlaboratory differences de-
pend on the concentration of bacteria.

Five contract laboratories are selected at random from those available in
a large metropolitan area. Four levels of contamination are chosen at random
by choosing four samples of milk from a collection of samples at various
stages of spoilage. A batch of fresh milk from a dairy was obtained and split
into 40 units. These 40 units are assigned at random to the twenty combi-
nations of laboratory and contamination sample. Each unit is contaminated
with 5 ml from its selected sample, marked with a numeric code, and sent to
the selected laboratory. The laboratories count the bacteria in each sample
by serial dilution plate counts without knowing that they received four pairs,
rather than eight separate samples. Data follow (colony forming units per µl,
data set Interlaboratory):
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Sample
Lab 1 2 3 4
1 2200 3000 210 270

2200 2900 200 260
2 2600 3600 290 360

2500 3500 240 380
3 1900 2500 160 230

2100 2200 200 230
4 2600 2800 330 350

4300 1800 340 290
5 4000 4800 370 500

3900 4800 340 480

Analyze these data to determine if the effects of interest are present. If
so, estimate them.

Composite materials used in the manufacture of aircraft components must Problem 11.3
be tested to determine tensile strength. A manufacturer tests five random
specimens from each of five randomly selected batches, obtaining the fol-
lowing coded strengths (data set Tensile, originally from Vangel 1992).

Batch Strength
1 379 357 390 376 376
2 363 367 382 381 359
3 401 402 407 402 396
4 402 387 392 395 394
5 415 405 396 390 395

Compute point and interval estimates for the between batch and within batch
variance components. If using Bayes methods, compute a 95% interval esti-
mate for σ2α/σ

2.

Briefly describe the treatment structure you would choose for each of Problem 11.4
the following situations. Describe the factors, the number of levels for each,
whether they are fixed or random, and which are crossed.

(a) One of the expenses in animal experiments is feeding the animals. A
company salesperson has made the claim that their new rat chow (35%
less expensive) is equivalent to the two standard chows on the market.
You wish to test this claim by measuring weight gain of rat pups on the
three chows. You have a population of 30 inbred, basically exchange-
able female rat pups to work with, each with her own cage.

(b) Different gallons of premixed house paints with the same label color
do not always turn out the same. A manufacturer of paint believes
that color variability is due to three sources: supplier of tint materials,
miscalibration of the devices that add the tint to the base paint, and un-
controllable random variation between gallon cans. The manufacturer
wishes to assess the sizes of these sources of variation and is willing to
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use 60 gallons of paint in the process. There are three suppliers of tint
and 100 tint-mixing machines at the plant.

(c) Insect infestations in croplands are not uniform; that is, the number
of insects present in meter-square plots can vary considerably. Our
interest is in determining the variability at different geographic scales.
That is, how much do insect counts vary from meter square to meter
square within a hectare field, from hectare to hectare within a county,
and from county to county? We have resources for at most 10 counties
in southwestern Minnesota, and at most 100 total meter-square insect
counts.

(d) The disposable diaper business is very competitive, with all manufac-
turers trying to get a leg up, as it were. You are a consumer testing
agency comparing the absorbency of two brands of “newborn” size
diapers. The test is to put a diaper on a female doll and pump body-
temperature water through the doll into the diaper at a fixed rate until
the diaper leaks. The response is the amount of liquid pumped before
leakage. We are primarily interested in brand differences, but we are
also interested in variability between individual diapers and between
batches of diapers (which we can only measure as between boxes of
diapers, since we do not know the actual manufacturing time or place
of the diapers). We can afford to buy 32 boxes of diapers and test 64
diapers.

Dental fillings made with gold can vary in hardness depending on how theProblem 11.5
metal is treated prior to its placement in the tooth. Two factors are thought
to influence the hardness: the gold alloy and the condensation method. In
addition, some dentists doing the work are better at some types of fillings
than others.

Five dentists were selected at random. Each dentist prepares 24 fillings
(in random order), one for each of the combinations of method (three levels)
and alloy (eight levels). The fillings were then measured for hardness using
the Diamond Pyramid Hardness Number (big scores are better). The data
follow (data set Fillings, originally from Xhonga 1971 via Brown 1975):
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Alloy
Dentist Method 1 2 3 4 5 6 7 8

1 1 792 824 813 792 792 907 792 835
2 772 772 782 698 665 1115 835 870
3 782 803 752 620 835 847 560 585

2 1 803 803 715 803 813 858 907 882
2 752 772 772 782 743 933 792 824
3 715 707 835 715 673 698 734 681

3 1 715 724 743 627 752 858 762 724
2 792 715 813 743 613 824 847 782
3 762 606 743 681 743 715 824 681

4 1 673 946 792 743 762 894 792 649
2 657 743 690 882 772 813 870 858
3 690 245 493 707 289 715 813 312

5 1 634 715 707 698 715 772 1048 870
2 649 724 803 665 752 824 933 835
3 724 627 421 483 405 536 405 312

Analyze these data to determine which factors influence the response and
how they influence the response. (Hint: the dentist by method interaction
can use close inspection.)

Eight 1-gallon containers of raw milk are obtained from a dairy and are Problem 11.6
assigned at random to four abuse treatments, two containers per treatment.
Abuse consists of keeping the milk at 25oC for a period of time; the four
abuse treatments are four randomly selected durations between 1 and 18
hours. After abuse, each gallon is split into five equal portions and frozen.

We have selected five contract laboratories at random from those avail-
able in the state. For each gallon, the five portions are randomly assigned
to the five laboratories. The eight portions for a given laboratory are then
placed in an insulated shipping container cooled with dry ice and shipped.
Each laboratory is asked to provide duplicate counts of bacteria in each milk
portion. Data follow (bacteria counts per µl, data set AbusedMilk).
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Abuse/Gallon
1 2 3 4

Lab 1 2 3 4 5 6 7 8
1 7800 7000 870 490 1300 1000 31000 36000

7500 7200 690 530 1200 980 35000 34000

2 8300 9700 900 930 2500 2300 27000 28000
8200 10000 940 840 1900 2300 34000 32000

3 7300 7300 760 840 2100 2300 34000 34000
7600 7900 790 780 2000 2200 34000 33000

4 5400 5500 520 750 1400 1100 16000 16000
5700 5600 770 620 1300 1400 16000 15000

5 15000 12000 1200 800 4600 3500 41000 39000
14000 12000 1100 600 4000 3600 40000 39000

Analyze these data. The main issues are the sources and sizes of varia-
tion, with an eye toward reliability of future measurements.

Cheese is made by bacterial fermentation of Pasteurized milk. Most ofProblem 11.7
the bacteria are purposefully added to do the fermentation; these are the
starter cultures. Some “wild” bacteria are also present in cheese; these are
the nonstarter bacteria. One hypothesis is that nonstarter bacteria may affect
the quality of a cheese, so that otherwise identical cheese making facilities
produce different cheeses due to their different indigenous nonstarter bacte-
ria.

Two strains of nonstarter bacteria were isolated at a premium cheese fa-
cility: R50#10 and R21#2. We will add these nonstarter bacteria to cheese to
see if they affect quality. Our four treatments will be control, addition of R50,
addition of R21, and addition of a blend of R50 and R21. Twelve cheeses are
made, three for each of the four treatments, with the treatments being ran-
domized to the cheeses. Each cheese is then divided into four portions, and
the four portions for each cheese are randomly assigned to one of four aging
times: 1 day, 28 days, 56 days, and 84 days. Each portion is measured for
total free amino acids (a measure of bacterial activity) after it has aged for its
specified number of days (data set Nonstarters, originally from Peggy
Swearingen).
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Days
Treatment Cheese 1 28 56 84
Control 1 .637 1.250 1.697 2.892

2 .549 .794 1.601 2.922
3 .604 .871 1.830 3.198

R50 1 .678 1.062 2.032 2.567
2 .736 .817 2.017 3.000
3 .659 .968 2.409 3.022

R21 1 .607 1.228 2.211 3.705
2 .661 .944 1.673 2.905
3 .755 .924 1.973 2.478

R50+R21 1 .643 1.100 2.091 3.757
2 .581 1.245 2.255 3.891
3 .754 .968 2.987 3.322

We are particularly interested in the bacterial treatment effects and interac-
tions, and less interested in the main effect of time.

As part of a larger experiment, researchers are looking at the amount of Problem 11.8
beer that remains in the mouth after expectoration. Ten subjects will repeat
the experiment on two separate days. Each subject will place 10 ml or 20 ml
of beer in his or her mouth for five seconds, and then expectorate the beer.
The beer has a dye, so the amount of expectorated beer can be determined,
and thus the amount of beer retained in the mouth (in ml, data set Beer,
originally from Bréfort, Guinard, and Lewis 1989)

10 ml 20 ml
Subject Day 1 Day 2 Day 1 Day 2
1 1.86 2.18 2.49 3.75
2 2.08 2.19 3.15 2.67
3 1.76 1.68 1.76 2.57
4 2.02 3.87 2.99 4.51
5 2.60 1.85 3.25 2.42
6 2.26 2.71 2.86 3.60
7 2.03 2.63 2.37 4.12
8 2.39 2.58 2.19 2.84
9 2.40 1.91 3.25 2.52
10 1.63 2.43 2.00 2.70

Compute interval estimates for the amount of beer retained in the mouth for
both volumes.

One of the steps in a molecular biological analysis is the quantification of Problem 11.9
DNA. This can be done by measuring the absorbance of ultra-violet light at
260 nm (called the optical density). The absorption of light in the spectropho-
tometer should be proportional to concentration of DNA, but should not de-
pend on the volume of sample used. However, there is a general belief that
small samples, say less than 40 µl, lead to erroneous results. In addition, the
proportionality cited above only holds over a range of concentrations; outside
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that range nonlinear effects come into play. In theory, OD260 = 0.02 × C,
where C is the concentration in ng/µl.

This experiment measures the optical density at five concentrations (10,
30, 60, 120, 480 ng/µl) and six volumes (15, 20, 30, 40, 50, 100 µl). Three
analysts are chosen at random from the 16 in the lab. Each of the analysts pre-
pares two samples at each volume/concentration combination and measures
the optical density.

The data in the table below are the optical densities ×100; data set DNA,
originally from S. Charaniya.

Concentration
Vol User 10 30 60 120 480
15 1 36 33 97 90 165 161 412 397 1040 1090

2 34 30 85 80 171 156 365 376 930 1010
3 31 28 87 82 165 159 318 341 1010 940

20 1 31 30 78 78 148 156 370 369 960 920
2 25 31 92 97 175 167 321 332 980 892
3 33 29 74 69 145 137 329 345 980 878

30 1 20 17 72 69 142 141 357 365 834 780
2 23 26 76 71 160 146 305 298 824 846
3 25 27 77 71 141 127 341 309 1050 965

40 1 16 14 66 67 137 132 347 357 730 882
2 21 18 66 81 147 133 286 312 791 813
3 23 23 75 64 136 126 322 296 868 794

50 1 28 27 76 80 138 138 350 347 785 833
2 24 23 70 68 135 139 315 281 748 773
3 17 21 62 67 146 132 294 286 734 692

100 1 19 19 67 68 127 130 336 340 642 605
2 20 22 72 71 129 133 282 285 730 742
3 20 21 62 59 128 126 285 265 715 718

Analyze these data. Which factors are important; does volume matter?
What is the range of proportionality?

Consider a two-factor factorial design; factor A has a levels, factor B hasProblem 11.10
b levels, and there are n units for each factor level combinations. Both factors
are random. We want to make the power for testing A to be very high. Should
we increase n or increase a or increase b? Justify your answer.

There is interest in whether gender differences exist in spatial reasoningProblem 11.11
and whether these differences are influenced by stress. From the students of
a large psychology class, twenty women are selected at random, and twenty
men are selected at random. All 40 subjects will be given two spatial reason-
ing tests in random order. One of the tests has a fixed time limit (the stress
condition) and the other test is untimed (the no stress condition).

a) Draw a Hasse diagram for this experiment.
b) Determine the appropriate denominators for gender, stress, and the gender
by stress interaction.

Draft of March 4, 2021



11.5 Problems 427

Why do you always wind up with the same number of numerator and Question 11.1
denominator terms in approximate tests?

Derive the Satterthwaite approximate degrees of freedom for a sum of Question 11.2
mean squares by matching the first two moments of the sum of mean squares
to a multiple of a chi-square.

Consider a three-factor model with A and B fixed and C random. Show Question 11.3
that the variance for the difference yij• − yi′j• − yij′• + yi′j′• can be com-
puted using the usual formula for contrast variance with the “denominator”
expected mean square as error variance.
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Chapter 12

Complete Block Designs

We now begin the study of variance reduction design. Experimental error
makes inference difficult. As the variance of experimental error (σ2) in- Variance

reduction designcreases, confidence intervals get longer and test power decreases. All other
things being equal, we would thus prefer to conduct our experiments with
units that are homogeneous so that σ2 will be small. Unfortunately, all other
things are rarely equal. For example, there may be few units available, and
we must simply take what we can get. Or we might be able to find homoge-
neous units, but using the homogeneous units would restrict our inference to
a subset of the population of interest. Variance reduction designs can give us
many of the benefits of small σ2, without necessarily restricting us to a subset
of the population of units.

12.1 Blocking

Variance reduction design deals almost exclusively with a technique called
blocking. A block of units is a set of units that are homogeneous in some A block is a set of

homogeneous
units

sense. Perhaps they are field plots located in the same general area, or are
samples analyzed at about the same time, or are units that came from a single
supplier. These similarities in the units themselves lead us to anticipate that
units within a block may also have similar responses. So when constructing
blocks, we try to achieve homogeneity of the units within blocks, but units in
different blocks may be dissimilar.

Blocking designs are not completely randomized designs. The Random- Blocking restricts
randomizationized Complete Block design described in the next section is the first design

we study that uses some kind of restricted randomization. When we design
an experiment, we know the design we choose to use and thus the random-
ization that is used. When we look at an experiment designed by someone
else, we can determine the design from the way the randomization was done, Randomization

determines
design

that is, from the kinds of restrictions that were placed on the randomization;
we cannot determine the design based on the actual outcome of which units
got which treatments.
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There are many, many blocking designs, and we will only cover some
of the more widely used designs. This chapter deals with complete block
designs in which every treatment is used in every block; later chapters dealComplete blocks

include every
treatment

with incomplete block designs (not every treatment is used in every block)
and some special block designs for treatments with factorial structure.

12.2 The Randomized Complete Block Design

The Randomized Complete Block design (RCB) is the basic blocking design.
There are g treatments, and each treatment will be assigned to r units for a
total of N = gr units. We partition the N units into r groups of g units each;RCB has r blocks

of g units each these r groups are our blocks. We make this partition into blocks in such
a way that the units within a block are somehow alike; we anticipate that
these alike units will have similar responses. In the first block, we randomly
assign the g treatments to the g units; we do an independent randomization,Block for

homogeneity assigning treatments to units in each of the other blocks. In effect, this is r
single-replication completely randomized designs glued together. This is the
RCB design.

Blocks exist at the time of the randomization of treatments to units. We
cannot impose blocking structure on a completely randomized design after
the fact; either the randomization was blocked or it was not.

Example 12.1 Mealybugs on cycads
Modern zoos try to reproduce natural habitats in their exhibits as much

as possible. They therefore use appropriate plants, but these plants can be
infested with inappropriate insects. Zoos need to take great care with pes-
ticides, because the variety of species in a zoo makes it more likely that a
sensitive species is present.

Cycads (plants that look vaguely like palms) can be infested with mealy-
bug, and the zoo wishes to test three treatments: water (a control), horti-
cultural oil (a standard no-mammalian-toxicity pesticide), and fungal spores
in water (Beauveria bassiana, a fungus that grows exclusively on insects).
Five infested cycads are removed to a testing area. Three branches are ran-
domly chosen on each cycad, and two 3 cm by 3 cm patches are marked on
each branch; the number of mealybugs in these patches is noted. The three
branches on each cycad are randomly assigned to the three treatments. After
three days, the patches are counted again, and the response is the change in
the number of mealybugs (before− after). Data for this experiment are given
in Table 12.1 (data from Scott Smith, data set MealyBugs).

How can we decode the experimental design from the description just
given? Follow the randomization! Looking at the randomization, we see that
the treatments were applied to the branches (or pairs of patches). Thus the
branches (or pairs) must be experimental units. Furthermore, the randomiza-
tion was done so that each treatment was applied once on each cycad. There
was no possibility of two branches from the same plant receiving the same
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Table 12.1: Changes in mealybug counts on cycads after
treatment. Treatments are water, Beauveria bassiana spores, and
horticultural oil.

Plant
1 2 3 4 5

Water -9 18 10 9 -6
-6 5 9 0 13

Spores -4 29 4 -2 11
7 10 -1 6 -1

Oil 4 29 14 14 7
11 36 16 18 15

treatment. This is a restriction on the randomization, with cycads acting as
blocks. The patches are measurement units. When we analyze these data, we
can take the average or sum of the two patches on each branch as the response
for the branch. (Alternatively, we can use the data at the measurement unit
level but add a random effect for experimental unit, using the final error in
the model to represent measurement error.) To recap, there were g = 3 treat-
ments applied to N = 15 units arranged in r = 5 blocks of size 3 according
to an RCB design; there were two measurement units per experimental unit.

Why did the experimenter block? Experience and intuition lead the ex-
perimenter to believe that branches on the same cycad will tend to be more
alike than branches on different cycads—genetically, environmentally, and
perhaps in other ways. Thus blocking by plant may be advantageous.

It is important to realize that tables like Table 12.1 hide the randomization
that has occurred. The table makes it appear as though the first unit in every
block received the water treatment, the second unit the spores, and so on.
This is not true. The table ignores the randomization for the convenience of
a readable display. The water treatment may have been applied to any of the
three units in the block, chosen at random.

You cannot determine the design used in an experiment just by looking at
a table of results, you have to know the randomization. There may be many
different designs that could produce the same data, and you will not know Follow the

randomization to
determine design

the correct analysis for those data without knowing the design. Follow the
randomization to determine the design.

An important feature to note about the RCB is that we have placed no
restrictions on the treatments. The treatments could simply be g treatments, General

treatment
structure

or they could be the factor-level combinations of two or more factors. These
factors could be fixed or random, crossed or nested. All of these treatment
structures can be incorporated when we use blocking designs to achieve vari-
ance reduction.

Example 12.2 Protein/amino acid effects on growing rats
Male albino laboratory rats (Sprague-Dawley strain) are used routinely
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in many kinds of experiments. Proper nutrition for the rats is important. This
experiment was conducted to determine the requirements for protein and the
amino acid threonine. Specifically, this experiment will examine the factorial
combinations of the amount of protein in diet and the amount of threonine in
diet. The general protein in the diet is threonine deficient. There are eight
levels of threonine (.2 through .9% of diet) and five levels of protein (8.68,
12, 15, 18, and 21% of diet), for a total of 40 treatments.

Two-hundred weanling rats were acclimated to cages. On the second
day after arrival, all rats were weighed, and the rats were separated into five
groups of 40 to provide groupings of approximately uniform weight. The
40 rats in each group were randomly assigned to the 40 treatments. Body
weight and food consumption were measured twice weekly, and the response
we consider is average daily weight gain over 21 days.

This is a randomized complete block design. Initial body weight is a
good predictor of body weight in 3 weeks, so the rats were blocked by initial
weight in an attempt to find homogeneous groups of units. There are 40
treatments, which have an eight by five factorial structure.

12.2.1 Why and when to use the RCB

We use an RCB to increase the power and precision of an experiment by
decreasing the error variance. This decrease in error variance is achieved
by finding groups of units that are homogeneous (blocks) and, in effect, re-Block when you

can identify a
source of
variation

peating the experiment independently in the different blocks. The RCB is an
effective design when there is a single source of extraneous variation in the
responses that we can identify ahead of time and use to partition the units into
blocks. Blocking is done at the time of randomization; you can’t construct
blocks after the experiment has been run.

There is an almost infinite number of ways in which units can be grouped
into blocks, but a few examples may suffice to get the ideas across. We would
like to group into blocks on the basis of homogeneity of the responses, but
that is not possible. Instead, we must group into blocks on the basis of other
similarities that we think may be associated with responses.

Some blocking is fairly obvious. For example, you need milk to make
cheese, and you get a new milk supply every day. Each batch of milk makesBlock on batch
slightly different cheese. If your batches are such that you can make several
types of cheese per batch, then blocking on batch of raw material is a natural.

Units may be grouped spatially. For example, some units may be located
in one city, and other units in a second city. Or, some units may be in cages
on the top shelf, and others in cages on the bottom shelf. It is common forBlock spatially
units close in space to have more similar responses, so spatial blocking is
also common.

Units may be grouped temporally. That is, some units may be treated or
measured at one time, and other units at another time. For example, you may
only be able to make four measurements a day, and the instrument may needBlock temporally
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to be recalibrated every day. As with spatial grouping, units close in time
may tend to have similar responses, so temporal blocking is common.

Age and gender blocking are common for animal subjects. Sometimes
units have a “history.” The number of previous pregnancies could be a block- Age, gender, and

history blocksing factor. In general, any source of variation that you think may influence the
response and which can be identified prior to the experiment is a candidate
for blocking.

12.2.2 The Generalized Randomized Complete Block

In some situations we may find that our blocks have more than g units. For
example, we might have 2g or 3g units per block. In such a situation, we
can create a Generalized Randomized Complete Block (GRCB) design by
assigning each of the g treatments to two (or three, etc.) units per block,
completely randomized within block. The mealy bug data of Table 12.1 are
actually a GRCB.

If these large blocks are as homogeneous as we can make them, the
GRCB is an effective design. On the other hand, if we can break the 2g
units into two groups of g units that are still more homogeneous, then we
would have more power by breaking up the large blocks into blocks of size
g.

12.2.3 Analysis for the RCB

Now all the hard work in the earlier chapters studying analysis methods pays
off. The design of an RCB is new, but there is nothing new in the analysis of Nothing new in

analysis of RCBan RCB. Once we have the correct model, we do point estimates, confidence
intervals, multiple comparisons, testing, residual analysis, and so on in the
same way as we have been doing.

Let yij be the response for the ith treatment in the jth block. The standard
model for an RCB has a grand mean, a treatment effect, a block effect, and
experimental error, as in Blocks usually

assumed additive
yij = µ+ αi + βj + εij .

This standard model says that treatments and blocks are additive, so that
treatments have the same effect in every block, and blocks only serve to shift
the mean response up or down.

Inference is done exactly as for a two-way factorial. In this the model
we are using to analyze an RCB is just the same as a two-way factorial with
replication n = 1, even though the design of an RCB is not the same. Blocks
may be assumed to be fixed or random. With complete data, the inferential
results for the treatments will be the same either way.

One difference between an RCB and a factorial is that we do not try
to make inferences about blocks, even though the machinery of our model
allows us to do so. The reason for this goes back to thinking of F -tests as Do not test

blocks—they
were not
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approximations to randomization tests. Under the RCB randomization, units
are assigned at random to treatments, but units always stay in the same block.
Thus the block effects and sums of squares are not random, and there is no
test for blocks; blocks simply exist. More pragmatically, we blocked because
we believed that the units within blocks were more similar, so finding a block
effect is not a major revelation.

Example 12.3 Mealybugs, continued
For a first analysis we take as our response the mean of the two measure-

ments for each branch from Table 12.1.

1 > bybranch <- aggregate(change˜plant+treatment,MealyBugs,mean)
2 > fit.fixed <- lm(change˜plant+treatment,bybranch)
3 > summary(fit.fixed)

...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.867 1.087 8.157 3.8e-05 ***
plant1 -8.367 2.174 -3.848 0.004889 **
plant2 12.300 2.174 5.658 0.000477 ***
plant3 -0.200 2.174 -0.092 0.928966
plant4 -1.367 2.174 -0.629 0.547125
treatment1 7.533 1.537 4.900 0.001193 **
treatment2 -2.967 1.537 -1.930 0.089752 .
...

4 > anova(fit.fixed)
Analysis of Variance Table

Response: change
Df Sum Sq Mean Sq F value Pr(>F)

plant 4 686.40 171.600 9.6812 0.003708 **
treatment 2 432.03 216.017 12.1871 0.003729 **
Residuals 8 141.80 17.725

5 > pairwise(fit.fixed,treatment)

Pairwise comparisons ( hsd ) of treatment
estimate signif diff lower upper

* Oil - Spores 10.5 7.608532 2.891468 18.108532

* Oil - Water 12.1 7.608532 4.491468 19.708532
Spores - Water 1.6 7.608532 -6.008532 9.208532

Line 1 summarizes the data by the mean for each plant by treatment combi-
nation. Line 2 fits the additive model, and line 3 summarizes the fit. Lines 4
and 5 give an ANOVA for the data and make pairwise comparisons between
the treatments. Note that R produces a p-value for plant (blocks). We know
that this is an RCB, so we should ignore that test. Treatments are significant
at the .0037 level, and the pairwise comparison results show that oil is better
than water or spores, which cannot be distinguished from each other.

If we thought that these five plants represented a random sample of all
cycads (or of those available to us), we could treat plant as a random effect.
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Table 12.2: Average insect catch by three different traps
over five periods. Data from Snedecor and Cochran (1967),
data set InsectCatch.

Period
Trap 1 2 3 4 5

1 19.1 23.4 29.5 23.4 16.6
2 50.1 166.1 223.9 58.9 64.6
3 123.0 407.4 398.1 229.1 251.2

6 > fit.random <- lmer(change˜treatment+(1|plant),bybranch)
7 > car::Anova(fit.random,test="F")

Response: change
F Df Df.res Pr(>F)

treatment 12.187 2 8 0.003729 **
8 > summary(fit.random)

...
Random effects:
Groups Name Variance Std.Dev.
plant (Intercept) 51.29 7.162
Residual 17.72 4.210
Number of obs: 15, groups: plant, 5

Fixed effects:
Estimate Std. Error t value

(Intercept) 8.867 3.382 2.621
treatment1 7.533 1.537 4.900
treatment2 -2.967 1.537 -1.93

Line 6 fits the mixed model with plant random; lines 7 and 8 provide sample
post-fit information. We see that in this complete data situation, the results
from assuming that block is random are identical to those with block as fixed.

Additivity is an assumption. In the real world, treatments could have
different effects in different blocks. However, we cannot distinguish between
random error and interaction in a single block/treatment combination of the Are the data

additive?RCB, because the RCB has only one observation for each treatment in each
block. (That is, if you fit an interaction you will have zero degrees of freedom
for estimating error.) A systematic pattern in the residuals versus fitted plot
can indicate the presence of interaction. In some cases a transformation of the
response can reduce the interaction. Reexpressing the data on the appropriate Transform for

additivityscale can make the data more additive. When the data are more additive, the
term that we use as error contains less interaction and is a better surrogate for
error. In other cases, a model for interaction such as the Tukey one degree
of freedom model (Section 9.4.3) or the row-model of Section 9.6 might be
better.

Example 12.4 Insect catch
Table 12.2 shows data for the average number of insects (macrolepi-
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doptera) caught by three kinds of trap during five periods. The periods are
not randomized and serve as blocks. Begin with a standard analysis of an
RCB.

1 > fit1 <- lm(catch˜period+trap,data=InsectCatch)
2 > anova(fit1)

Response: catch
Df Sum Sq Mean Sq F value Pr(>F)

period 4 52066 13016 3.4022 0.0661095 .
trap 2 173333 86667 22.6528 0.0005073 ***
Residuals 8 30607 3826

3 > plot(fit1,which=1)

The ANOVA seems to indicate a statistically significant trap effect, but the
residual plot (line 4, shown in Figure 12.1 (a)) shows a distinctive pattern. In
this case, the residuals are above 0 on the ends of the range and below zero in
the middle. Although less distinct, the spread of the residuals is also greater
on the left than on the right. I call this the “flopping fish.” It can indicate an
un-modeled interaction or a need for transformation of the response.

4 > car::boxCox(fit1)
5 > fit2 <- lm(-(catchˆ-.5)˜period+trap,data=InsectCatch)
6 > plot(fit2,which=1)
7 > anova(fit2)
Response: -(catchˆ-0.5)

Df Sum Sq Mean Sq F value Pr(>F)
period 4 0.005981 0.0014953 6.6082 0.01186 *
trap 2 0.059878 0.0299388 132.3083 7.416e-07 ***
Residuals 8 0.001810 0.0002263

Line 4 does a Box-Cox transformation; the plot (Figure 12.1 (b)) indicates
that a reciprocal square root should help. Line 5 refits the model with trans-
formed data, and the residual plot (line 6 and Figure 12.1 (c)) shows that the
situation is muchly improved, although far from what we would hope to see.
Line 7 shows that trap is considerably more significant after transformation.

The story is that in the first model the “error” term included interaction
in addition to error. In the second model, the data were transformed so that
what we use as error does not include transformable non-additivity.

8 > 30607/(30607+173333+52066)
[1] 0.1195558
9 > .00181/(.00181+.05988+.00598)
[1] 0.02674745

Line 8 shows that the error term was 12% of the total sum of squares in the
first model, but line 9 shows that it is only 2.7% of total sum of squares after
transformation.

For the generalized RCB, we have multiple experimental units for each
treatment in each block. That allows us to estimate block by treatment in-Model for GRCB
teraction separately from pure error. The usual model for the GRCB is to
assume that blocks are random and that there is a (random) block by treat-
ment interaction.
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Figure 12.1: Plots for insect catch data. (a) Residuals versus
predicted values; (b) Box-Cox transformation plot; (c) residuals
versus predicted on the transformed scale.
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Example 12.5 Mealybugs, continued
The mealy bug experiment is a GRCB, so we can use a random effect

for each individual branch to model the plant by treatment interaction.

9 > fit.full <- lmer(change˜treatment+(1|plant)+(1|branch),MealyBugs)
boundary (singular) fit: see ?isSingular

10 > summary(fit.full)
...
Random effects:
Groups Name Variance Std.Dev.
branch (Intercept) 0.00 0.000
plant (Intercept) 49.64 7.046
Residual 45.33 6.733
Number of obs: 30, groups: branch, 15; plant, 5

Fixed effects:
Estimate Std. Error t value

(Intercept) 8.867 3.382 2.621
treatment1 7.533 1.738 4.333
treatment2 -2.967 1.738 -1.707
...

11 > pairwise(fit.full,treatment)
Pairwise comparisons ( hsd ) of treatment

estimate signif diff lower upper

* Oil - Spores 10.5 8.603748 1.896252 19.10375

* Oil - Water 12.1 8.603748 3.496252 20.70375
Spores - Water 1.6 8.603748 -7.003748 10.20375

Line 9 fits the model, and lines 10 and 11 provide summary information.
Consider the estimated random effects from line 10. The branch (treat-
ment by block) variance component is estimated to be zero, and the between
patches within branch variance component is estimated at 45.33. The vari-
ance estimate for error in the summarized data (line 4 above) is 17.7; if the
estimates were exactly equal to their theoretical values one would expect this
value to be (at a minimum) the error variance from line 10 divided by 2 (av-
erage of two patches). That would be 45.33/2 or about 22.7, obviously more
than 17.7. This explains why the branch variance was estimated at 0.

Furthermore, because the patch to patch variance is as large as it is, the
standard errors for the effect estimates from line 10 and pairwise comparisons
from line 11 are larger than in lines 3 and 5 above.

If the treatments have factorial structure, one can consider as random in-
teractions either an all-treatment-combinations by block random interaction
or multiple block by factor interactions, for example, A:block, B:block, or
A:B:block. There are pros and cons to both approaches. Breaking the inter-GRCB with

factorial
treatments

action out is more robust (meaning the computed p-values are likely to be
more accurate). For example, if B:block is large but the other two are small,
then B:block will only affect estimates and tests of the main effects of B. On
the other hand, lumping the three together will mean using an error that is
too small for B and too large for A and A:B. The disadvantage to breaking
up the interaction is that the individual components of the interaction are es-
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timated less precisely (fewer equivalent degrees of freedom), and this leads
to lower power. A good compromise is to begin with the random interaction
fully split out, but remove any random interaction terms (other than the full
random interaction) that do not appear to be necessary.

12.2.4 How well did the blocking work?

The gain from using an RCB instead of a CRD is a decrease in error variance,
and the loss is a decrease in error degrees of freedom by (r− 1). This loss is
only severe for small experiments. How can we quantify our gain or loss from Gain in variance,

lose in degrees of
freedom

an RCB? As discussed above, the “F -test” for blocks does not correspond to
a valid randomization test for blocks. Even if it did, knowing simply that the
blocks are not all the same does not tell us what we need to know: how much
have we saved by using blocks? We need something other than the F -test to
measure that gain.

Suppose that we have an RCB and a CRD to test the same treatments;
both designs have the same total size N, and both use the same population of
units. The efficiency of the RCB relative to the CRD is the factor by which
the sample size of the CRD would need to be increased to have the same in-
formation as the RCB. (Information is a technical term; think of two designs
with the same information as having approximately the same power or yield-
ing approximately the same length of confidence intervals.) For example, Relative

efficiency
measures sample

size savings

if an RCB with fifteen units has relative efficiency 2, then a CRD using the
same population of units would need 30 units to obtain the same information.
Units almost always translate to time or money, so reducing N by blocking
is one good way to save money.

Efficiency is denoted by E with a subscript to identify the designs be-
ing compared. The relative efficiency of an RCB to a CRD is given in the
following formula: Relative

efficiency is the
ratio of variances
times a degrees

of freedom
adjustment

ERCB:CRD =
(νrcb + 1)(νcrd + 3)

(νrcb + 3)(νcrd + 1)

σ2crd
σ2rcb

,

where σ2crd and σ2rcb are the error variances for the CRD and RCB, νrcb =
(r − 1)(g − 1) is the error degrees of freedom for the RCB design, and
νcrd = (r − 1)g is the error degrees of freedom for the CRD of the same
size. The first part is a degrees of freedom adjustment; variances must be
estimated and we get better estimates with more degrees of freedom. The
second part is the ratio of the error variances for the two different designs.
The efficiency is determined primarily by this ratio of variances; the degrees
of freedom adjustment is usually close to 1.

We will never know the actual variances σ2crd or σ2rcb; we must estimate
them. Suppose that we have conducted an RCB experiment. We can estimate
σ2rcb using MSE for the RCB design. We estimate σ2crd via Estimate σ2

crd

with a weighted
average of MSE

and MSBlocksσ̂2crd =
(r − 1)MSBlocks + ((g − 1) + (r − 1)(g − 1))MSE

(r − 1) + (g − 1) + (r − 1)(g − 1)
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This is the weighted average of MSBlocks and MSE with MSBlocks having
weight equal to the degrees of freedom for blocks and MSE having weight
equal to the sum of the degrees of freedom for treatment and error. This is
not the result of simply pooling sums of squares and degrees of freedom for
blocks and error in the RCB.

Example 12.6 Mealybugs, continued
For the mealybug experiment, we have g = 3, r = 5, νrcb = (r−1)(g−

1) = 8, νcrd = g(r − 1) = 12, MSBlocks = 171.6, and MSE = 17.725, so we
get

σ̂2crd =
4× 171.6 + (2 + 8)× 17.725

4 + 2 + 8
= 61.69 ,

(νrcb + 1)(νcrd + 3)

(νrcb + 3)(νcrd + 1)
=

9× 15

11× 13
= .944 ,

ÊRCB:CRD =
(νrcb + 1)(νcrd + 3)

(νrcb + 3)(νcrd + 1)

σ̂2crd
MSE

,

= .944× 61.69

17.725
= 3.29 .

We had five units for each treatment, so an equivalent CRD would have
needed 5×3.29 = 16.45, call it seventeen units per treatment. This blocking
was rather successful. Observe that even in this fairly small experiment, the
loss from degrees of freedom was rather minor.

12.2.5 Balance and missing data

The standard RCB is balanced, in the sense that each treatment occurs once in
each block. Balance was helpful in factorials, and it is helpful in randomized
complete blocks for the same reason: it makes the calculations and inferenceBalance makes

inference easier easier. When the data are balanced, simple formulae can be used, exactly
as for balanced factorials. When the data are balanced, adding 1 million
to all the responses in a given block does not change any contrast between
treatment means.

Missing data in an RCB destroy balance. The approach to inference is to
look at treatment effects adjusted for blocks. If the treatments are themselves
factorial, we can compute whatever type of sum of squares we feel is appro-
priate, but we always adjust for blocks prior to treatments. The reason is thatTreatments

adjusted for
blocks

we believed, before any experimentation, that blocks affected the response.
We thus allow blocks to account for any variability they can before exam-
ining any additional variability that can be explained by treatments. This
“ordering” for sums of squares and testing does not affect the final estimated
effects for either treatments or blocks.
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12.3 Latin Squares and Related Row/Column Designs

Randomized Complete Block designs allow us to block on a single source of
variation in the responses. There are experimental situations with more than
one source of extraneous variation, and we need designs for these situations.

Example 12.7 Addled goose eggs
The Canada goose (Branta canadensis) is a magnificent bird, but it can

be a nuisance in urban areas when present in large numbers. One popula-
tion control method is to addle eggs in nests to prevent them from hatching.
This method may be harmful to the adult females, because the females fast
while incubating and tend to incubate as long as they can if the eggs are un-
hatched. Would the removal of addled eggs at the usual hatch date prevent
these potential side effects?

An experiment is proposed to compare egg removal and no egg removal
treatments. The birds in the study will be banded and observed in the future
so that survival can be estimated for the two treatments. It is suspected that
geese nesting together at a site may be similar due to both environmental
and interbreeding effects. Furthermore, we know older females tend to nest
earlier, and they may be more fit.

We need to block on both site and age. We would like each treatment to
be used equally often at all sites (to block on populations), and we would like
each treatment to be used equally often with young and old birds (to block
on age).

A Latin Square (LS) is a design that blocks for two sources of variation.
A Latin Square design for g treatments uses g2 units and is thus a little re- LS has g2 units

for g treatments
and blocks two

ways

strictive on experiment size. Latin Squares are usually presented pictorially.
Here are examples of LS designs for g = 2, 3, and 4 treatments:

B A
A B

A B C
B C A
C A B

A B C D
B A D C
C D A B
D C B A

The g2 units are represented as a square (what a surprise!). By convention,
the letters A, B, and so on represent the g different treatments. There are two
blocking factors in a Latin Square, and these are represented by the rows and
columns of the square. Each treatment occurs once in each row and once Each treatment

once in each row
and column

in each column. Thus in the goose egg example, we might have rows one
and two be different nesting sites, with column one being young birds and
column two being older birds. This square uses four units, one young and
one old bird from each of two sites. Using the two by two square above,
treatment A is given to the site 1 old female and the site 2 young female, and
treatment B is given to the site 1 young female and the site 2 old female.

Look a little closer at what the LS design is accomplishing. If you ignore
the row blocking factor, the LS design is an RCB for the column blocking
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factor (each treatment appears once in each column). If you ignore the col-Rows and
columns of LS
form RCBs

umn blocking factor, the LS design is an RCB for the row blocking factor
(each treatment appears once in each row). The rows and columns are also
balanced because of the square arrangement of units. A Latin Square blocks
on both rows and columns simultaneously.

We use Latin Squares because they allow blocking on two sources of
variation, but Latin Squares do have drawbacks. First, a single Latin Square
has exactly g2 units. This may be too few or even too many units. Second,
Latin Squares generally have relatively few degrees of freedom for estimating
error; this problem is particularly serious for small designs. Third, it may be
difficult to obtain units that block nicely on both sources of variation. For
example, we may have two sources of variation, but one source of variation
may only have g − 1 units per block.

12.3.1 The crossover design

One of the more common uses for a Latin Square arises when a sequence of
treatments is given to a subject over several time periods. We need to block
on subjects, because each subject tends to respond differently, and we need
to block on time period, because there may be consistent differences overCrossover design

has subject and
time period blocks

time due to growth, aging, disease progression, or other factors. A crossover
design has each treatment given once to each subject, and has each treat-
ment occurring an equal number of times in each time period. With g treat-
ments given to g subjects over g time periods, the crossover design is a Latin
Square. (We will also consider a more sophisticated view of and analysis for
the crossover design in Chapter 16.)

Example 12.8 Bioequivalence of drug delivery
Consider the blood concentration of a drug after the drug has been ad-

ministered. The concentration will typically start at zero, increase to some
maximum level as the drug gets into the bloodstream, and then decrease back
to zero as the drug is metabolized or excreted. These time-concentration
curves may differ if the drug is delivered in a different form, say a tablet
versus a capsule. Bioequivalence studies seek to determine if different drug
delivery systems have similar biological effects. One variable to compare is
the area under the time-concentration curve. This area is proportional to the
average concentration of the drug.

We wish to compare three methods for delivering a drug: a solution, a
tablet, and a capsule. Our response will be the area under the time-concentra-
tion curve. We anticipate large subject to subject differences, so we block on
subject. There are three subjects, and each subject will be given the drug
three times, once with each of the three methods. Because the body may
adapt to the drug in some way, each drug will be used once in the first period,
once in the second period, and once in the third period. Table 12.3 gives the
assignment of treatments and the responses (data from Selwyn and Hall 1984,
data set Bioequivalence). This Latin Square is a crossover design.
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Table 12.3: Area under the curve for administering a drug via
A—solution, B—tablet, and C—capsule. Table entries are treatments
and responses.

Subject
Period 1 2 3
1 A 1799 C 2075 B 1396
2 C 1846 B 1156 A 868
3 B 2147 A 1777 C 2291

12.3.2 Randomizing the LS design

It is trivial to produce an LS for any number of treatments g. Assign the treat-
ments in the first row in order. In the remaining rows, shift left all the treat-
ments in the row above, bringing the first element of the row above around to One LS is easy,

random LS is
harder

the end of this row. The three by three square on page 441 was produced in
this fashion. It is much less trivial to choose a square randomly. In principle,
you assign treatments to units randomly, subject to the restrictions that each
treatment occurs once in each row and once in each column, but effecting
that randomization is harder than it sounds.

The recommended randomization is described in Fisher and Yates (1963).
This randomization starts with standard squares, which are squares with the Standard squares
letters in the first row and first column in order. The three by three and four
by four squares on page 441 are standard squares. For g of 2, 3, 4, 5, and 6,
there are 1, 1, 4, 56, and 9408 standard squares. Appendix B contains several
standard Latin Square plans.

The Fisher and Yates randomization goes as follows. For g of 3, 4, or
5, first choose a standard square at random. Then randomly permute all
rows except the first, randomly permute all columns, and randomly assign Fisher-Yates

randomizationthe treatments to the letters. For g of 6, select a standard square at random,
randomly permute all rows and columns, and randomly assign the treatments
to the letters. For g of 7 or greater, choose any square, randomly permute the
rows and columns, and randomly assign treatments to the letters.

12.3.3 Analysis for the LS design

The standard model for a Latin Square has a grand mean, effects for row Additive
treatment, row,

and column
effects

and column blocks and treatments, and experimental error. Let yijk be the
response from the unit given the ith treatment in the jth row block and kth
column block. The standard model is

yijk = µ+ αi + βj + γk + εijk ,

where αi is the effect of the ith treatment, βj is the effect of the j row block,
and γk is the effect of the kth column block. Blocking factors could be ran-
dom (for example, random subjects) or fixed (for example, a steady progres-
sion across treatment periods), but the inference for treatments will be the
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same when the data are complete. As with the RCB, block effects are as-
sumed to be additive, and assuming additivity does not make additivity true.

Here is something new: we do not observe all g3 of the i, j, k combina-
tions in an LS; we only observe g2 of them. However, the LS is constructedUsual formulae

still work for LS so that we have balance when we look at rows and columns, rows and treat-
ments, or columns and treatments. This balance implies that contrasts be-
tween rows, contrasts between columns, and contrasts between treatments
are all orthogonal, and the standard calculations in fixed effects models for
effects, sums of squares, contrasts, and so on work for the LS. Thus, for
example,

α̂i = yi•• − y•••

SSTrt =

g∑
i=1

gα̂i
2 .

Note that y••• and yi•• are means over g2 and g units respectively. The sum
of squares for error is the sum of the squared residuals, but it can also be
found by subtracting the sums of squares for treatments, rows, and columns
from the total sum of squares.

The Analysis of Variance table for a Latin Square design has sources
for rows, columns, treatments, and error. We test the null hypothesis of no
treatment effects via the F-ratio formed by mean square for treatments over
mean square for error. As in the RCB, we do not test row or column blocking.
Here is a schematic ANOVA table for a Latin Square:

Source SS DF MS F
Rows SSRows g − 1 SSRows/(g − 1)

Columns SSCols g − 1 SSCols/(g − 1)

Treatments SSTrt g − 1 SSTrt/(g − 1) MSTrt/MSE

Error SSE (g − 2)(g − 1) SSE/[(g − 2)(g − 1)]

There is no intuitive rule for the degrees of freedom for error (g− 2)(g− 1);
we just have to do our sums. Start with the total degrees of freedom g2 and
subtract one for the constant and all the degrees of freedom in the model,Few degrees of

freedom for error 3(g − 1). The difference is (g − 2)(g − 1). Latin Squares can have few
degrees of freedom for error.

Example 12.9 Bioequivalence, continued
Let’s analyze the bioequivalence data from Table 12.3.
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1 > biofit <- lm(area˜period+subject+treatment,Bioequivalence)
2 > anova(biofit)

Response: area
Df Sum Sq Mean Sq F value Pr(>F)

period 2 928006 464003 103.231 0.009594 **
subject 2 261115 130557 29.047 0.033282 *
treatment 2 608891 304445 67.733 0.014549 *
Residuals 2 8990 4495

3 > pairwise(biofit,treatment)

Pairwise comparisons ( hsd ) of treatment
estimate signif diff lower upper

soln - tablet -85.0000 322.4625 -407.4625 237.4625

* soln - capsule -589.3333 322.4625 -911.7959 -266.8708

* tablet - capsule -504.3333 322.4625 -826.7959 -181.8708

Line 1 fits the model with blocks (period and subject) and treatments. The
ANOVA from line 2 shows reasonable evidence against the null hypothesis
of no differences between treatments. The output shows F -tests for both
period and subject. We should ignore these, because period and subject are
unrandomized blocking factors. Line 3 shows that capsule seems to have a
higher area than either solution or tablet, which we cannot tell apart. We
would have obtained the same results with random subject effects.

Note that this three by three Latin Square has only 2 degrees of freedom
for error. Even an F of 67.7 does not produce a tiny p-value.

12.3.4 Replicating Latin Squares

Increased replication gives us better estimates of error and increased power
through averaging. We often need better estimates of error in LS designs, Replicate for

better precision
and error
estimates

because a single Latin Square has relatively few degrees of freedom for error.
Thus using multiple Latin Squares in a single experiment is common practice.

When we replicate a Latin Square, we may be able to “reuse” row or
column blocks. For example, we may believe that the period effects in a
crossover design will be the same in all squares; this reuses the period blocks Some blocks can

be reusedacross the squares. Replicated Latin Squares can reuse both row and column
blocks, reuse neither row nor column blocks, or reuse one of the row or
column blocks. Whether we reuse any or all of the blocks when replicating an
LS depends on the experimental and logistical constraints. Some blocks may
represent small batches of material or time periods when weather is fairly Reusability

depends on
experiment and

logistics

constant; these blocks may be unavailable or have been consumed prior to
the second replication. Other blocks may represent equipment that could be
reused in principle, but we might want to use several pieces of equipment at
once to conclude the experiment sooner rather than later.

From an analysis point of view, the advantage of reusing a block fac-
tor is that we will have more degrees of freedom for error. The risk when
reusing a block factor is that the block effects will actually change, so that
the assumption of constant block effects across the squares is invalid.
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Example 12.10 Carbon monoxide emissions
Carbon monoxide (CO) emissions from automobiles can be influenced

by the formulation of the gasoline that is used. In Minnesota, we use “oxy-
genated fuels” in the winter to decrease CO emissions. We have four gasoline
blends, the combinations of factors A and B, each at two levels, and we wish
to test the effects of these blends on CO emissions in nonlaboratory condi-
tions, that is, in real cars driven over city streets. We know that there are
car to car differences in CO emissions, and we suspect that there are route to
route differences in the city (stop and go versus freeway, for example). With
two blocking factors, a Latin Square seems appropriate. We will use three
squares to get enough replication.

If we have only four cars and four routes, and these will be used in all
three replications, then we are reusing the row and column blocking factors
across squares. Alternatively, we might be using only four cars, but we have
twelve different routes. Then we are reusing the row blocks (cars), but not
the column blocks (routes). Finally, we could have twelve cars and twelve
routes, which we divide into three sets of four each to create squares. For this
design, neither rows nor columns is reused.

The analysis of a replicated Latin Square varies slightly depending on
which blocks are reused. Let yijkl be the response for treatment i in row j
and column k of square l. There are g treatments (and rows and columns inModels depend

on which blocks
are reused

each block) and m squares. Consider the provisional model

yijkl = µ+ αi + βj(l) + γk(l) + δl + εijkl .

This model has an overall mean µ, the treatment effects αi, square effects δl,
and row and column block effects βj(l) and γk(l). As usual in block designs,
block effects are additive.

This model has row and column effects nested in square, so that each
square will have its own set of row and column effects. This model is ap-
propriate when neither row nor column blocks are reused. The degrees ofDf when neither

rows nor columns
reused

freedom for this model are one for the grand mean, g − 1 between treat-
ments, m− 1 between squares, m(g − 1) for each of rows and columns, and
(mg −m− 1)(g − 1) for error.

The model terms and degrees of freedom for the row and column block
effects depend on whether we are reusing the row and/or column blocks.
Suppose that we reuse row blocks, but not column blocks; reusing columns
but not rows can be handled similarly. The model is now

yijkl = µ+ αi + βj + γk(l) + δl + εijkl ,

and the degrees of freedom are one for the grand mean, g − 1 between treat-Df when rows
reused ments, m − 1 between squares, g − 1 between rows, m(g − 1) between

columns, and (mg − 2)(g − 1) for error. Finally, consider reusing both row
and column blocks. Then the model is

yijkl = µ+ αi + βj + γk + δl + εijkl ,
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and the degrees of freedom are one for the grand mean, g − 1 between treat-Df when rows and
columns reused ments, rows and columns, m− 1 between squares, and (mg+m− 3)(g− 1)

for error.

Example 12.11 CO emissions, continued
Consider again the three versions of the CO emissions example given

above. The degrees of freedom for the sources of variation are

4 cars, 4 routes 4 cars, 12 routes 12 cars, 12 routes
Source DF DF DF
Squares (m− 1) = 2 (m− 1) = 2 (m− 1) = 2

Cars (g − 1) = 3 (g − 1) = 3 m(g − 1) = 9

Routes (g − 1) = 3 m(g − 1) = 9 m(g − 1) = 9

Fuels (g − 1) = 3 (g − 1) = 3 (g − 1) = 3
or A 1 1 1

B 1 1 1
AB 1 1 1

Error (mg +m− 3)(g − 1) (mg − 2)(g − 1) (mg −m− 1)(g − 1)
= 12× 3 = 36 = 10× 3 = 30 = 8× 3 = 24

or
Error 47− 11 = 36 47− 17 = 30 47− 23 = 24

Note that we have computed error degrees of freedom twice, once by apply-
ing the formulae, and once by subtracting model degrees of freedom from
total degrees of freedom. I usually obtain error degrees of freedom by sub-
traction.

We have presented the degrees of freedom for replicated Latin Squares
in the context of all effects fixed. In practice, some effects may be random. Random blocks
REML analysis using random row or column blocks for balanced data will
have the same effective degrees of freedom for tests as what we have seen for
fixed effects.

Estimated effects follow the usual patterns, because even though we do
not see all the ijkl combinations, the combinations we do see are such that
treatment, row, and column effects are orthogonal. So, for example, Estimated effects

and sums of
squares follow the

usual patterns
α̂i = yi••• − y••••
δ̂l = y•••l − y•••• .

If row blocks are reused, we have

β̂j = y•j•• − y•••• ,

and if row blocks are not reused we have

β̂j(l) = y•j•l − δ̂l − µ̂
= y•j•l − y•••l .
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Table 12.4: Area under the curve for administering a drug via
A—solution, B—tablet, and C—capsule. Table entries are treatments
and responses.

Period
Subject 1 2 3
1 A 1799 C 1846 B 2147
2 C 2075 B 1156 A 1777
3 B 1396 A 868 C 2291
4 B 3100 A 3065 C 4077
5 C 1451 B 1217 A 1288
6 A 3174 C 1714 B 2919
7 C 1430 A 836 B 1063
8 A 1186 B 642 C 1183
9 B 1135 C 1305 A 984
10 C 873 A 1426 B 1540
11 A 2061 B 2433 C 1337
12 B 1053 C 1534 A 1583

The rules for column block effects are analogous. In all cases, the sum of
squares for a source of variation is found by squaring an effect, multiplying
that by the number of responses that received that effect, and adding across
all levels of the effect.

When only one of the blocking factors (rows, for example) is reused, it is
fairly common to combine the terms for “between squares” (m−1 degrees ofCan combine

between squares
with columns

freedom) and “between columns within squares” (m(g − 1) degrees of free-
dom) into an overall between columns factor with gm−1 degrees of freedom.
This is not necessary, but it sometimes makes the software commands easier.
Note that when neither rows nor columns is reused, you cannot get combined
m(g − 1) degrees of freedom terms for both rows and columns at the same
time. The “between squares” sums of squares and degrees of freedom comes
from contrasts between the means of the different squares and can be con-
sidered as either a row or column difference, but it cannot be combined into
both rows and columns in the same analysis.

Example 12.12 Bioequivalence (continued)
Example 12.8 introduced a three by three Latin Square for comparing

delivery of a drug via solution, tablet, and capsule. In fact, this crossover
design includedm = 4 Latin Squares. These squares involve twelve different
subjects, but the same three time periods. Data are given in Table 12.4, data
set BioequivalenceFull. The subject factor in this data set enumerates
the subjects from 1 through 12.
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Line 1 fits the Latin Square model using random blocks. Line 2 gives
summary information, and line 3 the ANOVA. Note that the complete data
set is compatible with the null hypothesis of no treatment effects.

1 > fit.full <- lmer(area˜period+(1|subject)+treatment,BioequivalenceFull)
2 > summary(fit.full)

Random effects:
Groups Name Variance Std.Dev.
subject (Intercept) 428077 654.3
Residual 205325 453.1
Number of obs: 36, groups: subject, 12

Fixed effects:
Estimate Std. Error t value

(Intercept) 1693.44 203.41 8.325
period1 34.31 106.80 0.321
period2 -189.94 106.80 -1.778
treatment1 -22.86 106.80 -0.214
treatment2 -43.36 106.80 -0.406

3 > Anova(fit.full,test="F")
Response: area

F Df Df.res Pr(>F)
period 1.7965 2 20 0.1916
treatment 0.1984 2 20 0.8217

Those of you keeping score may recall from Example 12.9 that the data from
just the first square seemed to indicate that there were differences between
the treatments. Also the MSE in the complete data is about 45 times bigger
than for the first square. What has happened?

Here are two possibilities. First, the subjects may not have been num-
bered in a random order, so the early subjects could be systematically dif-
ferent from the later subjects. This can lead to some dramatic differences
between analysis of subsets and complete sets of data, though we have no
real evidence of that here.

Second, there could be subject by treatment interaction giving rise to
different treatment effects for different subsets of the data. Our Latin Square
blocking model is based on the assumption of additivity, but interaction could
be present. The error term in our ANOVA contains any effects not explicitly
modeled, so it would be inflated in the presence of subject by treatment in-
teraction, and interaction could obviously lead to different treatment effects
being estimated in different squares.

We explore this somewhat at line 4.
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4 > square <- factor(rep(1:4,each=9))
5 > fit.full2 <- lmer(area˜period+treatment+(1|square:treatment)+(1|subject),

+ BioequivalenceFull)
Warning message:
In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge with max|grad| = 0.00360962 (tol = 0.002, component 1)
6 > summary(fit.full2)

...
Random effects:
Groups Name Variance Std.Dev.
square:treatment (Intercept) 65.67 8.104
subject (Intercept) 427576.55 653.893
Residual 205372.05 453.180
Number of obs: 36, groups: square:treatment, 12; subject, 12

Fixed effects:
Estimate Std. Error t value

(Intercept) 1693.44 203.33 8.329
period1 34.31 106.82 0.321
period2 -189.94 106.82 -1.778
treatment1 -22.86 106.87 -0.214
treatment2 -43.36 106.87 -0.406
...

We create a factor for square, and then in line 5 we include a treatment by
square random term. Line 6 gives the summary. The variance of the inter-
action term is estimated to be quite small relative to the other random terms,
and the standard errors of the treatment effects barely change. This does not
give us confidence in the model with square by treatment interaction.

12.3.5 Efficiency of Latin Squares

We approach the efficiency of Latin Squares much as we did the efficiency
of RCB designs. That is, we try to estimate by what factor the sample sizes
would need to be increased in order for a simpler design to have as much
information as the LS design. We can compare an LS design to an RCBEfficiency of LS

relative to RCB or
CRD

by considering the elimination of either row or column blocks, or we can
compare an LS design to a CRD by considering the elimination of both row
and column blocks.

As with RCB’s, our estimate of efficiency is the product of two factors,
the first a correction for degrees of freedom for error and the second an esti-
mate of the ratio of the error variances for the two designs. With g2 units in aError degrees of

freedom Latin Square, there are νls = (g − 1)(g − 2) degrees of freedom for error; if
either row or column blocks are eliminated, there are νrcb = (g − 1)(g − 1)
degrees of freedom for error; and if both row and column blocks are elimi-
nated, there are νcrd = (g − 1)g degrees of freedom for error.

The efficiency of a Latin Square relative to an RCB isELS:RCB

ELS:RCB =
(νls + 1)(νrcb + 3)

(νls + 3)(νrcb + 1)

σ2rcb
σ2ls

,

and the efficiency of a Latin Square relative to a CRD isELS:CRD
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ELS:CRD =
(νls + 1)(νcrd + 3)

(νls + 3)(νcrd + 1)

σ2crd
σ2ls

.

We have already computed the degrees of freedom, so all that remains is the
estimates of variance for the three designs.

The estimated variance for the LS design is simply MSE from the LS
design. For the RCB and CRD we estimate the error variance in the simpler
design with a weighted average of the MSE from the LS and the mean squares
from the blocking factors to be eliminated. The weight for MSE is (g −
1)2, the sum of treatment and error degrees of freedom, and the weights for
blocking factors are their degrees of freedom (g − 1). In formulae:

σ̂2rcb =
(g − 1)MSRows + ((g − 1) + (g − 1)(g − 2))MSE

2(g − 1) + (g − 1)(g − 2)

=
MSRows + (g − 1)MSE

g
(row blocks eliminated),

or

σ̂2rcb =
(g − 1)MSCols + ((g − 1) + (g − 1)(g − 2))MSE

2(g − 1) + (g − 1)(g − 2)

=
MSCols + (g − 1)MSE

g
(column blocks eliminated),

or

σ̂2crd =
(g − 1)(MSRows + MScol + MSE) + (g − 1)(g − 2)MSE

3(g − 1) + (g − 1)(g − 2)

=
MSRows + MSCols + (g − 1)MSE

g + 1
(both eliminated).

The two versions of σ̂2rcb are for eliminating row and column blocking, re-
spectively.

Example 12.13 Bioequivalence, continued
Example 12.9 gave the ANOVA table for the first square of the bioequiv-

alence data. The mean squares for subject, period, and error were 130,557;
464,003; and 4494.8 respectively. All three of these and treatments had 2
degrees of freedom each. Thus we have νls = 2, νrcb = 4, and νcrd = 6. The
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estimated variances are

Blocking removed
Neither σ̂2ls = 4494.8

Subjects σ̂2rcb =
130, 557 + 2× 4494.8

3
= 46516

Periods σ̂2rcb =
464, 003 + 2× 4494.8

3
= 157664

Both σ̂2crd =
130557 + 464, 003 + 2× 4494.8

4
= 150887 .

The estimated efficiencies are

Subjects E =
(2 + 1)(4 + 3)

(2 + 3)(4 + 1)

46516

4494.8
= 8.69

Periods E =
(2 + 1)(4 + 3)

(2 + 3)(4 + 1)

157664

4494.8
= 29.46

Both E =
(2 + 1)(6 + 3)

(2 + 3)(6 + 1)

150887

4494.8
= 25.90 .

Both subject and period blocking were effective, particularly the period block-
ing.

12.3.6 Designs balanced for residual effects

Crossover designs give all treatments to all subjects and use subjects and
periods as blocking factors. The standard analysis includes terms for subject,
period, and treatment. There is an implicit assumption that the response in a
given time period depends on the treatment for that period, and not at all onResidual effects

affect subsequent
treatment periods

treatments from prior periods. This is not always true. For example, a drug
that is toxic and has terrible side effects may alter the responses for a subject,
even after the drug is no longer being given. These effects that linger after
treatment are called residual effects or carryover effects.

There are experimental considerations when treatments may have resid-
ual effects. A washout period is a time delay inserted between successive
treatments for a subject. The idea is that residual effects will decrease or per-A washout period

may reduce
residual effects

haps even disappear given some time, so that if we can design this time into
the experiment between treatments, we won’t need to worry about the resid-
ual effects. Washout periods are not always practical or completely effective,
so alternative designs and models have been developed.

In an experiment with no residual effects, only the treatment from the cur-
rent period affects the response. The simplest form of residual effect occursBalance for

residual effects of
preceding
treatment

when only the current treatment and the immediately preceding treatment
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affect the response. A design balanced for residual effects, or carryover de-
sign, is a crossover design with the additional constraint that each treatment
follows every other treatment an equal number of times.

Look at these two Latin Squares with rows as periods and columns as
subjects.

A B C D
B A D C
C D A B
D C B A

A B C D
B D A C
C A D B
D C B A

In the first square, A occurs first once, follows B twice, and follows D once.
Other treatments have a similar pattern. The first square is a crossover design,
but it is not balanced for residual effects. In the second square, A occurs first
once, and follows B, C, and D once each. A similar pattern occurs for the
other treatments, so the second square is balanced for residual effects. When
g is even, we can find a design balanced for residual effects using g subjects;
when g is odd, we need 2g subjects (two squares) to balance for residuals
effects. A design that includes all possible orders for the treatments an equal
number of times will be balanced for residual effects.

The model for a residual-effects design has terms for subject, period,
direct effect of a treatment, residual effect of a treatment, and error. Specif-
ically, let yijkl be the response for the kth subject in the lth time period; the
subject received treatment i in period l and treatment j in period l − 1. The Residual-effects

model has
subject, period,

direct treatment,
and residual

treatment effects

indices i and l run from 1 to g, and k runs across the number of subjects. Use
j = 0 to indicate that there was no earlier treatment (that is, when l = 1 and
we are in the first period); j then runs from 0 to g. Our model is

yijkl = µ+ αi + βj + γk + δl + εijkl

where αi is called the direct effect of treatment i, βj is called the residual
effect of treatment j, and γk and δl are subject and period effects as usual.
We make the usual zero-sum assumptions for the block and direct treatment
effects. For the βj’s we assume that β0 = 0 and

∑g
j=1 βj = 0. That is, we

assume that there is a zero residual effect when in the first treatment period.
Direct treatment effects are orthogonal to block effects (we have a cross-

over design), but residual effects are not orthogonal to direct treatment effects
or subjects. Formulae for estimated effects and sums of squares are thus
rather opaque, and it seems best just to let your statistical software do its
work.

Example 12.14 Milk yield
Milk production in cows may depend on their feed. There is large cow to

cow variation in production, so blocking on cow and giving all the treatments
to each cow seems appropriate. Milk production for a given cow also tends to
decrease during any given lactation, so blocking on period is important. This
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Table 12.5: Milk production (pounds per 6 weeks) for eighteen
cows fed A—roughage, B—limited grain, and C—full grain.

Cow
Period 1 2 3 4 5 6

1 A 1376 B 2088 C 2238 A 1863 B 1748 C 2012
2 B 1246 C 1864 A 1724 C 1755 A 1353 B 1626
3 C 1151 A 1392 B 1272 B 1462 C 1339 A 1010

7 8 9 10 11 12
1 A 1655 B 1938 C 1855 A 1384 B 1640 C 1677
2 B 1517 C 1804 A 1298 C 1535 A 1284 B 1497
3 C 1366 A 969 B 1233 B 1289 C 1370 A 1059

13 14 15 16 17 18
1 A 1342 B 1344 C 1627 A 1180 B 1287 C 1547
2 B 1294 C 1312 A 1186 C 1245 A 1000 B 1297
3 C 1371 A 903 B 1066 B 1082 C 1078 A 887

800 1200 1600 2000

−
20

0
0

10
0

Fitted values

R
es

id
ua

ls

lm(milk ~ period + cow + treatment + previous)

Residuals vs Fitted

32
15

20

Figure 12.2: Residuals versus predicted values for the milk
production data on the original scale.

leads us to a crossover design. The treatments of interest are A—roughage,
B—limited grain, and C—full grain. The response will be the milk pro-
duction during the six week period the cow is on a given feed. There was
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insufficient time for washout periods, so the design was balanced for residual
effects. Table 12.5 gives the data from Cochran, Autrey, and Cannon (1941)
via Bellavance and Tardif (1995), data set MilkProduction.

We need to set up a factor to model the residual effect. The previous
column of the data frame has the same levels as treatment, but adds
“none” as a level for first observations for each cow. Because we are using
the “treatment effects add to zero” parameterization, and because the contrast
between the first row (which always has previous equal to “none”) is col-
inear with the period effect, it works best to arrange the levels of previous
so that “none” (or “first” or whatever we call it) is the next to last level of the
factor. We do this in lines 2–3.

1 > data("MilkProduction")
2 > levels(MilkProduction$treatment)

[1] "roughage" "lim.grain" "full.grain"
3 > newprev <- factor(MilkProduction$previous,

+ levels=c("roughage","lim.grain","none","full.grain"))
4 > fit1 <- lm(milk˜period+cow+treatment+newprev,MilkProduction)
5 > plot(fit1,which=1)
6 > car::boxCox(fit1)
7 > fit2 <- lm(log(milk)˜period+cow+treatment+newprev,MilkProduction)
8 > plot(fit2,which=1)

Line 4 fits the model with period, subject, treatment, and residual effects,
and line 5 plots the residuals (shown in Figure 12.2). The residuals show the
flopping fish pattern. Box-Cox analysis (line 6, results not shown) indicate
that a log transformation should help. We refit with transformed data in line
7 and plot the new residuals in line 8. This new residual plot (not shown)
looks good except for a potential outlier.

The outlier test on line 9 indicates that observation 32 could well be an
outlier, being substantially lower than the rest of the data would lead us to
expect. We should go back to the original data collection notebooks to see
if there is some reason to distrust observation 32. In the meantime, we con-
struct an indicator variable for point 32 and refit with this indicator variable
on lines 10-11. The residual plot for the transformed data with the indicator
on line 12 looks good (not shown).

Draft of March 4, 2021



456 Complete Block Designs

9 > car::outlierTest(fit2)
rstudent unadjusted p-value Bonferroni p

32 -4.699096 5.8507e-05 0.0031594
10 > pt32 <- rep(0,54);pt32[32]<-1
11 > fit3 <- lm(log(milk)˜period+cow+treatment+newprev+pt32,MilkProduction)
12 > plot(fit3)
13 > summary(fit3)

...
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.244693 0.006751 1073.079 < 2e-16 ***
period1 0.151477 0.009467 16.001 6.27e-16 ***
period2 0.011219 0.009467 1.185 0.245572
cow1 -0.088886 0.027760 -3.202 0.003302 **
cow2 -0.009089 0.027900 -0.326 0.746933
...
cow17 0.161400 0.035077 4.601 7.67e-05 ***
treatment1 -0.116120 0.010859 -10.694 1.41e-11 ***
treatment2 0.003424 0.010859 0.315 0.754792
newprev1 -0.040576 0.014108 -2.876 0.007471 **
newprev2 -0.023829 0.014829 -1.607 0.118895
newprev3 NA NA NA NA
pt32 -0.315417 0.067123 -4.699 5.85e-05 ***

14 > anova(fit3)
Response: log(milk)

Df Sum Sq Mean Sq F value Pr(>F)
period 2 0.99807 0.49903 209.8635 < 2.2e-16 ***
cow 17 0.90727 0.05337 22.4437 2.933e-12 ***
treatment 2 0.40999 0.20500 86.2095 6.242e-13 ***
newprev 2 0.03378 0.01689 7.1034 0.003085 **
pt32 1 0.05251 0.05251 22.0815 5.851e-05 ***
Residuals 29 0.06896 0.00238

The summary on line 13 shows that the period and cow effects are large
relative to the treatment and residual effects; we also see that in the ANOVA
on line 14. Blocking really worked here. The roughage treatment reduces the
response (on log scale) by .12, and it reduces the response in the following
period by .04. On the other hand, using the zero sum constraint we see that
the full grain treatment increases the response by about .11, and it increases
the response by about .06 in the following period.

We could model with cow as a random effect.
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15 > fit4 <- lmer(log(milk)˜period+(1|cow)+ treatment+newprev+pt32,MilkProduction)
fixed-effect model matrix is rank deficient so dropping 1 column / coefficient

16 > summary(fit4)
...
Random effects:
Groups Name Variance Std.Dev.
cow (Intercept) 0.017834 0.13354
Residual 0.002377 0.04875
Number of obs: 54, groups: cow, 18

Fixed effects:
Estimate Std. Error t value

(Intercept) 7.244475 0.032191 225.045
period1 0.151696 0.009462 16.032
period2 0.011438 0.009462 1.209
treatment1 -0.116682 0.010828 -10.776
treatment2 0.003776 0.010828 0.349
newprev1 -0.040955 0.014024 -2.920
newprev2 -0.023426 0.014708 -1.593
pt32 -0.303641 0.066206 -4.586
...

Because the residual effect is not orthogonal to the other effects and addi-
tionally the outlier indicator variable breaks orthogonality, we see that the
estimated effects in the random subject model are just slightly different from
those in the fixed subject model.

When resources permit an additional test period for each subject, consid-
erable gain can be achieved by repeating the last treatment for each subject.
For example, if cow 13 received the treatments A, B, and C, then the treat- Repeat last

treatmentment in the fourth period should also be C. With this structure, every treat-
ment follows every treatment (including itself) an equal number of times,
and every residual effect occurs with every subject. These conditions permit
more precise estimation of direct and residual treatment effects.

12.4 Graeco-Latin Squares

Randomized Complete Blocks allow us to control one extraneous source of
variability in our units, and Latin Squares allow us to control two sources.
The Latin Square design can be extended to control for three sources of extra- Graeco-Latin

Squares block
three ways

neous variability; this is the Graeco-Latin Square. For four or more sources
of variability, we use Latin Hyper-Squares. Graeco-Latin Squares allow us to
test g treatments using g2 units blocked three different ways. Graeco-Latin
Squares don’t get used very often, because they require a fairly restricted set
of circumstances to be applicable.

The Graeco-Latin Square is represented as a g by g table or square. En-
tries in the table correspond to the g2 units. Rows and columns of the square
correspond to blocks, as in a Latin Square. Each entry in the table has one Treatments occur

once in each
blocking factor

Latin letter and one Greek letter. Latin letters correspond to treatments, as in
a Latin Square, and Greek letters correspond to the third blocking factor. The
Latin letters occur once in each row and column (they form a Latin Square),
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and the Greek letters occur once in each row and column (they also form a
Latin Square). In addition, each Latin letter occurs once with each Greek
letter. Here is a four by four Graeco-Latin Square:

A α B γ C δ D β

B β A δ D γ C α

C γ D α A β B δ

D δ C β B α A γ

Each treatment occurs once in each row block, once in each column block,
and once in each Greek letter block. Similarly, each kind of block occurs
once in each other kind of block.

If two Latin Squares are superimposed and all g2 combinations of letters
from the two squares once, the Latin Squares are called orthogonal. AOrthogonal Latin

Squares Graeco-Latin Square is the superposition of two orthogonal Latin Squares.
Graeco-Latin Squares do not exist for all values of g. For example, there

are Graeco-Latin Squares for g of 3, 4, 5, 7, 8, 9, and 10, but not for g of 6.No GLS for g = 6

Appendix B lists orthogonal Latin Squares for g = 3, 4, 5, 7, from which a
Graeco-Latin Square can be built.

The usual model for a Graeco-Latin Square has terms for treatments and
row, column, and Greek letter blocks and assumes that all these terms areAdditive blocks

plus treatments additive. The balance built into these designs allows us to use our standard
methods for estimating effects and computing sums of squares, contrasts, and
so on, just as for a Latin Square.

The Latin Square/Graeco-Latin Square family of designs can be extended
to have more blocking factors. These designs, called Hyper-Latin Squares,Hyper Squares
are rare in practice.

12.5 Further Reading and Extensions

Our discussion of the RCB has focused on its standard form, where we have
g treatments and blocks of size g. There are several other possibilities. For
example, we may be able to block our units, but there may not be enough
units in each block for each treatment. This leads us to incomplete block
designs, which we will consider in Chapter 13.

Another possibility is that units are expensive (so we do not want to waste
any), but the block sizes are not a nice multiple of the number of treatments.
Here, we can combine an RCB (or GRCB) with one of the incomplete block
designs from Chapter 13. For example, with three treatments (A, B, and C)
and three blocks of size 5, we could use (A, B, C, A, B) in block 1, (A, B,
C, A, C) in block 2, and (A, B, C, B, C) in block 3. So each block has one
full complement of the treatments, plus two more according to an incomplete
block design.

The final possibility that we mention is that we can have blocks with
different numbers of units; that is, some blocks have more units than others.
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Standard designs assume that all blocks have the same number of units, so
we must do something special. The most promising approach is probably
optimal design via special design software. Optimal design (see Chapter 14)
allocates treatments to units in such a way as to optimize some criterion; for
example, we may wish to minimize the average variance of the estimated
treatment effects. See Silvey (1980). The algorithms that do the optimization
are complicated, but software exists that will do what is needed. See Cook
and Nachtsheim (1989). Oh yes, in case you were worried, most standard
designs such as RCB’s are also “optimal” designs; we just don’t need the
fancy software in the standard situations.

12.6 Problems

Winter road treatments to clear snow and ice can lead to cracking in the Exercise 12.1
pavement. An experiment was conducted comparing four treatments: sodium
chloride, calcium chloride, a proprietary organic compound, and sand. Traf-
fic level was used as a blocking factor and a randomized complete block ex-
periment was conducted. One observation is missing, because the spreader
in that district was not operating properly. The response is new cracks per
mile of treated roadway (data set Cracks).

A B C D
Block 1 32 27 36
Block 2 38 40 43 33
Block 3 40 63 14 27

Our interest is in the following comparisons: chemical versus physical
(A,B,C versus D), inorganic versus organic (A,B versus C), and sodium ver-
sus calcium (A versus B). Which of these comparisons seem large?

Grains or crystals adversely affect the sensory qualities of foods using Exercise 12.2
dried fruit pulp. A factorial experiment was conducted to determine which
factors affect graininess. The factors were drying temperature (three levels),
acidity (pH) of pulp (two levels), and sugar content (two levels). The exper-
iment has two replications, with each replication using a different batch of
pulp. Response is a measure of graininess (data set Graininess).

Sugar low Sugar high
Temp. Rep. pH low pH high pH low pH high
1 1 21 12 13 1

2 21 18 14 8
2 1 23 14 13 1

2 23 17 16 11
3 1 17 20 16 14

2 23 17 17 5

Analyze these data to determine which factors effect graininess, and which
combination of factors leads to the least graininess.
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The data below are from a replicated Latin Square with four treatments;Exercise 12.3
row blocks were reused, but column blocks were not (data set RLS). Test
for treatment differences and use Tukey HSD with level .01 to analyze the
pairwise treatment differences.

D 44 B 26 C 67 A 77 B 51 D 62 A 71 C 49
C 39 A 45 D 71 B 74 C 63 A 74 D 67 B 47
B 52 D 49 A 81 C 88 A 74 C 75 B 60 D 58
A 73 C 58 B 76 D 100 D 82 B 79 C 74 A 68

Consider replicating a six by six Latin Square three times, where weExercise 12.4
use the same row blocks but different column blocks in the three replicates.
The six treatments are the factorial combinations of factor A at three levels
and factor B at two levels. Give the sources and degrees of freedom for the
Analysis of Variance of this design.

Disk drive substrates may affect the amplitude of the signal obtainedExercise 12.5
during readback. A manufacturer compares four substrates: aluminum (A),
nickel-plated aluminum (B), and two types of glass (C and D). Sixteen disk
drives will be made, four using each of the substrates. It is felt that oper-
ator, machine, and day of production may have an effect on the drives, so
these three effects were blocked. The design and responses (in microvolts
×10−2) are given in the following table (data from Nelson 1993, data set
Substrates); Greek letters indicate day:

Operator
Machine 1 2 3 4

1 Aα 8 Cγ 11 Dδ 2 Bβ 8
2 Cδ 7 Aβ 5 Bα 2 Dγ 4
3 Dβ 3 Bδ 9 Aγ 7 Cα 9
4 Bγ 4 Dα 5 Cβ 9 Aδ 3

Analyze these data and report your findings, including a description of the
design.

Briefly describe the experimental design you would choose for each ofProblem 12.1
the following situations. Report on treatments, units, blocks, and so on.

(a) We need to evaluate three “formulations” for a breakfast cereal targeted
to boys. In fact, the cereals are all the same, they differ only in the cover
art on the box. A market research firm arranges to have 150 boys between
the ages of 5 and 8 years to serve as judges. Each boy is served a bowl
of cereal with the box left on the table for his viewing. After the cereal
is eaten, the boy is interviewed for his liking of the cereal. We do not
anticipate age differences within this narrow age range.

(b) Land use along stream banks can dramatically affect the stream-water
quality, so farmers have been adopting various buffers between their
fields and streams. The Fish and Wildlife Service wishes to compare how
three different buffers affect macro invertebrate populations 100 meters
downstream from the buffer. Six different streams have been selected for

Draft of March 4, 2021



12.6 Problems 461

experimentation, and we expect considerable stream to stream variation
in the invertebrate populations. We have funds to implement fifteen dif-
ferent buffers and measure the invertebrate populations downstream. We
may put up to five (well-separated) buffers on a given stream.

(c) Carbon nanotubes can produce electricity when heated. We wish to de-
termine how this feature might be used to produce batteries. We wish to
vary two factors: the temperature to which the tubes are heated (low and
high) and the speed at which the tubes are brought to temperature (slow
and fast). Tubes are available from four different laboratories, and there
could be differences between the tubes produced in different labs. In ad-
dition, these tubes are darned expensive, so we will need to reuse them
in our experiments. However, no one really knows how multiple appli-
cations of heat treatments will affect the electricity produced; it might
change over uses.

(d) Currently all counties place children under the care of the state into foster
homes, but there is some support for reviving residential (group) homes.
Suppose that the state wishes to conduct an experiment to compare out-
comes under the two models of child care. The experiment will be con-
ducted in six counties: Anoka and Washington (two suburban counties
in the Twin Cities area), St. Louis and Sterns (two counties with mod-
erate cities), and Murray and Jackson (two rural counties in southwest
Minnesota). A county as a whole must continue to use foster homes
or switch to residential homes. The response will be measured after 10
years by looking at the outcomes of the children in the counties.

(e) The polymerase chain reaction is used to make enough copies of a tiny
segment of DNA to enable the segment to be studied. This enables DNA
fingerprinting, the determination of paternity, and other applications. For
use in field biology, the procedure needs to be adapted to each species.
Here we wish to determine paternity in shrikes (small raptors with the
lovely habit of storing their prey by impaling it on thorns or barbed wire).
We have four procedural steps that can be altered, and we have chosen
two alternatives for each step. We can afford 32 attempts in this prelim-
inary study. Each attempt corresponds to a blood sample taken from a
feather of a shrike, and we can take no more than one feather per bird.

(f) We wish to study the effects of three factors on corn yields: nitrogen
added, planting depth, and planting date. The nitrogen and depth factors
have two levels, and the date factor has three levels. There are 24 plots
available: twelve are in St. Paul, MN, and twelve are in Rosemount, MN.

(g) You manage a french fry booth at the state fair and wish to compare four
brands of french fry cutters for amount of potato wasted. You sell a lot
of fries and keep four fry cutters and their operators going constantly.
Each day you get a new load of potatoes, and you expect some day to
day variation in waste due to size and shape of that day’s load. Different
operators may also produce different amounts of waste. A full day’s
usage is needed to get a reasonable measure of waste, and you would
like to finish in under a week.
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(h) Ruminant animals may not be able to quickly utilize protein in their diets,
so we are interested in dietary changes that make the protein available.
We can vary the cereal source (oats or hay) and the protein source (soy
or fish meal) in the diets. There are twelve lambs available for the ex-
periment, and we expect fairly large animal to animal differences. Each
diet must be fed to a lamb for at least 1 week before the protein uptake
measurement is made. The measurement technique is safe and benign,
so we may use each lamb more than once. We do not expect any carry-
over (residual) effects from one diet to the next, but there may be effects
due to the aging of the lambs.

(i) A Health Maintenance Organization wishes to test the effect of substi-
tuting generic drugs for name brand drugs on patient satisfaction. Satis-
faction will be measured by questionnaire after the study. They decide to
start small, using only one drug (a decongestant for which they have an
analogous generic) and twenty patients at each of their five clinics. The
patients at the different clinics are from rather different socioeconomic
backgrounds, so some clinic to clinic variation is expected. Drugs may
be assigned on an individual basis.

(j) A sociologist is developing a new questionaire and response scale (a
weighted combination of the answers to the questions) to assess where an
individual lies on the liberal to conservative spectrum in social attitudes.
The new scale is supposed to match an existing scale, and we need to
conduct an experiment to test the equality of average scores.

The best experiment would give both questionaires to many people, but
that is infeasible; each subject will only receive one questionaire. Sub-
jects will be students in introductory sociology classes at the U of M,
and we have resources to question 80 students. We anticipate that stu-
dents planning to major in sociology may have different attitudes from
nonmajors. We also anticipate that older, nontraditional students could
have different attitudes from traditional students. (Assume that there is
no problem with finding subjects, obtaining their consent, or obtaining
their answers.)

(k) Air flow through heating and air conditioning vents can become noisy if
the vent system is not properly designed. This can be a problem for con-
cert halls and similar rooms. The noise seems to depend mostly on the
kind of “bend” or “elbow” that is used to form turns in the vent. Unfortu-
nately, the noise of a given vent also seems to depend rather delicately on
just exactly how the vent was assembled, not simply the overall design,
so we can’t tell how a design will work from a single vent. We have four
designs to compare, and can afford to make 20 vents and measure them
for noise.

(l) A consumer testing agency wishes to compare three brands of home
bread-making machines for the quality and consistency of the bread that
they produce. The machines will be used with premixed ingredient pack-
ets, and at least nine loaves will be needed from each machine. Testers
believe that brand of ingredient premix may affect quality (there are three
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brands available locally). Testers also believe that day of baking also af-
fects quality (due to temperature, humidity and related environmental
factors). All baking is done in the morning, so each machine can only be
used once a day.

(m) One of the constant issues in retailing is price. Raising a price lowers
sales volume. This might increase total revenue if volume decreases only
slightly, or it might decrease total revenue if volume decreases more.
Web retailers have the ability to offer different prices to different cus-
tomers by constructing different web pages with different prices. We
want to compare sales volumes for a popular video game when we set
the price at four different levels. There are probably many ways in which
customers differ, but we don’t see the customers so we don’t know how
they differ (inter-site web tracking has made this assumption less and less
likely, but make the assumption anyway). We want to have at least 100
page accesses for each of the four prices.

For each of the following, describe the design that was used, give a skele- Problem 12.2
ton ANOVA, and indicate how you would test the various terms in the model.

(a) House plants add a touch of nature to the indoors. They can also be
expensive, so we would like to find conditions that best enable them
to grow. This experiment considers four treatments, which are the fac-
tor/level combinations of water (unfiltered or filtered) and fertilizer (rec-
ommended amount or 75% of recommended amount), on the growth of
“snake” plants. Thirty-two identical pots with identical soils are laid
out in a 4 by 8 (rows by columns) pattern on a table in the greenhouse.
Thirty-two approximately equal height snake plants are then randomly
placed in the pots. The four treatments are then randomized to the pots
such that each treatment occurs once in each column and twice in each
row. After eight weeks, the leaf area of each plant is measured as a re-
sponse.

(b) A Collison nebulizer is an instrument that produces aerosols from a liq-
uid solution. Compressed air draws the liquid up into airborne drops,
from which the water then evaporates to form aerosolized solid-phase
particles. We will study the average particle size as a function of the
pressure of the compressed air and the concentration of salt in the solu-
tion. Air pressure is at two levels (10 or 15 psi), and concentration is at
three levels (5g, 10g, or 15g of KCl in 50g of water).
The following procedure is repeated each Monday afternoon for three
consecutive weeks. Six half-hour time slots are randomly assigned to
the six combinations of pressure and concentration. The nebulizer is
used with that combination to produce an aerosol, and we measure the
average particle diameter for the setting. At the end of three weeks, we
thus have 18 responses.

(c) St. John’s Wort (SJW) is sold as an herbal supplement that “improves
mood”; FDA rules do not permit vendors to claim that SJW cures de-
pression, as the clinical evidence is still too skimpy. The following ex-
periment is conducted. One hundred patients with previously untreated
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clinical depression are divided at random into two groups of 50. Patients
in the first group will be given SJW daily at the recommended dose (or
portion as it is known in the herbal supplement literature) for six months.
At the end of six months, the patients are evaluated for depression by a
psychologist using a standard measurement scheme and yielding a “de-
pression score”. These patients will then switch to a daily dose of Prozac,
a commercial antidepressant. After six months of Prozac therapy, the pa-
tients are again evaluated for depression. The other 50 patients have six
months of Prozac followed by six months of SJW, again with an evalua-
tion at the end of each six month period.

(d) All crude oil contains some volatile compounds, but the crude oil from
the Bakken oil field in North Dakota is especially known for its large
fraction of volatiles. In particular, sometimes Bakken crude seems prone
to explosion and fire; this is widely considered to be a bad thing. We
want to harvest the volatiles from the crude, and we have four different
methods for doing so. Each week we get a new batch of crude oil from
North Dakota, randomly divide it into four equally sized tanks, and then
randomly assign our four methods to extract volatiles to the four tanks.
As a response, we measure the mass of volatiles that we can extract. We
do this for ten consecutive weeks.

(e) Recent political tensions make detection of radioisotopes in the atmo-
sphere very exciting. However, recent detections of cesium-137 have
been traced back to fallout from atmospheric bomb tests prior to the at-
mospheric test ban treaty. In particular, forest fires in areas that were
subjected to fallout decades ago can put the radioisotopes back into the
atmosphere. (Cesium acts like phosphorus, which is a natural plant nu-
trient and is absorbed into trees.)

We want to compare cesium-137 concentrations in forest fire smoke for
different kinds of fires in pine forests: surface fires and crown fires. We
have 48 experimental plots, two plots in each of 24 national forests.
These forests are in different directions and distances from the Nevada
and Utah atomic test ranges. At each forest, we randomly assign the two
fire types to the two plots. During the burn, we sample the smoke for
cesium-137.

(f) Researchers are concerned that food colorings and food additives may
affect activity of children. There are 300 children in this experiment,
all aged 8 years. Every day for 7 weeks, the children will receive a
drink of grape juice (naturally purple). On weeks two through seven,
the parents will fill out activity diaries to quantify the level of activity.
For two randomly chosen weeks out of weeks two through seven, the
purple drink will also contain purple food color and sodium benzoate (a
preservative).

(g) A common stereotype is that “beautiful is good;” that is, attractive peo-
ple are stereotyped as having good personality qualities and unattrac-
tive people are stereotyped as having bad personality qualities. To test
this hypothesis in employment screening, four fictitious and reasonably
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equivalent résumés are created (all are for women). We manipulate the
“beautiful” nature of the résumés by including applicant pictures. We
will use three pictures that have been rated as attractive, neutral, and
unattractive, plus a control with no picture. These four résumés will be
sent to six different personnel officers for initial screening for a job. For
each personnel officer, the four résumés will be randomly assigned to the
four picture treatments. The response is the rating given by the officer to
each applicant.

(h) Birds will often respond to other birds that invade their territory. We are
interested in the time it takes nesting red-shouldered hawks to respond to
invading calls, and want to know if that time varies according to the type
of intruder. We have two state forests that have red-shouldered hawks
nesting. In each forest, we choose ten nests at random from the known
nesting sites. At each nest, we play two prerecorded calls over a loud-
speaker (several days apart). One call is a red-shouldered hawk call; the
other call is a great horned owl call. The response we measure is the time
until the nesting hawks leave the nest to drive off the intruder.

(i) The food science department conducts an experiment to determine if the
level of fiber in a muffin affects how hungry subjects perceive themselves
to be. There are twenty subjects—ten randomly selected males and ten
randomly selected females—from a large food science class. Each sub-
ject attends four sessions lasting 15 minutes. At the beginning of the
session, they rate their hunger on a 1 to 100 scale. They then eat the
muffin. Fifteen minutes later they again rate their hunger. The response
for a given session is the decrease in hunger. At the four sessions they
receive two low-fiber muffins and two high-fiber muffins in random or-
der.

(j) One of the problems encountered when restoring a wetland is that reed
canary grass will take over and crowd out all other vegetation. We wish
to compare eight treatments for their efficacy in keeping the fraction of
reed canary grass down. The treatments are the factorial combinations
of burning (yes or no), tilling (yes or no), and herbicide (yes or no). We
have 16 plots, eight in a site that is always wet and eight in a site that
sometimes gets a little dry. At each site we randomly assign the eight
treatments to plots.

(k) A consumer testing agency is trying to compare four over-the-counter
acne medications (creams). They have obtained 96 teenagers as subjects,
and they expect considerable subject to subject variation. To combat this
variation, they want each subject to use more than one medication. They
feel that it is unrealistic to divide the faces into four small patches with
a different cream for each patch, so they just divide each face into left-
and right-hand halves. Each subject then uses two medications, one for
the right-hand side of the face, and one for the left side. They keep a
record of blemishes, and the response for each side of the face will be
the total number of blemishes on that side in a six-week study period.
The medications are assigned to the face halves at random subject to the
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restrictions that each pair of medications is used for the same number of
subjects.

(l) “Fat cats” does not apply just to politicians and businessmen; many do-
mestic house cats are obese due to lack of activity. One possibility for
increasing cat activity is to hide their food in toys. Four house cats were
fitted with activity monitors on their collars and tested over two days. On
one of the two days, a cat would be fed from a dish as normal. On the
other day, the cat’s food would be hidden in toy “mice” that the cat would
need to find and tip over to get the food. Two of the cats were randomly
selected to use dish feeding on the first day, then toys on the second day.
The remaining two cats had the opposite order. It was suspected that the
activity monitor might bother the cat on the first day while it was getting
used to it.

Suppose that we have a Latin Square with the following ANOVA:Problem 12.3

DF SS MS F
columns 15 17.406 1.1604 4.98166
rows 3 7.1707 2.3902 10.26148
treatments 3 4.8905 1.6302 6.99845
Error 42 9.7832 0.23293

What is the relative efficiency of this design compared to an RCB that
only blocked on rows?

Many people enjoy dipping crackers in their soup. This experiment ex-Problem 12.4
plores the amount of soup that is absorbed by, or adhered to, dipping crack-
ers. We consider three different types of soup: a condensed, cream-based
soup (Cream of Mushroom, need to add water); a condensed water-based
soup (Tomato, need to add water); and a ready-to-eat pre-made soup (Steak
and Potatoes, no additional water needed). We also consider three serving
temperatures: 100, 110, and 120 degrees F.

In this experiment, nine bowls of soup will be prepared in random order,
one each for the combinations of soup type and serving temperature. For each
bowl, 200g (approximately) of the soup is added and the combination of soup
and bowl is weighed. Then five unbroken saltine crackers are placed in the
soup. After two minutes, the crackers are removed (along with any soup that
clings to them). The soup and bowl are again weighed, the decrease in weight
(in g) is response. The experiment is then repeated the next day.

The data for this experiment are in the table below (data from S. Kleba,
data set SoupCrackers). Analyze these data to understand the effects of
the different factors on absorbance.

Replication 1 Replication 2
Cream Water Ready Cream Water Ready

100◦ 47 39 38 42 40 38
110◦ 40 37 42 43 39 41
120◦ 47 39 42 49 36 42

Many professions have board certification exams. Part of the certificationProblem 12.5
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process for bank examiners involves a “work basket” of tasks that the exami-
nee must complete in a satisfactory fashion in a fixed time period. New work
baskets must be constructed for each round of examinations, and much effort
is expended to make the workbaskets comparable (in terms of average score)
from exam to exam. This year, two new work baskets (A and B) are being
evaluated. We have three old work baskets (C, D, and E) to form a basis for
comparison. We have ten paid examinees (1 through 6 are certified bank ex-
aminers, 7 through 9 are noncertified bank examiners nearing the end of their
training, and 10 is a public accountant with no bank examining experience
or training) who will each take all five tests. There are five graders who will
each grade ten exams. We anticipate differences between the examinees and
the graders; our interest is in the exams, which were randomized so that each
examinee took each exam and each grader grades two of each exam.

The data follow (data set BankExaminers). The letter indicates exam.
Scores are out of 100, and 60 is passing. We want to know if either or both
of the new exams are equivalent to the old exams.

Student Grader
1 2 3 4 5

1 68 D 65 A 76 E 74 C 76 B
2 68 A 77 E 84 B 65 D 75 C
3 73 C 85 B 72 D 68 E 62 A
4 74 E 76 C 57 A 79 B 64 D
5 80 B 71 D 76 C 59 A 68 E
6 69 D 75 E 81 B 68 A 68 C
7 60 C 62 D 62 E 66 B 40 A
8 70 B 55 A 62 C 57 E 40 D
9 61 E 67 C 53 A 63 D 69 B
10 37 A 53 B 31 D 48 C 33 E

Cell engineering attempts to insert new genes into DNA so that the daugh- Problem 12.6
ter cells have certain properties, for example, production of therapeutic pro-
teins. However, gene insertion does not occur in all of the cells, and antibi-
otics are used to select those cells where insertion was successful. This is
done by inserting a gene for antibiotic resistance along with the gene of in-
terest. After treatment, only those cells with successful insertion will survive.

When multiple insertions are done, different kinds of antibiotic resis-
tance may be utilized corresponding to different antibiotics. One selection
approach is to select cells surviving after antibiotic A, and then next select
from those survivors the cells that survive antibiotic B. Alternatively, one
may put all the cells together with both antibiotics A and B. The issue is that
antibiotics work using different mechanisms, and their effects might interact
in unexpected ways.

This experiment studies how puromycin and hygromycin work together
to kill cells. We look at nine treatments, the factor/level combinations of
puromycin at 0, 2, and 4 µg/mL (suggested concentration is 2) and hy-
gromycin at 0, 150, and 300 µg/mL (suggested concentration is 200). On
week 1 we prepare nine wells on a plate with HEK293 cells and randomly
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assign these wells to the nine treatments. The plate is incubated, and then
the live cells are separated and counted with the response reported as 1,000s
of live cells per mL. Low densities mean that the antibiotics were effective.
This process is repeated on week 2 with a second plate and on week 3 with a
third plate.

Data are shown in the table below (data set Antibiotics, data from
Min Lu). Analyze these data to determine the effects of the antibiotics on
cell density.

Puromycin/Hydromycin
0 2 4

Plate 0 150 300 0 150 300 0 150 300
1 2180 2380 1790 471 877 828 166 760 801
2 2420 2030 1520 500 721 838 178 721 821
3 2260 2250 1650 367 928 767 193 826 787

An experiment was conducted to see how variety of soybean and cropProblem 12.7
rotation practices affect soybean productivity. There are two varieties used,
Hodgson 78 and BSR191. These varieties are each used in four different 5-
year rotation patterns with corn. The rotation patterns are (1) four years of
corn and then soybeans (C-C-C-C-S), (2) three years of corn and then two
years of soybeans (C-C-C-S-S), (3) soybean and corn alternation (S-C-S-C-
S), and (4) five years of soybeans (S-S-S-S-S). Here we only analyze data
from the fifth year.

This experiment was conducted twice in Waseca, MN, and twice in Lam-
berton, MN. Two groups of eight plots were chosen at each location. The first
group of eight plots at each location was randomly assigned to the variety-
rotation treatments in 1983. The second group was then assigned in 1984.
Responses were measured in 1987 and 1988 (the fifth years) for the two
groups.

The response of interest is the weight (g) of 100 random seeds from soy-
bean plants (data from Whiting 1990, data set Rotations). Analyze these
data and report your findings.

Rotation pattern
Location-Year Variety 1 2 3 4
W87 1 155 151 147 146

2 153 156 159 155
W88 1 170 159 157 168

2 164 170 162 169
L87 1 142 135 139 136

2 146 138 135 133
L88 1 170 155 159 173

2 167 162 153 162

An experiment was conducted to determine how different soybean vari-Problem 12.8
eties compete against weeds. There were sixteen varieties of soybeans and
three weed treatments: no herbicide, apply herbicide 2 weeks after planting
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the soybeans, and apply herbicide 4 weeks after planting the soybeans. The
measured response is weed biomass in kg/ha. There were two replications
of the experiment—one in St. Paul, MN, and one in Rosemount, MN—for a
total of 96 observations (data from Bussan 1995, data set Herbicides):

Herb. 2 weeks Herb. 4 weeks No herb.
Variety R StP R StP R StP
Parker 750 1440 1630 890 3590 740
Lambert 870 550 3430 2520 6850 1620
M89-792 1090 130 2930 570 3710 3600
Sturdy 1110 400 1310 2060 2680 1510
Ozzie 1150 370 1730 2420 4870 1700
M89-1743 1210 430 6070 2790 4480 5070
M89-794 1330 190 1700 1370 3740 610
M90-1682 1630 200 2000 880 3330 3030
M89-1946 1660 230 2290 2210 3180 2640
Archer 2210 1110 3070 2120 6980 2210
M89-642 2290 220 1530 390 3750 2590
M90-317 2320 330 1760 680 2320 2700
M90-610 2480 350 1360 1680 5240 1510
M88-250 2480 350 1810 1020 6230 2420
M89-1006 2430 280 2420 2350 5990 1590
M89-1926 3120 260 1360 1840 5980 1560

Analyze these data for the effects of herbicide and variety.

Plant shoots can be encouraged in tissue culture by exposing the cotyle- Problem 12.9
dons of plant embryos to cytokinin, a plant growth hormone. However, some
shoots become watery, soft, and unviable; this is vitrification. An experi-
ment was performed to study how the orientation of the embryo during expo-
sure to cytokinin and the type of growth medium after exposure to cytokinin
affect the rate of vitrification. There are six treatments, which are the fac-
torial combinations of orientation (standard and experimental) and medium
(three kinds). On a given day, the experimenters extract embryos from white
pine seeds and randomize them to the six treatments. The embryos are ex-
posed using the selected orientation for 1 week, and then go onto the selected
medium. The experiment was repeated 22 times on different starting days.
The response is the fraction of shoots that are normal (data from David Zle-
sak, data set PlantShoots):
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Medium 1 Medium 2 Medium 3
Day Exp. Std. Exp. Std. Exp. Std.
1 .67 .34 .46 .26 .63 .40
2 .70 .42 .69 .42 .74 .17
3 .86 .42 .89 .33 .80 .17
4 .76 .53 .74 .60 .78 .53
5 .63 .71 .50 .29 .63 .29
6 .65 .60 .95 1.00 .90 .40
7 .73 .50 .83 .88 .93 .88
8 .94 .75 .94 .75 .80 1.00
9 .93 .70 .77 .50 .90 .80
10 .71 .30 .48 .40 .65 .30
11 .83 .20 .74 .00 .69 .30
12 .82 .50 .72 .00 .63 .30
13 .67 .67 .67 .25 .90 .42
14 .83 .50 .94 .40 .83 .33
15 1.00 1.00 .80 .33 .90 1.00
16 .95 .75 .76 .25 .96 .63
17 .47 .50 .71 .67 .67 .50
18 .83 .50 .94 .67 .83 .83
19 .90 .33 .83 .67 .97 .50
20 1.00 .50 .69 .25 .92 1.00
21 .80 .63 .63 .00 .70 .50
22 .82 .60 .57 .40 1.00 .50

Analyze these data and report your conclusions on how orientation and medium
affect vitrification.

We have all seen videos of Mentos R© inserted into bottles of Diet Coke R©:Problem 12.10
instant geyser of carbonated stickiness. This experiment explores how the
number of Mentos R© tablets (1, 4, or 7) and time since opening the bottle (0
or 20 minutes after opening) affect the amount of beverage that is ejected.

We have 36 .5L bottles of soft drink; 12 each of Diet Sunkist R©, Diet
7up R©, and 7up R©. It is possible that there are differences between type of
beverage. The 12 bottles of each type are randomly assigned to the six fac-
tor/level combinations of time and number of tablets, two bottles to each
combination. Bottles were held at the same temperature and handled care-
fully. In random order, each bottle was given its assigned treatment, and
the amount (mL) of beverage remaining 30 seconds after the tablet drop was
measured as response.

Data are in the table below (data set MentosGeyser, data from T. Ste-
ichen). Analyze these data for the effects of delay time and number of tablets.
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Tablets
Type Elapsed 1 1 4 4 7 7
DS 0 343 355 236 255 208 215
D7 0 269 298 178 172 165 159
7 0 359 346 225 225 206 199
DS 20 252 249 246 241 208 222
D7 20 387 398 249 265 253 250
7 20 395 407 269 256 225 230

An army rocket development program was investigating the effects of Problem 12.11
slant range and propellant temperature on the accuracy of rockets. The over-
all objective of this phase of the program was to determine how these vari-
ables affect azimuth error (that is, side to side as opposed to distance) in the
rocket impacts.

Three levels were chosen for each of slant range and temperature. The
following procedure was repeated on 3 days. Twenty-seven rockets are grouped
into nine sets of three, which are then assigned to the nine factor-level com-
binations in random order. The three rockets in a group are fired all at once
in a single volley, and the azimuth error recorded. (Note that meteorologi-
cal conditions may change from volley to volley.) The data follow (Bicking
1958) (data set Rockets):

Slant range/Days
1 2 3

Temp. 1 2 3 1 2 3 1 2 3
1 -10 -22 -9 -5 -17 -4 11 -10 1

-13 0 7 -9 6 13 -5 10 20
14 -5 12 21 0 20 22 6 24

2 -15 -25 -15 -14 -3 14 -9 8 14
-17 -5 2 15 -1 5 -3 -2 18

7 -11 5 -11 -20 -10 20 -15 -2

3 -21 -26 -15 -18 -8 0 13 -5 -8
-23 -8 -5 5 5 -13 -9 -18 3

0 -10 0 -10 -10 3 -13 -3 12

Analyze these data and determine how slant range and temperature affect
azimuth error. (Hint: how many experimental units per block?)

An experiment is conducted to study the effect of alfalfa meal in the diet Problem 12.12
of male turkey poults (chicks). There are nine treatments. Treatment 1 is a
control treatment; treatments 2 through 9 contain alfalfa meal. Treatments 2
through 5 contain alfalfa meal type 22; treatments 6 through 9 contain alfalfa
meal type 27. Treatments 2 and 6 are 2.5% alfalfa, treatments 3 and 7 are 5%
alfalfa, treatments 4 and 8 are 7.5% alfalfa. Treatments 5 and 9 are also 7.5%
alfalfa, but they have been modified to have the same calories as the control
treatment.
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The randomization is conducted as follows. Seventy-two pens of eight
birds each are set out. Treatments are separately randomized to pens grouped
1–9, 10–18, 19–27, and so on. We do not have the response for pen 66. The
response is average daily weight gain per bird for birds aged 7 to 14 days in
g/day (data from Turgay Ergul, data set TurkeyPoults):

Pen Groups
Trt 1–9 10–18 19–27 28–36 37–45 46–54 55–63 64–72
1 23.63 19.86 24.00 22.11 25.38 24.18 23.43 18.75
2 20.70 20.02 23.95 19.13 21.21 20.89 23.55 22.89
3 19.95 18.29 17.61 19.89 23.96 20.46 22.55 17.30
4 21.16 19.02 19.38 19.46 20.48 19.54 19.96 20.71
5 23.71 16.44 20.71 20.16 21.70 21.47 20.44 22.51
6 20.38 18.68 20.91 23.07 22.54 21.73 25.04 23.22
7 21.57 17.38 19.55 19.79 20.77 18.36 20.32 21.98
8 18.52 18.84 22.54 19.95 21.27 20.09 19.27 20.02
9 23.14 20.46 18.14 21.70 22.93 21.29 22.49

Analyze these data to determine the effects of the treatments on weight gain.

Implantable pacemakers contain a small circuit board called a substrate.Problem 12.13
Multiple substrates are made as part of a single “laminate.” In this experi-
ment, seven laminates are chosen at random. We choose eight substrate loca-
tions and measure the length of the substrates at those eight locations on the
seven substrates. Here we give coded responses (10, 000×[response−1.45],
data from Todd Kerkow, data set Laminates).

Laminate
Location 1 2 3 4 5 6 7
1 28 20 23 29 44 45 43
2 11 20 27 31 33 38 36
3 26 26 14 17 41 36 36
4 23 26 18 21 36 36 39
5 20 21 30 28 45 31 33
6 16 19 24 23 33 32 39
7 37 43 49 33 53 49 32
8 04 09 13 17 39 29 32

Analyze these data to determine the effect of location. (Hint: think carefully
about the design.)

The oleoresin of trees is obtained by cutting a tapping gash in the barkProblem 12.14
and removing the resin that collects there. Acid treatments can also im-
prove collection. In this experiment, four trees (Dipterocarpus kerrii) will
be tapped seven times each. Each of the tappings will be treated with a dif-
ferent strength of sulfuric acid (0, 2.5, 5, 10, 15, 25, and 50% strength), and
the resin collected from each tapping is the response (in grams, data from
Bin Jantan, Bin Ahmad, and Bin Ahmad 1987, data set Oleoresin):

Draft of March 4, 2021



12.6 Problems 473

Acid strength (%)
Tree 0 2.5 5 10 15 25 50
1 3 108 219 276 197 171 166
2 2 100 198 319 202 173 304
3 1 43 79 182 123 172 194
4 .5 17 33 78 51 41 70

Determine the effect of acid treatments on resin output; if acid makes a dif-
ference, which treatments are best?

Hormones can alter the sexual development of animals. This experiment Problem 12.15
studies the effects of growth hormone (GH) and follicle-stimulating hormone
(FSH) on the length of the seminiferous tubules in pigs. The treatments are
control, daily injection of GH, daily injection of FSH, and daily injection of
GH and FSH. Twenty-four weanling boars are used, four from each of six
litters. The four boars in each litter are randomized to the four treatments.
The boars are castrated at 100 days of age, and the length (in meters!) of
the seminiferous tubules determined as response (data from Swanlund et al.
1995, data set Tubules).

Litter
1 2 3 4 5 6

Control 1641 1290 2411 2527 1930 2158
GH 1829 1811 1897 1506 2060 1207
FSH 3395 3113 2219 2667 2210 2625
GH+FSH 1537 1991 3639 2246 1840 2217

Analyze these data to determine the effects of the hormones on tubule length.

Shade trees in coffee plantations may increase or decrease the yield of Problem 12.16
coffee, depending on several environmental and ecological factors. Robusta
coffee was planted at three locations in Ghana. Each location was divided
into four plots, and trees were planted at densities of 185, 90, 70, and 0 trees
per hectare. Data are the yields of coffee (kg of fresh berries per hectare) for
the 1994-95 cropping season (data from Amoah, Osei-Bonsu, and Oppong
1997, data set ShadedCoffee):

Location 185 90 70 0
1 3107 2092 2329 2017
2 1531 2101 1519 1766
3 2167 2428 2160 1967

Analyze these data to determine the effect of tree density on coffee produc-
tion.

A sensory experiment was conducted to determine if consumers have Problem 12.17
a preference between regular potato chips (A) and reduced-fat potato chips
(B). Twenty-four judges will rate both types of chips; twelve judges will
rate the chips in the order regular fat, then reduced fat; and the other twelve
will have the order reduced fat, then regular fat. We anticipate judge to judge
differences and possible differences between the first and second chips tasted.
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The response is a liking scale, with higher scores indicating greater liking
(data from Monica Coulter, data set PotatoChips):

Judge
Period Chip 1 2 3 4 5 6 7 8 9 10 11 12
1 A 8 5 7 8 7 7 4 9 8 7 7 7
2 B 6 6 8 8 4 7 8 9 9 7 5 3

Judge
13 14 15 16 17 18 19 20 21 22 23 24

1 B 4 6 6 7 6 4 8 6 7 6 8 7
2 A 7 8 7 8 4 8 7 7 7 8 8 8

Analyze these data to determine if there is a difference in liking between the
two kinds of potato chips.

Find conditions under which the estimated variance for a CRD basedQuestion 12.1
on RCB data is less than the naive estimate pooling sums of squares and
degrees of freedom for error and blocks. Give a heuristic argument, based on
randomization, suggesting why your relationship is true.

The inspector general is coming, and an officer wishes to arrange someQuestion 12.2
soldiers for inspection. In the officer’s command are men and women of three
different ranks, who come from six different states. The officer is trying to
arrange 36 soldiers for inspection in a six by six square with one soldier from
each state-rank-gender combination. Furthermore, the idea is to arrange the
soldiers so that no matter which rank or file (row or column) is inspected
by the general, the general will see someone from each of the six states,
one woman of each rank, and one man of each rank. Why is this officer so
frustrated?
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Chapter 13

Incomplete Block Designs

Block designs group similar units into blocks so that variation among units
within the blocks is reduced. Complete block designs, such as RCB and Not all treatments

appear in an
incomplete block

LS, have each treatment occurring once in each block. Incomplete block
designs also group units into blocks, but the blocks do not have enough units
to accommodate all the treatments.

Incomplete block designs share with complete block designs the advan-
tage of variance reduction due to blocking. The drawback of incomplete
block designs is that they do not provide as much information per experi- Incomplete blocks

less efficient than
complete blocks

mental unit as a complete block design with the same error variance. Thus
complete blocks are preferred over incomplete blocks when both can be con-
structed with the same error variance.

Example 13.1 Eyedrops
Eye irritation can be reduced with eyedrops, and we wish to compare

three brands of eyedrops for their ability to reduce eye irritation. (There
are problems here related to measuring eye irritation, but we set them aside
for now.) We expect considerable subject to subject variation, so blocking
on subject seems appropriate. If each subject can only be used during one
treatment period, then we must use one brand of drop in the left eye and
another brand in the right eye. We are forced into incomplete blocks of size
two, because our subjects have only two eyes.

Suppose that we have three subjects that receive brands (A and B), (A and
C), and (B and C) respectively. How can we estimate the expected difference
in responses between two treatments, say A and B? We can get some infor-
mation from subject 1 by taking the difference of the A and B responses; the
subject effect will cancel in this difference. This first difference has variance
2σ2. We can also get an estimate of A-B by subtracting the B-C difference in
subject three from the A-C difference in subject two. Again, subject effects
cancel out, and this difference has variance 4σ2. Similar approaches yield
estimates of A-C and B-C using data from all subjects.

If we had had two complete blocks (three-eyed subjects?) with the same
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unit variance, then we would have had two independent estimates of A-B
each with variance 2σ2. Thus the incomplete block design has more variance
in its estimates of treatment differences than does the complete block design
with the same variance and number of units.

There are many kinds of incomplete block designs. This chapter will
cover only some of the more common types. Several of the incomplete block
designs given in this chapter have “balanced” in their name. It is important
to realize that these designs are not balanced in the sense that all block and
factor-level combinations occur equally often. Rather they are balanced using
somewhat looser criteria that will be described later.

Two general classes of incomplete block designs are resolvable designs
and connected designs. Suppose that each treatment is used r times in theResolvable

designs split into
replications

design. A resolvable design is one in which the blocks can be arranged into
r groups, with each group representing a complete set of treatments. Resolv-
able designs can make management of experiments simpler, because each
replication can be run at a different time or a different location, or entire
replications can be dropped if the need arises. The eyedrop example is not
resolvable.

A design is disconnected if you can separate the treatments into two
groups, with no treatment from the first group ever appearing in the sameConnected

designs can
estimate all
treatment
differences

block with a treatment from the second group. A connected design is one
that is not disconnected. In a connected design you can estimate all treatment
differences. You cannot estimate all treatment differences in a disconnected
design; in particular, you cannot estimate differences between treatments in
different groups. Connectedness is obviously a very desirable property.

13.1 Balanced Incomplete Block Designs

The Balanced Incomplete Block Design (BIBD) is the simplest incomplete
block design. We have g treatments, and each block has k units, with k < g.BIBD
Each treatment will be given to r units, and we will use b blocks. The total
number of units N must satisfy N = kb = rg. The final requirement for a
BIBD is that all pairs of treatments must occur together in the same number of
blocks. The BIBD is called “balanced” because the variance of the estimated
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Table 13.1: Plates washed before foam disappears. Letters
indicate treatments; data set DirtyDishes.

Session
1 2 3 4 5 6 7 8 9 10 11 12

A 19 D 6 G 21 A 20 B 17 C 15 A 20 B 16 C 13 A 20 B 17 C 14
B 17 E 26 H 19 D 7 E 26 F 23 E 26 F 23 D 7 F 24 D 6 E 24
C 11 F 23 J 28 G 20 H 19 J 31 J 31 G 21 H 20 H 19 J 29 G 21

difference of treatment effects α̂i − α̂j is the same for all pairs of treatments
i, j.

Example 13.1 is the simplest possible BIBD. There are g = 3 treatments,
with blocks of size k = 2. Each treatment occurs r = 2 times in the b = 3
blocks. There are N = 6 total units, and each pair of treatments occurs
together in one block.

We may use the BIBD design for treatments with factorial structure. For
example, suppose that we have three factors each with two levels for a total
of g = 8 treatments. If we have b = 8 blocks of size k = 7, then we can use
a BIBD with r = 7, with each treatment left out of one block and each pair
of treatments occurring together six times.

Example 13.2 Dish detergent
John (1961) gives an example of a BIBD. Nine different dishwashing

solutions are to be compared. The first four consist of base detergent I and 3,
2, 1, and 0 parts of an additive; solutions five through eight consist of base
detergent II and 3, 2, 1, and 0 parts of an additive; the last solution is a control.
There are three washing basins and one operator for each basin. The three
operators wash at the same speed during each test, and the response is the
number of plates washed when the foam disappears. The speed of washing
is the same for all three detergents used at any one session, but could differ
from session to session.

Table 13.1 gives the design and the results. There are g = 9 treatments
arranged in b = 12 incomplete blocks of size k = 3. Each treatment appears
r = 4 times, and each pair of treatments appears together in one block.

The requirement that all pairs of treatments occur together in an equal
number of blocks is a real stickler. Any given treatment occurs in r blocks,
and there are k − 1 other units in each of these blocks for a total of r(k − 1) Treatment pairs

occur together λ
times

units. These must be divided evenly between the g−1 other treatments. Thus
λ = r(k − 1)/(g − 1) must be a whole number for a BIBD to exist. For the
eyedrop example, λ = 2(2 − 1)/(3 − 1) = 1, and for the dishes example,
λ = 4(3− 1)/(9− 1) = 1.

A major impediment to the use of the BIBD is that no BIBD may exist for
your combination of kb = rg. For example, you may have g = 5 treatments
and b = 5 blocks of size k = 3. Then r = 3, but λ = 3(3−1)/(5−1) = 3/2
is not a whole number, so there can be no BIBD for this combination of r, k,
and g. Unfortunately, λ being a whole number is not sufficient to guarantee
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that a BIBD exists, though one usually does.

A BIBD always exists for every combination of k < g. For example, you
can always generate a BIBD by using all combinations of the g treatmentsUnreduced BIBD

has all
combinations

taken k at a time. Such a BIBD is called unreduced. The problem with this
approach is that you may need a lot of blocks for the design. For example,
the unreduced design for g = 8 treatments in blocks of size k = 4 requires
b = 70 blocks. Appendix B contains a list of some BIBD plans for g ≤ 9.BIBD tables
Fisher and Yates (1963) and Cochran and Cox (1957) contain much more
extensive lists.

If you have a plan for a BIBD with g, k, and b blocks, then you can
construct a plan for g treatments in b blocks of g − k units per block simplyDesign

complement by using in each block of the second design the treatments not used in the
corresponding block of the first design. The second design is called the com-
plement of the first design. When b = g and r = k, a BIBD is said to be
symmetric. The eyedrop example above is symmetric; the detergent exampleSymmetric BIBD
is not symmetric.

Randomization of a BIBD occurs in three steps. First, randomize the
assignment of physical blocks to subgroups of treatment letters (or numbers)BIBD

randomization given in the design. Second, randomize the assignment of these treatment
letters to physical units within blocks. Third, randomize the assignment of
treatment letters to treatments.

13.1.1 Analysis for the BIBD

The model for the BIBD looks just like the model for the RCB. Let yij be the
response for treatment i in block j. The difference for the BIBD is that weBIBD model
do not observe all i, j combinations. Use the model

yij = µ+ αi + βj + εij .

Treatment effects αi may be random or fixed, and block effects βj may be
random or fixed. As with the RCB, the assumption of additivity needs to be
assessed.

Analysis of the BIBD differs from complete block designs such as RCB
and LS in one important way: whether blocks were fixed or random did not
change the results of the analysis for complete block designs, but the twoFixed or random

blocks? approaches will lead to different results for incomplete block designs such
as the BIBD. However, the differences between the two are minor in most
instances.

When blocks are assumed to be fixed, the analysis is called an intrablock
analysis. In effect, all of the information regarding treatment differences is
assembled from differences taken between observations within a block. TheIntrablock

analysis discussion in Example 13.1 is a case of intrablock analysis: the estimate
for treatment A minus treatment B is constructed from A-B within block 1
together with A-C within block 2 and B-C within block 3.

Draft of March 4, 2021



13.1 Balanced Incomplete Block Designs 479

From an ANOVA perspective, intrablock analysis is simple: treatments
adjusted for blocks. However, the simple formulae we have used for estimat-
ing treatment effects and sums of squares do not work for the BIBD; see the Special formulae

for BIBDnext section for what insight we can gain from the formulae that do work.
This is analogous to the situation of an RCB with missing data: examine
treatments adjusted for blocks, and let the software do the calculations.

When blocks are assumed to be random, there is additional information
about treatments that can be extracted from the total response in each block;
this is the interblock information. Combining the interblock information with Interblock

recoverythe intrablock analysis is called interblock recovery. Interblock recovery hap-
pens automatically when you do REML analysis with random blocks1. The
variability of the estimates from interblock information is almost always sub-
stantially greater than that for intrablock estimates leading to the combined
estimates of treatment effects usually being pretty close to the intrablock es-
timates, and the variability of estimates after interblock recovery being only
slightly smaller than the intrablock estimates. In fact, the better your block-
ing works, the less there is to be gained from interblock recovery (that is,
most of the information is intrablock when block to block variance is high).

Example 13.3 Dish detergent, continued
There are nine treatments and twelve blocks of size three in a BIBD. The

basic intrablock analysis is treatments adjusted for blocks. We fit the model
in line 1. The plots from line 2 (not shown) reveal somewhat short tails but
no major issues.

1In ye olde days, we would do the intrablock analysis, then regress the block totals on
dummy variables for the treatments included in the blocks, then estimate block variance rela-
tive to error variance, then form a weighted average of intrablock and interblock estimates.
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1 > fit1 <- lm(plates˜session+treat,DirtyDishes)
2 > plot(fit1)
3 > anova(fit1)

Response: plates
Df Sum Sq Mean Sq F value Pr(>F)

session 11 412.75 37.523 45.533 6.028e-10 ***
treat 8 1086.81 135.852 164.854 6.809e-14 ***
Residuals 16 13.19 0.824

4 > summary(fit1)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.41667 0.15130 128.334 < 2e-16 ***
session1 -1.04630 0.55932 -1.871 0.079800 .
...
session11 -0.41667 0.55932 -0.745 0.467106
treat1 0.33333 0.49414 0.675 0.509574
treat2 -2.22222 0.49414 -4.497 0.000366 ***
treat3 -6.22222 0.49414 -12.592 1.02e-09 ***
treat4 -12.88889 0.49414 -26.084 1.54e-14 ***
treat5 5.88889 0.49414 11.918 2.27e-09 ***
treat6 3.55556 0.49414 7.196 2.13e-06 ***
treat7 1.66667 0.49414 3.373 0.003876 **
treat8 -0.22222 0.49414 -0.450 0.658946

The ANOVA at line 3 shows treatments adjusted for blocks to be highly sig-
nificant; it also shows a p-value for blocks, which we should ignore. The
summary at line 4 shows that the standard error for an estimated treatment
effect is 0.494.

5 > linear.contrast(fit1,treat,rep(c(.125,-1),c(8,1)))
estimates se t-value p-value lower-ci upper-ci

1 -11.375 0.5559027 -20.46222 6.725878e-13 -12.55346 -10.19654
6 > linear.contrast(fit1,treat,c(.2,.2,.2,.2,-.2,-.2,-.2,-.2,0))
estimates se t-value p-value lower-ci upper-ci

1 -6.377778 0.2964814 -21.51156 3.102838e-13 -7.00629 -5.749265
7 > sidelines(pairwise(fit1,treat))

b1-0 -12.889
b1-1 -6.222
b1-2 -2.222 |
b2-0 -0.222 | |
b1-3 0.333 | |
b2-1 1.667 | |
b2-2 3.556 | |
b2-3 5.889 |
ctrl 10.111

We are likely interested in whether the experimental treatments differ from
control. The contrast at line 5 shows that the new treatments average 11.4
plates less than the control, a difference that is highly significant. What about
the two different bases in the experimental treatments? The contrast at line 6
shows that the average for base 1 is 6.4 plates less than that for base 3, again
highly significant. The pairwise comparisons at line 7 show that the bases
barely overlap, and control is better than all of the experimental treatments.

Interblock analysis requires an assumption of random blocks, which cer-

Draft of March 4, 2021



13.1 Balanced Incomplete Block Designs 481

tainly seems reasonable for this experiment.

8 > fit2 <- lmer(plates˜(1|session)+treat,DirtyDishes)
9 > summary(fit2)
...
Random effects:
Groups Name Variance Std.Dev.
session (Intercept) 0.05635 0.2374
Residual 0.80437 0.8969
Number of obs: 36, groups: session, 12

Fixed effects:
Estimate Std. Error t value

(Intercept) 19.4167 0.1644 118.079
treat1 0.3333 0.4323 0.771
treat2 -2.6061 0.4323 -6.029
treat3 -6.1742 0.4323 -14.283
treat4 -12.9129 0.4323 -29.872
treat5 6.0569 0.4323 14.012
treat6 3.7955 0.4323 8.780
treat7 1.3787 0.4323 3.189
treat8 -0.1742 0.4323 -0.403
...
10 > Anova(fit2,test="F")
Analysis of Deviance Table (Type II Wald F tests with Kenward-Roger df)

Response: plates
F Df Df.res Pr(>F)

treat 192.96 8 24.71 < 2.2e-16 ***

In line 8 we fit the model with block as random. The summary at line 9
shows that the variance between blocks is actually fairly small relative to the
residual variance. However, even with the relatively small block to block
variance, the improvement with interblock recovery is small: the standard
error of a treatment effect is .432, which is only 13% less than the value
of .494 from the intrablock analysis. Nevertheless, this is a less expensive
improvement than collecting more data. The interblock ANOVA at line 10
shows a more significant effect (higher F and higher denominator degrees of
freedom) than we saw for intrablock.

13.1.2 Efficiency for the BIBD

Just as we consider the relative efficiency of RCB to CRD, we can consider
the relative efficiency of BIBD to RCB. Define EBIBD:RCB to be Efficiency of BIBD

to RCB

EBIBD:RCB =
g(k − 1)

(g − 1)k
,

where g is the number of treatments and k is the number of units per block.
Observe that EBIBD:RCB < 1, because k < g in the BIBD. For the detergent
example, EBIBD:RCB = 9× 2/(8× 3) = 3/4.

The value EBIBD:RCB is the relative efficiency of the BIBD to an RCB
with the same variance. One way to think about EBIBD:RCB is that every unit
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in a BIBD is only worth EBIBD:RCB units worth of information in an RCB Effective sample
size rEBIBD:RCBwith the same variance. Thus while each treatment is used r times in a BIBD,

the effective sample size is only rEBIBD:RCB.
Note that we have defined EBIBD:RCB with the idea that we could create

an RCB with the same error variance. If we could create an actual RCB with
the same error variance, we would never use the BIBD, because the RCB
would give us more power and narrower confidence intervals for the same
sample size.

In practice, we can often find incomplete blocks with a smaller variance
σ2bibd than can be attained using complete blocks σ2rcb. We prefer the BIBD
design over the RCB ifBIBD beats RCB

if variance
reduction great
enough

σ2bibd
rEBIBD:RCB

<
σ2rcb
r

or
σ2bibd
σ2rcb

< EBIBD:RCB ;

in words, we prefer the BIBD if the reduction in variance more than com-
pensates for the loss of efficiency. This comparison ignores adjustments for
error degrees of freedom.

The relative efficiency also plays a role in the formulae for hand cal-
culation for intrablock analysis in the BIBD; this role of efficiency gives usHand formulae for

BIBD use
effective sample
size

more insight into the BIBD. (The availability of these simple formulae helped
make the BIBD attractive before computers.) The hand-calculation formulae
for the BIBD use the effective sample size in place of the actual sample size.
Let y•j be the mean response in the jth block; let vij = yij − y•j be the
data with block means removed; and let vi• be the sum of the vij values for
treatment i (there are r of them). Then we have

α̂i =
vi•

rEBIBD:RCB
,

SSTrt =

g∑
i=1

(rEBIBD:RCB)α̂i
2 ,

and

V ar(
∑
i

wiα̂i) = σ2
∑
i

w2
i

rEBIBD:RCB
.

We can also use pairwise comparison procedures with the effective sample
size.

13.2 Row and Column Incomplete Blocks

We use Latin Squares and their variants when we need to block on two
sources of variation in complete blocks. We can use Youden Squares when
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we need to block on two sources of variation, but cannot set up the com-
plete blocks for LS designs. I’ve always been amused by this name, because
Youden Squares are not square.

The simplest example of a Youden Square starts with a Latin Square
and deletes one of the rows (or columns). The resulting arrangement has Youden Squares

are incomplete
Latin Squares

g columns and g − 1 rows. Each row is a complete block for the treatments,
and the columns form an unreduced BIBD for the treatments. Here is a sim-
ple Youden Square formed from a four by four Latin Square:

A B C D
B A D C
C D A B

A more general definition of a Youden Square is a rectangular arrange-
ment of treatments, with the columns forming a BIBD and all treatments Youden Square is

BIBD on columns
and RCB on rows

occurring an equal number of times in each row. In particular, any symmet-
ric BIBD (b = g) can be rearranged into a Youden Square. For example, here
is a symmetric BIBD with g = b = 7 and r = k = 3 arranged as a Youden
Square:

A B C D E F G
B C D E F G A
D E F G A B C

In Appendix B, thoses BIBD’s that can be arranged as Youden Squares are
so arranged.

The analysis of a Youden Square is a combination of the Latin Square
and BIBD, as might be expected. Because both treatments and columns ap-
pear once in each row, row contrasts are orthogonal to treatment and column Row orthogonal

designscontrasts, and this makes computation a little easier. Youden Squares are also
called row orthogonal for this reason. The intrablock ANOVA has terms for
rows, columns, treatments (adjusted for columns), and error. Row effects and Intrablock

analysis adjusts
for rows and

columns

sums of squares are computed via the standard formulae, ignoring columns
and treatments. Column sums of squares (unadjusted) are computed ignor-
ing rows and treatments. Intrablock treatment effects and sums of squares
are computed as for a BIBD with columns as blocks. Error sums of squares Interblock

analysis similar to
BIBD

are found by subtraction. Interblock analysis of the Youden Square and the
combination of inter- and intrablock information are exactly like the BIBD.

Example 13.4 Lithium in blood
We wish to compare the blood concentrations of lithium 12 hours af-

ter administering lithium carbonate, using either a 300 mg capsule, 250 mg
capsule, 450 mg time delay capsule, or 300 mg solution. There are twelve
subjects, each of whom will be used twice, 1 week apart. We anticipate that
the responses will be different in the second week, so we block on subject
and week. The response is the serum lithium level as shown in Table 13.2
(data from Westlake 1974, data set Lithium).

Draft of March 4, 2021



484 Incomplete Block Designs

There are g = 4 treatments in b = 12 blocks of size k = 2, so that r = 6.
We have λ = 2, E = 2/3, and each treatment appears three times in each
week for a Youden Square.

It is probably safe to treat subjects as random. On the other hand, we
might expect consistent differences from week 1 to 2, so we treat period as
fixed. Line 1 fits the model. The plot from line 2 (not shown) reals a hint
of non-additivity (this is actually more clear in the model that treats subjects
as fixed). Line 3 refits with a log transformation of the response. The plot
from line 4 shows the non-additivity has been fixed, but there is a hint of
decreasing variance.

1 > fit <- lmer(concentration˜period+treatment+(1|subject),Lithium)
2 > plot(fit)
3 > fit2 <- lmer(log(concentration)˜period+treatment+(1|subject),Lithium)
4 > plot(fit2)
5 > summary(fit2)

...
Random effects:
Groups Name Variance Std.Dev.
subject (Intercept) 0.01759 0.1326
Residual 0.03763 0.1940
Number of obs: 24, groups: subject, 12

Fixed effects:
Estimate Std. Error t value

(Intercept) 5.33448 0.05508 96.842
period1 0.15151 0.03960 3.826
treatment1 0.03158 0.07488 0.422
treatment2 0.09152 0.07488 1.222
treatment3 -0.17819 0.07488 -2.380

6 > car::Anova(fit2,test="F")
Analysis of Deviance Table (Type II Wald F tests with Kenward-Roger df)

Response: log(concentration)
F Df Df.res Pr(>F)

period 14.6393 1 8.1023 0.004927 **
treatment 1.7051 3 12.4656 0.217005

The summary at line 5 shows us that subject variability is of the same order
as residual variability, and the ANOVA at line 6 shows us that there is no
evidence for differences between treatments (a pairwise comparison would
say the same).

13.3 Partially Balanced Incomplete Blocks

BIBD’s are great, but their balancing requirements may imply that the small-
est possible BIBD for a given g and k is too big to be practical. For ex-BIBD’s are too big

for some g and k ample, let’s look for a BIBD for g = 12 treatments in incomplete blocks
of size k = 7. To be a BIBD, λ = r(k − 1)/(g − 1) = 6r/11 must be
a whole number; this implies that r is some multiple of 11. In addition,
b = rg/k = (11×m)× 12/7 must be a whole number, and that implies that
b is a multiple of 11× 12 = 132. So the smallest possible BIBD has r = 77,
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Table 13.2: Serum levels of lithium (µEq/l) 12 hours after
administration. Treatments are 300 mg and 250 mg capsules, 450 mg
time delay capsule, and 300 mg solution.

Subject
Week 1 2 3 4 5 6
1 A 200 D 267 C 156 B 280 D 333 D 233
2 B 160 C 178 A 200 C 178 A 167 B 200

7 8 9 10 11 12
1 B 320 B 320 C 111 A 333 A 233 C 244
2 A 200 D 200 D 133 D 200 C 178 B 160

b = 132, and N = 924. This is a bigger experiment that we are likely to run.
Partially Balanced Incomplete Block Designs (PBIBD) allow us to run

incomplete block designs with fewer blocks than may be required for a BIBD. PBIBD has
N = gr = bk;

some treatment
pairs more

frequent

The PBIBD has g treatments and b blocks of k units each; each treatment is
used r times, and there is a total of N = gr = bk units. The PBIBD does not
have the requirement that each pair of treatments occurs together in the same
number of blocks. This in turn implies that not all differences α̂i − α̂j have
the same variance in a PBIBD.

Here is a sample PBIBD with g = 12, k = 7, r = 7, and b = 12. In
this representation, each row is a block, and the numbers in the row indicate Sample PBIBD
which treatments occur in that block.

Block Treatments
1 1 2 3 4 5 8 10
2 2 3 4 5 6 9 11
3 3 4 5 6 7 10 12
4 1 4 5 6 7 8 11
5 2 5 6 7 8 9 12
6 1 3 6 7 8 9 10
7 2 4 7 8 9 10 11
8 3 5 8 9 10 11 12
9 1 4 6 9 10 11 12
10 1 2 5 7 10 11 12
11 1 2 3 6 8 11 12
12 1 2 3 4 7 9 12

We see, for example, that treatment 1 occurs three times with treatments 5
and 9, and four times with all other treatments.

The design rules for a PBIBD are fairly complicated: Requirements for
PBIBD

1. There are g treatments, each used r times. There are b blocks of size
k < g. Of course, bk = gr. No treatment occurs more than once in a
block.

2. There are m associate classes. Any pair of treatments that are ith
associates appears together in λi blocks. We usually arrange the λi Associate classes
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values in decreasing order, so that first associates appear together most
frequently.

3. All treatments have the same number of ith associates, namely ρi.ρi ith associates

4. Let A and B be two treatments that are ith associates, and let pijk be the
number of treatments that are jth associates of A and kth associates
of B. This number pijk does not depend on the pair of ith associates
chosen. In particular, pijk = pikj .

The PBIBD is partially balanced, because the variance of α̂i − α̂j depends
upon whether i, j are first, second, or mth associates. The randomization ofRandomize

PBIBD like BIBD a PBIBD is just like that for a BIBD.
Let’s check the design given above and verify that it is a PBIBD. First

note that g = 12, k = 7, r = 7, b = 12, and no treatment appears twice in
a block. Next, there are two associate classes, with first associates appearing
together four times and second associates appearing together three times. The
pairs (1,5), (1,9), (2,6), (2,10), (3,7), (3,11), (4,8), (4,12), (5,9), (6,10), (7,11),
and (8,12) are second associates; all other pairs are first associates. Each
treatment has nine first associates and two second associates. For any pair of
first associates, there are six other treatments that are first associates of both,
four other treatments that are first associates of one and second associates
of the other (two each way), and no treatments that are second associates of
both. We thus have

{p1ij} =

[
6 2
2 0

]
.

For any pair of second associates, there are nine treatments that are first as-
sociates of both, and one treatment that is a second associate of both, so that

{p2ij} =

[
9 0
0 1

]
.

Thus all the design requirements are met, and the example design is a PBIBD.
One historical advantage of the PBIBD was that the analysis could beIntrablock

analysis is
treatments
adjusted for
blocks

done by hand. That is, there are (relatively) simple expressions for the various
intra- and interblock analyses. With computers, that particular advantage is
no longer very important. The intrablock analysis of the PBIBD is simply
treatments adjusted for blocks, as with the BIBD.

The efficiency of a PBIBD is actually an average efficiency. The variance
of α̂i− α̂j depends on whether treatments i and j are first associates, second
associates, or whatever. So to compute efficiency EPBIBD:RCB, we dividePBIBD less

efficient on
average than
BIBD

the variance obtained in an RCB for a pairwise difference (2σ2/r) by the
average of the variances of all pairwise differences in the PBIBD. There is
an algorithm to determine EPBIBD:RCB, but there is no simple formula. We
can say that the efficiency will be less than g(k− 1)/[(g− 1)k], which is the
efficiency of a BIBD with the same block size and number of treatments.

There are several extensive catalogues of PBIBD’s, including Bose, Clat-
worthy, and Shrikhande (1954) (376 separate designs) and Clatworthy (1973).

Draft of March 4, 2021



13.4 Cyclic Designs 487

13.4 Cyclic Designs

Cyclic designs are easily constructed incomplete block designs that permit
the study of g treatments in blocks of size k. We will only examine the Cyclic designs

are simplesimplest situation, where the replication r for each treatment is a multiple of
k, the block size. So r = mk, and b = mg is the number of blocks. Cyclic
designs include some BIBD and PBIBD designs.

A cycle of treatments starts with an initial treatment and then proceeds
through the subsequent treatments in order. Once we get to treatment g, we
go back down to treatment 1 and start increasing again. For example, with Cycles of

treatmentsseven treatments we might have the cycle (4, 5, 6, 7, 1, 2, 3).
Cyclic construction starts with an initial block and builds g − 1 more

blocks from the initial block by replacing each treatment in the initial block Proceed through
cycles from initial

block
by its successor in the cycle. Additional sets of g blocks are constructed from
new initial blocks. Thus all we need to know to build the design are the initial
blocks.

Write the initial block in a column, and write the cycles for each treatment
in the initial block in rows, obtaining a k by g arrangement. The columns of
this arrangement are the blocks. For example, suppose we have seven treat-
ments and the initial block [1,4]. The cyclic design has blocks (columns):

1 2 3 4 5 6 7
4 5 6 7 1 2 3

Each row is a cycle started by a treatment in the initial block. Cycles are
easy, so cyclic designs are easy, once you have the initial block.

But wait, there’s more! Not only do we have an incomplete block design Cyclic designs
are row

orthogonal
with the columns as blocks, we have a complete block design with the rows as
blocks. Thus cyclic designs are row orthogonal designs (and may be Youden
Squares if the cyclic design is BIBD).

Appendix B.3 contains a table of initial blocks for cyclic designs for k
from 2 through 10 and g from 6 through 15. Several initial blocks are given
for the smaller designs, depending on how many replications are required.
For example, for k = 3 the table shows initial blocks for 3, 6, and 9 repli-
cations. Use the first initial block if r = 3, use the first and second initial
blocks if r = 6, and use all three initial blocks if r = 9. For g = 10, k = 3,
and r = 6, the initial blocks are (1,2,5) and (1,3,8), and the plan is

1 2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10 1
5 6 7 8 9 10 1 2 3 4

1 2 3 4 5 6 7 8 9 10
3 4 5 6 7 8 9 10 1 2
8 9 10 1 2 3 4 5 6 7

As with the PBIBD, there is an algorithm to compute the (average) effi-
ciency of a cyclic design, but there is no simple formula. The initial blocks
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given in Appendix B.3 were chosen to make the cyclic designs as efficient as
possible.

13.5 Square, Cubic, and Rectangular Lattices

Lattice designs work when the number of treatments g and the size of the
blocks k follow special patterns. Specifically,Lattice designs

for special g, k
combinations • A Square Lattice can be used when g = k2.

• A Cubic Lattice can be used when g = k3.

• A Rectangular Lattice can be used when g = k(k + 1).

These lattice designs are resolvable and are most useful when we have a large
number of treatments to be run in small blocks.

We illustrate the Square Lattice when g = 9 = 32. Arrange the nine
treatments in a square; for example:

1 2 3
4 5 6
7 8 9

There is nothing special about this pattern; we could arrange the treatmentsA simple lattice
has two
replications made
of rows and
columns of the
square

in any way. The first replicate of the Square Lattice consists of blocks made
up of the rows of the square: here (1, 2, 3), (4, 5, 6), and (7, 8, 9). The
second replicate consists of blocks made from the columns of the square: (1,
4, 7), (2, 5, 8), and (3, 6, 9). A Square Lattice must have at least these two
replicates to be connected, and a Square Lattice with only two replicates is
called a simple lattice.

We add a third replication using a Latin Square. A Square Lattice with
three replicates is called a triple lattice. Here is a three by three Latin Square:Triple lattice uses

Latin Square for
third replicate A B C

B C A
C A B

Assign treatments to blocks using the letter patterns from the square. The
three blocks of the third replicate are (1, 6, 8), (2, 4, 9), and (3, 5, 7).

You can construct additional replicates for every Latin Square that is or-Additional
replicates use
orthogonal Latin
Squares

thogonal to those already used. For example, the following square

A B C
C A B
B C A

is orthogonal to the first one used. Our fourth replicate is thus (1, 5, 9), (2,
6, 7), and (3, 4, 8). Recall that there are no six by six Graeco-Latin Squares
(six by six orthogonal Latin Squares), so only simple and triple lattices are
possible for g = 62.
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For g = k2, there are at most k−1 orthogonal Latin Squares. The Square
Lattice formed when k − 1 Latin Squares are used has k + 1 replicates; is Balanced Lattice

(k + 1 replicates)
is a BIBD

called a balanced lattice; and is a BIBD with g = k2, b = k(k+1), r = k+1,
λ = 1, and E = k/(k + 1). The BIBD plan for g = 9 treatments in b = 12
blocks of size k = 3, given in Appendix B, is exactly the balanced lattice
constructed above.

The (average) efficiency of a Square Lattice relative to an RCB is

ESL:RCB =
(k + 1)(r − 1)

(k + 1)(r − 1) + r
.

This is the best possible efficiency for any resolvable design.
The Rectangular Lattice is closely related to the Square Lattice. Arrange

the g = k(k+ 1) treatments in an (k+ 1)× (k+ 1) square with the diagonal Rectangular
Lattice is subset

of a square
blank, for example:

• 1 2 3
4 • 5 6
7 8 • 9

10 11 12 •

As with the Square Lattice, the first two replicates are formed from the rows
and columns of this arrangement, ignoring the diagonal: (1, 2, 3), (4, 5, 6), Rows, columns,

and Latin
Squares for a

Rectangular
Lattice

(7, 8, 9), (10, 11, 12), (4, 7, 10), (1, 8, 11), (2, 5, 12), (3, 6, 9). Additional
replicates are formed from the letters of orthogonal Latin Squares that satisfy
the extra constraints that all the squares have the same diagonal and all letters
appear on the diagonal; for example:

A B C D A C D B
C D A B B D C A
D C B A C A B D
B A D C D B A C

These squares are orthogonal and share the same diagonal containing all
treatments. The next two replicates for this Rectangular Lattice design are
thus (5, 9, 11), (1, 6, 10), (2, 4, 8), (3, 7, 12) and (6, 8, 12), (3, 4, 11), (1, 5,
7), (2, 9, 10).

The Cubic Lattice is a generalization the Square Lattice. In the Square
Lattice, each treatment can be indexed by two subscripts i, j, with 1 ≤ i ≤ k
and 1 ≤ j ≤ k. The subscript i indexes rows, and the subscript j indexes
columns. The first row in the Square Lattice is all those treatments with
i = 1. The second column is all those treatments with j = 2. The blocks Cubic Lattice for

k3 treatments in
blocks of k

of the first replicate of a Square Lattice are rows; that is, treatments are the
same block if they have the same i. The blocks of the second replicate of the
Square Lattice are columns; that is, treatments are in the same block if they
have the same j.

For the Cubic Lattice, we have g = k3 treatments that we index with
three subscripts i, j, l, with 1 ≤ i ≤ k, 1 ≤ j ≤ k, and 1 ≤ l ≤ k.
Each replicate of the Cubic Lattice will be k2 blocks of size k. In the first Form blocks by

keeping two
subscripts
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replicate of a Cubic Lattice, treatments are grouped so that all treatments in
a block have the same values of i and j. In the second replicate, treatments
in the same block have the same values of i and l, and in the third replicate,
treatments in the same block have the same values of j and l. For example,
when g = 8 = 23, the cubic lattice will have four blocks of size two in each
replicate. These blocks are as follows (using the ijl subscript to represent a
treatment):

Replicate 1 Replicate 2 Replicate 3
(111, 112) (111, 121) (111, 211)
(121, 122) (112, 122) (112, 212)
(211, 212) (211, 221) (121, 221)
(221, 222) (212, 222) (122, 222)

Cubic Lattice designs can have 3, 6, 9, and so forth replicates by repeating
this pattern.

The intrablock Analysis of Variance for a Square, Cubic, or Rectangu-Treatments
adjusted for
blocks

lar Lattice is analogous to that for the BIBD; namely, treatments should be
adjusted for blocks.

13.6 Alpha Designs

Alpha Designs allow us to construct resolvable incomplete block designs
when the number of treatments g or block size k does not meet the strictAlpha Designs

are resolvable
with g = mk

requirements for one of the lattice designs. Alpha Designs require that the
number of treatments be a multiple of the block size g = mk, so that there
are m blocks per replication and b = rm blocks in the complete design.

We construct an Alpha Design in three steps. First we obtain the “gener-
ating array” for k, m, and r. This array has k rows and r columns. Next weThree-step

construction expand each column of the generating array to m columns using a cyclic pat-
tern to obtain an “intermediate array” with k rows and mr columns. Finally
we add m to the second row of the intermediate array, 2m to the third row,
and so on. Columns of the final array are blocks.

Section B.4 has generating arrays for m from 5 to 15, k at least four butFinding the
generating array no more than the minimum of m and 100/m, and r up to four. The major

division is bym, so first find the full array for your value ofm. We only need
the first k rows and r columns of this full tabulated array.

For example, suppose that we have g = 20 treatments and blocks of size
k = 4, and we desire r = 2 replications. Then m = 5 and b = 10. The full
generating array for m = 5 from Section B.4 is

1 1 1 1
1 2 5 3
1 3 4 5
1 4 3 2
1 5 2 4
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We only need the first k = 4 rows and r = 2 columns, so our generating
array is

1 1
1 2
1 3
1 4

Step two takes each column of the generating array and does cyclic sub- Construct
intermediate

array
stitution with 1, 2, . . ., m, to get m columns. So, for our array, we get

1 2 3 4 5 1 2 3 4 5
1 2 3 4 5 2 3 4 5 1
1 2 3 4 5 3 4 5 1 2
1 2 3 4 5 4 5 1 2 3

The first five columns are from the first column of the generating array, and
the last five columns are from the last column of the generating array. This is
the intermediate array.

Finally, we take the intermediate array and add m = 5 to the second row, Add multiples of
m to rows2m = 10 to the third row, and 3m = 15 to the last row, obtaining

1 2 3 4 5 1 2 3 4 5
6 7 8 9 10 7 8 9 10 6

11 12 13 14 15 13 14 15 11 12
16 17 18 19 20 19 20 16 17 18

This is our final design, with columns being blocks and numbers indicating
treatments.

The Alpha Designs constructed from the tables in Section B.4 are with
a few exceptions the most efficient Alpha Designs possible. The average
efficiencies for these Alpha Designs are very close to the theoretical upper
bound for average efficiency of a resolvable design, namely

Eα:RCB ≤
(g − 1)(r − 1)

(g − 1)(r − 1) + r(m− 1)
.

13.7 Further Reading and Extensions

Incomplete block designs have been the subject of a great deal of research
and theory; we have mentioned almost none of it. Two excellent sources for
more theoretical discussions of incomplete blocks are John (1971) and John
and Williams (1995). Among the topics relevant to this chapter, John (1971)
describes recovery of interblock information for BIBD, PBIBD, and general
incomplete block designs; existence and construction of BIBD’s; classifi-
cation, existence, and construction of PBIBD’s; and efficiency. John and
Williams (1995) is my basic reference for Cyclic Designs, Alpha Designs,
and incomplete block efficiencies; and it has a good deal to say about row
column designs, interblock information, and other topics as well.
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Most of the designs described in this chapter are not recent. Many of
these incomplete block designs were introduced by Frank Yates in the late
1930’s, including BIBD’s (Yates 1936a), Square Lattices (Yates 1936b), and
Cubic Lattices (Yates 1939), as well other designs such as Lattice Squares
(different from a Square Lattice, Yates 1940). PBIBD’s first appear in Bose
and Nair (1939). Alpha Designs are the relative newcomers, first appearing
in Patterson and Williams (1976).

John and Williams (1995) provide a detailed discussion of the efficien-
cies of incomplete block designs, including a proof that the BIBD has the
highest possible efficiency for equally replicated designs with equal block
sizes. Section 3.3 of their book gives an expression for the efficiency of a
cyclic design; Sections 2.8 and 4.10 give a variety of upper bounds for the
efficiencies of blocked designs and resolvable designs. Chapter 12 of John
(1971) and Chapter 1 of Bose, Clatworthy, and Shrikhande (1954) describe
efficiency of PBIBD’s.

Some experimental situations will not fit into any of the standard design
categories. For example, different treatments may have different replication,
or blocks may have different sizes. Computer software exists that will search
for “optimal” allocations of the treatments to units. Optimal can be defined
in several ways; for example, you could choose to minimize the average vari-
ance for pairwise comparisons. See Silvey (1980) and Cook and Nachtsheim
(1989).

13.8 Problems

Consider the following incomplete block experiment with nine treatmentsExercise 13.1
(A-I) in nine blocks of size three (data set IBD.

Block
1 2 3 4 5 6 7 8 9

C 54 B 35 A 48 G 46 D 61 C 52 A 54 B 45 A 31
H 56 G 36 G 42 H 56 E 61 I 53 H 59 I 46 B 28
D 53 D 40 E 43 I 59 F 54 E 48 F 62 F 47 C 25

(a) Identify the type of design.
(b) Analyze the data for differences between the treatments.

Chemical yield may be influenced by the temperature, pressure, and/orExercise 13.2
time in the reactor vessel. Each of these factors may be set at a high or a low
level. Thus we have a 23 experiment. Unfortunately, the process feedstock
is highly variable, so batch to batch differences in feedstock are expected;
we must start with new feedstock every day. Furthermore, each batch of
feedstock is only big enough for seven runs (experimental units). We have
enough money for eight batches of feedstock. We decide to use a BIBD, with
each of the eight factor-level combinations missing from one of the blocks.

Give a skeleton ANOVA (source and degrees of freedom only), and de-
scribe an appropriate randomization scheme.
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Briefly describe the following incomplete block designs (BIBD, or PBIBD Exercise 13.3
with what associate classes, and so on).

(a)

Block 1 2 3 4
A A B A
B C C B
C D D D

(b)

Block 1 2 3 4 5
A A A B C
B B C D D
C D E E E

(c)
Block 1 2 3 4

1 3 1 2
2 4 3 4

We wish to compare the average access times of five brands of half-height Exercise 13.4
computer disk drives (denoted A through E). We would like to block on the
computer in which they are used, but each computer will only hold four
drives. Average access times and the design are given in the following ta-
ble (data from Nelson 1993, data set DiskSpeed):

Computer
1 2 3 4 5

A 35 A 41 B 40 A 32 A 40
B 42 B 45 C 42 C 33 B 38
C 31 D 32 D 33 D 35 C 35
D 30 E 40 E 39 E 36 E 37

Analyze these data and report your findings, including a description of the
design.

Briefly describe the experimental design you would choose for each of Problem 13.1
the following situations, and why.

(a) We wish to study “sensory specific satiety.” This is the phenomenon
wherein if you eat a lot of some food, then that food and similar foods
become less appealing. In our case we are investigating four kinds of
potato chips: classic, sour cream, barbecue, and cheese. Each subject
will participate in several sessions. At each session a subject will eat a
load food (one of the four kinds of chips). After eating the load food,
the subject will rate his or her liking of each of the four kinds of chips.
We anticipate large subject to subject differences. We also anticipate that
ratings could differ from session to session (for example, we suspect that
first session ratings could be higher than last session ratings). Each sub-
ject will be available for two sessions, and we have 24 subjects. Choose
an appropriate design for this experiment.

(b) Animal waste (manure) management is an increasingly important prob-
lem in dairy farming. One current proposal is to extract methane from
the manure before further processing the manure for other uses. (Sale
of the methane as a fuel makes the whole process economically viable.)
The methane extraction process needs to be tuned. In the present situ-
ation, we wish to study three temperatures to use in the extraction, and
three moisture levels for the manure before its injection into the extrac-
tor (basically the manure is allowed to dry until it reaches the appropriate
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moisture content). We have an essentially infinite supply of manure from
each of several farms. However, we wish to finish the tuning using no
more than 27 runs, and we anticipate that there may be yield differences
in the manure depending on its farm of origin.

(c) It has long been known that mothers pass antibodies to their infants
through breast milk. More recently, attention has focused on the an-
tibacterial properties of oligosaccharides, which are indigestible sugars
that are present in surprisingly large quantities in breast milk. It is be-
lieved that bacteria in the gut bind to the oligosaccharides rather than to
the intestinal wall, thus reducing incidence of disease.
This experiment wishes to compare the effects of oligosaccharides on
the incidence of disease (diarrhea) among human infants fed “formula”
instead of breast milk. There will be three kinds of formula: control,
control plus oligosaccharides extracted from human milk, and control
plus oligosaccharides produced in the lab. We expect enormous genetic
and environmental variability, so we’d really like to use identical triplets.
However, those are exceedingly rare. What we can use is 18 pairs of
identical twins.

(d) Competition cuts tree growth rate, so we wish to study the effects on
tree growth of using four herbicides on the competition. There are many
study sites available, but each site is only large enough for three plots.
Resources are available for 24 plots (that is, eight sites with three plots
per site). Large site differences are expected.

(e) Three treatments are being studied for the rehabilitation of acidified lakes.
Unfortunately, there is tremendous lake to lake variability, and we only
have six lakes on which we are allowed to experiment. We may treat
each lake as a whole, or we may split each lake in two using a plastic
“curtain” and treat the halves separately. Sadly, the technology does not
allow us to split each lake into three.

(f) A retail bookstore has two checkouts, and thus two checkout advertising
displays. These displays are important for enticing impulse purchases,
so the bookstore would like to know which of the four types of displays
available will lead to the most sales. The displays will be left up for one
week, because it is expensive to change displays and you really need a
full week to get sufficient volume of sales and overcome day-of-week
effects; there are, however, week to week differences in sales. The store
wishes to complete the comparison in at most 8 and preferably fewer
weeks.

(g) We wish to compare four “dog collars.” The thought is that some col-
lars will lead to faster obedience than others. The response we measure
will be the time it takes a dog to complete a walking course with lots of
potential distractions. We have 24 dogs that can be used, and we expect
large dog to dog variability. Dogs can be used more than once, but if
they are used more than once there should be at least 1 week between
trials. Our experiment should be completed in less than 3 weeks, so no
dog could possibly be used more than three times.
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(h) My family of four suffers from allergies, so we all take antihistamines of
one sort or another. Our doctors have suggested four different potential
medications, but we would like to choose one drug for all four of us to
use. We (I) want to run an experiment to choose that drug optimally.
Some constraints on the design include (a) we should each try all the
drugs, (b) the doctors say that we need to take a drug for a month or so
to get a reasonable idea of how well it works, (c) allergens change over
time, and (d) we should complete the experiment in under six months.
The response will be an “allergy symptom” index scored over the last
week of usage for each mediation.

(i) Some trumpets sound better than others, and there are groups that claim
that temperature treatments will improve the sound of a trumpet. Some
groups advocate cryogenic freezing, whereas other groups advocate a
heat treatment. We wish to compare the freezing treatment, the heat
treatment, and a control of no treatment. A professional musician will
play the instruments, which will be judged for sound by a panel of ex-
perts; the average of the experts scores will be the response for any unit.

Without a doubt, different models of trumpet sound different. Some in-
strument manufacturers have loaned us twelve trumpets, two from each
of six models. We also have the time constraint that we can only use each
instrument once.

(j) Recent research suggests that a mixture of caffeine and alcohol injected
into the blood after stroke can reduce stroke damage by 80% (my wife
suggests prophylaxis via Irish coffee). We wish to replicate their ex-
periment and study their mixture, caffeine alone, alcohol alone, and a
control. We can use 60 inbred rats, in which we can artificially induce
stroke.

For each of the following, describe the experimental design that was used, Problem 13.2
and give a skeleton ANOVA.

(a) Tissue engineering attempts to mimic live tissue using a constructed
product. In this case, we are producing tubular constructs by allowing
free floating cells in a suspension to deposit on a fibrin gel wrapped
around a tube. Once the cells are deposited, the tube is placed in a nu-
trient broth that allows the construct to grow to completion. We then
measure tensile strength as a response.

In this experiment we use three concentrations of fibrin and two concen-
trations of cells for a total of six treatments, and we use each treatment
twice for a total of twelve constructs. The jars of nutrients can only hold
four tubes, so the experiment is run in three nutrient jars. Jar one holds
treatments 1, 2, 3, and 4; jar two holds treatments 1, 2, 5, and 6; and jar
three holds treatments 3, 4, 5, and 6.

(b) We wish to study how hives of bees react to odors of different concentra-
tions. The idea is that we place an odor attractant of a given concentra-
tion 100 meters from the bee hive. We then count the number of bees that

Draft of March 4, 2021



496 Incomplete Block Designs

visit the attractant in the first hour after it is put in place. The study uses
six hives and is conducted on three consecutive days. Two hives get each
of the three concentrations on each day, and all three concentrations are
used for each hive; otherwise, the assignment of treatments is random.

(c) Does the cost of a gift reflect how much it is appreciated? We have
three gifts: a CD (inexpensive), a coupon for dinner for two (moderate),
and an iPhone (expensive). We use engaged couples. The partners are
separated; each partner is asked to complete a few neutral tasks that have
nothing to do with the experiment, and then each is told that their (other)
partner has selected a thank you gift for them, which will be one of the
three above. The response is how much each partner appreciates the gift.
For each couple, we use two different gifts, randomly assigned to the
partners. This experiment used 30 engaged couples (60 individuals in
total), and each pair of gifts is used 10 times.

(d) It has been believed that there is a link between the tuberculosis in cattle
and tuberculosis in badgers (little furry ones, not necessarily from Wis-
consin). The British government sponsored a multiyear experiment to
test this hypothesis. Suppose that the experiment went as follows. Forty
pairs of pastures (eighty total fields) are selected around Britain. The
members of any pair of pastures are geographically near to each other,
approximately equal in size, approximately equal is slope and aspect, and
have approximately equal cattle densities (animals per hectare) grazing.
One pasture in each pair is selected at random, and in that pasture traps
are set out to reduce the badger population by 75%; this will need to be
done over and over again over time. After six years, we take as response
for each pasture the fraction of cattle that have been infected with TB.
(Note: badgers have been a protected species in Britain for nearly 40
years, so the real experiment was not undertaken lightly. Predictably, it’s
results were apparently ignored by the government.)

(e) The Fellowship of the Ring, The Mummy, and The Phantom Menace are
three movies that feature hordes of computer generated bad guys. In an
effort to get a real comparison rating, 24 teenage boys will screen the
movies and give ratings. However, the movies are long and so each boy
will only watch two movies, one in the afternoon and one in the evening.
The movies are assigned at random subject to the restrictions that each
pair of movies is used the same number of times and each movie is used
an equal number of times in the afternoon and evening.

(f) Most faucets are made of brass, which is an alloy that contains lead. Lead
is toxic, and we don’t want any leaching out of the plumbing fixture into
our water (actually, up to 11 ppb is allowed). We wish to determine if
disinfectant (chlorine or chloramine) or alkalinity (high or low levels of
sodium bicarbonate) affect the amount of lead leaching out of the faucet.
We go to the building supply center and buy four faucets, one from each
of four manufacturers. We anticipate that there may be manufacturer to
manufacturer differences. We also anticipate that early use of the faucet
may have different lead levels from later use.
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(g) Plant breeders wish to study six varieties of corn. They have 24 plots
available, four in each of six locations. The varieties are assigned to
location as follows (there is random assignment of varieties to plot within
location):

Locations
1 2 3 4 5 6
A B A A B A
B C C B C C
D E D D E D
E F F E F F

(h) We wish to study gender bias in paper grading. We have 12 “lower”
level papers and 12 “advanced” level papers. There are four paid graders
who do not know the students or their names. Each paper is submitted
for grading exactly once (that is, no paper is graded by more than one
grader). We examine gender bias by the name put on the paper: either a
male first name, a female first name, or just initials. The twelve lower-
level papers are assigned at random to the combinations of grader and
name gender, as are the advanced-level papers. The response we measure
is the grade given (on a 0-100 scale).

(i) Song bird abundance can be measured by sending trained observers to
a site to listen for the calls of the birds and make counts. Consider an
experiment on the effects of three different forest harvesting techniques
on bird abundance. There are six forests and two observers, and there
will be two harvests in each of the six forests. The harvest techniques
were assigned in the following way:

Forest
Observer 1 2 3 4 5 6
1 A C B B A C
2 C A A C B B

(d) Wafer board is a manufactured wood product made from wood chips.
One potential problem is warping. Consider an experiment where we
compare three kinds of glue and two curing methods. All six combina-
tions are used four times, once for each of four different batches of wood
chips. The response is the amount of warping.

Japanese beetles ate the Roma beans in our garden last year, so we ran Problem 13.3
an experiment this year to learn the best pesticide. We have six garden beds
with beans, and the garden store has three different sprays that claim to keep
the beetles off the beans. Sprays drift on the wind, so we cannot spray very
small areas. We divide each garden bed into two plots and use a different
spray on each plot. Below are the numbers of beetles per plot (data set
JapaneseBeetles).
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Bed
1 2 3 4 5 6

19 A 9 A 25 B 9 A 26 A 13 B
21 B 16 C 30 C 11 B 33 C 18 C

Analyze these data to determine the effects of sprays. Which one should we
use?

Milk can be strained through filter disks to remove dirt and debris. FiltersProblem 13.4
are made by surface-bonding fiber webs to both sides of a disk. This experi-
ment is concerned with how the construction of the filter affects the speed of
milk flow through the filter.

We have a 24 factorial structure for the filters. The factors are fiber weight
(normal or heavy), loft (thickness of the filter, normal or low), bonding so-
lution on bottom surface (A or B), and bonding solution on top surface (A
or B). Note the unfortunate fact that the “high” level of the second factor,
loft, is low loft. Treatments 1 through 16 are the factor-level combinations in
standard order.

These are speed tests, so we pour a measured amount of milk through the
disk and record the filtration time as the response. We expect considerable
variation from farm to farm, so we block on farm. We also expect variation
from milking to milking, so we want all measurements at one farm to be done
at a single milking. However, only three filters can be satisfactorily used at a
single milking. Thus we must use incomplete blocks of size three.

Sixteen farms were selected. At each farm there will be three strainings
at one milking, with the milk strained first with one filter, then a second,
then a third. Each treatment will be used three times in the design: once
as a first filter, once as second, and once as third. The treatments and re-
sponses for the experiment are given below (data from Connor 1958, data set
MilkFiltration):
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Treatments and Responses
Filtration time

Farm First Second Third
1 10 451 7 457 16 343
2 11 260 8 418 13 320
3 12 464 5 317 14 315
4 9 306 6 462 15 291
5 13 381 4 597 6 491
6 14 362 1 325 7 449
7 15 292 2 402 8 576
8 16 431 3 477 5 394
9 7 329 9 261 4 430

10 8 389 10 413 1 272
11 5 368 11 244 2 447
12 6 398 12 517 3 354
13 2 490 16 311 9 278
14 3 467 13 429 10 486
15 4 735 14 642 11 474
16 1 402 15 380 12 589

What type of design is this? Analyze the data and report your findings on the
influence of the treatment factors on straining time.

The State Board of Education has adopted basic skills tests for high Problem 13.5
school graduation. One of these is a writing test. The student writing samples
are graded by professional graders, and the board is taking some care to be
sure that the graders are grading to the same standard. We examine grader
differences with the following experiment. There are 25 graders. We select
30 writing samples at random; each writing sample will be graded by five
graders. Thus each grader will grade six samples, and each pair of graders
will have a test in common (data set BasicSkills.

Exam Grader Score Exam Graders Scores
1 1 2 3 4 5 60 59 51 64 53 16 1 9 12 20 23 61 67 69 68 65
2 6 7 8 9 10 64 69 63 63 71 17 2 10 13 16 24 78 75 76 75 72
3 11 12 13 14 15 84 85 86 85 83 18 3 6 14 17 25 67 72 72 75 76
4 16 17 18 19 20 72 76 77 74 77 19 4 7 15 18 21 84 81 76 79 77
5 21 22 23 24 25 65 73 70 71 70 20 5 8 11 19 22 81 84 85 84 81
6 1 6 11 16 21 52 54 62 54 55 21 1 8 15 17 24 70 65 61 66 66
7 2 7 12 17 22 56 51 52 57 51 22 2 9 11 18 25 84 82 86 85 86
8 3 8 13 18 23 55 60 59 60 61 23 3 10 12 19 21 72 85 77 82 79
9 4 9 14 19 24 88 76 77 77 74 24 4 6 13 20 22 85 75 78 82 83

10 5 10 15 20 25 65 68 72 74 77 25 5 7 14 16 23 58 64 58 57 58
11 1 10 14 18 22 79 77 77 77 79 26 1 7 13 19 25 66 71 73 70 70
12 2 6 15 19 23 70 66 63 62 66 27 2 8 14 20 21 73 67 63 70 66
13 3 7 11 20 24 48 49 51 48 50 28 3 9 15 16 22 58 70 69 61 71
14 4 8 12 16 25 75 64 75 68 65 29 4 10 11 17 23 95 84 88 88 87
15 5 9 13 17 21 79 77 81 79 83 30 5 6 12 18 24 47 47 51 49 56

Analyze these data to determine if graders differ, and if so, how. Be sure to
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describe the design.

Thirty consumers are asked to rate the softness of clothes washed by tenProblem 13.6
different detergents, but each consumer rates only four different detergents.
The design and responses are given below:

Rater Trts Softness Rater Trts Softness
1 A B C D 37 23 37 41 16 A B C D 52 41 45 48
2 A B E F 35 32 39 37 17 A B E F 46 42 45 42
3 A C G H 39 45 39 41 18 A C G H 44 43 41 36
4 A D I J 44 42 46 44 19 A D I J 32 42 36 29
5 A E G I 44 44 45 50 20 A E G I 43 42 44 44
6 A F H J 55 45 53 49 21 A F H J 46 41 43 45
7 B C F I 47 50 48 52 22 B C F I 43 51 40 42
8 B D G J 37 42 40 37 23 B D G J 38 37 36 34
9 B E H J 32 34 39 29 24 B E H J 40 49 43 44
10 B G H I 36 41 39 43 25 B G H I 23 20 27 29
11 C E I J 45 44 40 36 26 C E I J 46 49 48 43
12 C F G J 42 38 39 39 27 C F G J 48 43 48 41
13 C D E H 47 48 46 47 28 C D E H 35 35 31 26
14 D E F G 43 47 48 41 29 D E F G 45 47 47 42
15 D F H I 39 32 32 31 30 D F H I 43 39 38 39

Analyze these data for treatment effects and report your findings.
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When recovering interblock information in a BIBD, we take the weighted Question 13.1
average of intra- and interblock estimates

ζ̄ = λζ̂ + (1− λ)ζ̃ .

Suppose that σ2 = σ2β = 1, g = 8, k = 7, and b = 8. Find the mean and
standard deviation of 1/λ. Do you feel that λ is well determined?
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Chapter 14

Optimal Design

Optimal design is a way of thinking about designing experiments rather than
a specific type of design or design setting. In brief, one has a model for the
data, an optimality criterion, a set of design constraints, and an algorithm.
The model for the data is a statement of the distribution of the data, typically Model, criterion,

constraints,
algorithm

involving parameters such as means, variances, and so on. We have seen
many such models and will see more as we go on. The optimality criterion
is a mathematical function that defines how good an experiment is. Typical
examples relate to how well the model parameters can be estimated, or how
well the model can predict future data. The feasible experiment with the best
optimality criterion is the optimal design.

The design constraints may take many forms. The most obvious and
common constraint is sample size, but other design constraints could take
the form of a factor having only discrete levels (versus continuous possible
values) or a continuous factor being constrained between minimum and max-
imum values.

Finally, the algorithm determines the actual optimal design based on the
model, criterion, and constraints. In rare cases, we can determine the optimal
design analytically, and thus the algorithm is mathematical proof. Usually,
we rely on computer programs to search for the optimal design, but even
here different programs can select different designs (and might even select a
different design if you ran the program again).

With some types of non-linear models (e.g., logistic regression), the situ-
ation is more complex, because the optimal design depends on the values of
the parameters being estimated. This puts us in the ironic situation of needing
to know the values of the parameters in order to design an optimal experiment
to estimate the values of those parameters. In practice, it is sufficient to have
a range of plausible values for the parameters, but we always need to bear in
mind that with non-linear models a design that is quite good for one set of
parameters may be quite poor for another set of parameters.

Many standard designs in standard settings are optimal designs. The util- Many standard
designs are

optimal
ity of optimal design arises in non-standard settings. For example,
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• What if the block size is not a multiple of the number of treatments?

• What if different blocks have different numbers of units?

• What if the sum of the levels of factors one and two must be less than
7 for safety reasons?

• What if your primary constraint is not the number of runs but the
amount of factor one that is available for use?

• What if you cannot afford to run all of the factor/level combinations?

These and many other considerations kick you out of standard settings and
into a situation where optimal design is preferred.

Optimal design sounds great, but it cannot be used blindly. The simplest
example of this is suppose that you believe that you have a linear (that is,
first order) model over one variable. The optimal design will have half of
the design points at the lower limit of the design space and half at the upper
limit. This is the best that you can do if your first order model is, in fact,
correct. But if the true model is actually quadratic (second order), your first
order design will not be able to estimate the parameters of that quadratic
model, and you will not even be able to detect that you need something more
complicated than the first order model.

Incorrect assumptions combined with optimal design can lead one far
astray.

14.1 Notation and Preliminaries

Optimal design criteria can often be expressed in non-mathematical terms,
but it is generally more compact to express them in mathematical terms. Thus
parts of this chapter will be more mathematical than most of this text in that
we will be using matrix algebra.

Let’s begin by thinking about the simple one-way model with g treat-
ments. The are many ways to parameterize that model. We often express that
model as

yij = µi + εij

together with the statement that the εij are independent normal random vari-
ables with mean 0 and variance σ2. An alternative way to write this is as

yij = w1ijµ1 + w2ijµ2 + · · ·+ wgijµg + εij

where wkij is 1 when k = i and is 0 when k 6= i. The wkij terms allow us
to pick out which mean to use in the model, as only one of the group means
will have a coefficient of 1 for any data value.

We have N data points. Stack all of the data into one vector y (of length
N ), and stack all of the εij values (in the same order) into a vector ε. Now
make an N × g matrix X , where each row of X contains w1ij through wgijRearrange into

matrix form
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for the ij pair corresponding to the data in that row. Finally, stack µ1 through
µg into a vector β. Then in matrix notation we have

y = Xβ + ε

If k = 3; the treatment sample sizes were 2, 3, and 5; and the units were in
treatment order; then X could be written

X =



1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1


with

β =

[
µ1
µ2
µ3

]

We have mentioned many times that the parameterization in fixed effects
is not unique, and many choices are available. Consider the parameterization
where µi = µ+ αi with α1 = 0. For this parameterization we have

X =



1 0 0
1 0 0
1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1
1 0 1
1 0 1


and

β =

[
µ
α2

α3

]

Suppose instead we want the parameterization where
∑

i αi = 0; this is
equivalent to αg = −α1−α2−· · ·−αg−1. That is, adding the last treatment
effect is the same as subtracting all the other treatment effects. Then we
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would have

X =



1 1 0
1 1 0
1 0 1
1 0 1
1 0 1
1 −1 −1
1 −1 −1
1 −1 −1
1 −1 −1
1 −1 −1


and

β =

[
µ
α1

α2

]

We also considered polynomial models in cases where we have a con-
tinuous predictor. Suppose that level i of the factor has quantitative level zi.
Then we can fit models of the form

yij = η0 + η1zij + η2z
2
ij + · · ·+ ηg−1z

g−1
ij + εij .

For this kind of parameterization, we have

X =



1 z1 z21
1 z1 z21
1 z2 z22
1 z2 z22
1 z2 z22
1 z3 z23
1 z3 z23
1 z3 z23
1 z3 z23
1 z3 z23


and

β =

[
η0
η1
η2

]

The point of all this is that regardless of the parameterization that we
choose, we can set up the standard linear model in terms of y, X , β, and
ε.

The parameterization, X , and β determine each other.
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(Bayesian models will be more complex.)
One other important aspect of the model is Vε, the matrix of variances

and covariances for the elements of ε. Usually, we assume that the individualNeed variance
structure of
random errors

εij have constant variance σ2 and are independent; independence means that
the different εijs have zero covariance. With these standard assumptions,
Vε is an N × N matrix with σ2 on the diagonal and 0 on the off-diagonal.
Alternatively,

Vε = σ2IN

where IN is the N ×N identity matrix.
In linear mixed effects, there are additional random terms beyond ε. We Need variance

structure of mixed
terms

usually write these models as

y = Xβ + Zγ + ε

In these models, γ is a vector of normally distributed random elements each
with mean zero. The matrix Z has N rows, and the ith row of Z determines
how the random effects contribute to the ith element of y. In many situations,
Z is a matrix of ones and zeros, meaning that for each element of y, some
elements of γ are added in and some are not.

We denote the matrix of variances and covariances of γ by Vγ . The vari-
ances are usually unknown, although we usually know that certain elements
have the same variance. For example, elements corresponding to the effects
of the levels of a random factor B would all have the same variance σ2β , and
the elements corresponding to the effects of the levels of a random interac-
tion BC would all have the same variance σ2βγ , even though we do not know
the values of σ2β and σ2βγ . In the models we have seen so far we usually as-
sume that the covariances between the elements of γ are zero, but that is not
a requirement.

The matrix of variances and covariances for y is Vy; it is determined by
Vε and, if present, Z and Vγ :

Vy = Vε

or
Vy = ZVγZ

T + Vε

For linear models, the (generalized) least squares estimate of β is

β̂ = (XTV −1y X)−1XTV −1y y

When there are no random effects, this reduces to

β̂ = (XTX)−1XTy

The variance/covariance matrix of β̂ is Variance of
estimated

parametersV
β̂

= (XTV −1y X)−1
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or just
V
β̂

= σ2(XTX)−1

when there are no random effects and the observations are independent.
Note that we we usually must use an estimate of Vy when we have ran-

dom effects. For example, with REML we first estimate the variances to get
an estimate of Vγ , and then we plug that estimated Vγ into our formulae for
β̂ and V

β̂
. One result of treating the estimated Vγ as if it were the truth is

that we wind up with a V
β̂

that is a little bit too small.

To make a prediction at some point, we first determine xT
0 , which would

be that point’s row in the X matrix if we had observed data there. The pre-
diction at x0 is then

ŷ0 = xT
0 β̂

with varianceVariance of
prediction Vŷ0 = xT

0 Vβ̂
x0

In the situation of independent data, that variance reduces to

Vŷ0 = σ2xT
0 (XTX)−1x0

Clearly, the (XTX)−1 matrix is key in determining how well an experiment
can estimate or predict.

14.2 Optimality Criteria

Many optimality criteria are abbreviated with a letter, giving us D-optimal,
A-optimal, G-optimal, and so forth. There is a veritable alphabet soup of
optimality criteria, but they generally break down into those directed toward
estimation of parameters and those directed toward prediction.

Optimal designs for different models can be dramatically different. This
makes sense as, for example, it takes three points to fit a quadratic but only
two to fit a line. On the other hand, optimal designs for different criteria areCorrect model is

crucial often rather similar. Thus we need to take a great deal of care when specify-
ing the model, but specification of the optimality criterion is somewhat less
critical.

14.2.1 Estimation-based criteria

The variance of β̂ is V
β̂

. Estimation-based optimality criteria try to measure

the size of V
β̂

, with “smaller” V
β̂

being better. Different criteria derive from

different ways of measuring how small a matrix is. If only a subset of the
parameters are of interest, the optimality criteria can be applied to the subset
of V

β̂
corresponding to the parameters of interest.
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A-optimality The A is short for average. A-optimal designs are those that
minimize the average (or sum) of the estimation variances for all pa-
rameters. This is the average (or sum) of the diagonal elements of V

β̂
.

The sum of the diagonal elements of a matrix is called the trace of a
matrix, so the criterion to minimize is

A(V
β̂

) = trace(V
β̂

)

C-optimality Suppose that there is a certain linear combination of parame-
ters that is of particular interest, and we wish to minimize the variance
of the estimate of that linear combination. If we write the linear com-
bination as cTβ̂, then the criterion to minimize is

C(V
β̂

) = cTV
β̂
c

E-optimality More generally than C-optimality, we want to ensure that the
variance of the worst case linear combination estimate is as small as
possible. Of course, if we double the size of the coefficients the vari-
ance quadruples, so we need to fix the size of the coefficients at a
certain amount; here we require that cTc = 1. Thus the criterion to
minimize is

E(V
β̂

) = max
cTc=1

cTV
β̂
c

The E-criterion is equivalent to the maximum eigenvalue of the matrix
V
β̂

, thus motivating the E in the name.

D-optimality A confidence interval for a single parameter has a length that
increases with the variance of the estimate. A confidence region for
a vector of parameters usually takes the form of an ellipsoidal region,
and the volume of the confidence region increases with the determinant
of the variance matrix. D-optimal designs minimize the volume of the
confidence region for the parameters by minimizing the determinant of
the variance matrix. Thus the criterion to minimize is

D(V
β̂

) =

∣∣∣∣Vβ̂
∣∣∣∣ = det(V

β̂
)

14.2.2 Prediction-based criteria

The prediction at x0 is
ŷ0 = xT

0 β̂

with variance
Vŷ0 = xT

0 Vβ̂
x0

The optimality criteria differ by considering which values of x0 to consider
and how to combine the different prediction variances.
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G-optimality G-optimality chooses the design that minimizes the largest
prediction variance when considering all of the points in the design
itself (i.e., corresponding to rows of the X matrix). The criterion to
minimize is thus

max(diag(XV
β̂
XT))

The G is said to stand for global, although “all the points in the de-
sign” is a narrow interpretation of global. Speaking generally, you can
improve the G criterion by moving design points from regions of low
prediction variance to regions of high prediction variance.
When Vy is a multiple of the identity matrix (independent, constant
variance errors), the smallest that the G criterion can be is σ2p/nwhere
p is the number of parameters in the model for the mean. Thus any de-
sign that achieves that bound must be G-optimal and you can determine
how far any design is from G-optimality.

I-optimality I-optimality works with the integrated (or averaged) prediction
variance across a defined design space. The criterion to minimize is
thus

average(xTV
β̂
x)

where the average is taken across the potential x values in the design
space. This is equivalent to

trace(V
β̂
M)

where
M = average(xxT)

with the average again taken over the defined design space.

14.2.3 Relationships

There are many relationships that can be proven about these criteria and de-
signs, but here are three results.

Equivalence A design that is D-optimal is also G-optimal (and vice versa).

Invariance A design that is D-optimal for one parameterization is also D-
optimal for any other parameterization (assuming all parameterizations
are full rank).

Dominance The criteria in the mixed effects case (that is, with Vγ non-zero)
will always be larger than the corresponding criterion with Vγ = 0.

Equivalence is completely non-obvious, but it does give us some linkage be-
tween the estimation-type and prediction-type criteria. It is also useful in
proving optimality. Invariance means that we do not need to obsess over
which parameterization we use when choosing a D-optimal design. Domi-
nance can help establish optimality. For example, if a design is optimal when
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Vγ = 0 and its Vβ does not depend on Vγ , then it will be optimal for any
value of Vγ (this means, for example, that orthogonal blocking is a good
idea).

14.3 Algorithms

Most optimal design algorithms fall into one of two classes: deterministic
greedy algorithms or stochastic search. Both classes of algorithms start with
a base design and then modify the design repeatedly in an attempt to improve
the criterion. Greedy algorithms deterministically and repeatedly consider a
set of modifications to the design, and accept modifications that improve the Greedy and

stochastic
algorithms

criterion. Stochastic search algorithms choose the modifications randomly
and generally have the possibility of making a move that actually makes the
criterion worse. Commercial design packages tend to use greedy algorithms.

If there are multiple local optima, greedy algorithms can get stuck in a
local optimum and miss the global optimum. They are usually run several
times with different starting designs in hopes of finding the global optimum. Local optima
On the positive side, greedy algorithms tend to be fast. Stochastic search
algorithms often come with a theoretical guarantee that they will (eventually)
find the global optimum. However, they tend to be slow, and if you aren’t
clever in how you set them up they can be even slower. The theoretical
guarantees aren’t worth much if it takes a billion years of computer time for
them to work.

The original design algorithm was called point exchange. You set up
a list of potential design points and an initial design. Then you repeatedly Point exchange
consider swapping each point in the design for a point in the list not in the
design. If the criterion improves, make the swap. Keep doing this until no
swap improves the criterion. Point exchange is a greedy algorithm.

A second greedy algorithm is coordinate exchange. In this algorithm,
instead of swapping out entire design points you change one factor level of a Coordinate

exchangedesign point, exchanging the current level for a potential level. The potential
levels could be a discrete list, or they could be a continuous range of feasible
values. Coordinate exchange is a bit more complex than point exchange, but
it tends to give better designs.

Two stochastic search methods are genetic search and simulated anneal-
ing. Both methods emulate physical/biological processes that tend to find
optimum states. Simulated annealing connects the criterion to the energy in Simulated

annealing and
genetic search

a physical system; annealing slowly cools the system, and as it cools the sys-
tem tends to the low energy state. Genetic search connects the criterion to
fitness, and the process emulates survival of the fittest: as the organism (that
is, the design) evolves, it tends toward better fitness (better criteria).
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14.4 Examples

We end this chapter with a handful of examples. These examples indicate the
optimality of some of the recommendations we have seen in earlier chapters,
and they illustrate some of the power of algorithmically chosen designs.

Example 14.1 Balanced designs
We have seen that balanced designs are often less susceptible to viola-

tions of assumptions, but they are also optimal in certain situations.
Consider a completely randomized design with sample sizes ni, N = rg,

and the model that uses treatment means. Then V
β̂

is diagonal with σ2/ni
on the diagonal. The A and D criteria are

A =

g∑
i=1

σ2

ni
D =

g∏
i=1

σ2

ni

It is easy to see that if ni > nj + 1, then you can decrease (improve) the
criterion by moving observations from group i to group j. Thus a balanced
design will be optimal.

Thinking about the G criterion, the sample size in a treatment for a bal-
anced design is N/g, so the prediction variance will be the variance of the
treatment mean: σ2g/N . Because there are g parameters in the model for the
mean, this design achieves the lower bound and must be G-optimal.

Example 14.2 Compare with control
Group 1 is a control group and we are only interested in the parameters

α1 − αi for i = 2, ..., g. Assume that the non-control sample sizes are equal
(call them n2), then N = n1 + (g − 1)n2, or, equivalently n2 = (N −
n1)/(g − 1). The variance of each contrast is

Vα1−αi = σ2
(

1

n1
+

1

n2

)
Minimizing the A criterion means minimizing 1/n1 + 1/n2 or, equivalently,
1/n1 + (g − 1)/(N − n1).

Setting the derivative with respect to n1 to zero and solving leads to

n1 = N

(√
g − 1− 1

g − 2

)
which means that

n1
n2

=
√
g − 1

This is the sample size ratio recommendation given in Section 5.5.1. Of
course, sample sizes must be integers, so this ratio will rarely be achieved
exactly.
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Example 14.3 Orthogonal blocking
We have g treatments andN = gr units is r blocks of size g. We wish to

allocate the treatments to blocks so as to optimally estimate the treatment ef-
fects. If we create a randomized complete block design with each treatment
used once in each block, then contrasts between treatment means have the
same variance regardless of the size of the random block effects. We know
that the balanced design is optimal in the no-block-effects situation (see bal-
anced designs above), and the RCB achieves the same criterion value even
with non-zero block variances. Therefore, by dominance it is optimal for the
blocked situation.

The same argument applies to Latin Squares and other orthogonal block-
ing designs.

Example 14.4 Fitting a Second Order Model
Suppose that we have two continuous factors. We wish to fit a model

that includes linear, quadratic, and cross product terms from both factors.
Our available set of design points is a 5 by 5 grid, with each factor having
potential levels -2, -1, 0, 1, or 2. We want to choose a D-optimal design with
14 design points, but we allow multiple trials at the same design factors.

This sort of optimality cannot usually be done by hand, so we use soft-
ware. In R, there is a package AlgDesign that does just what we need.

1 > library(AlgDesign)
2 > pointgrid <- data.frame(A=rep(-2:2,each=15),

B=rep(-2:2,each=3,length=75))
3 > desD <- optFederov(˜quad(A,B),pointgrid,14,crit="D")
4 > desA <- optFederov(˜quad(A,B),pointgrid,14,crit="A")

Line 2 establishes the set of allowable design points. We wish to allow repli-
cation, so we include three copies of every point on the grid. The function
optFederov uses Federov’s point exchange algorithm to find the design.
We must give it the model we want to fit, a table of potential design points
(including repeats if we want to allow repeats), the number of points needed,
and the design criterion. Lines 3 and 4 compute the D and A optimal designs.
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5 > desD[1:2]
$D
[1] 2.996672

$A
[1] 1.054768

6 > desA[1:2]
$D
[1] 2.368295

$A
[1] 0.7189806

AlgDesign defines the D criterion as the reciprocal of how we have defined
it, thus large values of D are good. Lines 5 and 6 show the D and A criteria
for both designs. As would be expected, the D-optimal design is better on
the D criterion than is the A-optimal design, and vice versa.

7 > desD$design
A B

1 -2 -2
2 -2 -2
7 -2 0
13 -2 2
14 -2 2
31 0 -2
37 0 0
38 0 0
43 0 2
61 2 -2
62 2 -2
67 2 0
73 2 2
74 2 2

8 > desA$design
A B

1 -2 -2
7 -2 0
13 -2 2
22 -1 0
31 0 -2
34 0 -1
37 0 0
38 0 0
39 0 0
43 0 2
53 1 0
61 2 -2
67 2 0
73 2 2

Finally, the designs themselves are rather different (lines 7 and 8). The D-
optimal design has replication at the center and the corners, with a single
observation at the midpoint of each edge. In contrast, the A-optimal design
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only has replication at the center, with single observations at the corners and
along the midlines of each factor.

What if we do not have the full space? For example, what if we can only
use design points where A+B ≤ 2? Simple! Just remove those points from
the candidate list and refit.

9 > use <- rep(TRUE,75)
10 > use[pointgrid[,1]+pointgrid[,2]>2] <- FALSE
11 > smallgrid <- pointgrid[use,]
12 > desD <- optFederov(˜quad(A,B),smallgrid,14,crit="D")
13 > desD$D

[1] 2.538178
14 > desD$design

A B
1 -2 -2
2 -2 -2
7 -2 0
13 -2 2
14 -2 2
33 0 -2
37 0 0
38 0 0
43 0 2
44 0 2
58 2 -2
60 2 -2
64 2 0
65 2 0

Lines 9–12 create the reduced candidate set and create the optimal design.
Line 13 shows that the D criterion is worse than before; this is expected,
because we have fewer points to choose from. Line 14 shows the design. The
change is that the points two points at (2,2) (now disallowed) have become
points at (0,2) and (2,0).

Changing the model can make a big difference in the optimal design.

15 > desD <- optFederov(˜quad(A)+B,pointgrid,14,crit="D")
16 > desD

A B
1 -2 -2
2 -2 -2
3 -2 -2
13 -2 2
14 -2 2
31 0 -2
32 0 -2
33 0 -2
43 0 2
44 0 2
61 2 -2
63 2 -2
73 2 2
75 2 2

In line 15, we ask for an optimal design for a model that is quadratic in A
and linear in B with no cross-product terms. Line 16 shows the design: B is
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only at –2 and 2, and A is roughly balanced across –2, 0, and 2. This design
can’t even estimate the full quadratic model.

Example 14.5 Balanced Incomplete Blocks
The BIBD is optimal when it exists for the given combination of g, r,

b, and k (Kiefer 1958). The proof of this is well beyond the level of this
text, but we can illustrate this fact algorithmically. Suppose that we want an
incomplete block design for a factor with five levels, and we have available
ten blocks of size two. A BIBD is available using all ten pairs of treatments.

1 > dspace <- data.frame(trt=factor(1:5))
2 > desD <- optBlock(˜trt,dspace,rep(2,10))
3 > desD$rows
[1] 2 5 3 4 1 3 1 5 4 5 1 2 2 3 1 4 2 4 3 5
4 > table(desD$rows,rep(1:10,each=2))

1 2 3 4 5 6 7 8 9 10
1 0 0 1 1 0 1 0 1 0 0
2 1 0 0 0 0 1 1 0 1 0
3 0 1 1 0 0 0 1 0 0 1
4 0 1 0 0 1 0 0 1 1 0
5 1 0 0 1 1 0 0 0 0 1

> tcrossprod(table(desD$rows,rep(1:10,each=2)))
1 2 3 4 5

1 4 1 1 1 1
2 1 4 1 1 1
3 1 1 4 1 1
4 1 1 1 4 1
5 1 1 1 1 4

Line 1 sets up the design space as a single factor, and line 2 asks for ten blocks
of size two. Line 3 shows the rows in the design, with each pair of rows
indicating a block. Line 4 shows a matrix showing the number of times each
treatment occurs in each block, and finally line 5 shows the number of times
each treatment co-occurs with the other treatments. We have replication of 4
and each pair occurs together once.

Example 14.6 Other Incomplete Blocks
Suppose now that we still have a factor with five levels, but now we have

five blocks of size 2 and five blocks of size 3. This is not any of our standard
designs, because our standard designs have all had equal block sizes. What
should we do?
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1 > desD <- optBlock(˜trt,dspace,rep(c(2,3),each=5))
2 > table(desD$rows,rep(1:10,rep(2:3,each=5)))

1 2 3 4 5 6 7 8 9 10
1 0 1 0 0 1 1 0 0 1 1
2 1 0 0 1 0 1 1 0 1 0
3 1 0 0 0 1 0 1 1 0 1
4 0 1 1 0 0 0 1 1 1 0
5 0 0 1 1 0 1 0 1 0 1

3 > tcrossprod(table(desD$rows,rep(1:10,rep(2:3,each=5))))
1 2 3 4 5

1 5 2 2 2 2
2 2 5 2 2 2
3 2 2 5 2 2
4 2 2 2 5 2
5 2 2 2 2 5

Line 1 shows that all we need to do is change the size of the blocks to indicate
different block sizes. Line 2 gives the incidence matrix of each treatment in
each block, and Line 3 shows the number of times each pair of treatments
co-occurs. We see that each pair occurs together twice, as would occur in
a BIBD. Here, some pairs only occur together in blocks of size three, while
others occur in one block of each size.

14.5 Bayesian Optimal Design

Bayesian analysis is based on a prior distribution for all unknowns. Data
are collected, and then the prior distribution is updated (via Bayes Rule) to
include the information from the data, creating the posterior distribution for
the unknowns. We have a measure of the quality/quantity of the information
called the utility, and we can compute the utility for both the prior and the
posterior. Bayesian optimal design chooses the design in such a way that Maximize

increase in utilitythe expected increase in utility is as large as possible. See Chaloner and
Verdinelli (1995) for a survey of Bayesian design results.

Different definitions of utility (as with different optimality criteria in the
non-Bayesian case) lead to different designs. In the simple (if somewhat un-
realistic) case of linear models with normally distributed errors with known
variance, several closed forms have been derived. If you use Shannon in-
formation as the utility, then the optimal design minimizes the determinant
of the posterior variance matrix of the parameters (this posterior variance
matrix includes information from the prior as well as the data). If you use
mean squared error between the estimate and the true parameter as the utility,
then the optimal design minimizes the trace of the posterior variance matrix. Analogs of D and

A optimalityThus there are analogs of D and A-optimality. Note that if the variance of
the errors is unknown (as it almost always is), then the there are no simple
formulae and clear linkages.

One can create predictive analogs of the G and I-criteria for the Bayesian
setting, but these are not known to arise from maximizing utility gain.

We have mentioned that in non-linear models, for example, logistic re-
gression, you need to have at least an approximate idea of the parameter
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values in order to find a good design. Bayesian analysis always incorporates
any prior information, so Bayesian optimal design adapts to these kinds of
situations very naturally via the prior distribution for the parameters.

While many scientists dislike the use of a prior distribution in analysis,
experimental design is a setting where you cannot avoid using prior infor-
mation. The experimenter thinks that the treatment effect will be about a
certain size when doing sample size analysis. The experimenter thinks that
certain factors are likely to influence the result. The experimenter thinks that
the maximum response is probably close to this combination of factor levels.
The experimenter thinks that certain ranges are feasible for factor levels. The
experimenter thinks that the LD50 will be in a certain range.

You cannot, and should not, avoid prior information when you design.

You can choose not to do Bayesian analysis, but if you want a good design,
you use prior information. Everyone is Bayesian in that sense during design.
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Chapter 15

Factorials in Incomplete
Blocks—Confounding

We may use the complete or incomplete block techniques of the last two
chapters when treatments have factorial structure; just consider that there are
g = abc treatments and proceed as usual. However, there are some incom-
plete block techniques that are specialized for factorial treatment structure.
We consider these factorial-specific methods in this chapter and the next.

This chapter describes confounding as a design technique. A design with
confounding is unable to distinguish between some treatment comparisons Use confounding

in designand other sources of variation. For example, if the experimental drug is only
given to patients with advanced symptoms, and the standard therapy is given
to other patients, then the treatments are confounded with patient condition.
We usually go to great lengths to avoid confounding, so why would we de-
liberately introduce confounding into an experiment?

Incomplete blocks are less efficient than complete blocks; we always less
power or greater estimation variance when we use incomplete blocks instead
of complete blocks. Thus the issue with incomplete blocks is not whether we
lose information, but how much information we lose, and which particular Confounding

isolates
incomplete block

inefficiency

comparisons lose information. Incomplete block designs like the BIBD and
PBIBD spread the inefficiency around every comparison. Confounded fac-
torials allow us to isolate the inefficiency of incomplete blocks in particular
contrasts that we specify at design time and retain full efficiency for all other
contrasts.

Let’s restate that. With factorial treatment structure we are usually more Put inefficiency in
interactionsinterested in main effects and low-order interactions than we are in multi-

factor interactions. Confounding designs will allow us to isolate the inef-
ficiency of incomplete blocks in the multi-factor interactions and have full
efficiency for main effects and low-order interactions. We can have com-
plete loss of information on the confounded effects (the price of incomplete
blocks) while retaining full information on the unconfounded effects.
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Table 15.1: All contrasts and grand mean for a 23 design.

I A B C AB AC BC ABC
(1) + – – – + + + –
a + + – – – – + +
b + – + – – + – +
ab + + + – + – – –
c + – – + + – – +
ac + + – + – + – –
bc + – + + – – + –
abc + + + + + + + +

15.1 Confounding the Two-Series Factorial

Let’s begin with a review of some notation and facts from Chapter 9. The
2k factorial has k factors, each at two levels for a total of g = 2k treatments.
There are two common ways to denote factor-level combinations. First is a
lettering method. Let (1) denote all factors at their low level. Otherwise,
denote a factor-level combination by including (lower-case) letters for all
factors at their high levels. Thus bc denotes factors B and C at their high
levels and all other factors are their low levels. Second, there is a numberingLetter or digit

labels for
factor-level
combinations

method. Each factor-level combination is denoted by a k-tuple, with a 1 for
each factor at the high level and a 0 for each factor at the low level. For
example, in a 23, bc corresponds to 110. To refer to individual factors, let xA
be the level of A, and so on, so that xA = 0, xB = 1, and xC = 1 in 110.

Standard order for a two-series design arranges the factor-level combina-
tions in a specific order. Begin with (1). Then proceed through the remainderStandard order
of the factor-level combinations with factor A varying fastest, then factor B,
and so on. In a 23, the standard order is (1), a, b, ab, c, ac, bc, abc. Standard
order is numerical order when using the binary digit method of indicating
factor levels.

Each main effect and interaction in a two-series factorial is a single de-
gree of freedom and can be described with a single contrast. It is customary toTable of + and −
use contrast coefficients of +1 and −1, and the contrast is often represented
as a set of plus and minus signs, one for each factor-level combination. The
full table of contrasts for a 23 is shown in Table 15.1, which also includes a
column of all + signs corresponding to the grand mean.

The 2k factorial can be confounded into two blocks of size 2k−1 or four
blocks of 2k−2, and so on, to 2q blocks of size 2k−q in general. Let’s begin2q blocks of size

2k−q with just one replication of the experiment confounded in two blocks of size
2k−1; we look at smaller blocks and additional replication later.

15.1.1 Two blocks

Confounding a 2k design into two blocks of size 2k−1 is simple; the steps are
given in Display 15.1. Every factorial effect corresponds to a contrast with
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1. Choose a factorial effect to confound with blocks and get its
contrast.

2. Put all factor-level combinations with a plus sign in the con-
trast in one block and all the factor-level combinations with
a minus sign in the other block.

Display 15.1: Steps to confound a 2k design into two blocks.

2k−1 plus signs and 2k−1 minus signs. Choose a factorial effect to confound
with blocks; this is the defining contrast. Put all factor-level combinations Confound

defining contrast
with blocks

with a plus sign on the defining contrast in one block and all the factor-level
combinations with a minus sign in the other block. This confounds the block
difference with the defining contrast effect, so we have zero information on
that effect. However, all factorial effects are orthogonal, so block differences
are orthogonal to the unconfounded factorial effects, and we have complete
information and full efficiency for all unconfounded factorial effects.

It makes sense to choose as defining contrast a multifactor interaction,
because multi-factor interactions are generally of less interest, and we will Use k-factor

interaction as
defining contrast

lose all information about whatever contrast is used as defining contrast. For
the 2k factorial in two blocks of size 2k−1, the obvious defining contrast is
the k-factor interaction.

Example 15.1 23 in two blocks of size four
Suppose that we wish to confound a 23 into two blocks of size four. We

use the ABC interaction as the defining contrast, because it is the highest-
order interaction. The pattern of plus and minus signs is the last column of
Table 15.1. The four factor-level effects with minus signs are (1), ab, ac, and
bc; the four factor-level effects with plus signs are a, b, c, and abc. Thus the
two blocks are

(1) a
ab b
ac c
bc abc

This idea of finding the contrast pattern for a defining contrast to con-
found into two blocks works for any two-series design, but finding the pattern Alternative

methods for
finding blocks

becomes tedious for large designs. For example, dividing a 26 into two blocks
of 32 with ABCDEF as defining contrast requires finding the ABCDEF con-
trast, which is the product of the six main-effects contrasts. Here are two
equivalent procedures that you may find easier, though which method you
like best is entirely a personal matter.

First is the “even/odd” rule. Examine the letter designation for every
factor-level combination. Divide the factor-level combinations into two groups Even/odd rule

and 0/1 rule
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depending on whether the letters of a factor-level combination contain an
even or odd number of letters from the defining contrast. The second ap-
proach is the “0/1” rule. Now we work with the numerical 0/1 designations
for the factor-level combinations. What we do is compute for each factor-
level combination the sum of the 0/1 level indicators for the factors that ap-
pear in the defining contrast, and then reduce this modulo 2. (Reduction
modulo 2 subtracts any multiples of 2; 0 stays 0, 1 stays 1, 2 becomes 0, 3
becomes 1, and so on.) For the defining contrast ABC, we compute

L = xA + xB + xC mod 2 ;

those factor-level combinations that yield an L value of 0 go in one block,
and those that yield a 1 go in the second block. It is not too hard to see that
this 0/1 rule is just the even/odd rule in numerical form.

Example 15.2 24 in two blocks of eight
Suppose that we have a 24 that we wish to block into two blocks using

BCD as the defining contrast. To choose blocks using the even/odd rule,
we first find the letters from each factor-level combination that appear in the
defining contrast, as shown in Table 15.2. We then count whether there is
an even or odd number of these letters and put the factor-level combinations
with an even number of letters matching in one block and those with an odd
number matching in a second block. For example, the combination ac has
one letter in BCD, so ac goes in the odd group; and the combination bc has
two letters in BCD, so it goes in the even group. Note that we would not
ordinarily use BCD as the defining contrast; we use it here for illustration to
show that even and odd is not simply the number of letters in a factor-level
combination, but the number in that combination that occur in the defining
contrast.

To use the 0/1 rule, we start by computing xB + xC + xD. We then
reduce the sum modulo 2, and assign the zeroes to one block and the ones to
a second block. For 0111 (bcd), this sum is 1 + 1 + 1 = 3, and 3 mod 2 = 1;
for 1110 (abc), the sum is 1+1+0 = 2, and 2 mod 2 = 0. Table 15.3 shows
the results of the 0/1 rule for our example.

The block containing (1) or 0000 is called the principal block. The other
block is called the alternate block. These blocks have some nice mathe-Principal block

and alternate
block

matical properties that we will find useful in more complicated confounding
situations. Consider the following modified multiplication which we will de-
note by �. Let (1) act as an identity—anything multiplied by (1) is just
itself. So a� (1) = a and bcd� (1) = bcd. For any other pair of factor-levelMultiply and

reduce exponents
mod 2

combinations, multiply as usual but then reduce exponents modulo 2. Thus
a� ab = a2b = a0b = b, and a� a = a2 = a0 = (1).

There is an analogous operation we can perform with the 0/1 represen-
tation of the factor-level combinations. Think of the zeroes and ones as
exponents; for example, 1011 corresponds to d1c0b1a1 = abd. Exponents
add when we multiply, so the corresponding operation is to add the zeroes
and ones componentwise and then reduce them mod 2. Thus abd � acd =
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Table 15.2: Confounding a 24 with defining contrast BCD
using the even/odd rule.

Matches Even/odd Block 1 Block 2
(1) none even (1) b
a none even a ab
b B odd bc c
ab B odd abc ac
c C odd bd d
ac C odd abd ad
bc BC even cd bcd
abc BC even acd abcd
d D odd
ad D odd
bd BD even
abd BD even
cd CD even
acd CD even
bcd BCD odd
abcd BCD odd

a2bcd2 = bc corresponds to 1011 ⊕ 1101 = 2112 = 0110. Personally, I
prefer the letters, but some people prefer the numbers.

Here are the useful mathematical properties. If you multiply any two
elements of the principal block together reducing exponents modulo two,
you get another element of the principal block. If you multiply all elements Get alternate

blocks from
principal block

of the principal block by an element not in the principal block, you get an
alternate block. What this means is that you can find alternate blocks easily
once you have the principal block. This is no big deal when there are only
two blocks, but can be very useful when we have four, eight, or more blocks.

Example 15.3 24 in two blocks of eight, continued
In our 24 example with BCD as the defining contrast, ac is not in the

principal block. Multiplying every element of the principal block by ac, we
get the following

(1)� ac = ac = ac
a� ac = a2c = c
bc� ac = abc2 = ab
abc� ac = a2bc2 = b
bd� ac = abcd = abcd
abd� ac = a2bcd = bcd
cd� ac = ac2d = ad
acd� ac = a2c2d = d

This is the alternate block, but in a different order than Table 15.2.
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Table 15.3: Confounding a 24 with defining contrast BCD using the
0/1 rule.

xB + xC + xD Reduced mod 2 Block 1 Block 2
0000 0 0 0000 0100
1000 0 0 1000 1100
0100 1 1 0110 0010
1100 1 1 1110 1010
0010 1 1 0101 0001
1010 1 1 1101 1001
0110 2 0 0011 0111
1110 2 0 1011 1111
0001 1 1
1001 1 1
0101 2 0
1101 2 0
0011 2 0
1011 2 0
0111 3 1
1111 3 1

15.1.2 Four or more blocks

A single replication of a 2k design can be confounded into two blocks, four
blocks, eight blocks, and so on. The last subsection showed how to con-Use q defining

contrasts for 2q

blocks
found into two blocks using one defining contrast. We can confound into
four blocks using two defining contrasts, and in general we can confound
into 2q blocks using q defining contrasts. Let’s begin with four blocks.

Start by choosing two defining contrasts for confounding a 24 design into
four blocks of size four. It turns out that choosing these defining contrasts isChoose defining

contrasts
carefully

very important, and bad choices lead to poor designs. We will use ABC and
BCD as defining contrasts; these are good choices. Later on we will see what
can happen with bad choices.

Each defining contrast divides the factor-level combinations into evens
and odds (or ones and zeroes). If we look at those factor-level combinations
that are even for BCD, half of them will be even for ABC and the other half
will be odd for ABC. Similarly, those combinations that are odd for BCD are
evenly split between even and odd for ABC. Our blocks will be formed asCombinations of

defining contrasts
form blocks

those combinations that are even for both ABC and BCD, those that are odd
for both ABC and BCD, those that are even for ABC and odd for BCD, and
those that are odd for ABC and even for BCD. Table 15.4 shows the results
of confounding on ABC and BCD. Alternatively, we compute L1 and L2 for
the two defining contrasts, and take as blocks those combinations that are
zero on both, one on both, zero on the first and one on the second, and zero
on the second and one on the first.

We have confounded into four blocks, so there are 3 degrees of freedom
between blocks. We know that the two defining contrasts are confounded
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Table 15.4: Confounding the 24 into four blocks using ABC and BCD
as defining contrasts.

ABC BCD
(1) even even
a odd even
b odd odd
ab even odd
c odd odd
ac even odd
bc even even
abc odd even
d even odd
ad odd odd
bd odd even
abd even even
cd odd even
acd even even
bcd even odd
abcd odd odd

BCD even BCD odd
ABC even (1) ab

bc ac
abd d
acd bcd

ABC odd a b
abc c
bd ad
cd abcd

with block differences, but what is the third degree of freedom that is con-
founded with block differences? The ABC contrast is constant (plus or mi-
nus 1) within each block, and the BCD contrast is also constant within each
block. Therefore, their product is constant within each block. Recall that
each contrast is formed as the product of the corresponding main-effect con-
trasts, so the product of the ABC and BCD contrasts must be the contrast
for AB2C2D = AD. Squared terms disappear because their elements are Generalized

interactions of
defining contrasts

are confounded

all ones. The term AD is called the generalized interaction of ABC and
BCD. When we confound into four blocks using two defining contrasts, we
not only confound the defining contrasts with blocks, we also confound their
generalized interaction. If you examine the blocks in Table 15.4, you will see
that two of them always have exactly one of a or d (odd), and the other two
always have both or neither (even).

Note that if we had chosen AD and ABC as our defining contrasts, we
would get the same four blocks, and the generalized interaction BCD would
also be confounded with blocks.

This fact that we also confound the generalized interaction explains why
we need to be careful when choosing defining contrasts. It is very tempting Check

generalized
interactions when
choosing defining

contrasts

to use the intuition that we want to confound interactions with as high an
order as possible, so we choose, say, ABCD and BCD as defining contrasts.
This intuition leads to disaster, because the generalized interaction of ABCD
and BCD is A, and we would thus confound a main effect with blocks.

When choosing defining contrasts, we need to look at the full set of ef-
fects that are confounded with blocks. We want first to find a set such that
the lowest-order term confounded with blocks is as high an order as possi-
ble. Among all the sets that meet the first criterion, we want sets that have
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as few low-order terms as possible. For example, consider the sets (A, BCD,We want as few
lower order
interactions
confounded as
possible

ABCD), (ABC, BCD, AD), and (AB, CD, ABCD). We prefer the second and
third sets to the first, because the first confounds a main effect, and the sec-
ond and third confound two-factor interactions. We prefer the second set to
the third, because the second set confounds only one two-factor interaction,
while the third set confounds two two-factor interactions.

Section B.5 suggests defining contrasts and their generalized interactionsConfounding
plans for two-series designs with up to eight factors.

Use three defining contrasts to get eight blocks. These defining contrasts
must be independent of each other, in the sense that none of them is the gen-
eralized interaction the other two. Thus we cannot use ABC, BCD, and AD
as three defining contrasts to get eight blocks, because AD is the generalized
interaction of ABC and BCD. Divide the factor-level combinations into eight
groups using the even/odd patterns of the three defining contrasts: (even,
even, even), (even, even, odd), (even, odd, even), (even, odd, odd), (odd,
even, even), (odd, even, odd), (odd, odd, even), and (odd, odd, odd). There
are eight blocks, so there must be 7 degrees of freedom between them. The
three defining contrasts are confounded with blocks, as are their three two-
way generalized interactions and their three-way generalized interaction, for
a total of 7 degrees of freedom.

We again note that once you have the principal block, you can find the
other blocks by choosing an element not in the principal block and multiply-
ing all the elements of the principal block by the new element and reducing
exponents mod 2.

Example 15.4 25 in eight blocks of four
Suppose that we wish to block a 25 design into eight blocks of four. Sec-

tion B.5 suggests ABC, BD, and AE for the defining contrasts. The principal
block is that block containing (1), or equivalently those factor-level combi-
nations that are even for ABC, BD, and AE. The principal block is (1), bcd,
ace, and abde. This principal block was found by inspection, meaning work-
ing through the factor-level combinations finding those that are even for all
three defining contrasts.

The remaining blocks can be found by multiplying the elements of the
principal block by a factor-level combination not already accounted for. For
example, a is not in the principal block, so we multiply and get a, abcd,
ce, and bde for a second block. Next, b has not been listed, so we multiply
by b and get b, cd, abce, and ade for the third block. Table 15.5 gives the
remaining blocks.

For 2q blocks, we use q defining contrasts. These q defining contrasts
must be independent; no defining contrast can be a generalized interaction of
two or more of the others. Form blocks by grouping the factor-level combina-q defining

contrasts for 2q

blocks
tions according to the 2q different even-odd combinations for the q defining
contrasts. There will be 2k−q factor-level combinations in each block. There
are 2q blocks, so there are 2q−1 degrees of freedom confounded with blocks.
These are the q defining contrasts, their two-way, three-way, and up to q-way

Draft of March 4, 2021



15.1 Confounding the Two-Series Factorial 527

Table 15.5: 25 in eight blocks of four using ABC, BD, and AE as
defining contrasts, found by products with principal block.

Multiply by
P.B. a b c d e ab ad

(1) a b c d e ab ad
bcd abcd cd bd bc bcde acd abc
ace ce abce ae acde ac bce cde
abde bde ade abcde abe abd de be

generalized interactions.
Doing the actual blocking is rather tedious in large designs, so it is help-

ful to have software that will do confounding. The usual even/odd or 0/1
methods are available if you must do the confounding by hand, but a little
thinking first can save a lot of calculation.

Example 15.5 27 in 16 blocks of eight
Suppose that we are going to confound a 27 design into 16 blocks of size

eight using the defining contrasts ABCD, BCE, ACF, and ABG. The effects
that are confounded with blocks will be

ABCD ACEG = (BCE)(ABG)
BCE BCFG = (ACF)(ABG)
ACF CDEF = (ABCD)(BCE)(ACF)
ABG BDEG = (ABCD)(BCE)(ABG)
ADE = (ABCD)(BCE) ADFG = (ABCD)(ACF)(ABG)
BDF = (ABCD)(ACF) EFG = (BCE)(ACF)(ABG)
CDG = (ABCD)(ABG) ABCDEFG = (ABCD)(BCE)(ACF)(ABG)
ABEF = (BCE)(ACF)

We get exactly the same blocks using BCE, ACF, ABG, and ABCDEFG
as defining contrasts. Combinations in the principal block always have an
even number of letters from every defining contrast. Because the full seven-
way interaction including all the letters is one of the defining contrasts, all
elements in the principal block must have an even number of letters. Next, no
pair of letters occurs an even number of times in BCE, ACF, and ABG, so no
two-letter combinations can be in the principal block. Similarly, no six-letter
combinations can be in the principal block. This indicates that the principal
block will contain (1) and combinations with four letters.

Start going through groups of four letters. We find abcd is a match right
at the start. We next find abef . We can either get this with a direct search, or
by reasoning that if we have a and b, then we can’t have g, so we must have
two of c, d, e, and f . The combinations with c or d don’t work, but abef
does work. Similarly, if we start with bc, then we can’t have e, and we must
have two of a, d, f , and g. The combinations with a and d don’t work, but
bcfg does work.
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We now have (1), abcd, abef , and bcfg in the principal block. We know
that in the principal group we can multiply any two elements together, reduce
the exponent mod 2, and get another element of the block. Thus we find that
abcd � abef = cdef , abcd � bcfg = adfg, abef � bcfg = aceg, and
abcd� abef � bcfg = bdeg are also in the principal block.

Now that we have the principal block, we can find alternate blocks by
finding a factor-level combination not already accounted for and multiplying
the elements of the principal block by this new element. For example, a is
not in the principal block, so we can find a second block as a = (1) � a,
bcd = abcd � a, bef = abef � a, abcfg = bcfg � a, acdef = cdef � a,
dfg = adfg � a, ceg = aceg � a, and abdeg = bdeg � a. Next, b is not
in these first two blocks, so b = (1) � b, acd = abcd � b, aef = abef � b,
cfg = bcfg � b, bcdef = cdef � b, abdfg = adfg � b, abceg = aceg � b,
and deg = bdeg � b are the next block.

The approach given above is faster than the brute force approach of find-
ing the even/odd pattern for all 128 factor-level combinations on the four
defining contrasts, but it is still tedious. Fortunately, the conf.design
package can relieve the tedium.

The functions in conf.design put the defining contrasts in a matrix,
with one row for each defining contrast and one column for each factor. Here,
we will need four rows and seven columns. Each contrast is designated by
zeroes and ones, with a one meaning that the respective factor appears in the
contrast.

1 > library(conf.design)
2 > ABCD <- c(A=1,B=1,C=1,D=1,E=0,F=0,G=0)
3 > BCE <- c(0,1,1,0,1,0,0)
4 > ACF <- c(1,0,1,0,0,1,0)
5 > ABG <- c(1,1,0,0,0,0,1)
6 > all.generators <- rbind(ABCD,BCE,ACF,ABG)
7 > all.generators

A B C D E F G
ABCD 1 1 1 1 0 0 0
BCE 0 1 1 0 1 0 0
ACF 1 0 1 0 0 1 0
ABG 1 1 0 0 0 0 1

Lines 2–5 create the defining contrasts as patterns of zeroes and ones. Line
6 combines the defining contrasts into a matrix, with each contrast as its own
row. Line 7 prints the matrix.
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8 > conf.set(all.generators,2)
A B C D E F G

[1,] 1 1 1 1 0 0 0
[2,] 0 1 1 0 1 0 0
[3,] 1 0 0 1 1 0 0
[4,] 1 0 1 0 0 1 0
[5,] 0 1 0 1 0 1 0
[6,] 1 1 0 0 1 1 0
[7,] 0 0 1 1 1 1 0
[8,] 1 1 0 0 0 0 1
[9,] 0 0 1 1 0 0 1
[10,] 1 0 1 0 1 0 1
[11,] 0 1 0 1 1 0 1
[12,] 0 1 1 0 0 1 1
[13,] 1 0 0 1 0 1 1
[14,] 0 0 0 0 1 1 1
[15,] 1 1 1 1 1 1 1

The conf.set() function takes a matrix of defining contrasts (and the
number of levels of each factor) and computes all of the generalized interac-
tions. We do this in line 8.

1 > conf.design(all.generators,2)
Blocks A B C D E F G

1 0000 0 0 0 0 0 0 0
2 0000 1 1 1 1 0 0 0
3 0000 1 1 0 0 1 1 0
4 0000 0 0 1 1 1 1 0
5 0000 1 0 1 0 1 0 1
6 0000 0 1 0 1 1 0 1
7 0000 0 1 1 0 0 1 1
8 0000 1 0 0 1 0 1 1
9 0001 1 0 1 0 1 0 0
10 0001 0 1 0 1 1 0 0
...
127 1111 1 1 1 0 1 1 1
128 1111 0 0 0 1 1 1 1

The conf.design() function takes a matrix of defining contrasts and al-
locates the factor-level combinations to the blocks. We do this in line 9,
although we only show a portion of the lengthy output. You can verify that
the principal block derived earlier matches the output here.

15.1.3 Analysis of a single-replication confounded two-series

With a single replication of a two-series factorial, you can analyze using
one of the specialized techniques for that situation (PSE or Basso-Salmaso),
or you can use the generic technique of pooling some high-order interac- Use standard

methods with
nonblock effects

tions into error. You have the same choices with a single replication of a
confounded two-series design, but you must take care with the effects con-
founded with blocks.

For example, if you use PSE or Basso-Salmaso, recognize that that appar-
ently significant interactions could actually be block effects. If you analyze
a single replication of a 24 in two blocks via Basso-Salmaso and the C and
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Table 15.6: Fraction of images identified in vision experiment. Data
in standard order reading down columns. Data set ImageID.

.27 .47 .20 .73 .40 .73 .20 .33

.40 .87 .20 .33 .33 .53 .27 .60

.40 .60 .53 .47 .27 .60 .53 .67

.40 .87 .20 .67 .27 .40 .80 .93

.47 .53 .53 .53 .47 .73 .47 .47

.47 .60 .13 .73 .27 .87 .47 .47

.40 .33 .47 .80 .53 .73 .33 .80

.33 .60 .47 .47 .33 .73 .33 .60

.20 .67 .20 .67 .27 .53 .40 .73

.27 .33 .60 .73 .33 .87 .40 .53

.60 .60 .20 .53 .33 .47 .27 .67

.40 .67 .47 .73 .60 .40 .20 .33

.60 .27 .13 .67 .07 .47 .47 .73

.27 .60 .73 .60 .47 .60 .33 .73

.27 .67 .27 .47 .33 .67 .27 .60

.53 .80 .20 .60 .27 .93 .20 .47

ABCD effects look big, you are likely seeing a main effect and the block
effect (ABCD).

On the other hand, if you use the pooling approach, you must ensure that
the block degrees of freedom are not pooled into error. In R, the best way
to do that is to construct a block factor (with 2q levels) and enter it into the
model before any of the treatment factors or interactions. Then you can pool
as you normally would.

Example 15.6 Visual perception
We wish to study how image properties affect visual perception. In this

experiment we will have a subject look at a white computer screen. At ran-
dom intervals averaging about 5 seconds, we will put a small image on the
screen for a very short time. The subject is supposed to click the mouse but-
ton when she sees an image on the screen. The experiment takes place in
sixteen ten-minute sessions to prevent tiring; during each session we present
120 images. In fact, these are eight images repeated fifteen times each and
presented in random order. We record as the response the fraction of times
that the mouse is clicked for a given image type.

We wish to study 128 different images, the factorial combinations of
seven factors each at two levels: size of image, shape of image, color of im-
age, orientation of image, duration of image, vertical location of image, and
horizontal location of image. Because we anticipate session to session vari-
ability, we should design the experiment to account for that. A confounded
factorial with sixteen blocks of size eight will work. We use the defining
contrasts of Example 15.5, and Table 15.6 gives the responses in standard
order.
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Figure 15.1: Halfnormal plot of factorial effects for transformed
vision data, including those confounded with blocks.

There are fifteen factorial effects confounded with blocks, seven three-
way interactions, seven four-way interactions, and the seven-way interaction.
The remaining 127 − 15 = 112 are not confounded with blocks. We could
pool the five- and six-way interaction degrees of freedom for a 28-degree-
of-freedom estimate of error, and then use this surrogate error in testing the
lower-order terms that are not confounded with blocks. Alternatively, we
could make a half normal plot of the total effects and interpret them with
Basso-Salmaso. It would be best to make these plots using only the 112
nonconfounded terms, but it is usually tedious to remove the confounded
terms. Outliers in a plot of all terms will need to be interpreted with blocks
in mind.

We begin the analysis by noting that the responses are binomial propor-
tions ranging from .07 to .93; for such data we anticipate nonconstant vari-
ance, so we transform using arcsine-square roots at the start. Next we make
the half-normal plot of effects shown in Figure 15.1. This plot has all 127,
including those confounded with blocks, and interprets the significance us-
ing Basso-Salmaso. The E main effect is a clear outlier. ADFG, BDF, and
ABCDEFG are also identified, but all three are confounded with blocks, so
we regard this as block rather than treatment effects.

We conclude that of the treatments we chose, only factor E (duration) has
an effect; images that are on the screen longer are easier to see.
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15.1.4 Replicating a confounded two-series

We replicate confounded two-series designs for the same reasons that we
replicate any design—replication gives us more power, shorter confidence
intervals, and better estimates of error. We must choose defining contrasts
for the confounding in each replication, and here we have an option. We canComplete versus

partial
confounding

confound the same defining contrasts in all replications, or we can confound
different contrasts in each replication. Contrasts confounded in all replica-
tions are called completely confounded, and contrasts confounded in some,
but not all, replications are called partially confounded.

As before, completely confounded effects cannot be estimated, because
they are confounded with block differences in all replications. However, we
can get estimates of a partially confounded effect by using data from the
replications where the effect is not confounded. This is not all of the replica-
tions, so in that sense we have a smaller sample size and thus less information
for these partially confounded effects that we do for the non-confounded ef-
fects. But we still have some information. Partial confounding generally
seems like the better choice, because we will have at least some information
on every effect.

Suppose that we have four replications of a 23 factorial with two blocks of
size four per replication, for a total of eight blocks. One partial confounding
scheme would use a different defining contrast in each replication, say ABC
in the first replication, AB in the second replication, AC in the third, and BC
in the fourth. What can we estimate? First, we can estimate the variation
between blocks. There are eight blocks, so there are 7 degrees of freedom
between blocks, and the sum of squares for blocks is the sum of squares
between the eight groups formed by the blocks. Second, the effects and sums
of squares for A, B, and C can be computed in the usual way. This is true
for any effect that is never confounded. Next, we can compute the sums of
squares and estimated effects for AB, AC, BC, and ABC. Here we must be
careful, because all these effects are partially confounded.

Consider first ABC, which is confounded with blocks in the first replica-
tion but not in the other replications. The degree of freedom that the ABC
effect would estimate in the first replication has already been accounted for as
block variation (it is one of the 7 block degrees of freedom), so the first repli-Partially

confounded
effects can be
estimated in
replications
where they are
not confounded

cation tells us nothing about ABC. The ABC effect is not confounded with
blocks in replications two through four, so compute the ABC sum of squares
and estimated effects from replications two through four. Similarly, we com-
pute the AB effect from replications one, three, and four. In general, estimate
an effect and compute its sum of squares from those replication where the
effect is not confounded. All that remains after blocks and treatments is error
or residual variation. In summary, there are 7 degrees of freedom between
blocks, 1 degree of freedom each for A, B, C, AB, AC, BC, and ABC, and
31− 14 = 17 degrees of freedom for error.

Let’s repeat the pattern one more time. First remove block to block vari-
ation. Compute sums of squares and estimated effects for any main effectTreatments

adjusted for
blocks

or interaction by using the standard formulae applied to those replications
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Table 15.7: Milk chiller sensory ratings, by blocks; data set
MilkChiller.

(1) 86 a 88 (1) 82 b 93
ab 87 b 97 a 74 ab 91
ac 84 c 82 bc 84 c 79
bc 91 abc 85 abc 83 ac 81

in which the main effect or interaction is not confounded. Any effect con-
founded in every replication cannot be estimated. Error variation is the re-
mainder. This pattern works for complete or partial confounding, and when
using statistical software for analysis is most easily expressed as treatments
adjusted for blocks.

We can estimate all effects in a partially confounded factorial, but we do
not have full information on the partially confounded effects. The effective
sample size for any effect is the number of replications in which the effect
is not confounded. In the example, the effective sample size is four for A, Partial

information on
partially

confounded
effects

B, and C, but only three for AB, AC, BC, and ABC. Each of these loses one
replication due to confounding. The fraction of information available for an
effect is the effective sample size divided by the number of replications. Thus
in the example we have full or 100% information for the main effects and 3/4
information for the interactions.

Example 15.7 Milk chiller
Milk is chilled immediately after Pasteurization, and we need to design

a chiller. The goal is to get high flow at low capital and operating costs
while still chilling the milk quickly enough to maintain sensory qualities.
Basic chiller design is a set of refrigerated plates over which the hot milk is
pumped. We are investigating the effect of the spacing between the plates
(two levels), the temperature of the plates (two levels), and the flow rate of
the milk (two levels) on the perceived quality of the resulting milk. There is
a fresh batch of raw milk each day, and we expect batch to batch differences
in quality. Because of the time involved in modifying the chiller, we can use
at most four factor-level combinations in a day.

This constraint of at most four observations a day suggests a confounded
design. We use two replicates, confounding ABC and BC in the two repli-
cates. The processed milk is judged daily by a trained expert who is blinded
to the treatments used; the design and results are in Table 15.7. Here is an
ANOVA for these data (from Minitab).
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Source DF Seq SS Adj SS Seq MS F P
block 3 125.19 106.19 41.73 4.07 0.083
space 1 27.56 27.56 27.56 2.69 0.162
temp 1 189.06 189.06 189.06 18.42 0.008
rate 1 52.56 52.56 52.56 5.12 0.073
space*temp 1 18.06 18.06 18.06 1.76 0.242
space*rate 1 14.06 14.06 14.06 1.37 0.295
temp*rate 1 0.00 0.00 0.00 0.00 1.000
space*temp*rate 1 10.12 10.12 10.12 0.99 0.366
Error 5 51.31 51.31 10.26
Total 15 487.94

Term Coef StDev T P
space
1 1.3125 0.8009 1.64 0.162
temp
1 -3.4375 0.8009 -4.29 0.008
rate
1 1.8125 0.8009 2.26 0.073

All effects can be estimated because of the partial confounding. There is
evidence for an effect of plate temperature, with lower temperatures giving
better sensory results. There is very slight evidence for a rate effect.

By way of illustration, the sum of squares for the three-factor interaction
in the second replicate is 10.12, what the listing above shows for the three-
factor interaction after adjusting for blocks. The block sum of squares is the
sum of the between replicates, ABC in replicate one, and BC in replicate two
sums of squares (68.06, 2.00, and 55.13 respectively).

15.1.5 Double confounding

Latin Squares, Youden Squares, and related designs allow us to block on
two sources of variation at once; double confounding allows us to block on
two sources of variation in a confounding design. Suppose that we have aDouble

confounding
blocks on two
sources of
variation

2k treatment structure and that we have two sources of variation on which
to block; there are 2q levels of blocking on one source and 2k−q levels of
blocking on the other source. Arrange the treatments in a rectangle with 2q

rows and 2k−q columns. The rows and columns form the blocks for the two
sources of variation.

In double confounding, we choose q defining contrasts to generate row
blocking, and k − q defining contrasts to generate column blocking. To pro-Products of

principal blocks duce the design, we find the principal blocks for rows and columns and put
these in the first row and column of the rectangular arrangement. The remain-
der of the arrangement is filled by taking products and reducing exponents
modulo 2.

For example, in a 24 factorial we could block on two sources of variation
with four levels each. Put the treatments in a four by four arrangement, using
AB and BCD to generate the row blocking, and ABC and CD to generateConfound rows

and columns
separately

the column blocking. The generalized interactions ACD and ABD are also
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confounded. The column principal block is (1), ab, bcd, and acd; the row
principal block is (1), abc, cd, and abd; and the full design is

(1) ab acd bcd
abd d bc ac
cd abcd a b
abc c bd ad

For example, we take the third row element cd times the fourth column ele-
ment bcd to get b for the 3, 4 element of the table. Each row of the treatment
arrangement contains a block from the row-defining contrasts, and each col-
umn of the arrangement contains a block from the column-defining contrasts.

15.2 Confounding the Three-Series Factorial

Confounding in the three-series factorial is analogous to confounding in the
two-series, but threes keep popping up instead of twos. The 2k is confounded 3q blocks of 3k−q

units; partial or
complete

confounding

into 2q blocks each with 2k−q units. The 3k is confounded into 3q blocks,
each with 3k−q units. When we replicate a three-series design with con-
founding, we can use complete or partial confounding, just as for the two-
series design.

The levels of a factor in a three-series design are denoted 0, 1, or 2; for
example, the factor-level combinations of a 32 design are 00, 10, 20, 01, 11,
21, 02, 12, and 22. The level for factor A is denoted by xA, just as for the
two-series design.

Main effects in a three-series design have 2 degrees of freedom, two-
factor interactions have 4 degrees of freedom, and q-factor interactions have
2q degrees of freedom. We can partition all three-series effects into two-
degree-of-freedom bundles. Each main effect contains one of these bundles, Partition

three-series
effects into

two-degree-of-
freedom
bundles

each two-factor interaction contains two of these bundles, each three-factor
interaction contains four of these bundles, and so on. Each two-degree-of-
freedom bundle arises by, in effect, splitting the factor-level combinations
into three groups and assessing the variation in the 2 degrees of freedom be-
tween these three groups. These two-degree-of-freedom splits provide the
basis for confounding the three series, just as one-degree-of-freedom con-
trasts are the basis for confounding the two series.

Each two-degree-of-freedom split has a label, and the labels can be con-
fused with the ordinary interactions, so let’s explain them carefully at the
beginning. The label for an interaction effect is the letters in the interac-
tion, for example, BCD. The label for a two-degree-of-freedom split is the Label

two-degree-of-
freedom splits

with exponents

letters from the factors, each with an exponent of either 0, 1, or 2. By con-
vention, we drop the letters with exponent 0, and by further convention, the
first nonzero exponent is always a 1. Thus A1C2 and B1C1D2 are exam-
ples of two-degree-of-freedom splits. The two-degree-of-freedom splits that
make up an interaction are those splits that have nonzero exponents for the
same set of factors as the interaction. Thus the splits in BCD are B1C1D1,
B1C1D2, B1C2D1, and B1C2D2.
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We use these two-degree-of-freedom splits to generate confounding in
the three-series in the same way that defining contrasts generate confounding
in a two-series, so these splits are often called defining contrasts, even though
they are not really contrasts (which have just 1 degree of freedom).

15.2.1 Building the design

Each two-degree-of-freedom portion corresponds to a different way to split
the factor-level combinations into three groups. For concreteness, consider
the B1C2D1 split in a 34 design. Compute for each factor-level combination

Sums of factor
levels mod 3
determine splits

L = xB + 2xC + xD mod 3 .

The L values will be 0, 1, or 2, and we split the factor-level combinations
into three groups according to their values of L. In general, for the split
ArABrBCrCDrD , we compute for each factor-level combination

L = rAxA + rBxB + rCxC + rDxD mod 3 .

These L values will again be 0, 1, or 2, determining three groups. The blockPrincipal block
containing the combination with all factors low is the principal block.

Example 15.8 A 32 withA1B2 confounded
Suppose that we want to confound a 32 design into three blocks of size

three using A1B2 as the defining split. We need to compute the defining split
L values, and then group the factor-level combinations into blocks, as shown
here:

xAxB xA + 2xB L

00 0 0
10 1 1
20 2 2
01 2 2
11 3 0
21 4 1
02 4 1
12 5 2
22 6 0

L = 0 L = 1 L = 2

00 10 20
11 21 01
22 02 12

This particular arrangement into blocks forms a Latin Square, as can be seen
when the block numbers are superimposed on the three by three pattern be-
low:

xB
0 1 2

0 0 2 1
xA 1 1 0 2

2 2 1 0
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If we had usedA1B1 as the defining split, we would again get a Latin Square
arrangement, but that Latin Square would be orthogonal to this one.

To block a three-series into nine blocks, we must use two defining splits
P1 and P2 with corresponding L values L1 and L2. Each L can take the Use q defining

splits for 3q blocksvalues 0, 1, or 2, so there are nine combinations of L1 and L2 values, and
these form the nine blocks. To get 27 blocks, we use three defining splits and
look at all combinations of 0, 1, or 2 from the L1, L2, and L3 values, and so
on for more blocks.

For 3q blocks, we follow the same pattern but use q defining splits. The
only restriction on these splits is that none can be a generalized interaction of
any of the others (see the next section). Thus we cannot use A1C2, B1D1,
and A1B1C2D1 as our defining splits. As with two-series confounded de-
signs, we try to find defining splits that confound interactions of as high an
order as possible.

Example 15.9 Confounding a 33 in nine blocks
Suppose that we wish to confound a 33 design into nine blocks using

defining splits A1B1 and A1C2. The L equations are

L1 = xA + xB mod 3

and
L2 = xA + 2xC mod 3

We need to go through all 27 factor-level combinations and compute the L1

and L2 values. Once we have the L-values, we can make the split into nine
blocks. For example, the 110 treatment has an L1 value of 1 + 1 = 2 and an
L2 value of 1 + 2 × 0 = 1, so it belongs in the 2/1 block; the 102 treatment
has an L1 value of 1 + 0 = 1 and an L2 value of 1 + 2× 2 mod 3 = 2, so it
belongs in the 1/2 block. The full design follows:
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Treatment L1 L2

000 0 0
100 1 1
200 2 2
010 1 0
110 2 1
210 0 2
020 2 0
120 0 1
220 1 2
001 0 2
101 1 0
201 2 1
011 1 2
111 2 0
211 0 1
021 2 2
121 0 0
221 1 1
002 0 1
102 1 2
202 2 0
012 1 1
112 2 2
212 0 0
022 2 1
122 0 2
222 1 0

0/0 0/1 0/2
000 120 210
121 211 001
212 022 122

1/0 1/1 1/2
010 100 220
101 221 011
222 012 102

2/0 2/1 2/2
020 110 200
111 201 021
202 022 112

In the two-series using the 0/1 labels, any two elements of the principal
block could be combined using the operation ⊕ with the result being an ele-Combine factor

levels mod 3 ment of the principal block. Furthermore, if you combine the principal block
with any element not in the principal block, you get another block. These
properties also hold for the three-series design, provided you interpret the
operation ⊕ as “add the factor levels individually and reduce modulo three.”

For example, the principal block in Example 15.9 was 000, 121, and 212.
We see that 121 ⊕ 121 = 242 = 212, which is in the principal block. Also,
the combination 210 is not in the principal block, so 000 ⊕ 210 = 210,
121⊕ 210 = 331 = 001, and 212⊕ 210 = 422 = 122 form a block (the one
labeled 0/2).

15.2.2 Confounded effects

Confounding a three-series design into three blocks uses one defining split
with 2 degrees of freedom. There are 2 degrees of freedom between the three
blocks, and these 2 degrees of freedom are exactly those of the defining split.

Confounding a three-series design into nine blocks uses two defining
splits, each with 2 degrees of freedom. The 4 degrees of freedom for these
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two defining splits are confounded with block differences. There are 8 de-
grees of freedom between the nine blocks, so 4 more degrees of freedom must Confounded

effects are P1, P2,
P1P2 and P1P

2
2

be confounded along with the two defining splits. These additional degrees
of freedom are from the generalized interactions of the defining splits. If P1

and P2 are the defining splits, then the generalized interactions are P1P2 and
P1P

2
2 .

Recall that we always write these two-degree-of-freedom splits in a three
series with exponents of 0, 1, or 2, with the first nonzero exponent always
being a 1. Products like P1P2 won’t always be in that form, so how can Rearrange to get

a leading
exponent of 1

we convert? First, reduce exponents modulo three. Second, if the leading
nonzero exponent is not a 1, then square the term and reduce exponents mod-
ulo three again. The net effect of this second step is to leave zero exponents
as zero and swap ones and twos.

Example 15.10 Confounding a 33 in nine blocks, continued
The defining splits in Example 15.9 were A1B1 and A1C2, so the gen-

eralized interactions are

P1P2 = A1B1 ×A1C2

= A2B1C2

= (A2B1C2)2 leading exponent was 2, so square
= A4B2C4

= A1B2C1 reduce exponents modulo 3

P1P
2
2 = A1B1 (A1C2)2

= A3B1C4

= B1C1 reduce exponents modulo 3

Thus the full set of confounded effects is A1B1, A1C2, A1B2C1, B1C1.

When we confound into 27 blocks using defining splits P1, P2, and P3,
there are 26 degrees of freedom between blocks, comprising thirteen two-
degree-of-freedom splits. Now it makes sense to give the general rule. Sup-
pose that there are q defining contrasts, P1, P2, . . .Pq. The confounded de-
grees of freedom will be P v11 P v22 · · ·, P

vq
q , for all exponent sets that use expo-

nents 0, 1, or 2, and with the leading nonzero exponent being a 1. Applying
this to q = 3, we get the following confounded terms: P1, P2, P3, P1P2,
P1P

2
2 , P1P3, P1P

2
3 , P2P3, P1P

2
3 , P1P2P3, P1P2P

2
3 , P1P

2
2P3, and P1P

2
2P

2
3 .

Example 15.11 Confounding a 35 in 27 blocks
Suppose that we wish to confound a 35 into 27 blocks using A1C1,

A1B1D1, and A1B2E2 as defining splits. The the complete list of con-

Draft of March 4, 2021



540 Factorials in Incomplete Blocks—Confounding

founded effects will be

P1 = A1C1 = A1C1

P2 = A1B1D1 = A1B1D1

P3 = A1B2E2 = A1B2E2

P1P2 = A2B1C1D1 = A1B2C2D2

P1P
2
2 = A3B2C1D2 = B2C1D2 = B1C2D1

P1P3 = A2B2C1E2 = A1B1C2E1

P1P
2
3 = A3B4C1E4 = B1C1E1

P2P3 = A2B3D1E2 = A2D1E2 = A1D2E1

P2P
2
3 = A3B5D1E4 = B2D1E1 = B1D2E2

P1P2P3 = A3B3C1D1E2 = C1D1E2

P1P2P
2
3 = A4B5C1D1E4 = A1B2C1D1E1

P1P
2
2P3 = A4B4C1D2E2 = A1B1C1D2E2

P1P
2
2P

2
3 = A5B6C1D2E4 = A2C1D2E1 = A1C2D1E2

This design confounds 2 degrees of freedom in the AC interaction, but other-
wise confounds three-way interactions and higher.

15.2.3 Analysis of confounded three-series

Analysis of a confounded three-series is analogous to analysis of a con-
founded two-series. First remove variation between blocks, then remove any
treatment variation that can be estimated; any remaining variation is used
as error. When there is only one replication, the highest-order interaction isTreatments

adjusted for
blocks

typically used as an estimate of error. With most statistical software, you can
get this analysis by requesting an ANOVA with treatment sums of squares
adjusted for blocks.

The accounting is a little more complicated in a confounded three-series
than it was in the two-series, because confounding is done via two-degree-Interactions

containing
completely
confounded splits
have fewer than
nominal degrees
of freedom

of-freedom splits, whereas the ANOVA is usually tabulated by interaction
terms. For example, consider two replications of a 32 with A1B1 completely
confounded. There are eighteen experimental units, with 17 degrees of free-
dom between them. There are 5 degrees of freedom between the blocks, 2
degrees of freedom for each main effect, 2 degrees of freedom for the AB
interaction, and 6 degrees of freedom for error. The 2 degrees of freedom for
AB are theA1B2 degrees of freedom, which are not confounded with blocks.

When we use partial confounding, we can estimate all treatment effects,
but we will only have partial information on those effects that are partially
confounded. Again consider two replications of a 32, but confound A1B1 in
the first replication and A1B2 in the second. We can estimate A1B1 in the
second replication andA1B2 in the first, so we have 4 degrees of freedom for
interaction. However, the effective sample size for each of these interaction
effects is nine, rather than eighteen.
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15.3 Further Reading and Extensions

Two- and three-series are the easiest factorials to confound, but we can use
confounding for other factorials too. John (1971) is a good place to get started
with these other designs. Kempthorne (1952) also has a good discussion.
Derivation and methods for some of these other designs takes some (abstract)
algebra. In fact, this algebra is present in the two- and three-series designs;
we’ve just been ignoring it. For example, we have stated that multiplying
two elements of the principal block together gives another element in the
principal block, and that multiplying the principal block by any element not
in the principal block yields an alternate block. These are a consequence
of the facts that the factor-level combinations form an (algebraic) group, the
principal block is a subgroup, and the alternate blocks are cosets.

Confounding sk designs when s is prime is the straightforward gener-
alization of the 0/1 and 0/1/2 methods we used for 2k and 3k designs. For
example, when s = 5 and k = 4, represent the factor levels by 0, 1, 2, 3, and
4. Block into five blocks of size 125 using the defining splitArABrBCrCDrD

by computing

L = rAxA + rBxB + rCxC + rDxD mod 5

and splitting into groups based on L. If you have two defining splits P1 and
P2, the confounded effects are P1, P2, P1P2, P1P

2
2 , P1P

3
2 , and P1P

4
2 . More

generally, use powers up to s− 1.
To confound sk designs when s is themth power of a prime, reexpress the

design as a pmk design, where p is the prime factor of s. Now use standard
methods for confounding a pmk, but take care that none of the generalized
interactions that get confounded are actually main effects. For example, con-
found a 42 design into four blocks of four. A 42 design can be reexpressed
as a 24 design, with the AB combinations indexing the first four-level factor,
and the BC combinations indexing the second four-level factor. We could
confound ABC and AD (and their generalized interaction BCD). All three of
these degrees of freedom are in the 9-degree-of-freedom interaction for the
four-series design. We would not want to confound AB, BCD, and ACD,
because AB is a degree of freedom in the main effect of the first four-level
factor.

Mixed-base factorials are more limited. Suppose we have a sk11 s
k2
2 facto-

rial, where s1 and s2 are different primes. It is straightforward to choose sq1
blocks of size sk1−q1 sk22 or sq2 blocks of size sk11 s

k2−q
2 . Just use methods for

the factors in play and carry the other factors along. Getting s1s2 blocks of
size sk1−11 sk2−12 is considerably more difficult.

15.4 Problems

Confound a 25 factorial into four blocks of eight, confounding BCD and Exercise 15.1

Draft of March 4, 2021



542 Factorials in Incomplete Blocks—Confounding

ACD with blocks. Write out the factor-level combinations that go into each
block.

We want to confound a 24 factorial into four blocks of size four usingExercise 15.2
ACD and ABD as defining contrasts. Find the factor-level combinations that
go into each block.

Suppose that we confound a 28 into sixteen blocks of size 16 usingExercise 15.3
ABCF, ABDE, ACDE, and BCDH as defining contrasts. Find the all the
confounded effects.

Divide the factor-level combinations in a 33 factorial into three groups ofExercise 15.4
nine according to the A1B1C2 interaction term.

Suppose that we have a partially confounded 33 factorial design run inExercise 15.5
four replicates, withA1B1C1,A1B1C2,A1B2C1, andA1B2C2 confounded
in the four replicates. Give a skeletal ANOVA for such an experiment (sources
and degrees of freedom only).

A 24−1 fractional factorial is created by the aliasing I = ABD, andExercise 15.6
is then blocked into two blocks of size four using AC = BCD. Find the
factor-level combinations in the two blocks.

Confound a 24 design into eight blocks of two each using the generatorsExercise 15.7
AB, BC, and CD. Give the factor/level combinations in each block; what
effects are confounded with blocks?

Briefly describe the experimental design you would choose for each ofProblem 15.1
the following situations, and why. Describe treatments, blocks, etc.

(a) Nitrification is a bacterial process that plays an important role in the ni-
trogen cycle of an ecosystem. We wish to assess the variability of ni-
trification in grasslands at different spatial scales. Specifically, we are
interested in the variability in nitrification when measurements are taken
within about a meter of each other, and the variability when measure-
ments are taken several meters apart. We have an experimental grassland
of one hectare (100 m by 100 m), and we can make 50 measurements of
nitrification.

(b) We are trying to understand how procedural changes affect the yield of a
bioreactor. The process takes about two hours to run, so we can do four
runs per day. There may be day to day variation, we’re just not sure. We
can set the temperature to high or low, we can set the agitator to fast or
slow, and we can either include or omit an additive. We have funds for
16 runs. What kind of design should we use, and why?

(c) Animals are generally used to test medical devices prior to experimenting
with the devices in humans. We wish to compare four different designs
of arterial stints. (Stints are spring or mesh-like objects that are placed in
a narrowed artery and then expand, holding the artery open.) The current
experiment concerns the use of stints in the three major coronary arteries.
Each experimental animal is fed a high fat diet that leads to narrowing
of the coronary arteries. We can then place stints in the three coronary
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arteries. The response that we measure is the increase in diameter of the
artery after placing the stint. We have 12 animals, and we expect large
animal to animal differences.

(d) Some chemicals may migrate from polystyrene (“styrofoam”) cups used
to serve hot coffee into the coffee. We will measure the concentration
of toluene in hot water solutions after they have sat in polystyrene cups.
Three factors are of interest: temperature of water (80 and 90 degrees
C), length of time the water sits in the cup before measuring the response
(15 minutes and 30 minutes), and pH of the water solution (6 and 6.5).
We have resources for 48 measurements. There are no restrictions on
the order in which the measurements should be done, but we can only
make eight measurements before the equipment needs to be cleaned and
recalibrated.

(e) A French press device is one possible choice for brewing coffee. How-
ever, one drawback of this device is that the coffee produced can contain
some coffee grounds that affect the flavor of the coffee. We would like to
run an experiment to investigate the effects of three factors on the flavor
of French press-made coffee. Factor A is the amount of grounds put into
the press (.1 pound or .12 pound); factor B is the type of roast (French
roast of Full City roast); factor C is whether the coffee is stirred once
while it is brewing (yes or no).
I am the one who will rate the flavor, and I have time in the morning to
make and taste four different brews of coffee. I am not a trained coffee
rater, and I think it is likely that my ratings will not be consistent from
day to day. I can taste sixteen cups, because I can only do this Monday
through Thursday (needing to submit my analysis on Friday).

(f) Untrained consumer judges cannot reliably rate their liking of more than
about fifteen to twenty similar foods at one sitting. However, you have
been asked to design an experiment to compare the liking of cookies
made with 64 recipes, which are the factorial combinations of six recipe
factors, each at two levels. The judges are paid, and you are allowed to
use up to 50 judges.

(g) Seed germination is sensitive to environmental conditions, so many ex-
periments are performed in laboratory growth chambers that seek to pro-
vide a uniform environment. Even so, we know that the environment is
not constant: temperatures vary from the front to the back with the front
being a bit cooler. We wish to determine if there is any effect on germi-
nation due to soil type. We have resources for 64 units (pots with a given
soil type). There are eight soil types of interest, and the growth chamber
is big enough for 64 pots in an eight by eight arrangement.

(h) Acid rain seems to kill fish in lakes, and we would like to study the mech-
anism more closely. We would like to know about effects due to the kind
of acid (nitric versus sulfuric), amount of acid exposure (as measured by
two levels of pH in the water), amount of aluminum present (two levels of
aluminum; acids leach aluminum from soils, so it could be the aluminum
that is killing the fish instead of the acid), and time of exposure (that is,
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a single peak acute exposure versus a chronic exposure over 3 months).
We have 32 aquariums to use, and a large supply of homogeneous brook
trout.

(i) “Habitat improvement” (HI) is the term used to describe the modification
of a segment of a stream to increase the numbers of trout in the stream.
HI has been used for decades, but there is little experimental evidence on
whether it works. We have eight streams in southeastern Minnesota to
work with, and we can make up to eight habitat improvements (that is,
modify eight stream segments). Each stream flows through both agricul-
tural and forested landscapes, and for each stream we have identified two
segments for potential HI, one in the forested area and one in the agri-
cultural area. We anticipate large differences between streams in trout
numbers; there may be differences between forested and agricultural ar-
eas. We can count the trout in all sixteen segments.

(j) We wish to study how the fracturability of potato chips is affected by
the recipe for the chip. (Fracturability is related to crispness.) We are
going to study five factors, each at two levels. Thus there are 32 recipes
to consider. We can only bake and measure eight recipes a day, and we
expect considerable day to day variation due to environmental conditions
(primarily temperature and humidity). We have resources for eight days.

(k) One of the issues in understanding the effects of increasing atmospheric
CO2 is the degree to which trees will increase their uptake of CO2 as
the atmospheric concentration of CO2 increases. We can manipulate the
CO2 concentration in a forest by using Free-Air CO2 Enrichment (FACE)
rings. Each ring is a collection of sixteen towers (and other equipment)
14 m tall and 30 m in diameter that can be placed around a plot in a
forest. A ring can be set to enrich CO2 inside the ring by 0, 100, or 200
ppm. We have money for six rings and can work at two research stations,
one in North Carolina and one in South Carolina. Both research stations
have plantations of 10-year-old loblolly pine. The response we measure
will be the growth of the trees over 3 years.

(l) We wish to study the effects of soil density, pH, and moisture on snap-
dragon seed germination, with each factor at two levels. Twenty-four
pots are prepared with appropriate combinations of the factors, and then
seeds are added to each pot. The 24 pots are put on trays that are scattered
around the greenhouse, but only 4 pots fit on a tray.

Briefly describe the experimental design used in each of the followingProblem 15.2
and give a skeleton ANOVA.

(a) We wish to study the effects of funding attribution and rigor of reported
methods on the perceived authoritativeness of medical research abstracts.
There are two fake drugs that we will call A and B. There are two levels
of rigor: high and low. There are two levels of funding attribution: NIH
and pharmaceutical company. Sixty-four doctors will each be given two
fake abstracts to rate for authoritativeness. Each doctor will receive one
abstract for drug A and one for drug B. Half of the doctors will receive a
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low rigor/pharma abstract and a high rigor/NIH abstract; the other half of
the doctors will receive a low rigor/NIH abstract and a high rigor/pharma
abstract. Abstracts are arranged so that “drugs” A and B each get an
equal number of each kind of abstract.

(b) Our dog’s feet get cold and packed with ice when they go for walks in the
winter. We can buy little dog booties, but they always come off. What we
would like to do is find the brand of booties that stay on the longest. We
have purchased booties of six different brands. As our dog only has four
feet, we can only test four of them at one time. There are 15 different sets
of four brands that can be taken from the six brands. We randomly assign
the 15 sets to 15 consecutive days. On each day, we randomly assign the
four brands from that day’s set to the four feet on the dog. When we go
on the walk, we time how long it takes until each bootie comes off, and
that is the response.

(c) Raising butterflies at “industrial” scale is done by rearing the caterpillars
on an artificial diet rather than a natural diet of leaves. The feed we
have available was optimized for a different species of butterfly, and we
are unsure whether it has enough protein or choline for our species of
butterfly. We want the caterpillars to grow up big and strong, so we are
trying to find a combination of the two factors that leads to greater mass
of the pupa that the caterpillar forms.
We create a design with a 2x2 factorial treatment structure (no added
choline vs added choline; no added protein vs added protein). We have
eight petri dishes (one treatment per dish), add five caterpillars per petri
dish, and then put the petri dishes in a warmer while the caterpillars grow.
Unfortunately, the warmer is not uniformly warm and differs slightly in
temperature from back to front. To account for this we create four rows
(back to front) of two dishes each. Dishes in row 1 contain treatments
(1) and ab; the same is true for row 4. Dishes in row 2 contain treat-
ments a and b; the same is true for row 3.

(d) Psilocybin is the active ingredient in “magic mushrooms” and is reputed
to induce religious or spiritual experiences. This experiment tests that
claim. Thirty healthy adults were recruited. All subjects participated in
two 8-hour sessions two months apart. In each session, the subject was
given a strong dose of a drug (either psilocybin or ritalin). A psychologist
was present with the subjects during the drug sessions and interviewed
the subjects during their experiences (and offered support if needed). The
response of interest is the presence and/or intensity of any religious or
spiritual experiences during the drug session.
This experiment was randomized, controlled, and double blind with in-
formed consent. The drugs were randomized to the sessions such that
each subject received both drugs and each drug was used an equal num-
ber of times in the first or second session.

(e) We are studying the Kraft pulping process for making paper. In this ex-
periment, we look at the charge level (705, 853, or 1000), and which ad-
ditive is used (control, DQ2016 at .1, DQ2016 at .2, AQ at .1, or DTPA at
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.2). We can make 10 batches of pulp per day and do the experiment over
three days, producing two batches of pulp for each of the 15 combina-
tions of charge level and additive. The fifteen factor/level combinations
are assigned so that the treatments with charge at 705 or 853 are in the
first day, those where the charge is 705 or 1000 are in the second day,
and those where the charge is 853 or 1000 treatments are in the third day.

(f) Two common fish species in cold water streams are slimy sculpin and
brown trout. These species tend to inhabit “riffles”, which are shal-
low running stretches of the stream, sort of like miniature rapids. We
are interested in whether the presence of the two species together in-
hibits or enhances total fish growth (combined across species). To study
this, we place small cages called enclosures in riffles (each riffle is large
enough for multiple enclosures). Into each cage we can place either equal
weights x of slimy sculpin and brown trout, or a weight 2x of brown
trout, or a weight 2x of slimy sculpin. After a month, we weigh the fish
in each cage to assess total growth.

In our experiment there are five riffles. In each riffle we place three en-
closures. The three treatments are randomized to the enclosures subject
to the restriction that each treatment occurs once in each riffle.

(g) Neurologists use functional Magnetic Resonance Imaging (fMRI) to de-
termine the amount of the brain that is “activated” (in use) during certain
activities. We have twelve right-handed subjects. Each subject will lie
in the magnet. On a visual signal, the subject will perform an action
(tapping of fingers in a certain order) using either the left or the right
hand (depending on the signal). The measured response is the number
of “pixels” on the left side of the brain that are activated. We expect
substantial subject to subject variation in the response, and there may be
a consistent difference between the first trial and the second trial. Six
subjects are chosen at random for the left-right order, and the other six
get right-left. We obtain responses for each subject under both right- and
left-hand tapping.

(h) We wish to study the winter hardiness of four new varieties of rosebushes
compared with the standard variety. An experimental unit will consist of
a plot of land suitable for 4 bushes, and we have 25 plots available in a
five by five arrangement (a total of 100 bushes). The plots are located on
the side of a hill, so the rows have different drainage. Furthermore, one
side of the garden is sheltered by a clump of trees, so that we expect dif-
ferences in wind exposure from column to column. The five varieties are
randomly arranged subject to the constraint that each variety occurs once
in each row and each column. The response of interest is the number of
blooms produced after the first winter.

(i) Nisin is a naturally occurring antimicrobial substance, and Listeria is a
microbe we’d like to control. Consider an experiment where we examine
the effects of the two factors “amount of nisin” (factor A, three levels, 0,
100, and 200 IU) and “heat” (factor B, three levels, 0, 5, and 10 second
scalds) on the number of live Listeria bacteria on poultry skin. We use six
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chicken thighs. The skin of each thigh is divided into three sections, and
each section receives a different A-B combination. We expect large thigh
to thigh variability in bacteria counts. The factor-level combinations used
for each skin section follow (using 0,1,2 type notation for the three levels
of each factor):

Thigh
Section 1 2 3 4 5 6
1 00 10 20 00 10 02
2 11 21 01 21 01 20
3 22 02 12 12 22 11

(j) Semen potency is measured by counting the number of fertilized eggs
produced when the semen is used. Consider a study on the influence of
four treatments on the potency of thawed boar semen. The factors are
cryoprotector used (factor A, two levels) and temperature regime (factor
B, two levels). We expect large sow to sow differences in fertility, so we
block on sow by using one factor-level combination in each of the two
horns (halves) of the uterus. Eight sows were used, with the following
treatment assignment.

Sow
1 2 3 4 5 6 7 8
a ab (1) b b (1) (1) a
b (1) ab a a ab ab b

Individuals perceive odors at different intensities. We have a procedure Problem 15.3
that allows us to determine the concentration of a solution at which an in-
dividual first senses the odor (the threshold concentration). We would like
to determine how the threshold concentrations vary over sixteen solutions.
However, the threshold-determining procedure is time consuming and any
individual judge can only be used to find threshold concentrations for four
solutions.

Each solution is a combination of five compounds in various ratios. The
sixteen solutions are formed by manipulating four factors, each at two levels.
Factor 1 is the ratio of the concentration of compound 1 to the concentration
of compound 5. Factors 2 through 4 are are similar.

We have eight judges. Two judges are assigned at random to each of the
solution sets [(1), bc, abd, acd], [a, abc, bd, cd], [ab, ac, d, bcd], and [b, c, ad,
abcd]. We then determine the threshold concentration for the solutions for
each judge. The threshold concentrations are normalized by dividing by a ref-
erence concentration. The ratios are given below (data set OdorIntensity):
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Judge
1 2 3 4

(1) 8389 a 4351 ab 6 b 375
bc 816 abc 78 ac 262 c 33551
abd 4 bd 5941 d 1230 ad 246
acd 46 cd 27138 bcd 98 abcd 10

5 6 7 8
(1) 56034 a 2346 ab 67 b 40581
bc 25046 abc 35 ac 3081 c 90293
abd 109 bd 228 d 50991 ad 19103
acd 490 cd 6842 bcd 784 abcd 61

Analyze these data to determine how the compounds affect the threshold
concentration. Are there any deficiencies in the design?

Eurasian water milfoil is a nonnative plant that is taking over many lakesProblem 15.4
in Minnesota and driving out the native northern milfoil. However, there is a
native weevil (an insect) that eats milfoil and may be useful as a control. We
wish to investigate how eight treatments affect the damage the weevils do to
Eurasian milfoil. The treatments are the combinations of whether a weevil’s
parents were raised on Eurasian or northern, whether the weevil was hatched
on Eurasian or northern, and whether the weevil grew to maturity on Eurasian
or northern.

We have eight tanks (big aquariums), each of which is subdivided into
four sections. The subdivision is accomplished with a fine mesh that lets
water through, but not weevils. The tanks are planted with equal amounts
of Eurasian milfoil. We try to maintain uniformity between tanks, but there
will be some tank to tank variation due to differences in light and tempera-
ture. The tanks are planted in May, then weevils are introduced. In Septem-
ber, milfoil biomass is measured as response and is shown here (data set
Milfoil):

Tank
1 2 3 4

(1) 10.4 a 4.8 (1) 16.8 a 12.3
ab 17.5 b 8.9 ab 19.6 b 17.1
ac 22.2 c 6.8 c 16.4 ac 13.3
bc 27.7 abc 17.6 abc 35.6 bc 19.5

5 6 7 8
(1) 7.7 a 6.3 (1) 14.9 b 7.1
ac 13.3 c 7.3 bc 34.0 c 8.3
b 12.4 ab 11.2 a 16.9 ab 15.3
abc 17.7 bc 25.0 abc 36.8 ac 7.0

Analyze these data to determine how the treatments affect milfoil biomass.

Scientists wish to understand how the amount of sugar (two levels), cul-Problem 15.5
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ture strain (two levels), type of fruit (blueberry or strawberry), and pH (two
levels) influence shelf life of refrigerated yogurt. In a preliminary experi-
ment, they produce one batch of each of the sixteen kinds of yogurt. The
yogurt is then placed in two coolers, eight batches in each cooler. The re-
sponse is the number of days till an off odor is detected from the batch (data
set YogurtCooler).

Cooler
1 2

(1) 34 a 35
ab 34 b 36
ac 32 c 39
ad 34 d 41
bc 34 abc 39
bd 39 abd 44
cd 38 acd 44
abcd 37 bcd 42

Analyze these data to determine how the treatments affect time till off odor.

Consider a defining split in a three-series design, say ArABrBCrCDrD . Question 15.1
Now double the exponents and reduce them modulo 3 to generate a new
defining split. Show that the two splits lead to the same three sets of factor-
level combinations.

Show that in a three-series design, any defining split with leading nonzero Question 15.2
exponent 2 is equivalent to a a defining split with leading nonzero exponent
1.

Show that in a three-series design with defining splits P1 and P2, the Question 15.3
generalized interactions P1P

2
2 and P 2

1P2 are equivalent.
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Chapter 16

Split-Plot Designs

Split plots are another class of experimental designs for factorial treatment
structure. We generally choose a split-plot design when some of the factors
are more difficult or expensive to vary than the others, but split plots can arise Use split plots

when some
factors more

difficult to vary

for other reasons. Split plots can be described in several ways, including
incomplete blocks and restrictions on the randomization, but the key features
to recognize are that split plots have more than one randomization and more
than one idea of experimental unit.

16.1 What Is a Split Plot?

The terminology of split plots comes from agricultural experimentation, so
let’s begin with an agricultural example. Suppose that we wish to determine
the effects of four corn varieties and three levels of irrigation on yield. Irriga-
tion is accomplished by using sprinklers, and these sprinklers irrigate a large
area. Thus it is logistically difficult to use a design with smallish experimen-
tal units, with adjacent units having different levels of irrigation. At the same
time, we might want to have small units, because there may be a limit on the
total amount of land available for the experiment, or there may be variation
in the soils leading us to desire small units grouped in blocks. Split plots give
us something of a compromise.

Divide the land into six whole plots. These whole plots should be sized so
that we can set the irrigation on one whole plot without affecting its neigh- Whole plots and

whole-plot factorbors. Randomly assign each irrigation level to two of the whole plots. Irri-
gation is the whole-plot factor, sometimes called the whole-plot treatment.
Divide each whole plot into four split plots. Randomly assign the four corn
varieties to the four split plots, with a separate, independent randomization
in each whole plot. Variety is the split-plot factor. One possible arrangement Split plots and

split-plot factoris as follows, with the six columns representing whole plots with four split
plots within each:
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I2 V1 I3 V4 I3 V1 I1 V3 I2 V3 I1 V2
I2 V3 I3 V3 I3 V3 I1 V2 I2 V1 I1 V1
I2 V2 I3 V1 I3 V4 I1 V1 I2 V2 I1 V4
I2 V4 I3 V2 I3 V2 I1 V4 I2 V4 I1 V3

What makes a split-plot design different from other designs with factorial
treatment structure? Here are three ways to think about what makes the split
plot different. First, the split plot has two sizes of units and two separate ran-
domizations. Whole plots act as experimental units for one randomization,Split plots have

two sizes of units
and two
randomizations

which assigns levels of the whole-plot factor irrigation to the whole plots.
The other randomization assigns levels of the split-plot factor variety to split
plots. In this randomization, split plots act as experimental units, and whole
plots act as blocks for the split plots. There are two separate randomizations,
with two different kinds of units that can be identified before randomization
starts. This is the way I usually think about split plots.

Second, a split-plot randomization can be done in one stage, assigning
factor-level combinations to split plots, provided that we restrict the random-Split plots restrict

randomization ization so that all split plots in any whole plot get the same level of the whole-
plot factor and no two split plots in the same whole plot get the same level
of the split-plot factor. Thus a split-plot design is a restricted randomization.
We have seen other restrictions on randomization; for example, RCB designs
can be considered a restriction on randomization.

Third, a split plot is a factorial design in incomplete blocks with one main
effect confounded with blocks. The whole plots are the incomplete blocks,Split plots

confound
whole-plot factor
with incomplete
blocks

and the whole-plot factor is confounded with blocks. We will still be able to
make inference about the whole-plot factor, because we have randomized the
assignment of whole plots to levels of the whole-plot factor. This is analo-
gous to recovering interblock information in a BIBD, but is fortunately much
simpler.

Here is another split-plot example to help fix ideas. A statistically ori-
ented music student performs the following experiment. Eight pianos are
obtained, a baby grand and a concert grand from each of four manufacturers.
Forty music majors are divided at random into eight panels of five students
each. Two panels are assigned at random to each manufacturer, and will hear
and rate the sound of the baby and concert grand pianos from that manufac-
turer. Logistically, each panel goes to the concert hall for a 30-minute time
period. The panelists are seated and blindfolded. The curtain opens to re-
veal the two pianos of the appropriate brand, and the same piece of music is
played on the two pianos in random order (the pianos are randomized, not
the music!). Each panelist rates the sound on a 1–100 scale after each piece.

The whole plots are the eight panels, and the whole-plot factor is man-
ufacturer. The split plots are the two listening sessions for each panel, and
the split-plot factor is baby versus concert grand. How can we tell? We have
to follow the randomization and see how treatments were assigned to units.Follow the

randomization to
identify a split plot

Manufacturer was randomized to panel, and piano type was randomized to
session within each panel. The randomization was restricted in such a way
that both sessions for a panel had to have the same level of manufacturer.
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Thus panel was the unit for manufacturer, and session was the unit for type.
Individual panelist is a measurement unit in this experiment, not an experi-
mental unit. The response for any session must be some summary of the five
panelist ratings.

You cannot distinguish a split-plot design from some other design simply
by looking at a table of factor levels and responses. You must know how the
randomization was done. We also have been speaking as if the whole plot
randomization was done first; this is often true, but is not required.

Before moving on, we should state that the flexibility that split plots pro- Split-plot
comparisons

more precise than
whole-plot

comparisons

vide for dealing with factors that are difficult to vary comes at a price: com-
parisons involving the split-plot factor are more precise than those involving
the whole-plot factor. This will be more explicit in the Hasse diagrams below,
where we will see two separate error terms, the one for whole plots having a
larger expectation.

16.2 Fancier Split Plots

The two examples given in the last section were the simplest possible split-
plot design: the treatments have a factorial structure with two factors, levels
of the whole-plot factor are assigned to whole plots in a completely random-
ized fashion; and levels of the split-plot factor are assigned to split plots in
randomized complete block fashion with whole plots as blocks. The key to
a split plot is two sizes of units and two randomizations; we can increase the
number of factors and/or change the whole-plot randomization and still have
a split plot.

Begin with the number of factors. The treatments assigned to whole plots
need not be just the levels of a single factor: they can be the factor-level com- Can have more

than one
whole-plot factor

binations of two or more factors. For example, the four piano manufacturers
could actually be the two by two factorial combinations of the factors source
(levels domestic and imported) and cost (levels expensive and very expen-
sive). Here there would be two whole-plot factors. Other experiments could
have more.

Similarly, the treatments assigned to split plots at the split-plot level can
be the factor-level combinations of two or more factors. The four varieties Can have more

than one split plot
factor

of corn could be from the combinations of the two factors insect resistant/not
insect resistant, and fungus resistant/not fungus resistant. This would have
two split-plot factors, and more are possible.

Of course, these can be combined to have two or more factors at the
whole-plot level and two or more factors at the split-plot level. The key Randomization is

keyfeature of the split plot is not the number of factors, but the kind of random-
ization.

Next consider the way that whole-plot treatments are assigned to whole
plots. Our first examples used completely randomized design; this is not
necessary. It is very common to have the whole plots grouped together into
blocks, and assign whole-plot treatments to whole plots in RCB design. For Whole plots

blocked in RCB
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example, the six whole plots in the irrigation experiment could be grouped
into two blocks of three whole plots each. Then we randomly assign the three
levels of irrigation to the whole plots in the first block, and then perform an
independent randomization in the second block of whole plots. In this kind
of design, there are two kinds of blocks: blocks of whole plots for the whole-
plot treatment randomization, and whole plots acting as blocks for split plots
in the split-plot treatment randomization.

We can use other designs at the whole-plot level, arranging the whole
plots in Balanced Incomplete Blocks, Latin Squares, or other blocking de-Other block

designs for whole
plots

signs. These are not common, but there is no reason that they cannot be used
if the experimental situation requires it.

Whole plots always act as blocks for split plots. Additional blocking at
the split-plot level is possible, but fairly rare. For example, we might expectAdditional split

plot blocking a consistent difference between the first and second pianos rated by a panel.
The two panels for a given manufacturer could then be run as a Latin Square,
with panel as column-blocking factor and first or second session as the row-
blocking factor. This would block on the additional factor time.

16.3 Analysis of a Split Plot

Analysis of a split-plot design is fairly straightforward, once we figure out
what the model should be. We assume that there is a random effect for everyRandom effect for

every
randomization

randomization. Thus we get a random value for each whole plot; if we ignore
the split plots, we have a design with whole plot as experimental unit, and this
random value is the experimental error. We also get a random value for each
split plot to go with the split-plot randomization; this is experimental error at
the split-plot level. Here are several examples of split plots and models for
them.

Example 16.1 Split plot with one whole-plot factor, one split-plot
factor, and CRD at the whole-plot level

Suppose that there is one whole-plot factor A, with a levels, one split-
plot factor B, with b levels, and n whole plots for each level of A. The model
is

yijk = µ+ αi + ηk(i)
+ βj + αβij + εk(ij) ,

with ηk(i) as the whole-plot level random error, and εk(ij) as the split-plot
level random error. Note that there is an ηk(i) value for each whole plot
(some whole plots have bigger responses than others), and an εk(ij) for each
split plot. The whole-plot error term nests within whole-plot treatments in the
same way that an ordinary error term nests within treatments in a CRD. In
fact, if you just look at whole-plot effects (those not involving j) and ignore
the split-plot effects in the second line, this model is a simple CRD on the
whole plots with the whole-plot factor as treatment. Similarly, if you lump
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together all the whole-plot effects in the first line and think of them as blocks,
then we have a model for an RCB with the first line as block, some treatment
effects, and an error.

Below are two Hasse diagrams. The first is generic and the second is for
a split plot with an = 10 whole plots, whole-plot factor A with a = 2 levels,
and split-plot factor B with b = 3 levels. The denominator for the whole-plot
factor A is whole-plot error (WPE); the denominator for the split-plot factor
B and the AB interaction is split-plot error (SPE).

M 1
1

A a
a−1

(WPE) anan−a

B b
b−1

AB ab
(a−1)(b−1)

(SPE) abna(b−1)(n−1)

M 1
1

A 2
1

(WPE) 10
8

B 3
2

AB 6
2

(SPE) 30
16

Example 16.2 Split plot with two whole-plot factors, one split-plot
factor, and CRD at the whole-plot level

Now consider a split-plot design with three factors, two at the whole-plot
level and one at the split-plot level. We still assume a completely randomized
design for whole plots. An appropriate model for this design would be

yijkl = µ+ αi + βj + αβij + ηl(ij)
+ γk + αγik + βγjk + αβγijk + εl(ijk) ,

where we have again arranged the model into a first line with whole-plot
effects (those without k) and a second line with split-plot effects. The indices
i, j, and k run up to a, b, and c, the number of levels of factors A, B, and C;
and the index l runs up to n, the replication at the whole-plot level.

Here are two Hasse diagrams. The first is generic for this setup, and the
second is for such a split plot with n = 5 and whole-plot factors A and B
with a = 2 and b = 3 levels, and split-plot factor C with c = 5 levels. The
denominator for the whole-plot effects A, B, and AB is whole-plot error; the
denominator for the split-plot effects C, AC, BC, and ABC is split-plot error.
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M 1
1

A a
a−1 B b

b−1

AB ab
(a−1)(b−1)

(WPE) abnab(n−1)

C c
c−1

AC ac
(a−1)(c−1) BC bc

(b−1)(c−1)

ABC abc
(a−1)(b−1)(c−1)

(SPE) abcnab(n−1)(c−1)

M 1
1

A 2
1 B 3

2

AB 6
2

(WPE) 30
24

C 5
4

AC 10
4 BC 15

8

ABC 30
8

(SPE) 150
96

Example 16.3 Split plot with one whole-plot factor, two split-plot
factors, and CRD at the whole-plot level

This split plot again has three factors, but now only one is at the whole-
plot level and two are at the split-plot level. We keep a completely random-
ized design for whole plots. An appropriate model for this design would be

yijkl = µ+ αi + ηl(i)
+βj + αβij + γk + αγik + βγjk + αβγijk + εl(ijk) ,

where we have arranged the model into a first line with whole-plot effects
(those without j or k) and a second line with split-plot effects. The indices i,
j, and k run up to a, b, and c, the number of levels of factors A, B, and C; and
the index l runs up to n, the amount of replication at the whole-plot level.

Below is the generic Hasse diagram for such a split plot. The denomina-
tor for the whole-plot effect A is whole-plot error; the denominator for the
split plot effects B, AB, C, AC, BC, and ABC is split-plot error.

M 1
1

A a
a−1

(WPE) ana(n−1)

B b
b−1

AB ab
(a−1)(b−1)

C c
c−1

AC ac
(a−1)(c−1) BC bc

(b−1)(c−1)

ABC abc
(a−1)(b−1)(c−1)

(SPE) abcna(n−1)(bc−1)
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Example 16.4 Split plot with one whole-plot factor, one split-plot
factor, and RCB at the whole-plot level

Now consider a split-plot design with two factors, one at the whole-plot
level and one at the split-plot level, but use a block design for the whole plots.
An appropriate model for this design would be

yijkl = µ+ αi + γk + ηl(ik)
+ βj + αβij + εl(ijk) ,

where we have again arranged the model into a first line with whole-plot
effects (those without j) and a second line with split-plot effects. The indices
i and j run up to a and b, the number of levels of factors A and B; the index
k runs up to n, the number of blocks at the whole-plot level; and the index l
runs up to 1, the number of whole plots in each block getting a given whole-
plot treatment or the number of split plots in each whole plot getting a given
split-plot treatment. Thus the model assumes that block effects are fixed and
additive with whole-plot treatments, and there is a random error for each
whole plot. This is just the standard RCB model applied to the whole plots.

Below is a generic Hasse diagram for a blocked split plot and a sample
Hasse diagram for a split plot with n = 5 blocks and whole-plot factor A with
a = 2 levels, and split-plot factor B with b = 3 levels. The denominator for
the whole-plot effect A is whole-plot error; the denominator for the split-plot
effects B and AB is split-plot error.

M 1
1

Blk n
n−1 A a

a−1

(WPE) na(n−1)(a−1)

B b
b−1

AB ab
(a−1)(b−1)

(SPE) naba(n−1)(b−1)

M 1
1

Blk 5
4 A 2

1

(WPE) 10
4

B 3
2

AB 6
2

(SPE) 30
16

This model assumes that blocks are additive. If we allow a block by whole-
plot factor interaction, then there will be no degrees of freedom for whole-
plot error, and we will need to use the block by whole-plot factor interaction
as surrogate error for whole-plot factor.

We can use our standard methods for mixed-effects factorials from Chap-
ter 11 to analyze split-plot designs using these split-plot models. Alter-
natively, we can achieve the same results using the following heuristic ap-
proach. A split plot has two sizes of units and two randomizations, so first
split the variation in the data into two bundles, the variation between whole Partition variation

into between and
within whole plots

plots and the variation within whole plots (between split plots). Using a
simple split-plot design with just two factors, there are an whole plots and
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N − 1 = abn− 1 degrees of freedom between all the responses. We can get
the variation between whole plots by considering the whole plots to be an
“treatment groups” of b units each and doing an ordinary one-way ANOVA.
There are thus an − 1 degrees of freedom between the whole plots and
(abn − 1) − (an − 1) = an(b − 1) degrees of freedom within whole plots,
between split plots. Visualize this decomposition as:

Between WPan−1 Within WPan(b−1)

Total(N−1)

The between whole plots variation is made up of effects that affect com-
plete whole plots. These include the whole-plot treatment factor(s), whole-
plot error, and any blocking that might have been done at the whole-plot level.Whole-plot

variation includes
blocks, whole-plot
factor, and
whole-plot error

This variation yields the following decomposition, assuming the whole plots
were blocked.

Blocksn−1 Aa−1 WPE(a−1)(n−1)

Between WPan−1

The variation between split plots (within whole plots) is variation in the
responses that depends on effects that affect individual split plots, includingSplit-plot variation

includes split-plot
factor, whole-by-
split-factor
interaction, and
split-plot error

the split-plot treatment factor(s), interaction between whole-plot and split-
plot treatment factors, and split-plot error. The variation is decomposed as

Bb−1 AB(a−1)(b−1) SPEa(b−1)(n−1)

Within WPan(b−1)

The easiest way to get the degrees of freedom for split-plot error is by sub-
traction. There are an(b − 1) degrees of freedom between split plots withinGet df by

subtraction whole plots; b−1 of these go to B, (a−1)(b−1) go to AB, and the remainder
must be split-plot error.

It may not be obvious why the interaction between the whole- and split-
plot factors should be a split-plot level effect. Recall that one way to describe
this interaction is how the split-plot treatment effects change as we vary theInteraction at

split-plot level whole-plot treatment. Because this is dealing with changing split-plot treat-
ment levels, this effect cannot be at the whole-plot level; it must be lower.

Assembling the pieces, we get the overall decomposition:
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Table 16.1: Number of memory errors by type, tension, and anxiety
level; subjects are columns.

Anxiety/Tension
1 1 1 1 1 1 2 2 2 2 2 2

Type 1 1 1 2 2 2 1 1 1 2 2 2
1 18 19 14 16 12 18 16 18 16 19 16 16
2 14 12 10 12 8 10 10 8 12 16 14 12
3 12 8 6 10 6 5 8 4 6 10 10 8
4 6 4 2 4 2 1 4 1 2 8 9 8

Blkn−1 Aa−1 WPE(a−1)(n−1)

Between WPan−1

Bb−1 AB(a−1)(b−1) SPEa(b−1)(n−1)

Within WPan(b−1)

Total(N−1)

I find that this decomposition gives me a little more understanding about what
is going on in the split-plot analysis than just looking at the Hasse diagram.

We compute sums of squares and estimates of treatment effects in the
usual way. When it is time for testing or computing standard errors for con-
trasts, effects at the split-plot level use the split-plot error with its degrees of
freedom, and effects at the whole-plot level use the whole-plot error with its
degrees of freedom.

Example 16.5 Anxiety, tension, and memory
We wish to study the effects of anxiety and muscular tension on four dif-

ferent types of memory. Twelve subjects are assigned to one of four anxiety-
tension combinations at random. The low-anxiety group is told that they will
be awarded $5 for participation and $10 if they remember sufficiently accu-
rately, and the high-anxiety group is told that they will be awarded $5 for
participation and $100 if they remember sufficiently accurately. Everyone
must squeeze a spring-loaded grip to keep a buzzer from sounding during
the testing period. The high-tension group must squeeze against a stronger
spring than the low-tension group. All subjects then perform four memory
trials in random order, testing four different types of memory. The response
is the number of errors on each memory trial, as shown in Table 16.1 (data
set Anxiety).

This is a split-plot design. There are two separate randomizations. We
first randomly assign the anxiety-tension combinations to each subject. Even
though we will have four responses from each subject, the randomization
is restricted so that all four of those responses will be at the same anxiety-
tension combination. Anxiety and tension are thus whole-plot treatment fac-
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tors. Each subject will do four memory trials. The trial type is randomized
to the four trials for a given subject. Thus the four trials for a subject are
the split plots, and the trial type is the split-plot treatment. At the whole-plot
level, the anxiety-tension combinations are assigned according to a CRD, so
there is no blocking.

Here is some Minitab output from an analysis of these data.

Source DF Seq SS Adj SS Adj MS F P
anxiety 1 10.083 10.083 10.083 0.98 0.352
tension 1 8.333 8.333 8.333 0.81 0.395
anxiety*tension 1 80.083 80.083 80.083 7.77 0.024
subject(anxiety tension) 8 82.500 82.500 10.312 4.74 0.001
type 3 991.500 991.500 330.500 152.05 0.000
anxiety*type 3 8.417 8.417 2.806 1.29 0.300
tension*type 3 12.167 12.167 4.056 1.87 0.162
anxiety*tension*type 3 12.750 12.750 4.250 1.96 0.148
Error 24 52.167 52.167 2.174

The ANOVA table has been arranged so that the whole-plot analysis is on
top and the split-plot analysis below, as is customary. The whole-plot error is
shown as subject nested in anxiety and tension, and the split-plot error is just
denoted Error. Note that the split-plot error is smaller than the whole-plot
error by a factor of nearly 5. Subject to subject variation is not negligible,
and split-plot comparisons, which are made with subjects as blocks, are much
more precise than whole-plot comparisons, where subjects are units.

At the split-plot level, the effect of type is highly significant. All the type
effects γk differ from each other by more than 3, and the standard error of
the difference of two type means is

√
2.174(1/12 + 1/12) = .602. Thus all

type means are at least 5 standard errors apart and can be distinguished from
each other. No interactions with type appear to be significant.

Analysis at the whole-plot level is more ambiguous. The main effects
of anxiety and tension are both nonsignificant, but their interaction is mod-
erately significant. Figure 16.1 shows an interaction plot for anxiety and
tension. We see that more errors occur when anxiety and tension are both
low or both high. With such strong interaction, it makes sense to examine
the treatment means themselves. The greatest difference between the four
whole plot treatment means is 3.5, and the standard error for a difference of
two means is

√
10.312(1/12 + 1/12) = 1.311. This is only a bit more than

2.5 standard errors and is not significant after adjusting for multiple com-
parisons; for example, the Bonferroni p-value is .17. This is in accordance
with the result we obtain by considering the four whole-plot treatments to
be a single factor with four levels. Pooling sums of squares and degrees of
freedom for anxiety, tension, and their interaction, we get a mean square of
32.83 with 3 degrees of freedom and a p-value of .08.

The residuals-versus-predicted plot shows slight nonconstant variance;
no transformation makes much improvement, so the data have been analyzed
on the original scale.

In conclusion, there is strong evidence that the number of errors differs
between memory type. There is no evidence that this difference depends on
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Figure 16.1: Anxiety by tension interaction plot for memory errors
data, using Minitab.

anxiety or tension individually. There is mild evidence that there are more
errors when anxiety and tension are both high or both low, but none of the
actual anxiety-tension combinations can be distinguished.

Let me note here that some authors prefer an alternate model for the split
plot with one whole-plot factor, one split-plot factor, and RCB structure on Alternate model

has blocks
random and

interacting

the whole plots. This model assumes that blocks are a random effect that
interact with all other factors; effectively this is a three-way factorial model
with one random factor.

16.4 Split-Split Plots

What we have split once, we can split again. Consider an experiment with Split the split plots
three factors. The levels of factor A are assigned at random to n whole plots
each (total of an whole plots). Each whole plot is split into b split plots.
The levels of factor B are assigned at random to split plots, using whole
plots as blocks. So far, this is just like a split-plot design. Now each split
plot is divided into c split-split plots, and the levels of factor C are randomly
assigned to split-split plots using split plots as blocks. Obviously, once we
get used to splitting, we can split again for a fourth factor, and keep on going.

Split-split plots arise for the same reasons as ordinary split plots: some
factors are easier to vary than others. For example, consider a chemical ex-
periment where we study the effects of the type of feedstock, the temperature
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of the reaction, and the duration of the reaction on yield. Some experimental
setups require extensive cleaning between different feedstocks, so we might
wish to vary the feedstock as infrequently as possible. Similarly, there mayUse split-split

plots with three
levels of difficulty
for varying factors

be some delay that must occur when the temperature is changed to allow
the equipment to equilibrate at the new temperature. In such a situation, we
might choose type of feedstock as the whole-plot factor, temperature of reac-
tion as the split-plot factor, and duration of reaction as the split-split-plot fac-
tor. This makes our experiment more feasible logistically, because we have
fewer cleanups and temperature delays; comparisons involving time will be
more precise than those for temperature, which are themselves more precise
than those for feedstock.

Split-split plots have three sizes of units. Whole plots act as unit for
the whole-plot treatments. Whole plots act as blocks for split plots, and split
plots act as unit for the split-plot treatments. Split plots act as blocks for split-
split plots, and split-split plots act as unit for the split-split-plot treatments.
The whole plots can be blocked, just as in the split plot.

Example 16.6 Split-split plot with one whole-plot factor, one split-
plot factor, one split-split-plot factor and CRD at the whole plot
level

Now consider a split-split-plot design with three factors, one at the
whole-plot level, one at the split-plot level, and one at the split-split-plot
level, with a completely randomized design for whole plots. An appropriate
model for this design would be

yijkl = µ+ αi + ηl(i)
+ βj + αβij + ζl(ij)
+ γk + αγik + βγjk + αβγijk + εl(ijk) ,

where we have arranged the model into a first line with whole-plot effects
(those without j or k), a second line with split-plot effects (those with j but
not k), and the last line with split-split-plot effects. The indices i, j, and k
run up to a, b, and c, the number of levels of factors A, B, and C; and the
index l runs up to n, the amount of replication at the whole plot level.

Below is a Hasse diagram for this generic split-split plot with three fac-
tors and a CRD at the whole-plot level. The denominator for the whole-plot
effect A is whole-plot error; the denominator for the split-plot effects B and
AB is the split-plot error; and the denominator for the split-split-plot effects
C, AC, BC, and ABC is split-split-plot error (SSPE).
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M 1
1

A a
a−1

(WPE) naa(n−1)

B b
b−1

AB ab
(a−1)(b−1)

(SPE) naba(n−1)(b−1)

C c
c−1

AC ac
(a−1)(c−1) BC bc

(b−1)(c−1)

ABC abc
(a−1)(b−1)(c−1)

(SSPE) nabcab(n−1)(c−1)

A split-split plot has at least three treatment factors, but it can have more Randomization,
not number of

factors,
determines

design

than three. Any of whole-, split-, or split-split-plot treatments can have facto-
rial structure. Thus you cannot distinguish a split plot from a split-split plot
or other design solely on the basis of the number of factors; the units and
randomization determine the design.

Analysis of a split-split plot can be conducted using standard methods
for mixed-effects factorials, but I find that a graphical partitioning of degrees Partition variation

between levels of
the design

of freedom and their associated sums of squares helps me understand what
is going on. Consider three factors with a, b, and c levels, in a split-split-plot
design with n replications. Begin the decomposition just as for a split plot:

Between WPan−1 Within WPan(bc−1)

Total(abcn−1)

The only difference between this and a split-plot design is that we have bc−1
degrees of freedom within each whole plot, because each whole plot is a
bundle of bc split-split-plot values instead of just b split-plot values.

The between whole plots variation partitions in the same way as for a
split-plot design. For example, with blocking we get:

Blocksn−1 Aa−1 WPE(a−1)(n−1)

Between WPan−1

Variation within whole plots can be divided into variation between split
plots and variation between split-split plots within the split plots. This is like Between and

within split plotssplit plots as block variation, and split-split plots as unit to unit within block
variation. This partition is:
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Between SPan(b−1) Within SPabn(c−1)

Within WPan(bc−1)

There are b split plots in each whole plot, so b−1 degrees of freedom between
split plots in a single whole plot, and an(b − 1) total degrees of freedom
between split plots within whole plots. There are c split-split plots in each
split plot, so c − 1 degrees of freedom between split-split plots in a single
split plot, and abn(c − 1) total degrees of freedom between split-split plots
within a split plot.

The variation between split plots within whole plots is partitioned just asBetween split
plots for a split-plot design:

Bb−1 AB(a−1)(b−1) SPEa(b−1)(n−1)

Between SPan(b−1)

Finally, we come to the variation between split-split plots within splitBetween
split-split plots plots. This is variation due to factor C and its interactions, and split-split-plot

error:

Cc−1 AC(a−1)(c−1) BC(b−1)(c−1) ABC(a−1)(b−1)(c−1) SSPEab(c−1)(n−1)

Within SPabn(c−1)
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Table 16.2: Percent of wetland biomass that is nonweed, by table
(T), nitrogen (N), weed (W), and clipping (C).

W 1 W 2 W 3
T N C 1 C 2 C 1 C 2 C 1 C 2
1 1 87.2 88.8 70.4 75.7 75.9 80.6

2 80.5 83.8 59.2 61.5 59.5 62.5
3 76.8 80.8 47.8 49.5 48.4 52.9
4 77.7 81.5 35.7 37.3 38.3 42.4

2 1 78.2 80.5 65.1 68.3 65.3 66.6
2 79.8 85.2 57.6 61.4 58.5 61.6
3 82.4 83.1 50.5 54.0 51.6 54.7
4 75.5 78.7 39.0 43.9 41.9 45.1

Example 16.7 Weed biomass in wetlands
An experiment studies the effect of nitrogen and weeds on plant growth

in wetlands. We investigate four levels of nitrogen, three weed treatments
(no additional weeds, addition of weed species 1, addition of weed species
2), and two herbivory treatments (clipping and no clipping). We have eight
trays; each tray holds three artificial wetlands consisting of rectangular wire
baskets containing wetland soil. The trays are full of water, so the artificial
wetlands stay wet. All of the artificial wetlands receive a standard set of
seeds to start growth.

Four of the trays are placed on a table near the door of the greenhouse,
and the other four trays are placed on a table in the center of the greenhouse.
On each table, we randomly assign one of the trays to each of the four ni-
trogen treatments. Within each tray, we randomly assign the wetlands to the
three weed treatments. Each wetland is split in half. One half is chosen at
random and will be clipped after 4 weeks, with the clippings removed; the
other half is not clipped. After 8 weeks, we measure the fraction of biomass
in each wetland that is nonweed as our response. Responses are given in
Table 16.2, data set WeedBiomass.

This is a split-split-plot design. Everything in a given tray has the same
level of nitrogen, so the trays are whole plots, and nitrogen is the whole-plot
factor. The whole plots are arranged in two blocks, with table as block ac-
counting for any differences between the door and center of the greenhouse.
Both measurements for a given wetland have the same weed treatment, so
the wetlands are split plots, and weed is the split-plot factor. Finally each
wetland half gets its own clipping treatment, so wetland halves are split-split
plots, and clipping is the split-split-plot factor.

Here is some SAS output for these data.
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Source DF Seq SS Adj SS Adj MS F P
anxiety 1 10.083 10.083 10.083 0.98 0.352
tension 1 8.333 8.333 8.333 0.81 0.395
anxiety*tension 1 80.083 80.083 80.083 7.77 0.024
subject(anxiety tension) 8 82.500 82.500 10.312 4.74 0.001
type 3 991.500 991.500 330.500 152.05 0.000
anxiety*type 3 8.417 8.417 2.806 1.29 0.300
tension*type 3 12.167 12.167 4.056 1.87 0.162
anxiety*tension*type 3 12.750 12.750 4.250 1.96 0.148
Error 24 52.167 52.167 2.174

Notice that F-ratios and p-values in the ANOVA table use the 12-degree-of-
freedom error term as denominator. This is correct for split-split-plot terms
(those including clipping), but is incorrect for whole-plot and split-plot terms.
Those must be tested separately in SAS by specifying the appropriate denom-
inators. This is important, because the whole-plot error mean square is about
15 times as big as the split-plot error mean square, which is about 6 times as
big as the split-split-plot mean square.

All main effects and the nitrogen by weed interaction are significant. An
interaction plot for nitrogen and weed shows the nature of the interaction,
Figure 16.2. Weeds do better as nitrogen is introduced, but the effect is much
larger when the weeds have been seeded. Clipping slightly increases the
fraction of nonweed biomass.

Residual plots show that the variance increases somewhat with the mean,
but no reasonable transformation fixes the problem.

16.5 Other Generalizations of Split Plots

One way to think about split plots is that the units have a structure somewhat
like that of nested factorial treatments. In a split plot, the split plots are nested
in whole plots; in a split-split plot, the split-split plots are nested in split plots,Other unit

structures
besides nesting
are possible

which are themselves nested in whole plots. In the split-plot design, levels
of different factors are assigned to the different kinds of units. This section
deals with some other unit structures that are possible.

Example 16.8 Machine shop
Consider a machine shop that is producing parts cut from metal blanks.

The quality of the parts is determined by their strength and fidelity to the
desired shape. The shop wishes to determine how brand of cutting tool and
supplier of metal blank affect the quality. An experiment will be performed
one week, and then repeated the next week. Four brands of cutting tools will
be obtained, and brand of tool will be randomly assigned to four lathes. A
different supplier of metal blank will be randomly selected for each of the 5
work days during the week. That way, all brand-supplier combinations are
observed.

A schematic for the design might look like this:
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Figure 16.2: Nitrogen by weed interaction plot for for wetland weeds
data, using Minitab.

Day 1 Day 2 Day 3 Day 4 Day 5
Lathe 1 Br 3 Sp 5 Br 3 Sp 1 Br 3 Sp 2 Br 3 Sp 4 Br 3 Sp 3
Lathe 2 Br 2 Sp 5 Br 2 Sp 1 Br 2 Sp 2 Br 2 Sp 4 Br 2 Sp 3
Lathe 3 Br 1 Sp 5 Br 1 Sp 1 Br 1 Sp 2 Br 1 Sp 4 Br 1 Sp 3
Lathe 4 Br 4 Sp 5 Br 4 Sp 1 Br 4 Sp 2 Br 4 Sp 4 Br 4 Sp 3

The table shows the combinations of the four lathes and 5 days. Brand is
assigned to lathe, or row of the table. Thus the unit for brand is lathe. Sup-
plier of blanks is assigned to day, or column of the table. Thus the unit for
supplier is day. There are two separate randomizations done in this design to
two different kinds of units, but this is not a split plot, because here the units
do not nest as they would in a split plot.

The design used in the machine shop example has been given a couple
of different names, including strip plot and split block. What we have in Strip plot or split

block, with units
that cross

a strip plot is two different kinds of units, with levels of factors assigned to
each unit, but the units cross each other. This is in contrast to the split plot,
where the units nest.

Like the split plot, the strip plot arises through ease-of-use considera- Strip plot easy to
usetions. It is easier to use one brand of tool on each lathe than it is to change.

Similarly, it is easier to use one supplier all day than to change suppliers dur-
ing the day. When units are large and treatments difficult to change, but the
units and treatments can cross, a strip plot can be the design of choice.
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The usual assumptions in model building for split plots and related de-
signs such as strip plots are that there is a random term for each kind of unit,Random term for

every unit and
every cross of
units

or kind of randomization if you prefer, and there is a random term whenever
two units cross. For the split plot, there is a random term for whole plots
that we call whole-plot error, and a random term for split plots that we call
split-plot error. There are no further random terms because the unit structure
in a whole plot does not cross; it nests.

For the strip plot, there is a random term for rows and a random term for
columns, because these are the two basic units. There is also a random term
for each row-column combination, because this is where two units cross. For
the machine tool example, we have the model

yijkl = µ+ γk + αi + ηl(ik) +

βj + ζl(jk) +

αβij + εl(ijk) ,

where i and j index the levels of brand and supplier, k indexes the week
(weeks are acting as blocks), and l is always 1 and indicates a particular unitStrip plot has row,

column, and unit
errors

for a block-treatment-unit size combination. The term ηl(ik) is the random
effect for machine to machine (row to row) differences within a week; the
term ζl(jk) is the random effect for day to day (column to column) differences
within a week; εl(ijk) is unit experimental error.

Here is a Hasse diagram for the machine shop example. We denote brand
and supplier by B and S; R and C denote the row and column random effects.

M 1
1

Blk 2
1 B 4

3

(R) 8
3

S 5
4

(C) 10
4 BS 20

12

(RC) 40
12

We can see from the Hasse diagram that row and column mean squares tendInteraction error
smaller to be larger than the error for individual cells. This means that a strip plot

experiment has less precise comparisons and lower power for main effects,
and more precision and power for interactions.

When we saw that treatment factors could cross or nest, a whole world
of new treatment structures opened to us. Many combinations of crossing
and nesting were useful in different situations. The same is true for unitUnits can nest

and/or cross structures—we can construct more diverse designs by combining nesting and
crossing of units. Just as with the split plot and strip plot, these unit structures
usually arise through ease-of-use requirements.

Now extend the machine tool example by supposing that in addition to
four brands of tool, there are also two types. Brands of tool are assigned
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to each lathe at random as before, but we now assign at random the first or
second tool type to morning or afternoon use. If all the lathes use the same Three kinds of

units crossingtype of tool in the morning and the other type in the afternoon, then our units
have a three-way crossing structure, with lathe, day, and hour being rows,
columns, and layers in a three-way table. There will be separate random
terms for each unit type (lathe, day, and hour) and for each crossing of unit
types (lathe by day, lathe by hour, day by hour, and lathe by day by hour).

M 1
1

(Blk) 2
1 B 4

3

(R) 8
3

S 5
4

(C) 10
4 BS 20

12

(RC) 40
12

T 2
1

(L) 4
1 BT 8

3

(RL) 16
3

ST 10
4

(CL) 20
4 BST 40

12

(RCL) 80
12

In the Hasse diagram, R, C, and L are the random effects for rows, columns,
and layers (lathes, days, and hours). The interaction RCL cannot be distin-
guished from the usual experimental error E. The appropriate test denomina-
tors are

Term B S T BS BT ST BST
Denominator R C L RC RL CL RCL

Alternatively, suppose that instead of using the same type of tool for all
lathes in the mornings and afternoons, we instead randomize types to morn-
ing or afternoon separately for each lathe. Then ignoring supplier and day, Units nested and

crossedwe have hour units nested in lathe units, so that the experiment is a split plot
in brand and type. Overall we have three treatment factors, all crossed, and
unit structure hour nested in lathe and crossed with day. This is a split plot
(in brand and type, with lathe as whole plot, time as split plot, and week as
block) crossed with an RCB (in supplier, with day as unit and week as block).

The Hasse diagram for this setup is on the next page. In the Hasse di-
agram, R, C, and L are the random effects for rows, columns, and layers
(lathes, days, and hours). The layer effects L (hours) are nested in rows
(lathes). Again, the interaction CL cannot be distinguished from the usual
experimental error E. The appropriate test denominators are

Term B T BT S BS TS BTS
Denominator R L L C RC CL CL
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M 1
1

Blk 2
1 B 4

3

(R) 8
3

T 2
1

BT 8
3

(L) 16
4

S 5
4

(C) 10
4 BS 20

12

(RC) 40
12

TS 10
4

BTS 40
12

(CL) 80
16

16.6 Repeated Measures

Consider the following experiment, which looks similar to a split-plot design
but lacks an important ingredient. We wish to study the effects of different
infant formulas and time on infant growth. Thirty newborns are assigned at
random to three different infant formulas. (All the formulas are believed to
provide adequate nutrition, and informed consent of the parents is obtained.)
The weights of the infants are measured at birth, 1 week, 4 weeks, 2 months,
and 6 months. The main effect of time is expected; the research questions
relate to the main effect of formula and interaction between time and formula.

This looks a little like a split-plot design, with infant as whole plot and
formula as whole-plot treatment, and infant time periods as split plot and age
as split-plot treatment. However, this is not a split-plot design, because ageSplit plot needs

two
randomizations

was not randomized; indeed, age cannot be randomized. A split-plot design
has two sizes of units and two randomizations. This experiment has two sizes
of units, but only one randomization.

This is the prototypical repeated-measures design. The jargon used in
repeated measures is a bit different from split plots. Whole plots are usually
called “subjects,” whole-plot treatment factors are called “grouping factors”Repeated

measures have
only one
randomization

or “between subjects factors,” and split-plot treatment factors are called “re-
peated measures” or “within subjects factors” or “trial factors.” In a repeated-
measures design, the grouping factors are randomized to the subjects, but the
repeated measures are not randomized. The example has a single group-
ing factor applied to subjects in a completely randomized fashion, but there
could be multiple grouping factors, and the subject level design could include
blocking.
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What we really have with a repeated-measures design is that subjects are
units, and every unit has a multivariate response. That is, instead of a single Repeated

measures have
multivariate

response

response, every subject has a whole vector of responses, with one element
for each repeated measure. Thus, each infant in the example above has a
response that is a vector of length 5, giving weights at the five ages.

The challenge presented by repeated measures is that the components in
a vector of responses tend to be correlated, not independent, and every pair of Correlated

responses can
improve precision

but complicate
analysis

repeated measures could have a different correlation. This correlation is both
a blessing and a curse. It is a blessing because within-subject correlation
makes comparisons between repeated measures more precise, in the same
way that blocking makes treatment comparisons more precise. It is a curse
because correlation complicates the analysis.

There are three basic choices for the analysis of repeated-measures de-
signs. First, you can do a full multivariate analysis, though such an analysis Multivariate

analysisis beyond the scope of this text. Second, you can make a suitable univariate
summary of the data for each subject, and then use these summaries as the
response in a standard analysis. For the infant formula example, we could
calculate the average growth rate for each infant and then analyze these as Univariate

summariesresponses in a CRD with three treatments, or we could simply use the 6
month weight as response to see if the formulas have any effect on weight af-
ter 6 months. In fact, most experiments have more than one response, which
we usually analyze separately; the trick comes in analyzing more than one
response at a time.

The third method is to analyze the data with a suitable ANOVA model.
The applicability of the third method depends on whether nature has been
kind to us: if the correlation structure of the responses meets certain require-
ments, then we can ignore the correlation and get a proper analysis using uni- Univariate

ANOVA works in
some cases, such

as compound
symmetry, or two

repeated
measures

variate mixed-effects models and ANOVA. For example, if all the repeated
measures have the same variance, and all pairs of repeated measures have the
same correlation (a condition called compound symmetry), then we can get an
appropriate analysis by treating the repeated-measures design as if it were a
split-plot design. Another important case is when there are only two repeated
measures; then the requirements are always met. Thus you can always use
the standard split-plot type analysis when there are only two repeated mea-
sures. When the ANOVA model is appropriate, it provides more powerful
tests than the multivariate procedures.

The mysterious “certain requirements” mentioned above are called the
Huynh-Feldt condition or circularity, and it states that all differences of re- Huynh-Feldt

condition and
Mauchly test

peated measures have the same variance. For example, compound symmetry
implies the Huynh-Feldt condition. There is a test for the Huynh-Feldt con-
dition, called the Mauchly test for sphericity, but it is very dependent on
normality in the same way that most classical tests of equal variance are de-
pendent on normality.

The standard model in a univariate analysis of repeated measures as-
sumes that there is a random effect for each subject, and that this random ef-
fect interacts with all repeated-measures effects and their interactions, but not Random subject

effect interacts
with trial factors

with the grouping by repeated interactions. For example, consider a model
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for the infant weights:

yijk = µ+ αi + εk(i) +

βj + αβij + εβjk(i) .

The term αi is the formula effect (F), and εk(i) is the subject random effect
(S); effect βj is age (A), and εβjk(i) is the interaction of age and subject.

M 1
1

F a
a−1

(S) ana(n−1)

A b
b−1

FA ab
(a−1)(b−1)

(SA) abna(n−1)(b−1)

M 1
1

F 3
2

(S) 30
27

A 5
4

FA 15
8

(SA) 150
108

We see that formula is tested against subject, and age and the formula by age
interaction are tested against the subject by age interaction. This analysis isOne trial factor is

like split plot just like a split-plot design.
Suppose now that the infants are weighed twice at each age, using two

different techniques. Now the model looks like

yijkl = µ+ αi + εl(i) +

βj + αβij + εβjl(i) +

γk + αγik + εγkl(i) +

βγjk + αβγijk + εβγjkl(i) .

The repeated measures effects are βj for age, γk for measurement technique
(T), and βγjk for their interaction. Each of these is assumed to interact withTwo trial factors

unlike split plot the subject effect εl(i). This leads to the error structure shown in the Hasse
diagram below, which is unlike either a split-plot design with two factors at
the split-plot level or a split-split plot.

M 1
1

F 3
2

(S) 30
27

A 5
4

FA 15
8

(SA) 150
108

T 2
1

FT 6
2

(ST) 60
27

AT 10
4

FAT 30
8

(SAT) 300
108
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The test denominators are

Term F A FA T FT AT FAT
Denominator S SA SA ST ST SAT SAT

16.7 Crossover Designs

In this section we make a brief return to crossover designs, which in Chap-
ter 12 we described as replicated Latin Squares with blocking on subjects Crossover as

Latin Squareand periods. For concreteness suppose that we have three treatments, three
periods, and twelve subjects.

The three treatments can be given to the subjects in any of six orders.
Assign the orders at random to the subject, two subjects per order, and ob-
serve the responses to the treatments in the three periods. From this point
of view, the crossover design is a repeated measures design. Order is the
grouping factor, period is the trial factor, and treatment lies in the order by Crossover as

repeated
measure

period interaction. Any carryover effects are also in the order by period in-
teraction. It is customary not to fit the entire order by period interaction, but
instead to fit only treatment and carryover effects as needed. With this re-
duced model, the only difference between the repeated measures and Latin
Square approaches to a crossover design is that the Latin Square pools all be-
tween subjects variation into a single block term, and the repeated measure
splits this into between orders and between subjects within order, allowing Fit order effects
the estimation and testing of the overall order effect.

16.8 Further Reading and Extensions

Unbalanced mixed-effects designs are generally difficult to analyze, and split
plots are no different. Software that can compute Type I and III mean squares
and their expectations for unbalanced data helps find reasonable test statis-
tics. Mathew and Sinha (1992) describe exact and optimal tests for unbal-
anced split plots.

Nature is not always so kind as to provide us with repeated-measures data
that meet the Huynh-Feldt condition (Huynh and Feldt 1970), and as noted
above, the Mauchly (1940) test is sensitive to nonnormality. The result of
nonconforming correlations is to make the within subjects procedures liberal;
that is, confidence intervals are too short and tests reject the null hypothesis
more often than they should. This tendency for tests to be liberal can be
reduced by modifying the degrees of freedom used when assessing p-values.
For example, the within subjects tests for B and AB have b−1, a(b−1)(n−1)
and (a − 1)(b − 1), a(b − 1)(n − 1) degrees of freedom; these degrees of
freedom are adjusted by rescaling to λ(b − 1), λa(b − 1)(n − 1) and λ(a −
1)(b− 1), λa(b− 1)(n− 1), where 1/(b− 1) ≤ λ ≤ 1.

There are two fairly common methods for computing this adjustment λ.
The first is from Greenhouse and Geisser (1959); Huynh and Feldt (1976)
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provide a slightly less conservative correction. Both adjustments are too te-
dious for hand computation but are available in many software packages.
Greenhouse and Geisser (1959) also provide a simple conservative test that
uses the minimum possible value of λ, namely 1/(b− 1). For this conserva-
tive approach, the tests for B and AB have 1, a(n− 1) and (a− 1), a(n− 1)
degrees of freedom.

16.9 Problems

Briefly describe the experimental design you would choose for each ofProblem 16.1
the following situations, and explain why. Describe treatments, blocks, etc.

(a) A substantial fraction of the cholesterol in beef is in the residual blood
in the meat. Vascular rinsing attempts to flush out the blood from the
circulatory system of the carcass with a weak sugar solution immediately
after the animal is slaughtered, thereby lowering the cholesterol. This
treatment may change the sensory attributes of the meat, and any change
may depend on how long the meat has been aged (4, 6, or 8 days).

We have 10 animals to work with in this experiment, and we will only
consider the “freshness” attribute of the sirloin cut. Each animal must be
entirely rinsed or not (you cannot rinse part of an animal), but we can
produce multiple pieces of sirloin from each animal. We want to study
both the effect of rinsing and the effect of the three different aging times.

(b) Underneath the pavement of a road is the subsurface soil or base; the base
must be adequately strong or else the road surface will not be durable; it
could even be so weak that the construction vehicles get mired—then we
get no road at all! When the soil is too weak it must be modified to in-
crease its strength up to something reasonable, say 80 psi. We are in that
situation and must modify the soil; the question is which modification to
use.

We need to experiment to determine how to set six factors (moisture
during mixing, percent Portland cement, percent kiln dust, percent fly
ash, compaction delay, drying time) to get the strongest base. Each factor
is at two levels. We can get eight truckloads of soil from around the
project for experimentation, and each truckload is sufficient to test 16
factor/level combinations.

(c) You work at a consumer agency that is investigating how shoppers get
advised when making computer purchases. In particular, you wish to
look at how the appearance of the purchaser and the disclosed use for the
computer affect the total cost of the recommended package. You choose
three appearances (shoppers): a twenty-something female, a twenty-
something “geeky” male, and a retired couple. The shoppers will either
say that they are going to use their computer for email and web surfing,
or for working with multimedia. You expect considerable store to store
variation in the kinds of equipment that will be recommended, and you’d
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like to study eight different stores (you may send more than one shopper
to a store).

(d) We wish to study the tensile strength of a non-woven cotton fabric. The
24 treatments are the factor/level combinations of calendaring tempera-
ture (4 levels), binder fibers (2 levels), and binder content (3 levels). We
have resources to create and test 48 separate fabrics, but it is expensive
to change the calendaring temperature, so we like to avoid changing it
often.

(e) A plant breeder wishes to study the effects of soil drainage and variety of
tulip bulbs on flower production. Twelve 3 m by 10 m experimental sites
are available in a garden. Each site is a .5 m–deep trench. Soil drainage
is changed by adding varying amounts of sand to a clay soil (more sand
improves drainage), mixing the two well, and placing the mixture in the
trench. The bulbs are then planted in the soils, and flower production is
measured the following spring. It is felt that four different levels of soil
drainage would suffice, and there are fifteen tulip varieties that need to
be studied.

(f) It’s Girl Scout cookie time, and the Girl Scout leaders want to find out
how to sell even more cookies (make more dough?) in the future. The
variables they have to work with are type of sales (two levels: door-to-
door sales or table sales at grocery stores, malls, etc.) and cookie selec-
tion (four levels comprising four different “menus” of cookies offered to
customers). Administratively, the Girl Scouts are organized into “coun-
cils” consisting of many “troops” of 30-or-so girls each. Each Troop in
the experiment will be assigned a menu and a sales type for the year, and
for logistical reasons, all the troops in a given council should have the
same cookie selection. Sixteen councils have agreed to participate in the
experiment.

(g) Rodent activity may be affected by photoperiod patterns. We wish to test
this possibility by treating newly-weaned mouse pups with three different
treatments. Treatment 1 is a control with the mice getting 14 hours of
light and 10 hours of dark per day. Treatment 2 also has 14 hours of
light, but the 10 hours of dark are replaced by 10 hours of a low light
level. Treatment 3 has 24 hours of full light.

Mice will be housed in individual cages, and motion detectors con-
nected to computers will record activity. We can use 24 cages, but the
computer equipment must be shared and is only available to us for 1
month.

Mice should be on a treatment for 3 days—one day to adjust and then
2 days to take measurements. We may use each mouse for more than one
treatment, but if we do, there should be 7 days of standard photoperiod
between treatments. We expect large subject-to-subject variation. There
may or may not be a change in activity as the rat pups age; we don’t
know.

For each of the following, describe the experimental design used and give Problem 16.2
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a skeleton ANOVA (sources and degrees of freedom only).

(a) Proteins can be stored frozen for periods of months to years, but they may
undergo degradation if subjected to repeated freeze/thaw cycles. This
experiment seeks to understand the effects of freezing temperature and
repeated freeze/thaw cycles.
On day one, a carton of fresh eggs is purchased at the market, and the
albumin is then extracted from the eggs, composited, and homogenized.
The albumin is then divided into 20 samples, which are randomly as-
signed to the combinations of freezing temperature (–20 C or –80 C) and
number of freeze/thaw cycles (1 through 10). All subsamples are then
frozen at their assigned temperatures. On day two, the samples are all
thawed, and the protein concentrations of the samples assigned to one
cycle are determined. Then the remaining 18 samples are refrozen. On
day three, all samples are thawed, and we determine the protein concen-
tration in the samples assigned to two cycles. This pattern of thawing,
measuring, and refreezing is repeated until all samples have been mea-
sured (that will be on day 11).
On day 15, we purchase another carton of eggs and repeat the freeze/thaw/measure
process for the following 10 days. And, again, on day 29 we purchase a
third carton of eggs and repeat the process again.

(b) Brittle bones due to calcium loss are a problem for post-menopausal
women. A study in British Columbia examined how one form of ex-
ercise for young girls can build their bone mass from ages 10 through
12. Twelve middle schools participated in the study; all are more or less
generic suburban schools with no obvious ethnic or socio-economic dif-
ferences. The schools were randomly assigned to three treatments (four
schools per treatment). The treatments are control, make five jumps three
times each school day, and jump for 10 minutes three days a week. Bone
mass of each girl was measured at age 10 and again at age 12 after two
years of their jumping regimen; the response for each girl is the increase
in bone mass. In all, there are 1215 girls who complete the two years of
the study (approximately 100 per school).

(c) Judges in taste tests use a rinse agent to clear their palates between sam-
ples. The rinse agent is supposed to remove the previous sample and re-
store tastes and odors to a neutral condition. In this experiment we com-
pare sparkling water and still water as rinse agents when having people
judge the spiciness of three sauces. Thirty judges are randomly divided
into two groups of fifteen. One group will use sparkling water as a rinse
and the other will use still water. Each judge will rinse with their type of
water, taste a sauce, and then rate the sauce. They then rinse again, taste
the second sauce, and so on. Each judge is presented with the sauces in
a random order.

(d) An electronics retail chain wishes to compare the effects of print and
radio advertising. For their experiment they choose one print ad and
one radio ad. They wish to compare sales during weeks when they run
neither ad, just the print ad, just the radio ad, and both ads. They run
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their experiment in four widely separated cities so that the ads in one
city will not be seen or heard by people in another city. They also run
their experiment for four consecutive weeks, because you need at least
one week to measure sales from each type of advertising. They arrange
the experiment so that each ad combination is run once at each city, and
once during each week.

(e) Can information affect how we perceive tastes? In this experiment, sub-
jects will take two tastes of beer. One of the products is a premium lager
beer, and the other is the same beer with a few drops of balsamic vinegar
added. We have 40 male subjects. Each subject will taste both beers in
random order and rate the flavor. Twenty of the subjects are chosen at
random; these subjects will be told before tasting which beer is standard
and which has been spiked. The remaining subjects will be told after
tasting but before rating.

(f) I enjoy wine, but not so much that I drink a whole bottle at one meal.
It is thus necessary to store an opened bottle for continued enjoyment
later. Unfortunately, the wine begins to deteriorate once the bottle is
opened. There are several products on the market that claim to retard
the deterioration, but are any of them better than simply sticking the cork
back in the bottle? We want to test and compare recorking with a vacuum
pump and a gas injection method.

We have 12 bottles of wine (a Malbec) from the same case. The bottles
are randomly assigned to recorking, vacuum seal, and gas injection, four
bottles to each method. On day zero, all 12 bottles are opened, and I taste
each wine and give it a flavor score. Then each bottle is resealed using
its assigned method. I reopen, sample, rate the flavor, and reseal each
bottle (with its assigned method) one day later. I repeat this on days 2, 3,
4, and 5. I thus have six flavor scores from each bottle.

(g) Land use has a strong effect on water quality of streams. To determine
the effect of forestry methods on stream nitrate concentration, each of six
small watersheds in a forest will be managed using either method A or B.
Stream water from each watershed will be analyzed for nitrate concen-
tration weekly for five years, with the average over those five years taken
as a response. The six watersheds are adjacent along a ridge line, and
there is a slight elevation gradiant from the first to the sixth watershed.
For this reason, the methods are randomly assigned to the watersheds
subject to the restriction that methods A and B occur once each in the
three pairs of watersheds (1,2), (3,4), and (5,6).

(h) A grocery store chain is experimenting with its weekly advertising, try-
ing to decide among cents-off coupons, regular merchandise sales, and
special-purchase merchandise sales. There are two cities about 100 km
apart in which the chain operates, and the chain will always run one ad-
vertisement in each city on Wednesday, with the offer good for 1 week.
The response of interest is total sales in each city, and large city to city
differences in total sales are expected due to population differences. Fur-
thermore, week to week differences are expected. The chain runs the
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experiment on 12 consecutive weeks, randomizing the assignment of ad-
vertising method to each city, subject to the restrictions that each of the
three methods is used eight times, four times in each city, and each of the
three pairs of methods is used an equal number of times.

(i) A forest products company conducts a study on twenty sites of 1 hectare
each to determine good forestry practice. Their goal is to maximize the
production of wood biomass (used for paper) on a given site over 20
years. All sites in the study have been cut recently, and the factors of
interest are species to plant (alder or birch) and the thinning regime (thin
once at 10 years, or twice at 10 and 15 years). The species is assigned
at random to each site. The sites are then split into east-west halves.
The thinning regimes are assigned at random to east-west halves inde-
pendently for each site.

(j) We wish to study the acidity of orange juice available at our grocery
store. We choose two national brands. We then choose 3 days at ran-
dom (from the next month) for each brand; cartons of brand A will be
purchased only on the days for brand A, and similarly for brand B. On
a purchase day for brand A, we choose five cartons of brand A orange
juice at random from the shelf, and similarly for brand B. Each carton is
sampled twice and the samples are measured for acidity.

(k) We wish to determine the number of warblers that will respond to three
recorded calls. We will get eighteen counts, nine from each of two forest
clearings. We expect variation in the counts from early to mid to late
morning, and we expect variation in the counts from early to mid to late
in the breeding season. Each recorded call is used three times at each
clearing, arranged in such a way that each call is used once in each phase
of the breeding season and once in each morning hour.

We wish to study the effect of drought stress on height growth of redProblem 16.3
maple seedlings. The factors of interest are the amount of stress and variety
of tree. Stress is at two levels: no stress (that is, always well watered) and
drought-stressed after 6 weeks of being well watered. There are four vari-
eties available, and all individuals within a given variety are clones, that is,
genetically identical.

This will be a greenhouse experiment so that we can control the watering.
Plants will be grown in six deep sandboxes. There is space in each sandbox
for 36 plants in a 6 by 6 arrangement. However, the plants in the outer row
have a dissimilar environment and are used as a “guard row,” so responses
are observed on only the inner 16 plants (in 4 by 4 arrangement).

The six sandboxes are in a three by two arrangement, with three boxes
north to south and two boxes east to west. We anticipate considerable dif-
ferences in light (and perhaps temperature and other related factors) on the
north to south axis. No differences are anticipated on the east to west axis.

Only one watering level can be given to each sandbox. Variety can be
varied within sandbox. The response is measured after 6 months.

(a) Describe an experimental design appropriate for this setup.
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(b) Give a skeleton ANOVA (sources and df only) for this design.

(c) Suppose now that the heights of the seedlings are measured ten times
over the course of the experiment. Describe how your analysis would
change and any assumptions that you might need to make.

Consider the following experimental design. This design was random- Problem 16.4
ized independently on each of ten fields. First, each field is split into northern
and southern halves, and we randomly assign herbicide/no herbicide treat-
ments to the two halves. Next, each field is split into eastern and western
halves, and we randomly assign tillage method 1 or tillage method 2 to the
two halves. Finally, each tillage half is again split into east and west halves (a
quarter of the whole field), and we randomly assign two different insecticides
to the two different quarters, independently in the two tillage halves. Thus,
within each field we have the following setup:

1 2 3 4
5 6 7 8

Plots 1, 2, 3, and 4 all receive the same herbicide treatment, as do plots 5,
6, 7, and 8. Plots 1, 2, 5, and 6, all receive the same tillage treatment, as do
plots 3, 4, 7, and 8. Insecticide A is given to plot pair (1, 5) or plot pair (2,
6); the other pair gets insecticide B. Similarly, one of the plot pairs (3, 7) and
(4, 8) gets insecticide A and the other gets B.

Construct a Hasse diagram for this experiment. Indicate how you would
test the null hypotheses that the various terms in the model are zero.

We plan an experiment to study the effects of eight treatments on the Problem 16.5
biomass production of a wetland. The eight treatments are the factor-level
combinations of A—burning or no burning, B—tillage or no tillage, and C—
herbicide or no herbicide. There are 20 square-shaped study sites available.
Burning must be done over a large area, so 10 sites are randomly chosen for
burning, and the other 10 are left unburned. Each site is divided into two
north-south strips; one north-south strip at each site is randomly assigned to
receive the herbicide treatment. Each site is also divided into two east-west
strips; one east-west strip from each site is randomly assigned to receive the
tillage treatment.
Construct a Hasse diagram for this design.

Consider the following situation. We have four varieties of wheat to test, Problem 16.6
and three levels of nitrogen fertilizer to use, for twelve factor-level combi-
nations. We have chosen eight blocks of land at random on an experimental
study area; each block of land will be split into twelve plots in a four by
three rectangular pattern. We are considering two different experimental de-
signs. In the first design, the twelve factor-level combinations are assigned
at random to the twelve plots in each block, and this randomization is redone
from block to block. In the second design, a variety of wheat is assigned
at random to each row of the four by three pattern, and a level of nitrogen
fertilizer is assigned at random to each column of the four by three pattern;
this randomization is redone from block to block.
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(a) What are the types of the two designs (for example, CRD, RCB, and
so on)?

(b) Give Hasse diagrams for these designs, and indicate how you would
test the null hypotheses that the various terms in the model are zero.

(c) Which design provides more power for testing main effects? Which
design is easier to implement?

A food scientist is interested in the production of ice cream. He has twoProblem 16.7
different recipes (A and B). Additional factors that may affect the ice cream
are the temperature at which the process is run and the pressure used. We
wish to investigate the effects of recipe, temperature, and pressure on ice
cream viscosity. The production machinery is available for 8 days, and two
batches of ice cream can be made each day. A fresh supply of milk will be
used each day, and there is probably some day to day variability in the quality
of the milk.

The production machinery is such that temperature and pressure have to
be set at the start of each day and cannot be changed during the day. Both
temperature and pressure can be set at one of two levels (low and high). Each
batch of ice cream will be measured for viscosity.

(a) Describe an appropriate experiment. Give a skeleton ANOVA (source
and degrees of freedom only), and describe an appropriate randomiza-
tion scheme.

(b) Explain how to construct simultaneous 95% confidence intervals for
the differences in mean viscosity between the various combinations of
temperature and pressure.

An experiment was conducted to study the effects of irrigation, crop vari-Problem 16.8
ety, and aerially sprayed pesticide on grain yield. There were two replicates.
Within each replicate, three fields were chosen and randomly assigned to be
sprayed with one of the pesticides. Each field was then divided into two east-
west strips; one of these strips was chosen at random to be irrigated, and
the other was left unirrigated. Each east-west strip was split into north-south
plots, and the two varieties were randomly assigned to plots. Data set IVP.

Rep 1 Rep 2
P1 P2 P3 P1 P2 P3 Irrig Var
53.4 54.3 55.9 46.5 57.2 57.4 yes 1
53.8 56.3 58.6 51.1 56.9 60.2 yes 2
58.2 60.4 62.4 49.2 61.6 57.2 no 1
59.5 64.5 64.5 51.3 66.8 62.7 no 2

What is the design of this experiment? Analyze the data and report your
conclusions. What is the standard error of the estimated difference in aver-
age yield between pesticide 1 and pesticide 2? irrigation and no irrigation?
variety 1 and variety 2?

Most universities teach many sections of introductory calculus, and fac-Problem 16.9
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ulty are constantly looking for a method to evaluate students consistently
across sections. Generally, all sections of intro-calculus take the final exam
at the same time, so a single exam is used for all sections. An exam service
claims that it can supply different exams that consistently evaluate students.
Some faculty doubt this claim, in part because they believe that there may be
an interaction between the text used and the exam used.

Three math departments (one each at Minnesota, Washington, and UC
Berkeley) propose the following experiment. Three random final exams are
obtained from the service: E1, E2, and E3. At Minnesota, the three exams
will be used in random order in the fall, winter, and spring quarters. Ran-
domization will also be done at Washington and Berkeley. The three schools
all use the same two intro calculus texts. Sections of intro calculus at each
school will be divided at random into two groups, with half of the sections
using text A and the other half using text B. At the end of the year, the mean
test scores are tallied with the following results (data set CalcExams).

Text
School Exam A B
UW 1 81 87

2 79 85
3 70 78

UM 1 84 82
2 81 81
3 83 84

UCB 1 87 98
2 82 93
3 86 90

Analyze these data to determine if there is any evidence of variation be-
tween exams, text effect, or exam by text interaction. Be sure to include an
explicit description of the model you used.

Artificial insemination is widely used in the beef industry, but there are Problem 16.10
still many questions about how fresh semen should be frozen for later use.
The motility of the thawed semen is the usual laboratory measure of semen
quality, and this varies from bull to bull and ejaculate to ejaculate even with-
out the freeze/thaw cycle. We wish to evaluate five freeze/thaw methods for
their effects on motility.

Four bulls are selected at random from a population of potential donors;
three ejaculates are collected from each of the four bulls (these may be con-
sidered a random sample). Each ejaculate is split into five parts, with the parts
being randomly assigned to the five freeze/thaw methods. After each part is
frozen and thawed, two small subsamples are taken and observed under the
microscope for motility.

Give a skeleton ANOVA for this design and indicate how you would test
the various effects. (Hint: is this a split plot or not?)

Traffic engineers are experimenting with two ideas. The first is that erect- Problem 16.11
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ing signs that say “Accident Reduction Project Area” along freeways will
raise awareness and thus reduce accidents. Such signs may have an effect
on traffic speed. The second idea is that metering the flow of vehicles onto
on-ramps will spread out the entering traffic and lead to an average increase
in speed on the freeway. The engineers conduct an experiment to determine
how these two ideas affect average traffic speed.

First, twenty more-or-less equivalent freeway interchanges are chosen,
spread well around a single metropolitan area and not too close to each other.
Ten of these interchanges are chosen at random to get “Accident Reduction
Project Area” signs (in both directions); the other ten receive no signs. Traf-
fic lights are installed on all on-ramps to meter traffic. The traffic lights can
be turned off (that is, no minimum spacing between entering vehicles) or be
adjusted to require 3 or 6 seconds between entering vehicles. Average traffic
speed 6:30–8:30 A.M. and 4:30–6:30 P.M. will be measured at each inter-
change on three consecutive Tuesdays, with our response being the average
of morning and evening speeds. At each interchange, the three settings of the
traffic lights are assigned at random to the three Tuesdays.

The results of the experiment follow (data set Interchanges). Ana-
lyze the results and report your conclusions.

Timing
Interchange Sign 0 3 6
1 n 13 25 26
2 n 24 35 37
3 n 22 38 41
4 n 24 32 37
5 n 23 35 38
6 n 23 33 35
7 n 24 35 41
8 n 19 34 35
9 n 21 33 37
10 n 15 30 30
11 y 19 31 33
12 y 12 28 27
13 y 10 24 29
14 y 12 23 28
15 y 26 41 41
16 y 17 31 30
17 y 17 27 31
18 y 18 32 33
19 y 16 29 30
20 y 24 37 37

A consumer testing agency wishes to test the ability of laundry deter-Problem 16.12
gents, bleaches, and prewash treatments to remove soils and stains from fab-
ric. Three detergents are selected (a liquid, an all-temperature powder, and
a hot-water powder). The two bleach treatments are no bleach or chlorine
bleach. The three prewash treatments are none, brand A, and brand B. The
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three stain treatments are mud, grass, and gravy. There are thus 54 factor-
level combinations.

Each of 108 white-cotton handkerchiefs is numbered with a random code.
Nine are selected at random, and these nine are assigned at random to the nine
factor-level combinations of stain and prewash. These nine handkerchiefs
along with four single sheets make a “tub” of wash. This is repeated twelve
times to get twelve tubs. Each tub of wash is assigned at random to one of
the six factor-level combinations of detergent and bleach. After washing and
drying, the handkerchiefs are graded (in random order) for whiteness by a
single evaluator using a 1 to 100 scale, with 1 being whitest (cleanest).

Analyze these data (data set Handkerchiefs) and report your find-
ings.

Stain 1 Stain 2 Stain 3
Tub Det. Bl. P1 P2 P3 P1 P2 P3 P1 P2 P3
1 1 1 1 3 3 3 3 5 10 3 2
2 1 2 5 3 3 3 5 3 7 3 2
3 2 1 3 2 2 4 6 1 5 1 2
4 2 2 3 1 2 2 4 3 8 1 2
5 3 1 34 29 35 35 34 41 49 25 26
6 3 2 7 5 6 6 6 7 10 5 4
7 1 1 4 4 4 5 7 10 11 5 4
8 1 2 4 6 3 4 7 6 9 7 5
9 2 1 6 8 7 5 6 7 11 6 4
10 2 2 6 6 7 8 7 9 12 5 5
11 3 1 26 28 31 38 30 34 41 27 27
12 3 2 2 4 2 2 5 3 8 3 2

Yellow perch and ruffe are two fish species that compete. An experiment Problem 16.13
is run to determine the effects of fish density and competition with ruffe on
the weight change in yellow perch. There are two levels of fish density (low
and high) and two levels of competition (ruffe absent and ruffe present). Six-
teen tanks are arranged in four enclosures of four tanks each. Within each en-
closure, the four tanks are randomly assigned to the four factor-level combi-
nations of density and competition. The response is the change in the weight
of perch after 5 weeks (in grams, data from Julia Frost, data set Ruffe).

Enclosure
Ruffe Density 1 2 3 4
Absent Low .0 .4 .9 -.4

High .9 -.4 -.6 -1.2
Present Low .0 -.4 -.9 -.9

High -1.2 -1.5 -1.1 -.7

Analyze these data for the effects of density and competition.
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Chapter 17

Designs with Covariates

Covariates are predictive responses, meaning that covariates are responses
measured for an experimental unit in anticipation that the covariates will be
associated with, and thus predictors for, the primary response. The use of Covariates are

predictive
responses

covariates is not design in the sense of treatment structure, unit structure, or
the way treatments are assigned to units. Instead, a covariate is an additional
response that we exploit by modifying our models to include. Nearly any
model can be modified to include covariates.

Example 17.1 Keyboarding pain
A company wishes to choose an ergonomic keyboard for its comput-

ers to reduce the severity of repetitive motion disorders (RMD) among its
staff. Twelve staff known to have mild RMD problems are randomly as-
signed to three keyboard types. The staff keep daily logs of the amount of
time spent keyboarding and their subjective assessment of the RMD pain.
After 2 weeks, we get the total number of hours spent keyboarding and the
total number of hours in RMD pain.

The primary response here is pain; we wish to choose a keyboard that
reduces the pain. However, we know that the amount of pain depends on
the amount of time spent keyboarding—more keyboarding usually leads to
more pain. If we knew at the outset the amount of keyboarding to be done,
we could block on time spent keyboarding. However, we don’t know that at
the outset of the experiment, we can only measure it along with the primary
response. Keyboarding time is a covariate.

17.1 The Basic Covariate Model

Before we show how to use covariates, let’s describe what they can do for
us. First, we can make comparisons between treatments more precise by
including covariates in our model. Thus we get a form of variance reduction Covariates make

treatment
comparisons
more precise

through modeling the response-covariate relationship, rather than through
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blocking. The responses we observe are just as variable as without covariates,
but we can account for some of that variability using covariates in our model
and obtain many of the benefits of variance reduction via modeling instead
of blocking.

Second—and this is not completely separate from the first advantage—Treatment
comparisons
adjusted to
common
covariate value

covariate models allow us to compare predicted treatment responses at a
common value of the covariate for all treatments. Thus treatments which by
chance received above or below average covariate values can be compared in
the center.

One potential pitfall of covariate models is that they assume that the co-
variate is not affected by the treatment. When treatments affect covariates,Treatments

should not affect
covariates

the comparison of responses at equal covariate values (our second advan-
tage) may, in fact, obscure treatment differences. For example, one of the
keyboards may be so awkward that the users avoid typing; trying to compare
it to the others at an average amount of typing hides part of the effect of the
keyboard.

The key to using covariates is building a model that is appropriate for
the design and the data. Covariate models have two parts: a usual treatment
effect part and a covariate effect part. The treatment effect part is essentially
determined by the design, as usual; but there are several possibilities for theTreatment and

covariate effects covariate effect part, and our model will be appropriate for the data only when
we have accurately modeled the relationship between the covariates and the
response.

Let’s begin with the simplest sort of covariance modeling—in fact, the
sort usually called Analysis of Covariance. We will generalize to more com-Analysis of

covariance plicated models later. Consider a completely randomized design with a single
covariate x; let xij be the covariate for yij . For the CRD, the model ignoring
the covariate is

yij = µ+ αi + εij .

We can estimate the ith treatment mean µ̂ + α̂i or a contrast between treat-
ments

∑
wiα̂i, and we can test the null hypothesis that all the αi values are

zero with the usual F -test by comparing the fit of this model to the fit of a
model without the αi’s.

Now consider a model that uses the covariate. We augment the previous
model to include a regression-like term for the covariate:Include covariate

via regression
yij = µ? + α?i + β + ε?ij .

As usual, the treatment effects α?i add to zero. The ?’s in this model are
shown just this once to indicate that the µ, αi, and εij values in this model
are different from those in the model without covariates. The ?’s will be
dropped now for ease of notation.

The difference between the covariate and no-covariate models is the term
βxij . This term models the response as a linear function of the covariate x.Model assumes

linear relationship
between
response and
covariate

The assumption of a linear relationship between x and y is a big one, and
writing a model with a linear relationship doesn’t make the actual relation-
ship linear. As with any regression, we may need to transform the x or y to
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improve linearity. Plots of the response versus the covariate are essential for
assessing this relationship.

Also note that the slope β is assumed to be the same for every treatment.
The covariate model for treatment i is a linear regression with slope β and Common slope

creates parallel
lines

intercept µ+ αi. Because the αi’s can all differ, this is a set of parallel lines,
one for each treatment. Thus this covariate model is called the parallel-lines
model or the separate-intercepts model.

We need to be able to test the same hypotheses and estimate the same
quantities as in noncovariate models. To test the null hypothesis of no treat- Test via model

comparisonment effects (all the αi’s equal to zero) when covariate effects are present,
compare the model with treatment and covariate effects to the reduced model
with only covariate effects:

yij = µ+ βxij + εij .

This simpler model is called the single-line model, because it is a simple
linear regression of the response on the covariate. The reduction in error Single-line model
sum of squares going from the single-line model to the parallel-lines model
has g − 1 degrees of freedom. The mean square for this reduction is divided F -test for

covariate-
adjusted

treatment effects

by the mean square for error from the larger parallel-lines model to form
an F -test of the null hypothesis of no treatment effects. These treatment
effects are said to be covariate-adjusted, because the covariate is present in
the model. There are formulae for these sums of squares, but I don’t think
you’ll find them enlightening; just let your software do the computations.

The underlying philosophy of the test is that the covariate relationship
with the response is real and exists with or without treatment effects. The Analysis of

Covariancetest is only to determine if adding treatment effects to a model that already in-
cludes a covariate makes any significant improvement in explanatory power.
That is, does the parallel-lines model explain significantly more than the
single-line model. This test is the classical Analysis of Covariance.

Computer software can supply estimates of the effects in our models. The
estimated treatment effects α̂i describe how far apart the parallel lines are, µ̂
gives an average intercept, µ̂ + α̂i gives the intercept for treatment i, and β̂
is the estimated slope.

How should we answer the question, “What is the mean response in treat-
ment i?” This is a little tricky, because the response depends on the covariate. Means depend on

covariateWe need to choose some standard covariate value ẋ and evaluate the treat-
ment means there.

Covariate-adjusted means are the estimated values in each treatment group
when the covariate is set to x••, the grand mean of the covariates, or Covariate

adjusted means
at grand mean of

covariate
µ̂+ α̂i + β̂x•• .

Covariate-adjusted means give us a common basis for comparison, because
all treatments are evaluated at the same covariate level. Note that the dif-
ference between two covariate-adjusted means is just the difference between
the treatment effects; we would get the same differences if we compare the
means at the common covariate value ẋ = 0.
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Table 17.1: Hours keyboarding (x) and hours of
repetitive-motion pain (y) during 2 weeks for three styles of
keyboards.

1 2 3
x y x y x y

60 85 54 41 56 41
72 95 68 74 56 34
61 69 66 71 55 50
50 58 59 52 51 40
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Figure 17.1: Hours of pain versus hours of keyboarding for twelve
subjects and three keyboard types, using Minitab.

Example 17.2 Keyboarding pain, continued
Table 17.1 shows hours of keyboarding and hours of pain for the twelve

subjects (data set KeyboardingPain), and Figure 17.1 shows a plot of the
response versus the covariate, with keyboard type indicated by the plotting
symbol. The plot clearly shows a strong, reasonably linear relationship be-
tween the response and the covariate. The figure also shows that the keyboard
1 responses tend to be above the keyboard 2 responses for similar covariate
values, and keyboard 2 and 3 responses are somewhat mixed at the low end
of the covariate. We can further see that keyboard 3 covariates tend to be a
bit smaller than the other two keyboards, so presumably at least some of the
explanation for the low responses for keyboard 3 is the low covariate values.

Minitab output analyzing these data follows. We first check to see if
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treatments affect the covariate keyboarding time. The ANOVA ¬ provides
no evidence against the null hypothesis that the treatments have the same
average covariate values (p-value .29). In these data, keyboard 3 averages
about 6 to 7 hours less than the other two keyboards , but the difference is
within sampling variability.

Next we do the Analysis of Covariance ®. The model includes the co-
variate and then the treatment. Minitab produces both sequential and Type
III sums of squares; in either case, the sum of squares for treatments is treat-
ments adjusted for covariates, which is what we need. The p-value is .004,
indicating strong evidence against the null hypothesis of no treatment effects.

The covariate-adjusted means and their standard errors are given at °.
Note that the standard errors are not all equal. We can also construct the
covariate adjusted means from the effects ¯. For example, the covariate-
adjusted mean for keyboard 1 is

−48.21 + 14.399 + 1.8199× 59 = 73.57 .

Draft of March 4, 2021



590 Designs with Covariates

Analysis of Variance for x

Source DF SS MS F P
type 2 123.50 61.75 1.45 0.286 ¬
Error 9 384.50 42.72

Means

type N x 
1 4 60.750
2 4 61.750
3 4 54.500

Analysis of Variance for y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P

x 1 2598.8 1273.5 1273.5 24.79 0.001 ®
type 2 1195.8 1195.8 597.9 11.64 0.004
Error 8 411.0 411.0 51.4

Term Coef StDev T P
Constant -48.21 21.67 -2.22 0.057 ¯
x 1.8199 0.3655 4.98 0.001
type
1 14.399 2.995 4.81 0.001
2 -4.671 3.094 -1.51 0.170

Means for Covariates

Covariate Mean StDev
x 59.00 6.796

Least Squares Means for y

type Mean StDev °
1 73.57 3.641
2 54.50 3.722
3 49.44 3.943

Tukey 95.0% Simultaneous Confidence Intervals ±
Response Variable y
All Pairwise Comparisons among Levels of type

type = 1 subtracted from:

type Lower Center Upper -------+---------+---------+---------
2 -33.59 -19.07 -4.553 (--------*---------)
3 -40.01 -24.13 -8.244 (----------*----------)

-------+---------+---------+---------
-30 -15 0

type = 2 subtracted from:

type Lower Center Upper -------+---------+---------+---------
3 -21.39 -5.056 11.28 (----------*----------)

-------+---------+---------+---------
-30 -15 0

It appears that keyboards 2 and 3 are about the same, and keyboard 1 is
worse (leads to a greater response). This is confirmed by doing a pairwise
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comparison of the three treatment effects using Tukey HSD ±.
We conclude that there are differences between the three keyboards, with

keyboard 1 leading to about 21 more hours of pain in the 2-week period for
an average number of hours keyboarding. The coefficient of keyboard hours
was estimated to be 1.82, so an additional hour of keyboarding is associated
with about 1.82 hours of additional pain.

Before leaving the example, a few observations are in order. First, the
linear model is only reliable for the range of data over which it was fit. In
these data, the hours of keyboarding ranged from about 50 to 70, so it makes
no sense to think that doing no keyboarding with keyboard 1 will lead to -34
hours of pain (34 hours of pleasure?).

Next, it is instructive to compare the results of this Analysis of Covari-
ance with those that would be obtained if the covariate had been ignored.
You would not ordinarily do this as part of your analysis, but it helps us see
what the covariate has done for us.

Analysis of Variance for y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P

type 2 2521.2 2521.2 1260.6 6.74 0.016 ²
Error 9 1684.5 1684.5 187.2

Term Coef StDev T P
Constant 59.167 3.949 14.98 0.000 ³
type
1 17.583 5.585 3.15 0.012
2 0.333 5.585 0.06 0.954

Least Squares Means for y

type Mean StDev ´
1 76.75 6.840
2 59.50 6.840
3 41.25 6.840

Two things are noteworthy. First, the error mean square for the analysis with-
out the covariate ² is about 3.6 times larger than that with the covariate.
Regression on the covariate has explained much of the variation within treat-
ment groups, so that residual variation is reduced. Second, the covariate-
adjusted treatment effects ¯ are not the same as the unadjusted treatment
effects ³; likewise, the covariate-adjusted means 73.565, 54.495, and 49.44
° differ from the raw treatment means 76.75, 59.5, and 41.25 ´. This shows
the effect of comparing the treatments at a common value of the covariate.
For these data, the covariate-adjusted means are more tightly clustered than
the raw means; other data sets may show other patterns.

Some authors prefer to write the covariate model

yij = µ+ αi + βxij + εij

in the slightly different form

yij = µ̃+ αi + β(xij − x••) + εij .
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The difference is that the covariate x is centered to have mean zero, so that Centered
covariatesthe covariate-adjusted means in the revised model are just µ̃ + αi. We can

see that there is no essential difference between these two models once we
realize that µ̃ = µ+ βx••.

17.2 When Treatments Change Covariates

The usual Analysis of Covariance assumes that treatments do not affect the
covariates. When this is true, it makes sense to compare treatments via
covariate-adjusted means—that is, to compare treatments at a common value
of the covariate—because any differences between covariates are just ran-Covariate

adjustment can
obscure the
treatment effect

dom variation. When treatments do affect covariates, differences between
covariates are partly treatment effect and partly random variation. Forcing
treatment comparisons to be at a common value of the covariate obscures the
true treatment differences.

We can make this more precise by reexpressing the covariate in our
model. Expand the covariate into a grand mean, deviations of treatment
means from the grand mean, and deviations from treatment means to obtain
xij = x•• + (xi• − x••) + (xij − xi•), and substitute it into the model:

yij = µ+ αi + βxij + εij
= µ+ αi + β(x•• + (xi• − x••) + (xij − xi•)) + εij
= (µ+ βx••) + (αi + β(xi• − x••)) + β(xij − xi•) + εij
= µ̃ + α̃i + βx̃ij + εij

We have seen that covariate-adjusted treatment effects may not equal covar-Covariate
adjustment to
means is
β(xi• − x••)

iate-unadjusted treatment effects. In the preceding equations, αi is the covar-
iate-adjusted treatment effect, and α̃i is the unadjusted effect (see Ques-
tion 17.1). These differ by β(xi• − x••), so adjusted and unadjusted effects
are the same if all treatments have the same average covariate. If the treat-
ments are affecting the covariate, these adjustments should not be made.

We can obtain the variance reduction property of covariance analysisUsing x̃ gives
variance
reduction only

without also doing covariate adjustment by using the covariate x̃ instead of
x. Compute x̃ by treating the covariate x as a response with the treatments
as explanatory variables; the residuals from this model are x̃.

Note that the two analyses described here are extremes: ordinary analysis
of covariance assumes that treatments cause no variation in the covariate, and
the analysis with the altered covariate x̃ assumes that all between treatment
variation in the covariates is due to treatment.

Example 17.3 Keyboarding pain, continued
An analysis of variance on the keyboarding times in Table 17.1 showed

no evidence that the different keyboards affected keyboarding times. Nonethe-
less, we use those data here to illustrate the analysis that uses covariates only
for variance reduction, and not for covariate adjustment.
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The first step is to get the modified covariate as the residuals from a model
with treatments and the covariate as the response. The ANOVA for this model
is at ¬ of Example 17.2; the residuals have been saved as x̃, which we next
use in a standard Analysis of Covariance.

Here is Minitab output using this modified covariate.

Analysis of Variance for y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
xtilde 1 1273.5 1273.5 1273.5 24.79 0.001
type 2 2521.2 2521.2 1260.6 24.54 0.000
Error 8 411.0 411.0 51.4

Least Squares Means for y

type Mean StDev
1 76.75 3.584
2 59.50 3.584
3 41.25 3.584

We can see in the ANOVA table that the error mean square is the same in this
analysis as it was in the standard Analysis of Covariance in Example 17.2
®. The mean square for treatments adjusted for this modified covariate is
the same as the mean square for treatments alone; in fact, we constructed the
modified covariate to make this so. For these data, the treatment mean square
adjusted for the modified covariate (same as the unadjusted treatment mean
square) is over twice the size of the treatments adjusted for covariate mean
square; the p-value in the modified analysis is thus much smaller.

Finally, we see that the covariate-adjusted treatment means using the
modified covariate are the same as the simple treatment means in Exam-
ple 17.2 ´. The standard errors for these adjusted means are much smaller
than the standard errors for the unadjusted means, however, because the mod-
ified covariate accounts for a large amount of response variation within each
treatment group. Also, the standard errors for the covariate-adjusted means
using x̃ are equal, unlike those using x.

The covariate-adjusted treatment effects can be larger or smaller than the
unadjusted effects (depending on the sign of β and the pattern of covariates).
Similarly, the covariate-adjusted effects may have a larger or smaller p-value
than the treatment effects in a model with the modified covariate. We must
not choose between the original and modified covariates based on the results
of the analysis; we must choose based on whether we wish to ascribe covari-
ate differences to treatments.

17.3 Other Covariate Models

We have been discussing the simplest possible covariate model: a single co-
variate with the same slope in all treatment groups. It is certainly possible to
have two or more covariates. The standard analysis is still treatments adjusted
for covariates, and covariate-adjusted means are evaluated with each covari- More than one

covariateate at its overall average. If one or more covariates are affected by treatments
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Constant Mean

Single Line

Separate Intercepts Separate Slopes

Separate Lines

Figure 17.2: Lattice of covariate models.

and we wish to identify the variation associated with treatment differences in
those covariates as treatment variation, then each of those covariates should
be individually modified as described in the preceding section.

Covariates can also be used in other designs beyond the CRD with a sin-
gle treatment factor. Blocking designs and fixed-effects factorials can easily
accommodate covariates; simply look at treatments adjusted for any blocksCovariates with

blocks or
factorials

and covariates. Note that treatment factors adjusted for covariates will not
usually be orthogonal, even for balanced designs, so you will need to do
Type II or Type III analyses for factorials.

Our covariate models have assumed that treatments affect the response
by an additive constant that is the same for all values of the covariate. This is
the parallel-lines model, and it is the standard model for covariates. It is byTreatments could

change the
covariate slope

no means the only possibility for treatment effects. For example, treatments
could change the slope of the response-covariate relationship, or treatments
could change both the slope and the intercept.

We can put covariate models into an overall framework as shown in Fig-
ure 17.2. Models are simplest on top and add complexity as you move downLattice of

covariate models an edge. Any two models that can be connected by going down one or more
edges can be compared using an Analysis of Variance. The lower model is
the full model and the upper model is the reduced model, and the change in
error sum of squares between the two models is the sum of squares used to
compare the two models. The degrees of freedom for any model comparison
is the number of additional parameters that must be fit for the larger model.

The top model is a constant mean; this is a model with no treatment ef-
fects and no covariate effect. We only use this model if we are interested inConstant mean
determining whether there is any covariate effect at all (by comparing it to
the single-line model). The single line model is the model where the covari-
ate affects the response, but there are no treatment effects. This model has
one more parameter than the constant mean model, so there is 1 degree ofSingle line
freedom in the comparison of the constant-mean and single-line models (and
that degree of freedom is the slope parameter).

Moving down the figure, we have two choices. On the left is the separate-
intercepts model. This is the model with a common covariate slope and a dif-Separate

intercepts ferent intercept for each treatment. The comparison between the single-line
model and the separate-intercepts model is the standard Analysis of Covari-
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ance, and it has g − 1 degrees of freedom for the g − 1 additional intercepts
that must be fit.

If instead we move down to the right, we get the separate-slopes model:

yij = µ+ βi(xij − x0

In this model, the relationship between response and covariate has a different Separate slopes
slope βi for each treatment, but all the lines intersect at the covariate value
x0. If you set x0 = 0, then all the lines have the same intercept. Different
values of x0 are like different covariates. This model has g− 1 more degrees
of freedom than the single-line model.

At the bottom, we have the separate-lines model:

yij = µ+ αi + βixij + εij

This model has g − 1 more degrees of freedom than either the separate- Separate lines
intercepts or separate-slopes models. If we move down the left side of the
figure, we add intercepts then slopes, while moving down the right side we
add the slopes first, then the intercepts.

Example 17.4 Keyboarding pain, continued
Let’s fit the full lattice of covariate models to the keyboarding pain data.

Here is MacAnova output for these models; all sums of squares are sequen-
tial.

Model used is y=x+type+x.type
DF SS MS F P-value

x 1 2598.8 2598.8 53.62884 0.00033117 ¬
type 2 1195.8 597.91 12.33835 0.0074822
x.type 2 120.27 60.136 1.24095 0.35398
ERROR1 6 290.76 48.459

Model used is y=x+x.type+type
DF SS MS F P-value

x 1 2598.8 2598.8 57.62884 0.00033117 
x.type 2 1168.4 584.22 12.05596 0.0079111
type 2 147.65 73.826 1.52345 0.29171
ERROR1 6 290.76 48.459

Model used is y=x59+x59.type
DF SS MS F P-value

x59 1 2598.8 2598.8 14.66486 0.0050217 ®
x59.type 2 189.13 94.566 0.53363 0.60598
ERROR1 8 1417.7 177.21

ANOVA ¬ descends the left-hand side of the lattice, starting with the co-
variate x (time), adding keyboard type adjusted for covariate (separate inter-
cepts), and finally adding separate slopes to get separate lines. The type mean
square of 597.91 is the usual Analysis of Covariance mean square. ANOVA
 descends the right-hand side of the lattice, starting with the covariate x,
adding separate slopes, and finally adding separate intercepts to get separate
lines. Adding separate slopes makes a significant improvement over a single
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Figure 17.3: Covariate model fits for the keyboarding pain data,
using MacAnova: (a) separate intercepts, (b) separate slopes x0 = 0,
(c) separate slopes x0 = 59, (d) separate lines.

line (p-value of .0079), but adding separate lines is not a significant improve-
ment over separate slopes. The separate slopes model  uses x0 = 0, so
the fitted lines intersect at 0. ANOVA ® fits a separate slopes model with
x0 = 59. In this case, there is no significant improvement going to separate
slopes. Figure 17.3 shows the fits for four models.
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The single-line and separate-intercepts models are the most commonly
used models of this family. They are analogues of treatment models with
blocking. However, not all experimental data will fit nicely into this view of
the world, and we need to be ready to consider the less common covariate
models if the data require it.

17.4 Further Reading and Extensions

Federer and Meredith (1992) discuss the use of covariates in split-plot and
split-block designs. Consider two situations. First, all split plots in a whole
plot have the same covariate, so that the covariate only depends on the whole
plot. In this case, covariate is a whole-plot effect, and its 1 degree of freedom
and sum of squares are computed at the whole-plot level.

Second, consider when each split plot has its own covariate value xijk.
Construct two new covariates from x. The first is a covariate at the whole-
plot level formed by taking the average covariate for each whole plot: xi•k.
This covariate acts at the whole-plot level, and its 1 degree of freedom and
sum of squares are computed at the whole-plot level. The second is a split-
plot covariate: x̃ijk = xijk − xi•k. This split-plot covariate is the deviation
of the original covariate x from the whole-plot average value for x. The 1
degree of freedom and sum of squares for this covariate are at the split-plot
level. Note that there may be different coefficients (slopes) for the covariates
at the whole- and split-plot levels.

Analysis of Covariance for general random- and mixed-effects models
is considerably more difficult. Henderson and Henderson (1979) and Hen-
derson (1982) discuss the problems and possible approaches. In fact, the
whole September 1982 issue of Biometrics that includes Henderson (1982)
is devoted to Analysis of Covariance.

17.5 Problems

What is the difference in randomization between a completely random- Exercise 17.1
ized design in which a covariate is measured and a completely randomized
design in which no covariate is measured?

Briefly discuss the difference in design between a randomized complete Exercise 17.2
block design with four treatments and five blocks, and a two-way factorial
design with factor A having four levels and factor B having five levels.

Briefly describe the experimental design you would choose for each of Problem 17.1
the following situations, and why. Describe treatments, blocks, etc.

(a) Scientists are studying the use of caffeine sprays (2% caffeine, that will
keep you awake!) to kill nonnative frogs in Hawaii. Specifically, we want
to compare the populations of frogs after applying the caffeine sprays at
three rates (none, a little, or a lot); the frog populations are measured by
trapping frogs three days after the spray is applied. We have thirty test
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areas that we can use, and no information to group them into homoge-
neous subgroups. At the same time that we trap frogs, we can also trap
insects, because we expect higher frog populations in areas with higher
insect densities.

(b) Genetically modified bacteria may be able to produce insulin as they
grow and divide. We wish to conduct a small scale experiment to study
the effects of growth temperature and culture medium on the produc-
tion of insulin. The bacteria will grow in a nutrient broth (the medium)
in a large beaker; temperature is controlled by putting the beaker in an
environmental chamber that maintains a uniform temperature. The en-
vironmental chamber is large enough for four beakers. There are three
temperatures and four media we wish to study. We have resources to run
48 beakers.

(c) I take horseback riding lessons, and sometimes we will do a “barrel race”
for fun. I’m not very good at this, but I do like to win, so I would like to
run a little experiment to get my best time. I need to look at the follow-
ing factors: (1) tight turns (slower but less distance) versus wide turns
(faster but longer distance), (2) left handed versus right handed circuit
(just mirror images of the pattern), (3) other horses (present or absent).
Now running a pattern at full speed takes a lot out of me and the horse,
so we can’t do more than two runs during a lesson. Also, I would like to
finish my experiment during one “session” of four lessons.

(d) Reactions between water, steel, and chemicals in concrete can degrade
the strength of steel reinforced concrete. We wish to compare ordinary
reinforcing steel with steel coated with one of three sealants. We have
money to make 24 concrete pillars. Each pillar consists of concrete and
one of the four versions of reinforcing steel. The finished pillars will be
immersed in a brine solution for 90 days, and then tested for strength.
We anticipate some batch to batch differences in the concrete we mix,
and we can only mix enough concrete for two pillars at one time.

(e) We wish to make experimental observations on the stretching of a fi-
brous tissue subject to forces in both the longitudinal (along the axis of
the fibers) and transverse (across the axis of the fibers) directions. We
have four different stretching protocols we want to compare but only
eight samples of tissue. The bad news is that we expect substantial vari-
ability from sample to sample, but the good news is that we can use each
sample more than once. The not quite so good news is that the tissue
does gradually distort as we stretch it, so we would expect the results
from a first stretch to be different from a second stretch, the second to be
different from the third, and so on. It is not realistic to stretch the tissue
more than four times, because the distortion becomes too great after that
many stretches.

(f) When spring is in the air, a young woman’s fancy turns to gardening. We
have 16 small flowering plants (all the same variety), and we would like
to experiment this year to determine how best to grow this variety in the
future. We wish to consider four factors, each at two levels. The factors
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are soil type (regular or Miracle GroTM), pot size (4 inch or 7 inch), buds
(pinch off or leave in place), and water (plain or with added fertilizer).
We will grow the small plants indoors for three weeks before setting them
in the garden outside, and we’ll measure the size of the plants after the
three week period as our response. While the plants are inside, they will
be placed on two shelves, one by an east facing window and one by a
north facing window. There will be eight plants per shelf.

(g) The Department of Natural Resources stocks many lakes with walleye
for sport fisheries. The fish are grown from eggs in artificial pools at
state hatcheries until they are large enough to release into the lakes. As
the fish grow, they are moved from pool to pool at the hatchery, gener-
ally swimming in four pools before their release; the increase in total fish
weight is measured when the fish are removed from each pool (a whole
batch of fish, not the individual fish). An important issue for the depart-
ment is optimizing the efficiency of the food mixture; that is, the depart-
ment wishes to achieve the maximum growth per dollar spent. In this
experiment, the department is considering two different brands of food,
and two different feeding rates (kg of food per kg of fish per day). There
are eight hatcheries raising walleye, and each hatchery will participate
with one batch of walleye from hatch until release. We anticipate some
variation from hatchery to hatchery due to weather affecting growth.

(h) An experimental forest has six small watersheds that are available for
manipulation. The overall experimental forest is much, much larger than
these six watersheds, it’s just that these six are the only areas suitable
for this experiment. The watersheds are fairly homogeneous in size and
other characteristics, but they are far enough apart that local meteorol-
ogy can differ from watershed to watershed. As part of the experiment, a
weather station is set up at each watershed providing daily temperature,
precipitation, average wind speed, principal wind direction, and insola-
tion (amount of sunshine).
There are three treatments of interest: clear cutting the trees, selective
cutting the trees (less severe than clear cutting), and no cutting (control).
Scientists are going to measure many, many response variables, but one
of the most important is the total output of stream water from each water-
shed during the summer growing season after the cuts (which are done in
the winter). What kind of experimental design or technique would you
use?

(i) Neutral third parties assign punishment to convicted criminals, but does
the brain of the judge operate the same way regardless of the facts of the
case? We wish to compare the effects of the type of crime (rape, petty
theft, or no crime) and any mitigating circumstances (none, duress, or
mental illness). Volunteer judges will lie in the fMRI scanner while an-
other volunteer reads the facts of the case. We believe that each judge
should consider a single case (type of crime), but he or she can consider
punishments for that crime based on all three types of mitigating circum-
stances. Our response is the activity in the right dorsolateral prefrontal
cortex.
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(j) We wish to determine the amount of salt to put in a microwave popcorn
so that it has the best overall acceptability. We will test three levels of
salt: low, medium, and high. We have recruited 25 volunteers to taste
popcorn, and while we expect the individuals to be reasonably consis-
tent in their own personal ratings, we expect large volunteer to volunteer
differences in overall ratings.

(k) Some brands of golf balls claim to fly farther. To test this claim, you
devise a mechanical golf ball whacker which will strike the golf balls
with the same power and stroke time after time. Ten balls of each of
six brands will be struck once by the device and measured for distance
traveled. Wind speed, which will affect the distance traveled, is variable
and unpredictable, but can be measured.

(l) We wish to study the effects of two food additives (plus a control treat-
ment for a total of three treatments) on the milk productivity of cows.
We have three large herds available, each of a different breed, and we
expect breed to breed differences in the response. Furthermore, we ex-
pect an age effect, which we make explicit by dividing cows into three
groups: those which have had 0, 1, and 2 or more previous calves. We
have enough resources to study 27 animals through one breeding cycle.

For each of the following, describe the experimental design used and giveProblem 17.2
a skeleton ANOVA (sources and degrees of freedom only).

(a) Resveratrol is a substance found in the skin of red grapes that is being
investigated for its health attributes. In our experiment, 120 mice are
randomly assigned to three treatments (40 to a treatment): control diet,
high fat diet, high fat diet plus resveratrol. The response of interest is how
long the mice live. Some researchers believe that any positive effects of
resveratrol on lifespan are due to its effect on cholesterol, so we also
measure cholesterol level at time of death.

(b) New apple varieties are being introduced; we need to figure out which
varieties yield more and how irrigation affects yields for these new vari-
eties. Four commercial orchards have agreed to participate in our exper-
iment evaluating three new apple varieties and three irrigation schedules.
At each orchard, three adjacent .5 hectare plots are cleared and then each
plot is randomly assigned to one of three new varieties. All trees are al-
lowed to grow in a similar environment for eight years. Yields will be
measured in years 9, 10, and 11. The three irrigation schedules are ran-
domly assigned to years for each .5 hectare plot. However, we note that
there could be year to year variation, so we restrict the randomization so
that each irrigation schedule is used once in each year at each orchard.

(c) LDL is bad cholesterol, and HDL is good cholesterol. There are many
drugs on the market to lower LDL. We are developing a drug to raise
HDL, because we believe that increased HDL will in turn lower LDL. In
our pilot study, all subjects are taking standard medication to lower LDL.
We randomly assign 100 patients to our new drug and 100 patients to a
placebo. After three months on the drug we measure LDL in all patients
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to test for differences. We also measure HDL at the same time, as we are
hoping that high HDL will be associated with lower LDL.

(d) Three-spined sticklebacks are a marine fish species in which the males
build nests and then attempt to attract females to the nest. It appears that
fancy nests attract more females. We compare the mating success of male
sticklebacks subjected to four treatments: provision of shiny decorations,
provision of nonshiny decorations, provision of sticks, and control. Two
nesting males are found in each of twelve bays; we anticipate some dif-
ferences between bays. We randomly assign the four treatments to the
twenty four males such that each pair of treatments occurs in two bays.

(e) There was once there a great deal of concern that COX-2 inhibitor pain
relievers (e.g., Vioxx and Celebrex) can increase the risk of heart prob-
lems. Just this morning (12-21-2004) there was a news story that naproxen
sodium based pain relievers (e.g. Aleve) may do the same. We are just
finishing up a study. In this study, 100 patients were randomly assigned
to five different pain relievers (Vioxx, Celebrex, and three non COX-2
drugs), for a total of 500 patients. At the beginning of the study, we col-
lected a detailed medical history that for each patient that was processed
into the form of a score for the patient’s risk of heart problems. Now,
three years after beginning the study, we wish to compare the total death
rate between the five pain relievers.

(f) The Pollution Control Agency wishes to study the effect of an additional
control mechanism on the cadmium concentration of the outflow from
a municipal waste water treatment plant. Twelve weeks are randomly
divided into two groups of six. In the first group, the treatment plant
will be run as usual. In the second group, the new control mechanism
will also be used. Measurements will be taken during each week and an
average cadmium concentration in the outflow will be computed for each
week. In addition, an average nickel concentration will also be measured,
as nickel and cadmium are often found together in the waste stream (and
the control mechanism should not affect nickel concentrations).

(g) We wish to study the effects of air pressure (low or high) and tire type
(radial versus all season radial) on gas mileage. We do this by fitting tires
of the appropriate type and pressure on a car, driving the car 150 miles
around a closed circuit, then changing the tire settings and driving again.
We have obtained eight cars for this purpose and can use each car for one
day. Unfortunately, we can only do three of the four tire combinations on
one day, so we have each factor-level combination missing for two cars.

(h) Metribuzin is an agricultural chemical that may accumulate in soils. We
wish to determine whether the amount of metribuzin retained in the soil
depends on the amount applied to the soil. To test the accumulation, we
select 24 plots. Each plot is treated with one of three levels of metribuzin,
with plots assigned to levels at random. After one growing season, we
take a sample of the top three cm of soil from each plot and determine
the amount of metribuzin in the soil. We also measure the pH of the soil,
as pH may affect the ability of the soil to retain metribuzin.
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(i) We wish to test the efficacy of dental sealants for reducing tooth decay
on molars in children. There are five treatments (sealants A or B applied
at either 6 or 8 years of age, and a control of no sealant). We have 40
children, and the five treatments are assigned at random to the 40 chil-
dren. As a response, we measure the number of cavities on the molars by
age 10. In addition, we measure the number of cavities on the nonmolar
teeth (this may be a general measure of quality of brushing or resistance
to decay).

(j) A national travel agency is considering new computer hardware and soft-
ware. There are two hardware setups and three competing software se-
tups. All three software setups will run on both hardware setups, but
the different setups have different strengths and weaknesses. Twenty
branches of the agency are chosen to take part in an experiment. Ten
are high sales volume; ten are low sales volume. Five of the high-sales
branches are chosen at random for hardware A; the other five get hard-
ware B. The same is done in the low-sales branches. All three soft-
ware setups are tried at each branch. One of the three software systems
is randomly assigned to each of the first 3 weeks of May (this is done
separately at each branch). The measured response for each hardware-
software combination is a rating score based on the satisfaction of the
sales personnel.

Pollutants may reduce the strength of bird bones. We believe that theProblem 17.3
strength reduction, if present, is due to a change in the bone itself, and not a
change in the size of the bone. One measure of bone strength is calcium con-
tent. We have an instrument which can measure the total amount of calcium
in a 1cm length of bone. Bird bones are essentially thin tubes in shape, so the
total amount of calcium will also depend on the diameter of the bone.

Thirty-two chicks are divided at random into four groups. Group 1 is a
control group and receives a normal diet. Each other group receives a diet
including a different toxin (pesticides related to DDT). At 6 weeks, the chicks
are sacrificed and the calcium content (in mg) and diameter (in mm) of the
right femur is measured for each chick (data set BirdBones).

Control P #1 P #2 P #3
C Dia C Dia C Dia C Dia

10.41 2.48 12.10 3.10 10.33 2.57 10.46 2.6
11.82 2.81 10.38 2.61 10.03 2.48 8.64 2.17
11.58 2.73 10.08 2.49 11.13 2.77 10.48 2.64
11.14 2.67 10.71 2.69 8.99 2.30 9.32 2.35
12.05 2.90 9.82 2.43 10.06 2.56 11.54 2.89
10.45 2.45 10.12 2.52 8.73 2.18 9.48 2.38
11.39 2.69 10.16 2.54 10.66 2.65 10.08 2.55

12.5 2.94 10.14 2.55 11.03 2.73 9.12 2.29

Analyze these data with respect to the effect of pesticide on calcium in
bones.
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Advertisers wish to determine if program content affects the success ofProblem 17.4
their ads on those programs. They produce two videos, one containing a de-
pressing drama and some ads, the second containing an upbeat comedy and
the same ads. Twenty-two subjects are split at random into two groups of
eleven, with the first group watching the drama and the second group watch-
ing the comedy. After the videos, the subjects are asked several questions,
including “How do you feel?” and “How likely are you to buy?” one of the
products mentioned in the ads. “How do you feel” was on a 1 to 6 scale, with
1 being happy and 6 being sad. “How likely are you to buy?” was also on a
1 to 6 scale, with 6 being most likely (data set SadAds).

Drama Comedy
Feel Buy Feel Buy

5 1 3 1
1 3 2 2
5 1 3 1
5 3 2 3
4 5 4 1
4 3 1 3
5 2 1 4
6 1 2 4
5 5 3 1
3 4 4 1
4 1 2 2

Analyze these data to determine if program type affects the likelihood of
product purchase.

A study has been conducted on the environmental impact of an industrial Problem 17.5
incinerator. One of the concerns is the emission of heavy metals from the
stack, and one way to measure the impact is by looking at metal accumu-
lations in soil and seeing if nearby sites have more metals than distant sites
(presumably due to deposition of metals from the incinerator).

Eleven sites of one hectare each (100 m by 100 m) were selected around
the incinerator. Five sites are on agricultural soils, while the other six are on
forested soils. Five of the sites were located near the incinerator (on their
respective soil types), while the other sites were located far from the incin-
erator. At each site, nine locations are randomly selected within the site and
mineral soil sampled at each location. We then measure the mercury content
in each sample (mg/kg).

Complicating any comparison is the fact that heavy metals are generally
held in the organic portion of the soil, so that a soil sample with more carbon
will tend to have more heavy metals than a sample with less carbon, regard-
less of the deposition histories of the samples, soil type, etc. For this reason,
we also measure the carbon fraction of each sample (literally the fraction of
the soil sample that was carbon).

The data given below (data set Incinerator) are site averages for
carbon and mercury. Analyze these data to determine if there is any evidence
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604 Designs with Covariates

of an incinerator effect on soil mercury.

Soil Distance Carbon Mercury
Agricultural Near .0084 .0128
Agricultural Near .0120 .0146
Agricultural Near .0075 .0130
Agricultural Far .0087 .0133
Agricultural Far .0105 .0090
Forest Near .0486 .0507
Forest Near .0410 .0477
Forest Far .0370 .0410
Forest Far .0711 .0613
Forest Far .0358 .0388
Forest Far .0459 .0466

Show that the covariate-adjusted means using the covariate x̃ equal theQuestion 17.1
unadjusted treatment means.
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Chapter 18

Fractional Factorials

This chapter and the next deal with treatment design. We have been us-
ing treatments that are the factor-level combinations of two or more factors.
These factors may be fixed or random or nested or crossed, but we have a Treatment design
regular array of factor combinations as treatments. Treatment design investi-
gates other ways for choosing treatments. This chapter investigates fractional
factorials, that is, use of a subset of the factor-level combinations in a facto-
rial treatment structure.

18.1 Why Fraction?

Factorial treatment structure has the benefits that it is efficient and allows us
to study main effects and interactions, but factorials can become really big.
For seven factors, the smallest factorial has 27 = 128 treatments and units.
There are 127 degrees of freedom in such an experiment, with 7 degrees
of freedom for main effects, 21 degrees of freedom for two-factor interac- Factorials have

many degrees of
freedom in
multi-factor
interactions

tions, 35 degrees of freedom for three-factor interactions, and 64 degrees of
freedom for four-, five-, six-, and seven-factor interactions. In many exper-
iments, we either don’t expect high-order interactions or we are willing to
ignore them at the current stage of experimentation, so we construct a surro-
gate error by pooling high-order interactions. For example, pooling fourth-
and higher-order interactions into error in the 27 gives us 64 degrees of free-
dom for error.

What does a big factorial such as a 27 give us? First, it gives us a large
sample size for estimating main effects and interactions; this is a very good
thing. Second, it allows us to estimate many-way interactions; this may or
may not be useful, depending on the experimental situation. Third, the abun-
dant high-order interactions give us many degrees of freedom for construct-
ing a surrogate error.

Larger sample sizes always give us more precise estimates, but there are
diminishing returns for the second and third advantages. In some experiments High-order

interactions and
many error df

may not be worth
the expense

we either do not expect high-order interactions, or we are willing to ignore
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them in the current problem. For such an experiment, being able to estimate
high-order interactions is not a major advantage. Similarly, more degrees
of freedom for error are always better, but the improvement in power and
confidence interval length is modest after 15 degrees of freedom for error
and very slight after 30.

Thus the full factorial may be wasteful or infeasible if

• We believe there are no high-order interactions or that they are ignor-
ably small, or

• We are just screening a large number of treatments to determine which
affect the response and will study interactions in subsequent experi-
ments on the active factors, or

• We have limited resources.

We need a design that retains as many of the advantages of factorials as pos-
sible, but does not use all the factor-level combinations.

A fractional-factorial design is a modification of a standard factorial that
allows us to get information on main effects and low-order interactions with-Fractional

factorial looks at
main effects and
low-order
interactions

out having to run the full factorial design. Fractional factorials are closely
related to the confounding designs of Chapter 15, which you may wish to re-
view. In fact, the simplest way to describe a fractional factorial is to confound
the factorial into blocks, but only run one of the blocks.

18.2 Fractioning the Two-Series

A 2k factorial can be confounded into two blocks of size 2k−1, four blocks of
size 2k−2, and in general 2q blocks of size 2k−q. A 2k−1 fractional factorialA fraction is one

block of a
confounded
design

is a design with k factors each at two levels that uses 2k−1 experimental units
and factor-level combinations. We essentially block the 2k into two blocks
but only run one of the blocks. In general, a 2k−q fractional factorial is a
design with k factors each at two levels that uses 2k−q experimental units and
factor-level combinations. Again, this design is one block of a confounded 2k

factorial. The principal block of a confounded design becomes the principalPrincipal and
alternate fractions fraction, and alternate blocks become alternate fractions.

We confound a 2k factorial by choosing one or more defining contrasts.
These defining contrasts are factorial effects that will be confounded with
block differences. We construct blocks by partitioning the factor-level com-Review of

confounding binations into 2q groups according to whether they are ±1 on the defining
contrasts, or equivalently by whether an even or odd number of factors from
the defining contrasts are at the high level in the factor-level combination or
by whether the L values are 0 or 1.

In the confounded 2k, all possible plus/minus, even/odd, or 0/1 combi-
nations for the defining contrasts occur somewhere in the design, though in
different blocks. For example, with two defining contrasts, we will have plus
and plus, minus and plus, plus and minus, and minus and minus blocks. A
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18.2 Fractioning the Two-Series 607

fractional factorial is a single block of this design, so only a single plus/minusq defining
contrasts
constant in a
fraction

combination of the defining contrasts occurs: for example, the plus and plus
combination. Thus a fractional factorial is a subset of factor-level combi-
nations that has a particular pattern of plus and minus signs on the defining
contrasts, or equivalently a particular pattern of even/odd or 0/1 values.

The jargon and notation of fractional factorials are slightly different from
confounding. Recall the tables of plus and minus signs such as Table 15.1
that we used in two-series design. Augment such tables with a column of all
plus signs labeled I. Defining contrasts are the effects that we confound to Fractional

factorials have
generators and

defining relations

produce confounded factorials; we call these contrasts generators or words
when we work with just a fraction of the design. In a fraction of a two-series,
each generator for the design will always be plus or always be minus; thus
for each generating word W, either I = W or I = −W will be true on the
fraction. The statement I = W is called a defining relation. Note that if
I = W1 and I = −W2, then I = −W1W2; that is, generalized interactions
of the generators also have constant sign that can be determined from the
defining relations.

Example 18.1 Quarter fraction of a 25 design
Construct a 25−2 fractional factorial using ABC and –CDE as generators;

I = ABC = –CDE = –ABDE is the full set of defining relations. This is the
same as confounding into four blocks using the generators ABC and CDE,
but then only using the block where ABC is plus and CDE is minus. Using
the even/odd rule, ABC is plus when a factor-level combination has an odd
number of factors A, B, or C high, and CDE is minus when a factor-level
combination has an even number of C, D, or E high.

The eight factor-level combinations in our fraction are

a, b, ade, bde, ce, abce, cd, abcd .

In principle we find the fraction by confounding the full factorial and choos-
ing the correct block. However, we know that we can find alternate blocks
from the principal block, so we can find alternate fractions from principal
fractions. I found our fraction by first finding the principal fraction,

(1), ab, de, abde, ace, bce, acd, bcd

then finding a factor-level combination in the fraction of interest (a), and mul-
tiplying everything in the principal fraction by a to get the alternate fraction.

The natural way to estimate the total effect of factor A in a fractional
factorial is to subtract the average response where A is low from the average
response where A is high. For the 25−2 of Example 18.1, this is the contrast

ya + yabce + yade + yabcd
4

− yce + yb + ycd + ybde
4

.

This amounts to taking the pattern of pluses and minuses for the A contrast Total effect
contrasts as

before
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Table 18.1: Table of pluses and minuses for a
25−2 with I = ABC = –CDE.

A B C D E AB · · · ABCDE
ce – – + – + + · · · –
a + – – – – – +
b – + – – – – +
abce + + + – + + –
cd – – + + – + –
ade + – – + + – +
bde – + – + + – +
abcd + + + + – + · · · –

from the complete factorial and just using the elements in it that correspond
to the factor-level combinations that we have in our fraction. Part of this
reduced table of pluses and minuses is shown in Table 18.1. Using this table,
we can compute contrasts for all the factorial effects.

This sounds as if we’ve just gotten something for nothing. We only have
eight observations, but we’ve (apparently) just extracted estimates of 31 ef-
fects and interactions. The laws of physics and economics argue that you
don’t get something for nothing, and indeed there is a catch here. To see the
catch, look at the patterns of signs we use for the C main effect and the AB
interaction. These patterns are the same, so our estimate of the C main effectSame contrast for

several effects is the same as our estimate of the AB interaction. If we look further, we will
also find that the C contrast is the negative of the DE and ABCDE contrasts.

We say that C, AB, –DE, and –ABCDE are aliases, or aliased to each
other. Another way of writing this is C = AB = –DE = –ABCDE, meaning
that these contrasts have equal coefficients on this fraction. When we applyFractional

factorials have
aliased effects

that contrast, we are estimating the total effect of C, plus the total effect of
AB, minus the total effect of DE, minus the total effect of ABCDE, or C +
AB – DE – ABCDE. In a 2k−q design, every degree of freedom is associated
with 2q effects that are aliased to each other. So aliases come in pairs for
half-fractions, sets of four for quarter-fractions, and so on.

There is a simple rule for determining which effects are aliased. Begin
with the defining relations, I = ABC = –CDE = –ABDE in our example. TreatMultiply defining

relation to get
aliases

I as an identity, multiply all elements of the defining relations by an effect,
and reduce exponents mod 2. For example,

C × I = C × ABC = C × –CDE = C × –ABDE
C = ABC2 = –C2DE = –ABCDE
C = AB = –DE = –ABCDE

We can continue this to find the complete set of aliases:
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I = ABC = –CDE = –ABDE
A = BC = –ACDE = –BDE
B = AC = –BCDE = –ADE
C = AB = –DE = –ABCDE
D = ABCD = –CE = –ABE
E = ABCE = –CD = –ABD
AD = BCD = –ACE = –BE
BD = ACD = –BCE = –AE

It is very important to check the aliasing during the design phase of a Check to be sure
no important

effects are
aliased to each

other

fractional factorial. In particular, we do not want to have a two-factor inter-
action as a generator (or generalized interaction of generators), because that
would imply that two main effects will be aliased. The more letters in the
generators and their interactions the better.

Aliases for more complicated designs follow the same pattern. The defin-
ing relation for the fraction will include I and all 2q − 1 of the generators All effects have

2q − 1 aliases in
2k−q design

and their interactions. For example, consider a 28−4 with generators BCDE,
ACDF, ABDG, and –ABCH; the defining relation is I = BCDE = ACDF =
ABEF = ABDG = ACEG = BCFG = DEFG = –ABCH = –ADEH = –BDFH =
–CEFH = –CDGH = –BEGH = –AFGH = –ABCDEFGH, which is found as
the generators, their 6 two-way interactions, their 4 three-way interactions,
and their four-way interaction. Thus every degree of freedom has sixteen
names and every effect is aliased to fifteen other effects. The full set of
aliases for this design is shown in Table 18.2. We see that no main effect is
aliased with a two-factor interaction—only three-way or higher. Thus if we
could assume that three-factor and higher interactions are negligible, all main
effects would be estimated without aliasing to nonnegligible effects.

Every 2k−q fractional factorial contains a complete factorial in some set
of k − q factors (possibly many sets), meaning that if you ignore the letters Full factorial in

k − q factors
embedded in

2k−q

for the other q factors, all 2k−q factor-level combinations of the chosen k− q
factors appear in the design. You can use any set of k−q factors that does not
contain an alias of I as a subset. For example, the 25−2 in Example 18.1 has
an embedded complete factorial with three factors. This design has defining
relation I = ABC = –CDE = –ABDE; there are ten sets of three factors, and
any triple except ABC or CDE will provide a complete factorial. Consider
A, B, and D. Rearranging the treatments in the fraction, we get

ce, a, b, abce, cd, ade, bde, abcd;

ignoring C and E, we get

(1), a, b, ab, d, ad, bd, abd,

which are in standard order for A, B, and D. We cannot do this with A, B,
and C; ignoring D and E, we get

c, a, b, abc, c, a, b, abc;

which is not a complete factorial.

Draft of March 4, 2021



610 Fractional Factorials

Table 18.2: Aliases for 28−4 with generators BCDE, ACDF,
ABDG, and –ABCH.
I = BCDE = ACDF = ABEF = ABDG = ACEG = BCFG = DEFG = -ABCH =
-ADEH = -BDFH = -CEFH = -CDGH = -BEGH = -AFGH = -ABCDEFGH

A = ABCDE = CDF = BEF = BDG = CEG = ABCFG = ADEFG = -BCH =
-DEH = -ABDFH = -ACEFH = -ACDGH = -ABEGH = -FGH = -BCDEFGH

B = CDE = ABCDF = AEF = ADG = ABCEG = CFG = BDEFG = -ACH =
-ABDEH = -DFH = -BCEFH = -BCDGH = -EGH = -ABFGH = -ACDEFGH

AB = ACDE = BCDF = EF = DG = BCEG = ACFG = ABDEFG = -CH =
-BDEH = -ADFH = -ABCEFH = -ABCDGH = -AEGH = -BFGH = -CDEFGH

C = BDE = ADF = ABCEF = ABCDG = AEG = BFG = CDEFG = -ABH =
-ACDEH = -BCDFH = -EFH = -DGH = -BCEGH = -ACFGH = -ABDEFGH

AC = ABDE = DF = BCEF = BCDG = EG = ABFG = ACDEFG = -BH =
-CDEH = -ABCDFH = -AEFH = -ADGH = -ABCEGH = -CFGH = -BDEFGH

BC = DE = ABDF = ACEF = ACDG = ABEG = FG = BCDEFG = -AH =
-ABCDEH = -CDFH = -BEFH = -BDGH = -CEGH = -ABCFGH = -ADEFGH

ABC = ADE = BDF = CEF = CDG = BEG = AFG = ABCDEFG = -H =
-BCDEH = -ACDFH = -ABEFH = -ABDGH = -ACEGH = -BCFGH = -DEFGH

D = BCE = ACF = ABDEF = ABG = ACDEG = BCDFG = EFG = -ABCDH =
-AEH = -BFH = -CDEFH = -CGH = -BDEGH = -ADFGH = -ABCEFGH

AD = ABCE = CF = BDEF = BG = CDEG = ABCDFG = AEFG = -BCDH =
-EH = -ABFH = -ACDEFH = -ACGH = -ABDEGH = -DFGH = -BCEFGH

BD = CE = ABCF = ADEF = AG = ABCDEG = CDFG = BEFG = -ACDH =
-ABEH = -FH = -BCDEFH = -BCGH = -DEGH = -ABDFGH = -ACEFGH

ABD = ACE = BCF = DEF = G = BCDEG = ACDFG = ABEFG = -CDH =
-BEH = -AFH = -ABCDEFH = -ABCGH = -ADEGH = -BDFGH = -CEFGH

CD = BE = AF = ABCDEF = ABCG = ADEG = BDFG = CEFG = -ABDH =
-ACEH = -BCFH = -DEFH = -GH = -BCDEGH = -ACDFGH = -ABEFGH

ACD = ABE = F = BCDEF = BCG = DEG = ABDFG = ACEFG = -BDH =
-CEH = -ABCFH = -ADEFH = -AGH = -ABCDEGH = -CDFGH = -BEFGH

BCD = E = ABF = ACDEF = ACG = ABDEG = DFG = BCEFG = -ADH =
-ABCEH = -CFH = -BDEFH = -BGH = -CDEGH = -ABCDFGH = -AEFGH

ABCD = AE = BF = CDEF = CG = BDEG = ADFG = ABCEFG = -DH =
-BCEH = -ACFH = -ABDEFH = -ABGH = -ACDEGH = -BCDFGH = -EFGH

As a second example, the factor-level combinations of the 28−4 in Ta-
ble 18.2 are

h, afg, beg, abefh, cef, acegh, bcfgh, abc,

defgh, ade, bdf, abdgh, cdg, acdfh, bcdeh, abcdefg ,
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1. Choose q generators and get the aliases of I.

2. Find a set of k − q base factors that has an embedded com-
plete factorial.

3. Write the factor-level combinations of the base factors in
standard order.

4. Find the aliases of the remaining q factors in terms of inter-
actions of the k − q base factors.

5. Determine the plus/minus pattern for the q remaining factors
from their aliased interactions.

6. Add letters to the factor-level combinations of the base fac-
tors to indicate when the remaining factors are at their high
levels (plus).

Display 18.1: Constructing fractional factorials

which are in standard order for A, B, C, and D.

The embedded complete factorial is a tool for constructing fractional fac-
torials. Display 18.1 gives the steps. Essentially we start with the factor-level Use embedded

factorial to build
fractions

combinations of the embedded factorial. Each additional factor is aliased to
an interaction of the embedded factorial, so we can determine the pattern of
high and low of the additional factors from the interactions of the embedded
factors. Add letters to factor-level combinations of the embedded factorial
when the additional factors are at the high level.

Example 18.2 Treatments in a 28−4 design
Consider the 28−4 of Table 18.2 with generators BCDE, ACDF, ABDG,

and –ABCH. We can see from the aliases of I that this design has an embed-
ded factorial in A, B, C, and D. The remaining factors E, F, G, and H can be
expressed in terms of interactions of the base factors as E = BCD, F = ACD,
G = ABC, and H = –ABD.
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Embedded E = F = G = H = Final
design BCD ACD ABD –ABC design
(1) -1 -1 -1 1 h
a -1 1 1 -1 afg
b 1 -1 1 -1 beg
ab 1 1 -1 1 abefh
c 1 1 -1 -1 cef
ac 1 -1 1 1 acegh
bc -1 1 1 1 bcfgh
abc -1 -1 -1 -1 abc
d 1 1 1 1 defgh
ad 1 -1 -1 -1 ade
bd -1 1 -1 -1 bdf
abd -1 -1 1 1 abdgh
cd -1 -1 1 -1 cdg
acd -1 1 -1 1 acdfh
bcd 1 -1 -1 1 bcdeh
abcd 1 1 1 -1 abcdefg

We can see that each factor-level combination has an even number of
letters from the sets BCDE, ACDF, and ABDG, and an odd number of letters
from ABCH.

18.3 Analyzing a 2k−q

Analysis of a 2k−q is really much like any 2k except that we must always
keep the alias structure in mind. Most fractional factorials have only a single
replication, so there will be no estimate of pure error. We must either com-Analyze like 2k

but remember
aliasing

pute a surrogate error by pooling interaction terms, use a graphical approach
such as the half-normal plot, or use Lenth’s PSE. Keep in mind that if we
pool interaction terms, we must look at all the aliases for a given degree of
freedom; some interaction terms are aliased to main effects! Similarly, a nor-
mal plot of effects may show that an interaction appears to be large. Check
the aliases for that degree of freedom, because it could be aliased to a main
effect.

Notice that there is some subjectivity in the analysis of a fractional fac-
torial. For example, we could find that only the degree of freedom D = ABC
appears to be significant in a 24−1 design with I = ABCD as a defining rela-Some subjectivity

in interpreting
aliases

tion. The most reasonable interpretation is that we are seeing the main effect
of D, not an ABC interaction in the absence of any lower-order effects. It is
possible that the ABC interaction is large when the A, B, C, AB, AC, and BC
effects are null, so we could be making a mistake ascribing this effect to D;
but lower-order aliases are usually the safer bet.

Example 18.3 Welding strength
Taguchi and Wu (1980) describe an experiment carried out to determine
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Table 18.3: Design and responses for welding strength data. Data
set Welding.

A B C D E F G H J y
gj – – – – – – + – + 40.2
aef + – – – + + – – – 43.7
bgh – + – – – – + + – 44.7
abefhj + + – – + + – + + 42.4
ceh – – + – + – – + – 45.9
acfghj + – + – – + + + + 42.4
bcej – + + – + – – – + 40.6
abcfg + + + – – + + – – 42.2
dfh – – – + – + – + – 45.5
adeghj + – – + + – + + + 42.4
bdfj – + – + – + – – + 40.6
abdeg + + – + + – + – – 43.6
cdefgj – – + + + + + – + 40.2
acd + – + + – – – – – 44.0
bcdefgh – + + + + + + + – 46.5
abcdhj + + + + – – – + + 42.5

210-1-2-3

1

0

-1

Effect

N
or

m
al

 S
co

re

ABCD

BCD

Normal Probability Plot of the Effects
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Figure 18.1: Normal plot of effects in welding strength data, using
Minitab.

factors affecting the strength of welds. There were nine factors at two levels
each to be explored. The full experiment was much too large, so a 29−5 frac-
tional factorial with sixteen units was used. The factors are coded A though
J (skipping I); the generators are –ACE, –ADF, –ACDG, BCDH, ABCDJ.
The full defining relation is I = –ACE = –ADF = CDEF = –ACDG = DEG
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Figure 18.2: Main effects in welding strength data, using Minitab.

= CFG = –AEFG = BCDH = –ABDEH = –ABCFH = BEFH = –ABGH =
BCEGH = BDFGH = –ABCDEFGH = ABCDJ = –BDEJ = –BCFJ = ABEFJ
= –BGJ = ABCEGJ = ABDFGJ = –BCDEFGJ = AHJ = –CEHJ = –DFHJ
= ACDEFHJ = –CDGHJ = ADEGHJ = ACFGHJ = –EFGHJ; every effect is
aliased to 31 other effects. The design and responses are given in Table 18.3
(data set Welding).

First note that this design has an embedded 24 design. A check of the
defining relation reveals that ABCD is not aliased to I (nor is any subset of
ABCD), so we have a complete embedded factorial in those four factors.
The data in Table 18.3 are in standard order for A, B, C, and D, so we may
compute the main effects and interactions for A, B, C, and D using Yates’ al-
gorithm on the responses in the order presented. Figure 18.1 shows a normal
plot of these effects. Only the BCD and ABCD interactions are large. Before
we interpret these, we must look at their aliases. We find that BCD is aliased
to H, and ABCD is aliased to J, so we are probably seeing main effects of H
and J.

Alternatively, we may decide to fit just main effects in an Analysis of
Variance and pool all remaining degrees of freedom into error. Minitab out-
put for this approach follows.
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Fractional Factorial Fit

Estimated Effects and Coefficients for y (coded units)

Term Effect Coef StDev Coef T P
Constant 42.963 0.1359 316.18 0.000
A -0.125 -0.063 0.1359 -0.46 0.662 ¬
B -0.150 -0.075 0.1359 -0.55 0.601
C 0.150 0.075 0.1359 0.55 0.601
D 0.400 0.200 0.1359 1.47 0.191
E 0.400 0.200 0.1359 1.47 0.191
F -0.050 -0.025 0.1359 -0.18 0.860
G -0.375 -0.187 0.1359 -1.38 0.217
H 2.150 1.075 0.1359 7.91 0.000
J -3.100 -1.550 0.1359 -11.41 0.000

Analysis of Variance for y (coded units)

Source DF Seq SS Adj SS Adj MS F P
Main Effects 9 59.025 59.025 6.5583 22.20 0.001
Residual Error 6 1.772 1.772 0.2954
Total 15 60.797

Alias Structure (up to order 3)

I - A*C*E - A*D*F + A*H*J - B*G*J + C*F*G + D*E*G 
A - C*E - D*F + H*J - B*G*H - C*D*G - E*F*G
B - G*J - A*G*H + C*D*H - C*F*J - D*E*J + E*F*H
C - A*E + F*G - A*D*G + B*D*H - B*F*J + D*E*F - E*H*J
D - A*F + E*G - A*C*G + B*C*H - B*E*J + C*E*F - F*H*J
E - A*C + D*G - A*F*G - B*D*J + B*F*H + C*D*F - C*H*J
F - A*D + C*G - A*E*G - B*C*J + B*E*H + C*D*E - D*H*J
G - B*J + C*F + D*E - A*B*H - A*C*D - A*E*F
H + A*J - A*B*G + B*C*D + B*E*F - C*E*J - D*F*J
J + A*H - B*G - B*C*F - B*D*E - C*E*H - D*F*H

This gives us 9 main-effects degrees of freedom and 6 error degrees of free-
dom. ¬ shows the estimated effects, their standard errors, and p-values.
Again, only H and J are significant, which can be seen visually in Figure 18.2.
Note that Minitab also computes the low-order aliases of any terms in the
model .

18.4 Resolution and Projection

Fractional factorials are classified according to their resolution, which tells
us which types of effects are aliased. A resolution R design is one in which
no interaction of j factors is aliased to an interaction with fewer than R − j
factors. For example, in a resolution three design, no main effect (j = 1) Resolution

determines how
short aliases can

be

is aliased with any other main effect, but main effects can be aliased with
two-factor interactions (R − j = 2). In a resolution four design, no main
effect (j = 1) is aliased with any main effect or two-factor interaction, but
main effects can be aliased with three-factor interactions (R − j = 3), and
two-factor interactions (j = 2) can be aliased with two-factor interactions
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(R − j = 2). In a resolution five design, no main effect is aliased with
any main effect, two-factor interaction, or three-factor interaction, but main
effects can be aliased with four-factor interactions. Two-factor interactions
are not aliased with main effects or two-factor interactions, but they may be
aliased with three-factor interactions.

A fractional factorial of resolution R has R letters in the shortest alias ofResolution equals
minimum number
of letters in
aliases of I

I, so we call these R-letter designs. In fact, this is the easy way to remember
what resolution means. Resolution is usually written as a Roman numeral
subscript for the design. The 28−4 design in Table 18.2 has 14 four-letter
aliases of I and an eight-letter alias, so it is resolution IV and is written 28−4IV .

We never want a resolution II design, because such a design would alias
two main effects. Thus the minimum acceptable resolution is III. When
choosing generators for a 2k−p factorial, we want to obtain as high a res-Maximize

resolution olution as possible so that the aliases of main effects will be interactions with
as high an order as possible.

Resolution isn’t the complete picture. Consider three 27−2 designs, with
defining relations I = ABCF = BCDG = ADFG, I = ABCF = ADEG =
BCDEFG, and I = ABCDF = ABCEG = DEFG. All four designs are res-
olution IV, but we prefer the last design because it has only one 4-letter alias,Minimize

aberration while the others have two or three. Designs that have the minimum possi-
ble number of short aliases are called minimum-aberration designs. Thus we
want maximum resolution and minimum aberration.

Resolution III designs have some main effects aliased to two-factor inter-
actions. If we believe that only main effects are present and all interactions
are negligible, then a resolution III design is sufficient for estimating main
effects. Resolution III designs are called main-effects designs for this reason.Main-effects

designs If we believe that some two-factor interactions may be nonnegligible but all
three-way and higher interactions are negligible, then a resolution IV design
is sufficient for main effects.

Low-resolution fractional factorials are often used as screening designs,
where we are trying to screen many factors to see if any of them has anScreening

experiments effect. This is usually an early stage of investigation, so we do not usually
require information about interactions, though we would not throw away such
information if we can get it.

We have constructed fractional factorials by augmenting an embedded
complete factorial. Projection of factorials is somewhat the reverse process,
in that we collapse a fractional factorial onto a complete factorial in a subsetProjection onto

embedded
factorial

of factors. A 2k−q fractional factorial of resolution R contains a complete
factorial in any set of at most R− 1 factors. If R is less than k − q, then this
embedded factorial is replicated. There may also be some sets of R or more
factors that form a complete factorial, but you are guaranteed a complete
factorial for any set of R− 1 factors.

For example, consider the 27−2IV design with defining relation I = ABCDF
= ABCEG = DEFG. This design contains a replicated complete factorial in
any set of three factors. It also contains a complete factorial in all sets of
four factors except D, E, F, and G, which cannot form a complete factorial
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because their four-factor interaction is aliased to I.
Fractional factorials can be projected onto an embedded factorial during

analysis. For example, a half-normal plot of effects in a resolution IV design
might indicate that factors A, D, and E look significant. Projection then treats Project onto

significant factorsthe data as if they were a full factorial in the factors A, D, and E and proceeds
with the analysis. Notice that the p-values obtained in this way are somewhat
suspect. We have put “big” effects into the model and “small” effects wind
up in error, so F-statistics and other tests tend to be too big, and p-values tend
to be too small.

Example 18.4 Welding strength, continued
We found in Example 18.3 that factors H and J were significant. This

was a resolution III design, so we can project it onto a factorial in H and J.
SAS output for this approach follows.

Dependent Variable: Y
Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 56.9925000 18.9975000 59.91 0.0001

Error 12 3.8050000 0.3170833

Source DF Type I SS Mean Square F Value Pr > F

H 1 18.4900000 18.4900000 58.31 0.0001
J 1 38.4400000 38.4400000 121.23 0.0001
H*J 1 0.0625000 0.0625000 0.20 0.6650

We see an ANOVA for H, J, and their interaction. The main effects are highly
significant, as we saw in the earlier analysis. Here we also see that there is
no evidence of interaction.

18.5 Confounding a Fractional Factorial

We can run a 2k−q design in incomplete blocks by confounding one or more
degrees of freedom with block differences, just as we did for complete two- Confound

fractions using
defining contrasts

series factorials. The only difference is that each defining contrast we con-
found is aliased with 2q − 1 other effects. Similarly, the generalized interac-
tions of the defining contrasts and their aliases are also confounded.

Example 18.5 28−4 in two blocks of eight
Example 18.2 has generators BCDE, ACDF, ABDG, and –ABCH, and

the factor-level combinations of this fraction are

h, afg, beg, abefh, cef, acegh, bcfgh, abc,

defgh, ade, bdf, abdgh, cdg, acdfh, bcdeh, abcdefg .
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We must choose a degree of freedom to confound, and Table 18.2 shows
that all degrees of freedom have either main-effect or two-factor interaction
aliases. We don’t want to confound a main effect, so we will confound a
two-factor interaction, say AB and its aliases ACDE = BCDF = EF = DG =
BCEG = ACFG = ABDEFG = –CH = –BDEH = –ADFH = –ABCEFH =
–ABCDGH = –AEGH = –BFGH = –CDEFGH.

To do the confounding, we put all the factor-level combinations with an
even number of the letters A and B in one block, and those with an odd
number in the other block. These blocks are

h, abefh, cef, abc, defgh, abdgh, cdg, abcdefg

and
afg, beg, acegh, bcfgh, ade, bdf, acdfh, bcdeh .

We could have used any of the aliases of AB to get the same blocks. For
example, the first block has an even number of B, C, D, and F, and the second
block has an odd number.

18.6 De-aliasing

Aliasing is the price that we pay for using fractional factorials. Sometimes,
aliasing is just a nuisance and it doesn’t really affect our analysis. Other times
aliasing is crucial. Consider the 25−2 design with defining relation I = ABC =Check aliases to

interpret results –CDE = –ABDE. This design has eight units and 7 degrees of freedom. Sup-
pose that 3 of these degrees of freedom look significant, namely those as-
sociated with the main effects of A, C, and E. We cannot interpret the re-
sults until we look at the alias structure, and when we do, we find that A =
BC = –ACDE = –BDE, C = AB = –DE = –ABCDE, and E = ABCE =
–CD = –ABD. The most reasonable explanation of our results is that the
main effects of A, C, and E are significant, because other possibilities such
as A, C, and the CD interaction seem less plausible. Here aliasing was a
nuisance but didn’t hurt much.

Suppose instead that the 3 significant degrees of freedom are associ-
ated with the main effects of A, B, and C. Now the aliases are A = BC =
–ACDE = –BDE, B = AC = –BCDE = –ADE, and C = AB = –DE =Aliasing can leave

unresolved
ambiguity

–ABCDE. There are four plausible scenarios for significant effects: A, B,
and C; A, B, and AB; B, C and BC; or A, C, and AC. All of these interpreta-
tions fit the results, and we cannot decide between these interpretations with
just these data. We either need additional data or external information that
certain interactions are unlikely to choose among the four.

Fractional factorials can help us immensely by letting us reduce the number
of units needed, but they can leave many questions unanswered.

The problem, of course, is that our fractional designs have aliasing. We
can de-alias by obtaining additional data. Consider the four possible frac-
tions of a 25 using ABC and CDE as generators:De-aliasing

breaks aliases by
running an
additional fractionDraft of March 4, 2021
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ABC CDE ABDE Treatments
– – + (1) ab acd bcd ace bce de abde
+ – – a b cd abcd ce abce ade bde
– + – ac bc d abd e abe acde bcde
+ + + c abc ad bd ae be cde abcde

Our original fraction is the second one in this table, where ABC is plus and
CDE is minus. If we run an additional fraction, then we will have a half- Aliasing in

common to all
fractions is

aliasing for full
design

fraction of a 25 run in two blocks of size eight. The aliasing for the half-
fraction is the aliasing that is in common to the two quarter-fractions that we
use. The defining contrast for blocking is the aliasing that differs between
the two fractions.

Suppose that we run the third fraction as an additional fraction. The
only aliasing in common to the two fractions is I = –ABDE, so this is the Aliases that

change between
fractions are
confounded

defining relation for the half-fraction. The aliasing that changes between
the two fractions is ABC = –CDE, so this is the defining contrast for the
confounding.

Note that if we knew ahead of time that we were going to run a second
quarter-fraction, we could have designed a resolution V fraction at the start.
By proceeding in two steps, we wound up with resolution IV. The advantage
of the two-step procedure is that we might have been able to stop at eight
units if the three active factors had been any three other than ABC or CDE;
we were just unlucky.

18.7 Fold-Over

Resolution III fractions are easy to construct, but resolution IV designs are Use fold-over to
construct

resolution IV
designs

more complicated. Fold-over is a technique related to de-aliasing for produc-
ing resolution IV designs from resolution III designs. In particular, fold-over
produces a 2k−qIV design from a 2

(k−1)−q
III design.

Resolution III fractions are easy to produce. Choose a set of base factors Resolution III is
easyfor an embedded factorial, and alias every additional factor to an interaction

of the base factors. This will always be resolution III or higher.

To use fold-over, start with a 2
(k−1)−q
III design in the first k−1 factors, and

produce the table of plus and minus signs for these k − 1 factors. Augment Fold-over by
reversing all signsthis table with an additional column of all minuses, labeled for factor k. Now

double the number of runs by adding the inverse of every row. That is, switch
all plus signs to minus, and all minus signs to plus, including the column for
factor k that was all minus signs. The result is a 2k−qIV . The generators for Odd-length

generators gain
last factor and

change sign

the full design are the generators from the 2
(k−1)−q
III , with reversed signs and

factor k appended to any generator with an odd number of letters. Note that
even though we have constructed this with two fractions, the design is run in
one randomization.

Example 18.6 Fold-over for a 215−10
IV
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A 215−10IV design is too big for most tables, and you will need to work
hard to find one by trial and error, but fold-over will do the job easily. Begin
with a 214−10 design. We will use the generators AB = E, AC = F, AD = G,
BC = H, BD = J, CD = K, ABC = L, ABD = M, ACD = N, BCD = O. This
just aliases ten additional factors to interactions of the first four. The factor-
level combinations and columns of pluses and minuses for the main effects
are in the top half of Table 18.4. This includes a column of all minuses for
the fifteenth factor P.

In the bottom half, we reverse all the signs from above to produce the
second half of the design. In this half, P is always plus. The generators
for the full design are –ABEP, –ACFP, –ADGP, –BCHP, –BDJP, –CDKP,
ABCL, ABDM, ACDN, BCDO; the odd-length generators for the resolution
III design (ABE, ACF, ADG, BCH, BDJ, CDK, and ABC) gain a –P in the
fold-over design. There are 105 four-factor, 280 six-factor, 435 eight-factor,
168 ten-factor, and 35 twelve-factor aliases of I in this fold-over design, a
complete enumeration of which you will be spared.

18.8 Sequences of Fractions

De-aliasing makes routine use of fractional factorials possible, because we
can always use additional fractions to break any aliases that are giving us
trouble. In particular, one thing that makes fractional factorials attractive is
the ability to run fractions in sequence.

For example, suppose you have six factors that you wish to explore, and
money for 32 experimental units. You could use those 32 units to run a 26−1V I

design. Or you could use 16 of those units and run a 26−2IV design with ABCESequences of
fractions can save
money

and BCDF as generators and save the remaining 16. Why is the second ap-
proach often better? If three or fewer factors are active, then you have a
replicated complete factorial in those three factors (projection of a fraction).
In this case, these first 16 units may be enough to answer our questions. If
more factors are active—in particular if A, B, C, and E or B, C, D, and F
are active—we can always use the remaining 16 units to run an additionalUse results of first

fraction to select
later fractions

fraction, and we can choose that fraction to break aliases that appear trouble-
some in the first fraction. The combined quarter-fractions are as good as the
original half-fraction (except for a single degree of freedom between the two
blocks), because we can choose our second quarter-fraction after seeing the
first.

Thus by using a sequence of fractions, you can often learn everything
you need to learn with fewer units; and if you cannot, you can use the first
fraction to guide your choice of subsequent fraction for remaining units.

Sequences of fractions make sense when each experiment is of short du-
ration so that running experiments in sequence is feasible. If each experimentSequences need

quick turnaround takes months to complete (for example, many agronomy experiments), then
a sequence of fractions is a poor choice of design.
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Table 18.4: Folding over to produce a 215−10IV .

A B C D E F G H J K L M N O P
efghjk – – – – + + + + + + – – – – –
ahjklmn + – – – – – – + + + + + + – –
bfgklmo – + – – – + + – – + + + – + –
abekno + + – – + – – – – + – – + + –
cegjlno – – + – + – + – + – + – + + –
acfjmo + – + – – + – – + – – + – + –
bcghmn – + + – – – + + – – – + + – –
abcefhl + + + – + + – + – – + – – – –
defhmno – – – + + + – + – – – + + + –
adghlo + – – + – – + + – – + – – + –
bdfjln – + – + – + – – + – + – + – –
abdegjm + + – + + – + – + – – + – – –
cdeklm – – + + + – – – – + + + – – –
acdfgkn + – + + – + + – – + – – + – –
bcdhjko – + + + – – – + + + – – – + –
abcdefghjklmno + + + + + + + + + + + + + + –
abcdlmnop + + + + – – – – – – + + + + +
bcdefgop – + + + + + + – – – – – – + +
acdehjnp + – + + + – – + + – – – + – +
cdfghjlmp – – + + – + + + + – + + – – +
abdfhkmp + + – + – + – + – + – + – – +
bdeghklnp – + – + + – + + – + + – + – +
adefjklop + – – + + + – – + + + – – + +
dgjkmnop – – – + – – + – + + – + + + +
abcgjklp + + + – – – + – + + + – – – +
bcefjkmnp – + + – + + – – + + – + + – +
aceghkmop + – + – + – + + – + – + – + +
cfhklnop – – + – – + – + – + + – + + +
abfghjnop + + – – – + + + + – – – + + +
behjlmop – + – – + – – + + – + + – + +
aefglmnp + – – – + + + – – – + + + – +
p – – – – – – – – – – – – – – +

18.9 Fractioning the Three-Series

Fractional factorials for the three-series are constructed in the same way as
the two-series: confound the full factorial into blocks and then run just one
block. Three-series factorials are confounded into 3, 9, 27, and other powers
of three blocks, so three-series can be fractioned into fractions of one third,
one ninth, and so on.

Recall that the factor levels in a three-series are represented by the digits
0, 1, or 2, and that all degrees of freedom are partitioned into two-degree-
of-freedom bundles. The bundles are obtained by splitting the factor-level
combinations according to their values on a defining split L. For example,
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the defining split A1B1C2 separates the factor-level combinations into threeA fraction is a
single block from
a confounded
three-series

groups according to

L = 1× xA + 1× xB + 2× xC mod 3 ,

where xA, xB , and xC are the the levels of factors A, B, and C; L takes the
values 0, 1, or 2. The factor-level combinations that have value 0 for the
defining split(s) form the principal block, and all others are alternate blocks.
These become principal and alternate fractions. The defining splits are the
generators for the fraction.

In a 2k−q factorial, every degree of freedom has 2q names, and every ef-
fect is aliased to 2q − 1 other effects. It’s just a little more complicated for
three-series fractions. In a 3k−1, the constant is aliased to a two-degree-of-
freedom split (the generator); all other two-degree-of-freedom bundles have3k−1 aliases

come in threes three names, and all other splits are aliased to two other splits. If W is the
generator, then the aliases of a split P are PW and PW 2. (Recall that ex-
ponents of these products are reduced modulo 3, and if the leading nonzero
exponent is a 2, double the exponents and reduce modulo 3 again.) For ex-
ample, the aliases in a 33−1 with W = A1B2C2 as generator are

W W 2

I A1B2C2

A A1B1C1 = A(A1B2C2) B1C1 = A(A1B2C2)2

B A1C2 = B(A1B2C2) A1B1C2 = B(A1B2C2)2

C A1B2 = C(A1B2C2) A1B2C1 = C(A1B2C2)2

A1B1 A1C1 = A1B1(A1B2C2) B1C2 = A1B1(A1B2C2)2

In a 3k−2, the constant is aliased to four two-degree-of-freedom splits; all
other two-degree-of-freedom bundles have nine names, and all other splits
are aliased to eight other splits. Using two generatorsW1 andW2, the aliases
of I are W1, W2, W1W2, and W1W

2
2 . Which generator is labeled one or two3k−2 aliases

come in nines does not matter, because W1W
2
2 = W 2

1W2 after reducing exponents modulo
3 and making the leading nonzero exponent a 1. The aliases of any other
split P are PW1, PW2, PW1W2, PW1W

2
2 , PW 2

1 , PW 2
2 , PW 2

1W
2
2 , and

PW 2
1W2. (Again, reduce exponents modulo 3; double and reduce modulo 3

again if the leading nonzero exponent is not a 1.) For a 34−2 factorial with
generators A1B1C1 and B1C2D1, the complete alias structure is
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W1 W2 W1W2 W1W
2
2

I A1B1C1 B1C2D1 A1B2D1 A1C2D2

A A1B2C2 A1B1C2D1 A1B1D2 A1C1D1

B A1B2C1 B1C1D2 A1D1 A1B1C2D2

C A1B1C2 B1D1 A1B2C1D1 A1D2

D A1B1C1D1 A1C2D2 A1B2D2 A1C2

W 2
1 W 2

2 W 2
1W

2
2 W 2

1W2

I
A B1C1 A1B2C1D2 B1D2 C1D1

B A1C1 C1D2 A1B1D1 A1B2C2D2

C A1B1 A1C1D1 A1B2C2D1 A1C1D2

D A1B1C1D2 B1C2 A1B2 A1C2D1

Further fractions require more generators. A 3k−q has q generators W1

through Wq. The constant is aliased to 1 + 3 + · · · + 3q−1 two-degree-
of-freedom splits; these splits aliased to I are of the form W i1

1 W
i2
2 · · ·W

iq
q

where the exponents are 0, 1, or 2, and the first nonzero exponent is a 1. All General 3k−q

aliasingother two-degree-of-freedom bundles have 3q names, and all other splits are
aliased to 3q−1 other splits. The aliases of a split P are products of the form
PW i1

1 W
i2
2 · · ·W

iq
q , where the exponents ij are allowed to range over all 3q

combinations of 0, 1, and 2. There are 1 + 3 + · · ·+ 3k−q−1 sets of aliases in
addition to the aliases of I.

Resolution in the 3k−q is the same as in the two-series: a fractional facto-
rial has resolution R if no interaction of j factors is aliased to an interaction Design resolution
of fewer than R − j factors. And again like the two-series, the resolution of
a 3k−q is the number of letters in the shortest alias of I.

We can construct a 3k−q using embedded factorials as we did for two-
series. In the 33−1 described above, recall the aliasing C = A1B2. Construct
a full factorial in A and B, and then set the levels of C according to the A1B2 Add levels of

aliased factors to
embedded

factorial

interaction; this will generate the fraction. Consider the following table:

00 0 01 2 02 1
10 1 11 0 12 2
20 2 21 1 22 0

The pairs of digits form a complete 32 design, and the single digits are the
values of

1× xA + 2× xB mod 3 ,

theA1B2 interaction. These are also the levels of C for the principal fraction.
Group the triples together, and we have the principal fraction of a 33−1 with
generator A1B2C2. If we want an alternate fraction, use Add 1 or 2 to get

alternate fraction
1× xA + 2× xB + 1 mod 3

or
1× xA + 2× xB + 2 mod 3

to generate the levels of C.
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18.10 Problems with Fractional Factorials

Fractional factorials can be extremely advantageous in situations where we
want to screen factors, can ignore interactions, or have restricted resources.Fractions offer

many chances for
mistakes

However, the sophistication of the fractional factorial gives us many ways in
which to err, and fractional factorials are a bit more brittle than complete fac-
torials in the face of real-world data. Daniel (1976) discusses these problems
in detail.

Here are some common pitfalls that you must try to avoid when using
fractional factorials. During the design stage, you can make your fractional
factorial too large or too small. A design that is too small tries to estimate
too many effects for the number of experimental units used; this is called
oversaturation. Designs that are too small tend to be limited in how you canChoose fraction

size carefully estimate error, because all the degrees of freedom are tied up in interesting
effects, and resolution tends to be small. Designs that are too large are being
wasteful of resources; you may be able to estimate all terms of interest with
a smaller design. This ties in with power. Fractional designs have smaller
sample sizes and thus less power for a given set of effects and error variance.
When planning the size of the design, we need to keep power in mind. All of
these design issues depend on having at least some prior knowledge or belief
of how the system works. This will allow us to decide what resolution and
replication is needed.

In the analysis stage, the most obvious problem is dealing incorrectly
with aliasing. You thus wind up with a misinterpretation of which effects
are important. You may also miss a need to de-alias. Finally, outliers and
missing data tend to cause more problems for fractional factorials than com-Check aliasing

and watch for bad
data

plete factorials. For example, consider an outlier in a 2k−q. In the complete
two-series, an outlier can sometimes be detected by a pattern of smallish ef-
fects of about the same size, usually high-order interactions. In the fraction,
many degrees of freedom have a main effect or low-order interaction in their
aliases, so there are few opportunities to see the flat pattern in effects that we
expect to be null.

18.11 Using Fractional Factorials in Off-Line Quality
Control

One of the areas in which fractional factorials and related designs have been
used with much success, profit, and acclaim is off-line quality control. Qual-
ity control has on-line and off-line aspects. On-line means “on the produc-Goal of off-line

quality control is
to make products
on target with
minimum
variation

tion line”; on-line quality control includes inspection of manufactured parts
to make sure that they meet specifications. Off-line quality control is off the
production line; this includes designing the product and manufacturing pro-
cess so that the product will meet specifications when manufactured. The
explicit goal is to have the product on target, with minimum variation around
the target.
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Suppose that you manufacture exhaust tubing for the automotive industry.
Your client orders a tubing part that should be 2.1 meters long and bent into
a specific shape; parts from 2.09 to 2.11 meters in length are acceptable.
One step of the manufacturing process is cutting the tubing to length. On-
line quality control will include inspection of the cut tubing and rejection
of those tubes out of specification. Off-line quality control designs the tube
cutting process so that the average tube length is 2.1 meters and the variation
around that average is as small as possible.

Off-line quality control has become quite the rage under the banner of
“Taguchi methods,” named for Genechi Taguchi, the Japanese statistician
who developed and advocated the methods. The principle of off-line quality Taguchi methods
control is to put a product on target with minimum variation. This princi-
ple is absolutely golden, but the exact methods Taguchi recommended for
achieving this have flaws and inefficiencies in both design and analysis (see
Box, Bisgaard, and Fung 1988 or Pignatiello and Ramberg 1991). What we
discuss here is very much in the spirit of Taguchi, but the analysis approach
is closer to Box (1988).

Most manufacturing processes have many controllable design parame-
ters. For the exhaust tubes, design parameters include the speed at which
tubing moves down the line, the air pressure for tubing clamps, cutting saw
speed, the type of sensor for recognizing the end of a tube, and so on. These
parameters might influence product quality, but we generally don’t know
which ones are important. Manufacturing processes also have uncontrol-
lable aspects, including variation in raw materials and environmental varia-
tion such as temperature and humidity. Some of these “uncontrollables” can Inner noise

controllable,
outer noise

uncontrollable

actually be controlled under laboratory or testing conditions. Taguchi uses
the term “inner noise” for variation that arises from changes in the control-
lable parameters and the term “outer noise” for variation due to the uncon-
trollable parameters.

18.11.1 Designing an off-line quality experiment

We want to find settings for the controllable variables so that the product is
on target and the variation due to the outer noise is as small as possible. This Study means and

variancesimplies that we need experiments that can study both means and variances.
We are also explicitly considering the possibility that the variance will not
be constant, so we will need some form of replication at all design points to
allow us to estimate the variances separately.

Replicated two- and three-series factorials are the basic designs for off-
line quality control. From these we can estimate mean responses as usual,
and replication allows us to estimate the variance at each factor-level com-
bination as well. There are often ten to fifteen or more factors identified as Use replicated

fractional
factorials

potentially important. A complete factorial with this many factors would be
prohibitively large, so off-line quality control designs are frequently highly-
fractioned factorials, but with replication.

Two situations present themselves. In the first situation, the outer noise
is at something of a micro scale, meaning that you tend to experience the full
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range of outer noise whenever you experiment. One of Taguchi’s early suc-
cesses was at the Ina Tile Company, where there was temperature variation in
the kilns. This noise was always present, as tiles in different parts of the kilnIs outer noise

micro or macro
scale?

experienced different temperatures. In the second situation, the outer noise is
at a more macro scale, meaning that you tend to experience only part of the
range of outer noise in one experiment. In the exhaust tubing, for example,
temperature and humidity in the factory may affect the machinery, but you
tend not to get hot and cold, dry and humid conditions scattered randomly
among your experimental runs. It is hot and humid in the summer and cold
and dry in the winter.

These two situations require different experimental approaches. When
you have outer noise at the micro level, it is generally enough to plan an
experiment using the controllable variables and let the outer noise appearDesign plan

should include
macro-level outer
noise

naturally during replication. When the outer noise is at the macro level, you
must take steps to make sure that the range of outer noise is included in your
experiment. If the outer-noise factors can be controlled under experimental
conditions, then these factors should also be included in the design to ensure
their full range.

Let’s return to the exhaust tube problem to make things explicit. Our
controllable factors are tube speed, air pressure, saw speed, and sensor type;
the outer-noise factors are temperature and humidity. Assume for simplicity
that we can choose two levels for all factors, so that there are sixteen combi-
nations for the controllable factors and four combinations for the outer-noise
factors. We need to include the outer-noise factors in our design, because we
are unlikely to see the full range of outer-noise variation if we do not.

There are several possibilities for this experiment. For example, we could
run the full 26 design. This gives four “replications” at each combination of
the controllable factors, and these replications span the range of the noise
factors. Or we could run a 26−1 fraction with 32 points. This is smaller
(and possibly quicker and cheaper), but with a smaller sample size we have
less power for detecting effects and only 1 degree of freedom for estimating
variation at each of the sixteen combinations of controllable factors.

18.11.2 Analysis of off-line quality experiments

Analysis is based on the following idea. Some of the controllable factorsDesign variables
affect mean and
variation,
adjustment
variables affect
only mean

affect the variance and the mean, and an additional set of controllable factors
affects only the mean. The factors that affect the variance and mean are
called design variables; those that affect only the mean are called adjustment
variables. The idea is to use the design variables to minimize the variance,
and then use the adjustment variables to bring the mean on target.

This approach is complicated by the fact that mean and variance are often
linked in the usual nonconstant-variance sense that we check with residual
plots and remove using a transformation. If we have this kind of nonconstant
variance, then every variable that affects the mean also affects the variance,
and we will have no adjustment variables. Therefore we need to accom-
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Table 18.5: Variance of natural-log sample variances
from normal data for 1 through 10 degrees of freedom.

1 2 3 4 5 6 7 8 9 10
4.93 1.64 .93 .64 .49 .39 .33 .28 .25 .22

modate this kind of nonconstant variance before dealing with variation that
depends on controllable variables but not directly through the mean.

First, find a transformation of the responses that removes the dependence
of variance on mean as much as possible. This is essentially a Box-Cox Transform to

“constant”
variance

transformation analysis. On this transformed scale, we hope that there are
variables that affect the mean but not the variance.

Next, compute the log of the variance of the transformed data at every
factor-level combination of the controllable factors. Treat these log variances Analyze log

variances to
determine design

variables

as responses, and analyze them via ANOVA to see which, if any, controllable
factors affect the variance; these are the design variables. Find the factor-
level combination that minimizes the variance. For highly-fractioned designs
we may only be able to do this by looking at main effects and hoping that
there are no interactions. One complication that arises in this step is that
once we have log variance as a response, there is no replication. Thus we
must use a method for unreplicated factorials to assess whether treatments
affect variances.

If we can assume that the (transformed) responses that go into each of
these variances are independent and normally distributed, then we can calcu-
late an approximate MSE for the ANOVA with log variances as the responses. Variance of log

sample variance
is known for

normally
distributed data

Suppose that there are n experimental units at each factor-level combination
of the controllable factors; then each of these sample variances has n − 1
degrees of freedom. The variance of the (natural) log of a sample variance
depends only on the degrees of freedom. Table 18.5 lists the variance of
the log of a sample variance for up to 10 degrees of freedom. Note that the
variances in that table are very sensitive to the normality assumption.

Finally, return to the original scale. Analyze the response to determine
which factors affect the mean response, and find settings for the adjustment Put response on

target using
adjustment

variables with
design variables
set to minimum

variance

variables that put the response on target when the design variables are at their
variance-minimizing settings. This step generally makes the assumptions
that the adjustment factors can be varied continuously and that the response is
linear between the two observed levels of a factor. Please note that adjusting
a transformation of y to a target T , say

√
y to
√
T , will result in a bias on the

original scale and thus a deviation from the target.

Example 18.7 Free height of leaf springs
Pignatiello and Ramberg (1985) present a set of data from a quality

experiment on the manufacture of leaf springs for trucks. The free height
should be as close to 8 inches as possible, with minimum variation. There
are four inner noise factors, each at two levels: furnace temperature (B),
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Table 18.6: Free height of leaf springs. Data set LeafSprings.
B C D E O low O high y s2

– – – – 7.78 7.78 7.81 7.50 7.25 7.12 7.54 .0900
+ – – + 8.15 8.18 7.88 7.88 7.88 7.44 7.90 .0707
– + – + 7.50 7.56 7.50 7.50 7.56 7.50 7.52 .0010
+ + – – 7.59 7.56 7.75 7.63 7.75 7.56 7.64 .0079
– – + + 7.94 8.00 7.88 7.32 7.44 7.44 7.67 .0908
+ – + – 7.69 8.09 8.06 7.56 7.69 7.62 7.79 .0529
– + + – 7.56 7.62 7.44 7.18 7.18 7.25 7.37 .0380
+ + + + 7.56 7.81 7.69 7.81 7.50 7.59 7.66 .0173

heating time (C), transfer time (D), and hold-down time (E). There was one
outer noise factor: quench oil temperature (O). A 25−1 design with three
replications was conducted. We will analyze this as a 24−1 design in the
inner noise factors with six replications, because quench-oil temperature is
not easily controlled in factory conditions. Table 18.6 shows the results.

We first examine whether the data should be transformed. A plot of log
treatment variance against log treatment mean shows no pattern, and Box-
Cox does not indicate the need for a transformation, so we use the data on
the original scale.

We now do a factorial analysis using log treatment variance as response.
(If we had transformed the data, the response would be the log of the variance
of the transformed data.) Figure 18.3 shows a half-normal plot of the disper-
sion effects, that is, the factorial effects with log variance as response. Only
factor C appears to affect dispersion, and inspection of Table 18.6 shows that
the high level of C has lower variance.

Now examine how the treatments affect average response. Figure 18.4
shows a half-normal plot of the location effects. Here we see that B, C,
and the BCD interaction are significant. Recalling the aliasing, the BCD
interaction is also the main effect of E. Thus heating time is a design variable
that we will set to a high level to keep variance low, and furnace temperature
and hold-down time are adjustment variables.

Here are the location effects for these variables (using MacAnova).

component: CONSTANT
(1) 7.636
component: b
(1) -0.11062 0.11063
component: c
(1) 0.088125 -0.088125
component: e
(1) -0.051875 0.051875

We have set C to the high level to get a small variance. To get the mean close
to the target of 8, we need B and E to be at their high levels as well; this gives
us 7.636 + .111 – .088 + .052, or 7.711, as our estimated response. This is
still a little low, so we may need to explore the possibility of expanding the
ranges for factors B and E to get the response closer to target.
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Figure 18.3: Half-normal plot of dispersion effects for leaf spring
data, using MacAnova.
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Figure 18.4: Half-normal plot of location effects for leaf spring data,
using MacAnova.

18.12 Further Reading and Extensions

Orthogonal-main-effects plans are resolution III designs constructed so that
the main effects are orthogonal. Resolution III two- and three-series frac-
tion factorials are orthogonal-main-effects plans, but there are several addi-
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tional families of designs that have these properties as well. Plackett-Burman
designs (Plackett and Burman 1946) are orthogonal-main-effects plans for
N − 1 factors at two levels each using N experimental units when N is
an integer multiple of 4. When N is a power of 2, these are resolution III
fractions of the kind discussed in this chapter. Addelman (1962) constructs
orthogonal-main-effects plans for mixed factorials by collapsing factors. For
example, start with a 34−2 fraction. Replace factor A by a two level factor
E, using the low level of E when A is 0 or 2, and the high level of E when
A is 1. This produces a fraction of a 2133 design in nine units. John (1971)
discusses these two classes, as well as some other mixed factorial fractions.
The aliasing structure of these designs can be quite complex.

Orthogonal arrays are a third class of orthogonal-main-effects plans that
are often used in quality experiments. An orthogonal array for k factors in N
units is described by an N by k matrix of integers; rows for units, columns
for factors, and integers giving factor levels. To be an orthogonal array, all
possible pairs of factor levels must occur together an equal number of times
for any pair of factors. Standard two- and three-series fractional factorials of
resolution III meet this criterion, but so do many additional designs. Hedayat
and Wallis (1978) review some of the theory and applications of these arrays.

Fractional factorials can also be run using split-plot and related unit struc-
tures. See Miller (1997).

18.13 Problems

Food scientists are trying to determine what chemical compounds makeExercise 18.1
heated butter smell like heated butter. If they could figure that out, then they
could make foods that smell like butter without having all the fat of butter.
There are eight compounds that they wish to investigate, with each compound
at either a high or low level. They use a 28−4 fractional factorial design with
I = ABDE = ABCF = -ACDG = -BCDH.

(a) Find the factor-level combinations used in this design.

(b) Find the aliases of I and A.

(c) If A, B, D, E, and AB look big, are there any unresolved ambiguities?
If so, which further fraction would you run to resolve the ambiguity?

Consider a 26−2 fractional factorial using I=ABDF = -BCDE.Exercise 18.2

(a) Find the aliases of the main effects.

(b) Find the factor-level combinations used.

(c) Show how you would block these combinations into two blocks of size
eight.

Consider the 28−4 fractional factorial with generator I = BCDE =Exercise 18.3
ACDF = ABCG = ABDH. Find the aliases of C.
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Design a 27−2 resolution IV fractional factorial. Give the factor-levelExercise 18.4
combinations used in the principal fraction and show how you would block
these combinations into two blocks of size sixteen.

Design an experiment. There are eight factors, each at two levels. How- Exercise 18.5
ever, we can only afford 64 experimental units. Furthermore, there is consid-
erable unit to unit variability, so blocking will be required, and the maximum
block size possible is 16 units. You may assume that three-way and higher-
order interactions are negligible, but two-factor interactions may be present.

Find the factor-level combinations used in the principal fraction of a 34−1 Exercise 18.6
with the generatorA1B1C1D1. Report the alias structure, and show how you
would block the design into blocks of size nine.

A 24−1 fractional factorial is created by the aliasing I = ABD, and Exercise 18.7
is then blocked into two blocks of size four using AC = BCD. Find the
factor-level combinations in the two blocks.

Consider a 24−1 factorial with I=–ABCD as generator, blocked into two Exercise 18.8
blocks of size four using AB=–CD.
(a) Give a skeleton ANOVA for this design.
(b) Say which treatments are assigned to each block.

You ran a 27−3 fractional factorial with aliasing generated by A=EFG, Exercise 18.9
B=DEG, C=DEF. You then do a Daniel plot for the model y˜A*B*C*D (A,
B, C, D work as a base factorial even though A, B, C, D was not the base
factorial used in generating the design). The terms that look big are ABC,
ABD, and CD. How would you interpret this result?

Briefly describe the experimental design you would choose for each of Problem 18.1
the following situations, and why. Describe treatments, blocks, etc.

(a) Many high tech products are extremely expensive to build, so various
versions of the product are simulated in a computer before any are phys-
ically constructed. These simulations are cheap compared to physical
construction, but they are still very time consuming. In this case, we are
building turbine blades for jet engines. There are 14 factors that we need
to vary (two levels each), and we have resources on the supercomputer
to simulate up to 16 factor/level combinations.

(b) Graphene is a nano material composed of a sheet of carbon one atom
thick with atoms arranged in a hexagonal lattice. It is very light and very
strong, and people seemingly find new applications for it every day. One
recent discovery about graphene is that single protons can pass through a
sheet of graphene, but apparently not electrons; this makes it a candidate
for use as an ultra thin membrane in fuel cells. Our experiment seeks to
test graphene in the fuel cell application.

The factors of interest are temperature, hydrogen fuel purity, and cata-
lyst. Temperature will be set at 60, 70, or 80 degrees C; purity will be set
at 50%, 60%, or 70%; catalyst will be type A or B. We assemble a test
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fuel cell with a catalyst and a membrane and then test it at some temper-
ature with some fuel. A single membrane should only be used with one
combination of purity and catalyst, but it can be used for all three tem-
peratures. Removing a membrane from the test fuel cell (as you would
need to do to change the catalyst) will destroy the membrane. We have
18 membranes available for test.

(c) An aquapod is a small robot that can “swim” through water; aquapods
are intended for environmental monitoring. We want to study four treat-
ments, which are the combinations of two factors, each at two levels.
The factors are the size of the flippers (large or small) and whether the
flippers are used in phase or out of phase (sort of like butterfly versus
freestyle swimming). The robot is battery powered, and the battery must
be recharged between each run. Given the length of the test run and the
recharge time, we can only do three runs per day. The main response of
interest is how far the robot can swim before it exhausts its battery.

We have secured the use of the test tank for four consecutive Saturdays.
The test tank is adjacent to a river and uses river water as its filler (in
fact, the water in the tank is constantly being exchanged for fresh water
from the river). One concern we have is that the water could be different
temperatures on the different days, and we know that water temperature
will affect battery performance.

(d) Motor oil in an automotive engine will change viscosity over time. We
wish to study if the viscosity change depends the oil spending time at an
elevated temperature. Our basic idea is to take a sample of oil, measure
its viscosity, heat it to one of four temperatures and hold it at that temper-
ature for 72 hours, and then measure the viscosity again. The response is
the change in viscosity.

We suspect that there will be brand-of-oil differences in viscosity change,
with the name brand oils expected to change viscosity less; we will have
to deal with this, but this is not of interest. We also expect that there
will be differences in viscosity change based on the original viscosity of
the oil; this is also not of interest. We have available oil of four different
label viscosities (5W30, 10W30, 5W40, and 10W40) from eight different
brands (three are name brands and five are private store labels). We have
the capacity to run 32 viscosity-drop trials.

(e) My wife likes to garden, and we have created four raised garden beds,
each four feet by four feet in size. My wife likes tomatoes, so we con-
stantly strive to get higher tomato production. We can squeeze four
tomato plants into one raised bed, but certainly no more. This year we
are going to find the way to get the most tomato yield by weight. We
can vary the variety of tomato (Big Boy vs German Stripe), the brand of
fertilizer (Scott’s vs store brand), and planting schedule (early vs late).
Unfortunately, we had access to different kinds of soil when we built our
four raised beds, so the soil conditions in the four raised beds are very
different.

Draft of March 4, 2021



18.13 Problems 633

Design an experiment to help us determine the combination of factors
that will give us good tomato yield.

(f) Functional magnetic resonance imaging (fMRI) is a technique that al-
lows us to monitor brain activity (technically, monitor blood oxygenation
levels in the brain) during mental tasks. There are six different “tuning”
parameters that I can set in the procedure that will affect the quality of
results. For simplicity, assume that each parameter has only two levels.
The magnet is very busy and very expensive to use, so I can afford only
16 runs to use to select my tuning parameters. How should I design my
experiment to get the information I need from only 16 runs?

(g) When iron oxide nanoparticles are placed in an alternating magnetic field
they produce heat. These particles offer a potential method for uniformly
warming frozen tissues, including large tissues such as organs frozen for
transport to an organ recipient. We need to study the concentration of
nanoparticles that should be used to infuse an organ sample before it is
frozen, and the frequency of the alternating magnetic field that should
be used when it is thawed. In order to understand how the infusion
of nanoparticles will work, we need to attempt to infuse whole organs.
However, to understand the frequency of the magnetic field during thaw-
ing, we can use portions of the organ.

We want to consider three different infusion concentrations and two dif-
ferent field frequencies. We have twelve swine livers available for study.

Describe an appropriate experimental design for this situation.

(h) We are concerned about agricultural chemicals and their effects on am-
phibian growth, specifically frogs. We have eight 290-gallon cattle tanks
in which we construct artificial ponds. We add tadpoles and other native
life to all eight tanks. We want to study the effects of atrazine (absent
or present), phosphate fertilizer (low or high level), glyphosate (absent
or present), and organochlorides (absent or present) on the health of the
frogs after six weeks of growth.

(i) A high blood concentration of homocysteine is associated with increased
risk of cardiovascular disease. We wish to study the effect of three treat-
ments on the homocystein concentration (control, 870 mg per day caf-
feine, or filtered coffee containing 870 mg caffeine per day). Forty-eight
subjects have agreed to participate, and we expect large subject to sub-
ject variation in their levels of homocysteine. Each subject should be on
a treatment for two weeks to get a stable blood concentration of homo-
cysteine. Subjects participate for twelve weeks.

(j) Preliminary studies indicate that the anti-oxidants vitamin C and vitamin
E may help prevent cancer, specifically, prostate cancer. We have a vol-
unteer group of more than 10,000 male physicians in their early 50s with
no known individual risk factors who can be given either, neither, or both
of the vitamins blindly. They will be followed for a minimum of 10 years
to find the number who contract prostate cancer.
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(k) Asbestos fiber concentrations in air are measured by drawing a fixed
volume of air through a disk-shaped filter, taking a wedge of the filter
(generally 1/4 of the filter), preparing it for microscopic analysis, and
then counting the number of asbestos fibers found on the prepared wedge
when looking through an optical microscope. (Actually, we only count
on a random subsample of the area of the prepared wedge, but for the pur-
poses of the question, consider the wedge counted.) We wish to compare
four methods of preparing the wedges for their effects on the subsequent
fiber counts. We have available 24 filters from a broad range of asbestos
air concentrations; we can use each filter entirely, so that we can get
four wedges from each filter. We can also use four trained microscopists.
Despite the training, we anticipate considerable microscopist to micro-
scopist variation in the counts (that is, some tend to count high, and some
tend to count low).

(l) A food scientist wishes to study the effect that eating a given food will
have on the ratings given to a similar food (sensory-specific satiety).
There is a pool of 24 volunteers to work with. Each volunteer must eat
a “load food” (a large portion of hamburger or potato), and then eat and
rate two “test foods” (small portions of roast beef and rice). After eating,
the volunteer will rate the appeal of the roast and rice.

(m) Scientists studying the formation of tropospheric ozone believe that five
factors might be important: amount of hydrocarbon present, amount of
NOX present, humidity, temperature, and level of ultraviolet light. They
propose to set up a “model atmosphere” with the appropriate ingredients,
“let it cook” for 6 hours, and then measure the ozone produced. They
only have funding sufficient for sixteen experimental units, and their
ozone-measuring device can only be used eight times before it needs
to be cleaned and recalibrated.

(n) A school wishes to evaluate four reading texts for use in the sixth grade.
One of the factors in the evaluation is a student rating of the stories in the
texts. The principal of the school decides to use four sixth-grade rooms
in the study, and she expects large room to room differences in ratings.
Due to the length of the reading texts and the organization of the school
year into trimesters, each room can evaluate three texts. The faculty do
not expect systematic differences in ratings between the trimesters.

(o) The sensory quality of prepared frozen pizza can vary dramatically. Be-
fore the quality control department begins remedial action to reduce the
variability, they first attempt to learn where the variability arises. Three
broad sources are production (variation in quality from batch to batch
at the factory), transportation (freeze/thaw cycles degrade the product,
and our five shipping/warehouse companies might not keep the product
fully frozen), and stores (grocery store display freezers may not keep the
product frozen). Design an experiment to estimate the various sources of
variability from measurements made on pizzas taken from grocery freez-
ers. All batches of pizza are shipped by all shipping companies, but each
grocery store is served by only one shipping company. You should buy
no more than 500 pizzas.
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(p) Food scientists are trying to figure out what makes cheddar cheese smell
like cheddar cheese. To this end, they have been able to identify fifteen
compounds in the “odor” of the cheese, and they wish to make a pre-
liminary screen of these compounds to see if consumers identify any of
these compounds or combinations of compounds as “cheddary.” At this
preliminary stage, the scientists are willing to ignore interactions. They
can construct test samples in which the compounds are present or absent
in any combination. They have resources to test sixteen consumers, each
of whom should sample at most sixteen combinations.

(q) The time until germination for seeds can be affected by several variables.
In our current experiment, a batch of seeds is pretreated with one of three
chemicals and stored for one of three time periods in one of two container
types. After storage time is complete, the average time to germination is
measured for the batch. We have 54 essentially uniform batches of seeds,
and wish to understand the relationships between the chemicals, storage
times, and storage containers.

(r) Our company is creating a biodegradable polymer coating that includes
nano-scale structures. There are 12 process factors that we can vary, and
we would like to know which, if any, of these 12 factors affect the total
mass of the polymer that gets applied to a surface. Our boss will allow
us 16 experimental runs. Design an experiment to screen these 12 factors
in 16 experimental units.

(s) The U.S. Department of Transportation needs to compare five new types
of pavement for durability. They do this by selecting “stretches” of high-
way, installing an experimental pavement in the stretch, and then mea-
suring the condition of the stretch after 3 years. There are resources allo-
cated for 25 stretches of highway. From past experience, the department
knows that traffic level and weather patterns affect the durability of pave-
ment. The department is organized into five regional districts, and within
each district the weather patterns are reasonably uniform. Also within
each district are highways from each of the five traffic level groups.

(t) We are designing a nasal spray for the delivery of a drug (HU). Two
of the issues in how well the system will work for drug delivery are
aerosol particle size and absorbability. Other compounds are added to the
mixture to help adjust those responses. This experiment will study the
aerosol particle size as a response, and we will vary the concentrations
of five compounds in the solution. The five compounds are the drug HU,
two polymers (HEC and PEU) and two salts (CaCl2 and NaCl). We can
set the concentrations of the salts at 0%, 15%, or 30%, and we can set the
concentrations of the other factors at 0%, 2%, or 4%. We need to be able
to fit a quadratic model to describe how particle size varies as a function
of the five factors.

a. Design an experiment using n=50 observations.

b. Can you design an experiment to fit this model using only n=40 ob-
servations? If so, how?
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Briefly describe the experimental design used in each of the follow-Problem 18.2
ing situations (list units, blocks, covariates, factors, whole/split plots, and
so forth). Give a skeleton ANOVA (sources and degrees of freedom only).

(a) Biosolids are nutrient rich, organic by-products of the sewage treatment
process with pathogens removed. Biosolids have been used as soil treat-
ments for many years, but the current experiment explores the use of
biosolids for reducing the bioavailability of lead in soils. (Bioavailable
lead is essentially the amount of lead that can be absorbed or metabolized
by an organism, rather than simply the total amount of lead.) Biosolids
can be modified by adding lime (or not), by adding iron (or not), and by
adding phosphorus (or not).

We have eight plots of residential soil; four are in a suburban area, and the
other four are in an urban, industrialized area. Each plot will be treated
with one of the eight combinations of biosolids (eight combinations of
lime, iron, and phosphorus). The biosolids will be tilled into the soils,
and the plots will then be planted with grass. After one year, we will
sample each plot and measure the bioavailability of lead. We randomize
the four treatments control, iron and lime, iron and phosphorus, lime and
phosphorus to the urban sites; we randomize the four treatments iron,
lime, phosphorus, and (iron, lime, and phosphorus) to the suburban sites.

(b) We wish to study the effect of maternal condition on the survival of off-
spring in deer in the wild. Two factors felt to contributed to maternal
condition are food availability and winter severity (as measured by av-
erage snow depth). Twenty winter yards (areas where deer congregate)
are found, and ten yards are selected at random to receive food supple-
mentation via corn feeders that will be refilled once a week. In addition,
snow depth is measured each week at all yards so that an average snow
depth can be computed. After the fawns are born, one fawn at each yard
is caught and fit with a radio collar. The radio collar will change its pulse
rate if the fawn dies (detected by temperature change), so we can monitor
survival by listening for the pulses.

(c) We wish to compare four types of running shoes. We have 100 high
school boys to use as subjects. We want them to run for 800 meters, and
their time will be the response. We randomly assign the shoes to the boys,
25 to each type of shoe. We also expect general cardio-vascular health
to be associated with time, and we measure heart rate of each individual
when they finish the run in addition to just their time.

(d) Snellingdale Mall uses a lot of cut Christmas trees (real, not artificial)
as decoration during the Christmas season. These trees are placed in
clusters of three at ten locations around the mall. One important issue
to them is how tree species affects how long the trees will retain their
needles. This year they run an experiment. They get six each of Frasier
Fir, Balsam Fir, Scotch Pine, White Pine, and Blue Spruce; all trees
are the same size. The trees are then randomly spread around the mall
subject to the restriction that each combination of three species occurs at
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one of the decoration locations. The response measured is how long each
tree lasts before it begins to drop an unacceptable number of needles.

(e) Hazel nuts contain phenolic compounds that have food preserving prop-
erties (they are antioxidants). We are interested in whether nuts from
four different varieties contain different amounts of a particular phenol.
The following experiment is done on three separate days. On each of the
three days, all four varieties are analyzed in a random order. Each day, a
batch of nuts from a variety is ground to a fine power. Five grams of the
powder are stirred into a solvent and allowed to soak for an hour. After
the wait, the solvent is run through a separation column, and the extract
between 20 and 21 minutes into the separation is collected. This extract
is then analyzed with magnetic resonance spectroscopy to determine the
amount of the phenol of interest present in the extract; this amount is the
response for a given variety on a given day.

(f) Perfume is expensive, and we’d like it to retain its odor. A newcomer
to Minnesota remarked that perfume seems to lose its odor faster in the
cold weather than in warm weather, so we explore this in an experiment.
We will have 36 identical pieces of cotton cloth, and each piece will be
treated with the same amount of perfume. The pieces of cloth are then
assigned to four temperature treatments (nine for each treatment). The
treatments are two hours at 0o, 35o, 70o, or 95o (freezer, refrigerator,
room, low oven). After the treatment, the pieces are allowed 5 minutes
to come to room temperature; then the clothes are sniffed by judges and
given a strength rating from 1 to 10. There are 18 judges, and each judge
sniffs 2 pieces of cloth (in random order), with each pair of temperatures
sniffed by three judges.

(g) We wish to study the effects of stress and activity on the production of
a hormone present in the saliva of children. The high-stress treatment
is participation in a play group containing children with whom the sub-
ject child in unacquainted; the low-stress treatment is participation in a
play group with other children already known to the subject child. The
activities are a group activity, where all children play together, and an in-
dividual activity, where each child plays separately. Thirty-two children
are split at random into two groups of sixteen. The first group is assigned
to high stress, the other to low stress. For each child the order of group
or individual activity is randomized, and a saliva sample is taken during
each activity.

(h) Neighbors near the municipal incinerator are concerned about mercury
emitted in stack gasses. They want a measure of the accumulation rate of
mercury in soil at various distances and directions from the incinerator.
They collect a bunch of soil, mix it as well as they can, divide it into
30 buckets, and have a lab measure the mercury concentration in each
bucket. The buckets are then randomly divided into fifteen sets of two;
the pairs are placed in fifteen locations around the incinerator, left for 2
years, and then analyzed again for mercury. The response is the increase
in mercury. The lab informed the activists that the amount of increase
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will be related to the amount of carbon in the soil, because mercury is
held in the organic fraction; so they also take a carbon measurement.

(i) We wish to discover the effects of food availability on the reproductive
success of anole lizards as measured by the number of new adults appear-
ing after the breeding season. There are twelve very small islands with
anole populations available for the study. The islands are man-made and
more or less equally spaced along a north-south line. The treatments will
be manipulation of the food supply on the islands during peak breeding
season. There are three treatments: control (leave natural), add supple-
mental food, and reduced food (set out traps to deplete the population
of insects the anoles eat). One potential source of variation is that the
lizards are eaten by birds, and there is a wildlife refuge with a large bird
population near the northern extreme of the study area. To control for
this, we group the islands into the northern three, the next three, and so
on, and randomize the treatments within these groups.

(j) A fast-food restaurant offers both smoking and non-smoking sections
for its customers. However, there is considerable smoke “leakage” from
the smoking section to the non-smoking section. The manager wants to
minimize this leakage by finding a good division of the restaurant into the
two sections. She has three possible divisions of the tables, and conducts
an experiment by assigning divisions at random to days for 3 weeks (7
days per division) and surveying non-smoking patrons about the amount
of smoke. In addition, she monitors the number of smokers per day, as
that has an obvious effect on the amount of leakage.

Avocado oil may be extracted from avocado paste using the followingProblem 18.3
steps: (1) dilute the paste with water, (2) adjust the pH of the paste, (3) heat
the paste at 98oC for 5 minutes, (4) let the paste settle, (5) centrifuge the
paste. We may vary the dilution rate (3:1 water or 5:1 water), pH (4.0 or
5.5), settling (9 days at 23oC or 4 days at 37oC), and centrifugation (6000g
or 12000g). Briefly describe experimental designs for each of the following
situations. You may assume that the paste (prior to any of the five steps
mentioned) may be used any time up to a week after its preparation. You
may also assume that the primary cost is the processing; the cost of the paste
is trivial.

(a) We wish to study effects of the four factors mentioned on the extrac-
tion efficiency. Avocado paste is rather uniform, and we have enough
money for 48 experimental units.

(b) We wish to study effects of the four factors mentioned on the extrac-
tion efficiency. Avocado paste is not uniform but varies from individual
fruit to fruit. Each fruit produces enough paste for about 20 experimen-
tal units, and we have enough money for 48 experimental units.

(c) We wish to study effects of the four factors mentioned on the extrac-
tion efficiency. Avocado paste is not uniform but varies from individual
fruit to fruit. Each fruit produces enough paste for about 10 experimen-
tal units, and we have enough money for 48 experimental units.
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(d) We wish to determine the effects of the pH, settling, and centrifugation
treatments on the concentration of α-tocopherol (vitamin E) in the oil.
Each fruit produces enough paste for about six experimental units, and
we have enough money for 32 experimental units. Furthermore, we
can only use four experimental units per day and the instruments need
to be recalibrated each day.

Here are the factor/level combinations used in a fractional factorial: def, Problem 18.4
af, be, abd, cd, ace, bcf, abcdef. I assert that this fraction was formed using
the generators D = AB, E = ABC, and F = AC. Am I correct or not? Explain
your answer.

An experiment was conducted to determine the factors that affect the Problem 18.5
amount of shrinkage in speedometer cable casings. There were fifteen fac-
tors, each at two levels, but the design used only sixteen factor-level combina-
tions (215−11III ). The generators were I = –DHM = –BHK = BDF = BDHO =
–AHJ = –ADE = ADHN = –ABC = ABHL = ABDG = –ABDHP, and the
factors were: liner OD (A); liner die (B); liner material (C); liner line speed
(D); wire braid type (E); braiding tension (F); wire diameter (G); liner ten-
sion (H); liner temperature (J); coating material (K); coating die type (L);
melt temperature (M); screen pack (N); cooling method (O); and line speed
(P). The response is the average of four shrinkage measurements (data from
Quinlan 1985, data set Shrinkage).

A B C D E F G H J K L M N O P y

– – – – – + – – – – – – – – – .4850
– – – – – + – + + + + + + + + .5750
– – – + + – + – – – – + + + + .0875
– – – + + – + + + + + – – – – .1750
– + + – – – + – – + + – – + + .1950
– + + – – – + + + – – + + – – .1450
– + + + + + – – – + + + + – – .2250
– + + + + + – + + – – – – + + .1750
+ – + – + + + – + – + – + – + .1250
+ – + – + + + + – + – + – + – .1200
+ – + + – – – – + – + + – + – .4550
+ – + + – – – + – + – – + – + .5350
+ + – – + – – – + + – – + + – .1700
+ + – – + – – + – – + + – – + .2750
+ + – + – + + – + + – + – – + .3425
+ + – + – + + + – – + – + + – .5825

Analyze these data to determine which factors affect shrinkage, and how
they affect shrinkage.

Seven factors are believed to control the softness of cold-foamed car Problem 18.6
seats, and an experiment was conducted to determine how these factors influ-
ence the softness. A 27−4III design was run with generators I = ABD = ACE =
BCF = ABCG. The response is the average softness of the seats (data from
Bergman and Hynén 1997, data set SeatSoftness).
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A B C D E F G y

– – – + + – – 25.3
+ – – – – + + 20.6
– + – – + – + 26.7
+ + – + – + – 23.8
– – + + – – + 23.5
+ – + – + + – 24.0
– + + – – – – 23.5
+ + + + + + + 24.2

Analyze these data to determine how the factors affect softness.

Silicon wafers for integrated circuits are grown in a device called a sus-Problem 18.7
ceptor, and a response of interest is the thickness of the silicon. Eight factors,
each at two levels, were believed to contribute: rotation method (A), wafer
code (B), deposition temperature (C), deposition time (D), arsenic flow rate
(E), HCl etch temperature (F), HCl flow rate (G), and nozzle position (H). A
28−4IV design was run with generators I = ABCD = BCEF = ACEG = BCEH.
The average thickness of the silicon follows (data from Shoemaker, Tsui, and
Wu 1991, data set SiliconThickness).

A B C D E F G H y

– – – – – – – – 14.80
– – – – + + + + 14.86
– – + + – + + + 14.00
– – + + + – – – 13.91
– + – + – + – + 14.14
– + – + + – + – 13.80
– + + – – – + – 14.73
– + + – + + – + 14.89
+ – – + – – + – 13.93
+ – – + + + – + 14.09
+ – + – – + – + 14.79
+ – + – + – + – 14.33
+ + – – – + + + 14.77
+ + – – + – – – 14.88
+ + + + – – – – 13.76
+ + + + + + + + 13.97

Analyze these data to determine how silicon thickness depends on the factors.

The responses shown in Problem 18.6 are the averages of sixteen indi-Problem 18.8
vidual units. The variances among those units were: 3.24, .64, 1.00, 2.56,
1.96, 1.00, 1.00, and 2.56 for the eight factor-level combinations used in the
design. Which factor-levels should we use to reduce variation?

We have a replicated 23 design with data (in standard order, first replicateProblem 18.9
then second replicate) 6, 10, 32, 60, 4, 15, 26, 60, 8, 12, 34, 60, 16, 5, 37, 52.
We would like the mean response to be about 30, with minimum variability.
How should we choose our factor levels?
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A product is produced that should have a score as close to 2 as possible. Problem 18.10
Eight factors are believed to influence the score, and a completely random-
ized experiment is conducted using 64 units and sixteen treatments in a 28−4IV
fractional-factorial treatment structure. Analyze these data and report how
you would achieve the score of 2. You may assume that the treatments are
continuous and can take any level between -1 (low) and 1 (high). Increasing
any factor costs more money, and factors are named in order of increasing
expense (data set ProductScore).

Treatment Score
(1) 2.50 2.85 2.80 2.92
aefg 1.83 1.87 1.87 1.70
befh 1.55 1.56 1.64 1.56
abgh 1.12 1.14 1.23 1.18
cegh 1.67 1.65 1.83 1.89
acfh 2.79 2.75 2.95 3.18
bcfg 1.15 1.19 1.18 1.16
abce 1.55 1.52 1.62 1.66
dfgh 2.95 4.05 2.73 2.13
adeh 9.41 4.37 5.06 4.20
bdeg 1.38 1.88 2.05 1.54
abdf 2.14 2.79 2.65 1.85
cdef 7.48 5.79 3.55 13.63
acdg 3.13 1.98 2.24 3.14
bcdh 2.48 1.87 2.92 2.21
abcdefgh 2.00 1.42 1.36 1.23

We have run a 26−3III fractional factorial with generators ABCD, ACE, and Problem 18.11
BCF.

(a) List all of the aliases of I.

(b) In the Daniel plot, the main effects of B, D, and E looked large. What can
you conclude?

(c) Your colleague claims that the following factor/level combinations were
run in the experiment: ace, cd, bcf, abcdef, be, def, af, abd. Is he correct?
Explain why or why not.

Bacteriocin is a food preservative that can be extracted from some bac- Problem 18.12
terial cultures. We have five factors, each at two levels (Glucose, Inoculum
size, Aeration, Temperature, Sodium, as factors A through E). We run a 25−2III
fraction with D=AC and E=BC. The factor level combinations are de, ae, bd,
ab,c,acd, bce, abcde.

If factors A, C, and D appear to be large, which additional fraction should
you run to break the ambiguity?

You and your coworkers Jim and Joe have been asked to review an exper- Problem 18.13
iment that was run 10 years ago. It is clearly a 26−3 fractional factorial with
the following factor/level combinations: abd, af, bcf, abcdef, cd,
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be, ace, def. Jim says that the aliasing structure was generated by I =
ABD = ACE = BCF. Joe says that the aliasing structure was generated by I =
ABCD = BCE = ABF. Which, if either, of these two is correct, and why?

Suppose you have seven factors to study, each at two levels, but that youProblem 18.14
can only afford 32 runs. Further assume that at most four of the factors
are active, and the rest inert. You may safely assume that all three-factor
or higher-order interactions are negligible, but many or all of the two-factor
interactions in the active factors are present.

(a) Design a single-stage experiment that uses all 32 runs. Show that this
experiment may not be able to estimate all effects of interest.

(b) Design a two-stage experiment, where you use 16 runs in the first stage,
and then use an additional 16 runs if needed. Show that you can always
estimate the effects of interest with the two-stage design.

(c) Suppose that we had assigned the seven labels A, B, C, D, E, F, and G
to the seven factors at random. There are 35 (seven choose four) ways
of assigning the four active factors to labels, ignoring the order. What
is the probability that you can estimate main effects and all two-factor
interactions in the active factors with your design from part (a)? What
is the probability that you can estimate main effects and all two factor
interactions in the active factors with your first 16-point design from
(b) and your full two-stage design from part (b)?

(d) What is the main lesson you draw from (a), (b), and (c)?

We wish to determine the tolerance of icings to ingredient changes andProblem 18.15
variation in the preparation. Ingredient changes are represented by factors C,
D, E, F, G, and H. All are at two levels. C and D are two types of sugars;
E, F, and G are three stabilizers; and H is a setting agent. The levels of
these factors represent changes in the amounts of these constituents in the
mix. Variation in preparation is modeled as the amount of water added to
the product. This has four levels and is represented as the combinations of
factors A and B. The response we measure is (coded) viscosity of the icing.
A quarter-fraction with 64 observations was run; data follow (Carroll and
Dykstra 1958) (data set Icings):
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(1) 26 agh 6 bh 43 abg -3
cg 16 ach 10 bcgh 69 abc -5
dgh 12 ad 13 bdg 45 abdh -13
cdh 22 acdg 17 bcd 45 abcdgh -4
eh 29 aeg 13 be 54 abegh 4
cegh 30 ace 17 bceg 54 abceh 5
deg 29 adeh 16 bdegh 43 abde -2
cde 34 acdegh 16 bcdeh 67 abcdeg -3
fgh 32 af 19 bfg 64 abfh 6
cfh 30 acfg 18 bcf 57 abcfgh 6
df 27 adfgh 29 bdfh 50 abdfg 6
cdfg 35 acdfh 22 bcdfgh 53 abcdf 7
efg 53 aefh 29 befgh 74 abef 8
cef 46 acefgh 21 bcefh 73 abcefg 13
defh 35 adefg 23 bdef 69 abdefgh 20
cdefgh 42 acdef 27 bcdefg 69 abcdefh 10

Determine which factors affect the viscosity of the icing, and in what ways.
The response should lie between 25 and 30; what does the experiment tell us
about the icing’s tolerance to changes in ingredients?

Use the fact that the shortest alias of I in a resolution R design has R let- Question 18.1
ters to show that a 2k−p design of resolution R contains a complete factorial
in any R− 1 factors.

Show that fold-over breaks all aliases of odd length. Question 18.2

Show that (1) there are 1 + 3 + 32 + · · ·+ 3k−1 two-degree-of-freedom Question 18.3
splits in a 3k factorial; (2) there are 1 + 3 + 32 + · · · + 3k−q−1 two-degree-
of-freedom splits in a 3k−q fractional factorial, each with 3q labels; and (3)
there are 1 + 3 + · · · + 3q−1 two-degree-of-freedom splits aliased to I in a
3k−q fractional factorial.
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Chapter 19

Response Surface Designs

Many experiments have the goals of describing how the response varies as
a function of the treatments and determining treatments that give optimal
responses, perhaps maxima or minima. Factorial-treatment structures can be
used for these kinds of experiments, but when treatment factors can be varied
across a continuous range of values, other treatment designs may be more
efficient. Response surface methods are designs and models for working Response

surface methodswith continuous treatments when finding optima or describing the response
is the goal.

19.1 Visualizing the Response

In some experiments, the treatment factors can vary continuously. When
we bake a cake, we bake for a certain time x1 at a certain temperature x2;
time and temperature can vary continuously. We could, in principle, bake
cakes for any time and temperature combination. Assuming that all the cake
batters are the same, the quality of the cakes y will depend on the time and Response is a

function of
continuous

design variables

temperature of baking. We express this as

yij = f(x1i, x2i) + εij ,

meaning that the response y is some function f of the design variables x1 and
x2, plus experimental error. Here j indexes the replication at the ith unique
set of design variables.

One common goal when working with response surface data is to find
the settings for the design variables that optimize (maximize or minimize)
the response. Often there are complications. For example, there may be
several responses, and we must seek some kind of compromise optimum that
makes all responses good but does not exactly optimize any single response. Compromise or

constrained
optimum

Alternatively, there may be constraints on the design variables, so that the
goal is to optimize a response, subject to the design variables meeting some
constraints.
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Figure 19.1: Sample perspective plot, using Minitab.

A second goal for response surfaces is to understand “the lie of the land.”
Where are the hills, valleys, ridge lines, and so on that make up the topogra-Describe the

shape of the
response

phy of the response surface? At any give design point, how will the response
change if we alter the design variables in a given direction?

We can visualize the function f as a surface of heights over the x1, x2
plane, like a relief map showing mountains and valleys. A perspective plot
shows the surface when viewed from the side; Figure 19.1 is a perspective
plot of a fairly complicated surface that is wiggly for low values of x2, andPerspective plots

and contour plots flat for higher values of x2. A contour plot shows the contours of the surface,
that is, curves of x1, x2 pairs that have the same response value. Figure 19.2
is a contour plot for the same surface as Figure 19.1.

Graphics and visualization techniques are some of our best tools for un-
derstanding response surfaces. Unfortunately, response surfaces are difficultUse models for f
to visualize when there are three design variables, and become almost im-
possible for more than three. We thus work with models for the response
function f .

19.2 First-Order Models

All models are wrong; some models are useful. George Box

We often don’t know anything about the shape or form of the function f , so
any mathematical model that we assume for f is surely wrong. On the other
hand, experience has shown that simple models using low-order polynomial
terms in the design variables are generally sufficient to describe sections ofPolynomials are

often adequate
models
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Figure 19.2: Sample contour plot, using Minitab.

a response surface. In other words, we know that the polynomial models
described below are almost surely incorrect, in the sense that the response
surface f is unlikely to be a true polynomial; but in a “small” region, polyno-
mial models are usually a close enough approximation to the response surface
that we can make useful inferences using polynomial models.

We will consider first-order models and second-order models for response
surfaces. A first-order model with q variables takes the form First-order model

has linear terms
yij = β0 + β1x1i + β2x2i + · · ·+ βqxqi + εij

= β0 +

q∑
k=1

βkxki + εij

= β0 + x′iβ + εij ,

where xi = (x1i, x2i, . . ., xqi)
′ and β = (β1, β2, . . ., βq)

′. The first-order
model is an ordinary multiple-regression model, with design variables as pre-
dictors and βk’s as regression coefficients.

First-order models describe inclined planes: flat surfaces, possibly tilted.
These models are appropriate for describing portions of a response surface
that are separated from maxima, minima, ridge lines, and other strongly First-order

models describe
flat, but tilted,

surfaces

curved regions. For example, the side slopes of a hill might be reason-
ably approximated as inclined planes. These approximations are local, in
the sense that you need different inclined planes to describe different parts of
the mountain. First-order models can approximate f reasonably well as long
as the region of approximation is not too big and f is not too curved in that
region. A first-order model would be a reasonable approximation for the part
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of the surface in Figures 19.1 or 19.2 where x2 is large; a first-order model
would work poorly where x2 is small.

Bearing in mind that these models are only approximations to the true
response, what can these models tell us about the surface? First-order models
can tell us which way is up (or down). Suppose that we are at the designFirst-order

models show
direction of
steepest ascent

variables x, and we want to know in which direction to move to increase the
response the most. This is the direction of steepest ascent. It turns out that
we should take a step proportional to β, so that our new design variables are
x + rβ, for some r > 0. If we want the direction of steepest descent, then
we move to x − rβ, for some r > 0. Note that this direction of steepest
ascent is only approximately correct, even in the region where we have fit the
first-order model. As we move outside that region, the surface may change
and a new direction may be needed.

Contours or level curves are sets of design variables that have the same
expected response. For a first-order surface, design points x and x + δ areContours are flat

for first-order
models

on the same contour if
∑
βkδk = 0. First-order model contours are straight

lines for q = 2, planes for q = 3, and so on. Note that directions of steepest
ascent are perpendicular to contours.

19.3 First-Order Designs

We have three basic needs from a response surface design. First, we must
be able to estimate the parameters of the model. Second, we must be able
to estimate pure error and lack of fit. As described below, pure error and
lack of fit are our tools for determining if the first-order model is an adequateGet parameters,

pure error, and
LoF efficiently

approximation to the true mean structure of the data. And third, we need the
design to be efficient, both from a variance of estimation point of view and a
use of resources point of view.

The concept of pure error needs a little explanation. Data might not fit a
model because of random error (the εij sort of error); this is pure error. Data
also might not fit a model because the model is misspecified and does notLarge lack of fit

implies model
does not describe
mean structure
adequately

truly describe the mean structure; this is lack of fit. Our models are approx-
imations, so we need to know when the lack of fit becomes large relative to
pure error. This is particularly true for first-order models, which we will then
replace with second-order models. It is also true for second-order models,
though we are more likely to reduce our region of modeling rather than move
to higher orders.

We do not have lack of fit for factorial models when the full factorial
model is fit. In that situation, we have fit a degree of freedom for every
factor-level combination—in effect, a mean for each combination. There can
be no lack of fit in that case because all means have been fit exactly. We can
get lack of fit when our models contain fewer degrees of freedom than the
number of distinct design points used; in particular, first- and second-order
models may not fit the data.

Response surface designs are usually given in terms of coded variables.
Coding simply means that the design variables are rescaled so that 0 is inCoded variables

simply design
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the center of the design, and ±1 are reasonable steps up and down from the
center. For example, if cake baking time should be about 35 minutes, give or
take a couple of minutes, we might rescale time by (x1 − 35)/2, so that 33
minutes is a –1, 35 minutes is a 0, and 37 minutes is a 1.

First-order designs collect data to fit first-order models. The standard Two-series with
center points for

first order
first-order design is a 2q factorial with center points. The (coded) low and
high values for each variable are ±1; the center points are m observations
taken with all variables at 0. This design has 2q +m points. We may also use
any 2q−k fraction with resolution III or greater.

The replicated center points serve two uses. First, the variation among the
responses at the center point provides an estimate of pure error. Second, the
contrast between the mean of the center points and the mean of the factorial Center points for

pure error and
lack of fit

points provides a test for lack of fit. When the data follow a first-order model,
this contrast has expected value zero; when the data follow a second-order
model, this contrast has an expectation that depends on the pure quadratic
terms.

Example 19.1 Cake baking
Our cake mix recommends 35 minutes at 350o, but we are going to try to

find a time and temperature that suit our palate better. We begin with a first-
order design in baking time and temperature, so we use a 22 factorial with
three center points. Use the coded values –1, 0, 1 for 33, 35, and 37 minutes
for time, and the coded values –1, 0, 1 for 340, 350, and 360 degrees for tem-
perature. We will thus have three cakes baked at the package-recommended
time and temperature (our center point), and four cakes with time and tem-
perature spread around the center. Our response is an average palatability
score, with higher values being desirable (data set CakeBaking1):

x1 x2 y

-1 -1 3.89
1 -1 6.36

-1 1 7.65
1 1 6.79
0 0 8.36
0 0 7.63
0 0 8.12

19.4 Analyzing First-Order Data

Here are three possible goals when analyzing data from a first-order design:

• Determine which design variables affect the response.

• Determine whether there is lack of fit.

• Determine the direction of steepest ascent.
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Some experimental situations can involve a sequence of designs and all these
goals. In all cases, model fitting for response surfaces is done using multi-
ple linear regression. The model variables (x1 through xq for the first-order
model) are the “independent” or “predictor” variables of the regression. TheMultiple

regression to
estimate βk ’s

estimated regression coefficients are estimates of the model parameters βk.
For first-order models using data from 2q factorials with or without center
points, the estimated regression slopes using coded variables are equal to the
ordinary main effects for the factorial model. Let b be the vector of estimated
coefficients for first-order terms (an estimate of β).

Model testing is done with F -tests on mean squares from the ANOVA
of the regression; each term has its own line in the ANOVA table. Predictor
variables are orthogonal to each other in many designs and models, but not in
all cases, and certainly not when there is missing data; so it seems easiest just
to treat all testing situations as if the model variables were nonorthogonal.

To test the null hypothesis that the coefficients for a set of model terms
are all zero, get the error sum of squares for the full model and the error
sum of squares for the reduced model that does not contain the model terms
being tested. The difference in these error sums of squares is the improve-Test terms of

interest adjusted
for other terms in
model

ment sum of squares for the model terms under test. The improvement mean
square is the improvement sum of squares divided by its degrees of freedom
(the number of model terms in the multiple regression being tested). This
improvement mean square is divided by the error mean square from the full
model to obtain an F -test of the null hypothesis. The sum of squares for
improvement can also be computed from a sequential (Type I) ANOVA for
the model, provided that the terms being tested are the last terms entered into
the model. The F -test of βk = 0 (with one numerator degree of freedom) is
equivalent to the t-test for βk that is printed by most regression software.

In many response surface experiments, all variables are important, as
there has been preliminary screening to find important variables prior to ex-Test to exclude

noise variables
from model

ploring the surface. However, inclusion of noise variables into models can
alter subsequent analysis. It is worth noting that variables can look inert in
some parts of a response surface, and active in other parts.

The direction of steepest ascent in a first-order model is proportional to
the coefficients β. Our estimated direction of steepest ascent is then propor-
tional to b. Inclusion of inert variables in the computation of this directionDirection of

steepest ascent
proportional to
estimated β’s

increases the error in the direction of the active variables. This effect is worst
when the active variables have relatively small effects. The net effect is that
our response will not increase as quickly as possible per unit change in the
design variables, because the direction could have a nonnegligible compo-
nent on the inert axes.

Residual variation can be divided into two parts: pure error and lack of
fit. Pure error is variation among responses that have the same explanatoryDivide residual

into pure error
and lack of fit

variables (and are in the same blocks, if there is blocking). We use replicated
points, usually center points, to get an estimate of pure error. All the rest of
residual variation that is not pure error is lack of fit. Thus we can make the
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decompositions

SSTot = SSModel + SSLoF + SSPE

N − 1 = dfModel + dfLoF + dfPE .

The mean square for pure error estimates σ2, the variance of ε. If the
model we have fit has the correct mean structure, then the mean square for
lack of fit also estimates σ2, and the F-ratio MSLoF/MSPE will have an F- Pure error

estimates σ2; lack
of fit measures

deviation of
model from true
mean structure

distribution with dfLoF and dfPE degrees of freedom. If the model we have
fit has the wrong mean structure—for example, if we fit a first-order model
and a second-order model is correct—then the expected value of MSLoF is
larger than σ2. Thus we can test for lack of fit by comparing the F-ratio
MSLoF/MSPE to an F-distribution with dfLoF and dfPE degrees of freedom.

For a 2q factorial design with m center points, there are 2q + m − 1
degrees of freedom, with q for the model, m − 1 for pure error, and all the
rest for lack of fit.

Quantities in the analysis of a first-order model are not very reliable when
there is significant lack of fit. Because the model is not tracking the actual
mean structure of the data, the importance of a variable in the first-order All bets off when

lack of fit presentmodel may not relate to the variable’s importance in the mean structure of
the data. Likewise, the direction of steepest ascent from a first-order model
may be meaningless if the the model is not describing the true mean structure.

Example 19.2 Cake baking, continued
Example 19.1 was a 22 design with three center points. Our first-order

model includes a constant and linear terms for time and temperature. With
seven data points, there will be 4 residual degrees of freedom. The only
replication in the design is at the three center points, so we have 2 degrees of
freedom for pure error. The remaining 2 residual degrees of freedom are lack
of fit.

Here are the results for this analysis as done in Minitab.

Estimated Regression Coefficients for y

Term Coef StDev T P
Constant 6.9714 0.5671 12.292 0.000
x1 0.4025 0.7503 0.536 0.620 ¬
x2 1.0475 0.7503 1.396 0.235

S = 1.501 R-Sq = 35.9% R-Sq(adj) = 3.8%

Analysis of Variance for y

Source DF Seq SS Adj SS Adj MS F P
Regression 2 5.0370 5.0370 2.5185 1.12 0.411

Linear 2 5.0370 5.0370 2.5185 1.12 0.411
Residual Error 4 9.0064 9.0064 2.2516

Lack-of-Fit 2 8.7296 8.7296 4.3648 31.53 0.031 
Pure Error 2 0.2769 0.2769 0.1384

Total 6 14.0435
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Using the 4-degree-of-freedom residual mean square, neither time nor tem-
perature has an F-ratio much bigger than one, so neither appears to affect
the response ¬. However, look at the test for lack of fit . This test has
an F-ratio of 31.5 and p-value of .03, indicating that the first-order model is
missing some of the mean structure.

The 2 degrees of freedom for lack of fit are the interaction in the factorial
points and the contrast between the factorial points and the center points.
The sums of squares for these contrasts are 2.77 and 5.96, so most of the lack
of fit is due to the center points not lying on the plane fit from the factorial
points. In fact, the center points are about 1.86 higher on average than what
the first-order model predicts.

The direction of steepest ascent in this model is proportional to (.40,
1.05), the estimated β1 and β2. That is, the model says that a maximal in-
crease in response can be obtained by increasing x1 by .38 (coded) units for
every increase of 1 (coded) unit in x2. However, we have already seen that
there is significant lack of fit using the first-order model with these data, so
this direction of steepest ascent is not reliable.

19.5 Second-Order Models

We use second-order models when the portion of the response surface that we
are describing has curvature. A second-order model contains all the terms
in the first-order model, plus all quadratic terms like β11x21i and all crossSecond-order

models include
quadratic and
cross product
terms

product terms like β12x1ix2i. Specifically, it takes the form

yij = β0 + β1x1i + β2x2i + · · ·+ βqxqi +

β11x
2
1i + β22x

2
2i + · · ·+ βqqx

2
qi +

β12x1ix2i + β13x1ix3i + · · ·+ β1qx1ixqi +

β23x2ix3i + β24x2ix4i + · · ·+ β2qx2ixqi +

· · ·+ β(q−1)qx(q−1)ixqi + εij

= β0 +

q∑
k=1

βkxki +

q∑
k=1

βkkx
2
ki +

q−1∑
k=1

q∑
l=k+1

βklxkixli + εij

= β0 + x′iβ + x′iBxi + εij ,

where once again xi = (x1i, x2i, . . ., xqi)
′, β = (β1, β2, . . ., βq)

′, and B is
a q × q matrix with Bkk = βkk and Bkl = Blk = βkl/2 for k < l. Note
that the model only includes the kl cross product for k < l; the matrix form
with B includes both kl and lk, so the coefficients are halved to take this into
account.

Second-order models describe quadratic surfaces, and quadratic surfaces
can take several shapes. Figure 19.3 shows four of the shapes that a quadratic
surface can take. First, we have a simple minimum and maximum. ThenQuadratic

surfaces take
many shapes

we have a ridge; the surface is curved (here a maximum) in one direction,
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Figure 19.3: Sample second-order surfaces: (a) minimum, (b)
maximum, (c) ridge, and (d) saddle, using Minitab.

but is fairly constant in another direction. Finally, we see a saddle point; the
surface curves up in one direction and curves down in another.

Second-order models are easier to understand if we change from the orig-
inal design variables x1 and x2 to canonical variables v1 and v2. Canonical
variables will be defined shortly, but for now consider that they shift the ori-
gin (the zero point) and rotate the coordinate axes to match the second-order
surface; the second-order model is very simple when expressed in canonical Use canonical

variablesvariables:

fv(v) = fv(0) +

q∑
k=1

λkv
2
k ,

where v = (v1, v2, . . ., vq)
′ is the design variables expressed in canonical

coordinates; fv is the response as a function of the canonical variables; and
λk’s are numbers computed from the B matrix. The x value that maps to 0
in the canonical variables is called the stationary point and is denoted by x0;
thus fv(0) = f(x0).

The key to understanding canonical variables is the stationary point of
the second-order surface. The stationary point is that combination of de-
sign variables where the surface is at either a maximum or a minimum in all Stationary point is

maximum,
minimum, or
saddle point

directions. If the stationary point is a maximum in all directions, then the
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stationary point is the maximum response on the whole modeled surface. If
the stationary point is a minimum in all directions, then it is the minimum
response on the whole modeled surface. If the stationary point is a maximum
in some directions and a minimum in other directions, then the stationary
point is a saddle point, and the modeled surface has no overall maximum or
minimum. If a ridge surface is absolutely level in some direction, then it does
not have a unique stationary point; this rarely happens in practice.

The stationary point will be the origin (0 point) for our canonical vari-
ables. Now imagine yourself situated at the stationary point of a second-
order surface. The first canonical axis is the direction in which you wouldFrom stationary

point, response
increases as
quickly as
possible in first
canonical
direction (axis)

move so that a step of unit length yields a response as large as possible (either
increase the response as much as possible or decrease it as little as possible).
The second canonical axis is the direction, among all those directions perpen-
dicular to the first canonical axis, that yields a response as large as possible.
There are as many canonical axes as there are design variables. Each addi-
tional canonical axis that we find must be perpendicular to all those we have
already found.

Figure 19.4 shows contours, stationary points, and canonical axes for
the four sample second-order surfaces. As shown in this figure, contours
for surfaces with maxima or minima are ellipses. The stationary point x0 isSecond-order

contours are
ellipses or
hyperbolas
centered at
stationary point

the center of these ellipses, and the canonical axes are the major and minor
axes of the elliptical contours. For the ridge system, we still have elliptical
contours, but they are very long and skinny, and the stationary point is outside
the region where we have fit the model. If the ridge is absolutely flat, then
the contours are parallel lines. For the saddle point, contours are hyperbolic
instead of elliptical. The stationary point is in the center of the hyperbolas,
and the canonical axes are the axes of the hyperbolas.

This description of second-order surfaces has been geometric; pictures
are an easy way to understand these surfaces. It is difficult to calculate with
pictures, though, so we also have an algebraic description of the second-order
surface. Recall that the matrix form of the response surface is written

f(x) = β0 + x′β + x′Bx .

Our algebraic description of the surface depends on the following facts:

1. The stationary point for this quadratic surface is atTwo results from
linear algebra

x0 = −1

2
B−1β ,

where B−1 is the matrix inverse of B.

2. For the q × q symmetric matrix B, we can find a q × q matrix H such
that H ′H = HH ′ = Iq and H ′BH = Λ, where Iq is the q× q identity
matrix and Λ is a matrix with elements λ1, . . ., λq on the diagonal and
zeroes off the diagonal.
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Figure 19.4: Contours, stationary points, and canonical axes for
sample second-order surfaces: (a) minimum, (b) maximum, (c) ridge,
and (d) saddle, using S-Plus.

The numbers λk are the eigenvalues of B, and the columns of H are the
corresponding eigenvectors.

We saw in Figure 19.4 that the stationary point and canonical axes give us
a new coordinate system for the design variables. We get the new coordinates Get canonical

coordinatesv′ = (v1, v2, . . ., vq) via

v = H ′(x− x0) .

Subtracting x0 shifts the origin, and multiplying by H ′ rotates to the canoni-
cal axes.
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Finally, the payoff: in the canonical coordinates, we can express the re-
sponse surface asResponse in

canonical
coordinates fv(v) = fv(0) +

q∑
k=1

λkv
2
k ,

where
fv(0) = f(x0) = β0 +

1

2
x′0β .

That is, when looked at in the canonical coordinates, the response surface is a
constant plus a simple squared term from each of the canonical variables vi.Signs of λk ’s

determine
maximum,
minimum, or
saddle

If all of the λk’s are positive, x0 is a minimum. If all of the λk’s are negative,
x0 is a maximum. If some are negative and some are positive, x0 is a saddle
point. If all of the λk’s are of the same sign, but some are near zero in value,
we have a ridge system. The λk’s for our four examples in Figure 19.4 are
(.31771, .15886) for the surface with a minimum, (-.31771, -.15886) for the
surface with a maximum, (-.021377, -.54561) for the surface with a ridge,
and (.30822, -.29613) for the surface with a saddle point.

In principal, we could also use third- or higher-order models. This is
rarely done, as second-order models are generally sufficient.

19.6 Second-Order Designs

There are several choices for second-order designs. One of the most popu-
lar is the central composite design (CCD). A CCD is composed of factorialCentral

composite (CCD)
has factorial
points, axial
points, and center
points

points, axial points, and center points. Factorial points are the points from
a 2q design with levels coded as ±1 or the points in a 2q−k fraction with
resolution V or greater; center points are again m points at the origin. The
axial points have one design variable at ±α and all other design variables at
0; there are 2q axial points. Figure 19.5 shows a CCD for q = 3.

One of the reasons that CCD’s are so popular is that you can start with
a first-order design using a 2q factorial and then augment it with axial pointsAugment

first-order design
to CCD

and perhaps more center points to get a second-order design. For example,
we may find lack of fit for a first-order model fit to data from a first-order
design. Augment the first-order design by adding axial points and center
points to get a CCD, which is a second-order design and can be used to fit
a second-order model. We consider such a CCD to have been run in two
incomplete blocks.

We get to choose α and the number of center points m. Suppose that we
run our CCD in incomplete blocks, with the first block having the factorial
points and center points, and the second block having axial points and cen-
ter points. Block effects should be orthogonal to treatment effects, so thatChoose α and m

so that effects are
orthogonal to
blocks

blocking does not affect the shape of our estimated response surface. We can
achieve this orthogonality by choosing α and the number of center points in
the factorial and axial blocks as shown in Table 19.1 (Box and Hunter 1957).

Table 19.1 deserves some explanation. When blocking the CCD, factorial
points and axial points will be in different blocks. The factorial points may
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Figure 19.5: A central composite design in three dimensions,
showing center (C), factorial (F), and axial (A) points.

Table 19.1: Design parameters for Central Composite Designs
with orthogonal blocking.

q 2 3 4 5 5 6 6 7 7
rep 1 1 1 1 1

2 1 1
2 1 1

2

Number of blocks in
factorial

1 2 2 4 1 8 2 16 8

Center points per
factorial block

3 2 2 2 6 1 4 1 1

α for axial points 1.414 1.633 2.000 2.366 2.000 2.828 2.366 3.364 2.828

Center points for axial
block

3 2 2 4 1 6 2 11 4

Total points in design 14 20 30 54 33 90 54 169 80

also be blocked using the confounding schemes of Chapter 15. The table
gives the maximum number of blocks into which the factorial portion can
be confounded, while main effects and two-way interactions are confounded
only with three-way and higher-order interactions. The table also gives the
number of center points for each of these blocks. If fewer blocks are desired,
the center points are added to the combined blocks. For example, the 25 can
be run in four blocks, with two center points per block. If we instead use two
blocks, then each should have four center points; with only one block, use all
eight center points. The final block consists of all axial points and additional
center points.

There are a couple of heuristics for choosing α and the number of center
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Table 19.2: Parameters for rotatable, uniform precision Central
Composite Designs.

q 2 3 4 5 5 6 6 7 7
Replication 1 1 1 1 1

2 1 1
2 1 1

2

Number of center points 5 6 7 10 6 15 9 21 14

points when the CCD is not blocked, but these are just guidelines and not
overly compelling. If the precision of the estimated response surface at some
point x depends only on the distance from x to the origin, not on the di-
rection, then the design is said to be rotatable. Thus rotatable designs do notα for rotatable

design favor one direction over another when we explore the surface. This is reason-
able when we know little about the surface before experimentation. We get a
rotatable design by choosing α = 2q/4 for the full factorial or α = 2(q−k)/4

for a fractional factorial. Some of the blocked CCD’s given in Table 19.1 are
exactly rotatable, and all are nearly rotatable.

Rotatable designs are nice, and I would probably choose one as a default.
However, I don’t obsess on rotatability, for a couple of reasons. First, rotata-Rotatable designs

need five levels of
every factor and
depend on coding

bility depends on the coding we choose. The property that the precision of
the estimated surface does not depend on direction disappears when we go
back to the original, uncoded variables. It also disappears if we keep the same
design points in the original variables but then express them with a different
coding. Second, rotatable designs use five levels of every variable, and this
may be logistically awkward. Thus choosing α = 1 so that all variables have
only three levels may make a more practical design. Third, using α =

√
q

so that all the noncenter points are on the surface of a sphere (only rotatable
for q = 2) gives a better design when we are only interested in the response
surface within that sphere.

A second-order design has uniform precision if the precision of the fitted
surface is the same at the origin and at a distance of 1 from the origin. Uni-
form precision is a reasonable criterion, because we are unlikely to know justm for uniform

precision how close to the origin a maximum or other surface feature may be; (rela-
tively) too many center points give us much better precision near the origin,
and too few give us better precision away from the origin. It is impossible to
achieve this exactly; Table 19.2 shows the number of center points to get as
close as possible to uniform precision for rotatable CCD’s.

Example 19.3 Cake baking, continued
We saw in Example 19.2 that the first-order model was a poor fit; in

particular, the contrast between the factorial points and the center points in-
dicated curvature of the response surface. We will need a second-order model
to fit the curved surface, so we will need a second-order design to collect the
data for the fit.

We already have factorial points and three center points. Looking in Ta-
ble 19.1, we see that adding three more center points and axial points at
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α = 1.414 will give us a design with two blocks with blocks orthogonal to
treatments. This design is also rotatable, but not uniform precision.

Here is the complete design, including responses for the seven additional
cakes we bake to complete the CCD (data set CakeBaking2):

Block x1 x2 y

1 –1 –1 3.89
1 1 –1 6.36
1 –1 1 7.65
1 1 1 6.79
1 0 0 8.36
1 0 0 7.63
1 0 0 8.12
2 1.414 0 8.40
2 –1.414 0 5.38
2 0 1.414 7.00
2 0 –1.414 4.51
2 0 0 7.81
2 0 0 8.44
2 0 0 8.06

There are several other second-order designs in addition to central com-
posite designs. The simplest are 3q factorials and fractions with resolution V 3q designs
or greater. These designs are not much used for q ≥ 3, as they require large
numbers of design points.

Box-Behnken designs are rotatable, second-order designs that are incom-
plete 3q factorials, but not ordinary fractions. Box-Behnken designs are
formed by combining incomplete block designs with factorials. For q fac- Box-Behnken

designstors, find an incomplete block design for q treatments in blocks of size two.
(Blocks of other sizes may be used, we merely illustrate with two.) Associate
the “treatment” letters A, B, C, and so on with “factor” letters A, B, C, and so
on. When two factor letters appear together in a block, use all combinations
where those factors are at the ±1 levels, and all other factors are at 0. The
combinations from all blocks are then joined with some center points to form
the Box-Behnken design.

For example, for q = 3, we can use the BIBD with three blocks and
(A,B), (A,C), and (B,C) as assignment of treatments to blocks. From the
three blocks, we get the combinations:

A B C
x1 x2 x3

–1 –1 0
–1 1 0

1 –1 0
1 1 0

A B C
x1 x2 x3

–1 0 –1
–1 0 1

1 0 –1
1 0 1

A B C
x1 x2 x3

0 –1 –1
0 –1 1
0 1 –1
0 1 1

To this we add some center points, say five, to form the complete design.
This design takes only 17 points, instead of the 27 (plus some for replication)
needed in the full factorial.
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19.7 Second-Order Analysis

Here are three possible goals for the analysis of second-order models:

• Determine which design variables affect the response.

• Determine whether there is lack of fit.

• Determine the stationary point and surface type.

As with first-order models, fitting is done with multiple linear regression, andUse regression
and F -tests testing is done with F -tests. Let b be the estimated coefficients for first-order

terms, and let B be the estimate of the second-order terms.

The goal of determining which variables affect the response is a bit more
complex for second-order models. To test that a variable—say variable 1—
has no effect on the response, we must test that its linear, quadratic, andTest all

coefficients to
exclude a variable

cross product coefficients are all zero: β1 = β11 = · · · = β1q = 0. This is a
q+ 1-degree-of-freedom null hypothesis which we must test using an F -test.

Testing for lack of fit in the second-order model is completely analogous
to the first-order model. Compute an estimate of pure error variability from
the replicated points; all other residual variability is lack of fit. Significant
lack of fit indicates that our model is not capturing the mean structure in
our region of experimentation. When we have significant lack of fit, we
should first consider whether a transformation of the response will improve
the quality of the fit. For example, a second-order model may be a good fit
for the log of the response. Alternatively, we can investigate higher-order
models for the mean or obtain data to fit the second-order model in a smaller
region.

Canonical analysis is the determination of the type of second-order sur-
face, the location of its stationary point, and the canonical directions. These
quantites are functions of the estimated coefficients b and B computed in theCanonical

analysis for
shape of surface

multiple regression. We estimate the stationary point as x̂0 = −B−1b/2,
and the eigenvectors and eigenvalues of B are estimated by the eigenvectors
and eigenvalues of B using special software.

Example 19.4 Cake baking, continued
We now fit a second-order model to the data from the blocked cen-

tral composite design of Example 19.3. This model will have linear terms,
quadratic terms, a cross product term, and a block term. Here are the results
in Minitab.
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Estimated Regression Coefficients for y

Term Coef StDev T P
Constant 8.070 0.1842 43.809 0.000 ¬
Block -0.057 0.1206 -0.473 0.651
x1 0.735 0.1595 4.608 0.002
x2 0.964 0.1595 6.042 0.001
x1*x1 -0.628 0.1661 -3.779 0.007
x2*x2 -1.195 0.1661 -7.197 0.000
x1*x2 -0.832 0.2256 -3.690 0.008

S = 0.4512 R-Sq = 95.0% R-Sq(adj) = 90.8%

Analysis of Variance for y

Source DF Seq SS Adj SS Adj MS F P
Blocks 1 0.0457 0.0455 0.04546 0.22 0.651
Regression 5 27.2047 27.2047 5.44094 26.72 0.000

Linear 2 11.7562 11.7562 5.87808 28.87 0.000
Square 2 12.6763 12.6763 6.33816 31.13 0.000
Interaction 1 2.7722 2.7722 2.77223 13.62 0.008

Residual Error 7 1.4252 1.4252 0.20359
Lack-of-Fit 3 0.9470 0.9470 0.31567 2.64 0.186 
Pure Error 4 0.4781 0.4781 0.11953

Total 13 28.6756

At ¬ we see that all first- and second-order terms are significant, so that no
variables need to be deleted from the model. We also see that lack of fit is
not significant , so the second-order model should be a reasonable approx-
imation to the mean structure in the region of experimentation.

Figure 19.6 shows a contour plot of the fitted second-order model. We
see that the optimum is at about .4 coded time units above 0, and .2 coded
temperature units above zero, corresponding to 35.8 minutes and 352o. We
also see that the ellipse slopes northwest to southeast, meaning that we can
trade time for temperature and still get a cake that we like.

Here is a canonical analysis for this surface done in MacAnova.

component: b0 ¬
(1) 8.07
component: b 
(1) 0.73515 0.964
component: B ®
(1,1) -0.62756 -0.41625
(2,1) -0.41625 -1.1952
component: x0 ¯
(1,1) 0.41383
(2,1) 0.25915
component: y0 °
(1,1) 8.347
component: H ±
(1,1) -0.88413 -0.46724
(2,1) 0.46724 -0.88413
component: lambda ²
(1) -0.40758 -1.4152
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Figure 19.6: Contour plot of fitted second-order model for cake
baking data, using Minitab.

The estimated coefficients are at ¬ (β̂0),  (b), and ® (B). The estimated
stationary point and its response are at ¯ and °; I guessed (.4, .2) for the
stationary point from Figure 19.6—it was actually (.42, .26). The estimated
eigenvectors and eigenvalues are at ± and ². Both eigenvalues are negative,
indicating a maximum. The smallest decrease is associated with the first
eigenvector (-.884, .467), so increasing the temperature by .53 coded units
for every decrease in 1 coded unit of time keeps the response as close to
maximum as possible.

The results of a canonical analysis have an aura of precision that is often
not justified. Many software packages can compute and print the estimated
stationary point, but few give a standard error for this estimate. In fact, the
standard error is difficult to compute and tends to be rather large. Likewise,
there can be considerable error in the estimated canonical directions.

19.8 Mixture Experiments

Mixture experiments are a special case of response surface experiments in
which the response depends on the proportions of the various components,
but not on absolute amounts. For example, the taste of a punch depends onMixtures depend

on proportions the proportion of ingredients, not on the amount of punch that is mixed, and
the strength of an alloy may depend on the proportions of the various metals
in the alloy, but not on the total amount of alloy produced.

The design variables x1, x2, . . ., xq in a mixture experiment are propor-
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Table 19.3: Blends of fruit punch. Data set FruitPunch.
x1 x2 x3 Appeal
1 0 0 4.3 4.7 4.8
0 1 0 6.2 6.5 6.3
.5 .5 0 6.3 6.1 5.8
0 0 1 7.0 6.9 7.4
.5 0 .5 6.1 6.5 5.9
0 .5 .5 6.2 6.1 6.2

tions, so they must be nonnegative and add to one:

xk ≥ 0, k = 1, 2, · · ·, q

and
x1 + x2 + · · ·+ xq = 1 .

This design space is called a simplex in q dimensions. In two dimensions, Mixtures have a
simplex design

space
the design space is the segment from (1,0) to (0,1); in three dimensions, it
is bounded by the equilateral triangle (0,0,1), (0,1,0), and (1,0,0); and so on.
Note that a point in the simplex in q dimensions is determined by any q−1 of
the coordinates, with the remaining coordinate determined by the constraint
that the coordinates add to one.

Example 19.5 Fruit punch
Cornell (1985) gave an example of a three-component fruit punch mix-

ture experiment, where the goal is to find the most appealing mixture of
watermelon juice (x1), pineapple juice (x2), and orange juice (x3). Appeal
depends on the recipe, not on the quantity of punch produced, so it is the pro-
portions of the constituents that matter. Six different punches are produced,
and eighteen judges are assigned at random to the punches, three to a punch.
The recipes and results are given in Table 19.3 (data set FruitPunch).

As in ordinary response surfaces, we have some response y that we wish
to model as a function of the explanatory variables:

yij = f(x1i, x2i, · · · , xqi) + εij .

We use a low-order polynomial for this model, not because we believe that
the function really is polynomial, but rather because we usually don’t know Model response

with low-order
polynomial

what the correct model form is; we are willing to settle for a reasonable
approximation to the underlying function. We can use this model for various
purposes:

• To predict the response at any combination of design variables,

• To find combinations of design variables that give best response, and

• To measure the effects of various factors on the response.
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Figure 19.7: (a) {3,4} simplex lattice and (b) three variable simplex
centroid designs.

19.8.1 Designs for mixtures

A {q,m} simplex lattice design for q components consists of all design points
on the simplex where each component is of the form r/m, for some integer
r = 0, 1, 2, . . .,m. For example, the {3,2} simplex lattice consists of the six
combinations (1, 0, 0), (0, 1, 0), (0, 0, 1), (1/2, 1/2, 0), (1/2, 0, 1/2), and
(0, 1/2, 1/2). The fruit punch experiment in Example 19.5 is a {3,2} simplexSimplex lattice

design lattice. The {3,3} simplex lattice has the ten combinations (1, 0, 0), (0, 1, 0),
(0, 0, 1), (2/3, 1/3, 0), (2/3, 0, 1/3), (1/3, 2/3, 0), (0, 2/3, 1/3), (1/3, 0, 2/3),
(0, 1/3, 2/3), and (1/3, 1/3, 1/3). In general, m needs to be at least as large as
q to get any points in the interior of the simplex, andm needs to be larger still
to get more points into the interior of the simplex. Figure 19.7(a) illustrates
a {3,4} simplex lattice.

The second class of models is the simplex centroid designs. These de-
signs have 2q − 1 design points for q factors. The design points are the pureSimplex centroid

design mixtures, all the 1/2-1/2 two-component mixtures, all the 1/3-1/3-1/3 three-
component mixtures, and so on, through the equal mixture of all q compo-
nents. Alternatively, we may describe this design as all the permutations of
(1, 0, . . ., 0), all the permutations of (1/2, 1/2, . . ., 0), all the permutations of
(1/3, 1/3, 1/3, . . ., 0), and so on to the point (1/q, 1/q, . . ., 1/q). A simplex
centroid design only has one point in the interior of the simplex; all the rest
are on the boundary. Figure 19.7(b) illustrates a simplex centroid in three
factors.

Mixtures in the interior of the simplex—that is, mixtures which include
at least some of each component—are called complete mixtures. We some-Complete

mixtures have all
xk > 0

times need to do our experiments with complete mixtures. This may arise
for several reasons, for example, all components may need to be present for
a chemical reaction to take place.

Factorial ratios provide one class of designs for complete mixtures. This
design is a factorial in the ratios of the first q − 1 components to the lastFactorial ratios

vary xk/xq
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Table 19.4: Harvey Wallbanger mixture experiment. Data set
Wallbangers.

O/G V/G G V O Rating
4.0 1.2 .161 .194 .645 3.6
9.0 1.2 .089 .107 .804 5.1
4.0 2.8 .128 .359 .513 3.8
9.0 2.8 .078 .219 .703 3.8
6.5 2.0 .105 .211 .684 4.7
4.0 2.0 .143 .286 .571 2.4
9.0 2.0 .083 .167 .750 4.0

component. We may want to reorder our components to obtain a convenient
“last” component. The design points will have ratios xk/xq that take a few
fixed values (the factorial levels) for each k, and we then solve for the actual
proportions of the components. For example, if x1/x3 = 4 and x2/x3 = 2,
then x1 = 4/7, x2 = 2/7, and x3 = 1/7. Only complete mixtures occur in a
factorial ratios design with all ratios greater than 0.

Example 19.6 Harvey Wallbangers
Sahrmann, Piepel, and Cornell (1987) ran an experiment to find the best

proportions for orange juice (O), vodka (V), and Galliano (G) in a mixed
drink called a Harvey Wallbanger. Only complete mixtures are considered,
because it is the mixture of these three ingredients that defines a Wallbanger
(as opposed to say, orange juice and vodka, which is a drink called a screw-
driver). Furthermore, preliminary screening established some approximate
limits for the various components.

The authors used a factorial ratios model, with three levels of the ratio
V/G (1.2, 2.0, and 2.8) and two levels of the ratio O/G (4 and 9). They also
ran a center point at V/G = 2 and O/G = 6.5. Their actual design included
incomplete blocks (so that no evaluator consumed more than a small number
of drinks). However, there were no apparent evaluator differences, so the av-
erage score was used as response for each mixture, and blocks were ignored.
Evaluators rated the drinks on a 1 to 7 scale. The data are given in Table 19.4,
which also shows the actual proportions of the three components.

A second class of complete-mixture designs arises when we have lower
bounds for each component: xk ≥ dk > 0, where

∑
dk = D < 1. Here, we Pseudocomponents

define pseudocomponents

x′k =
xk − dk
1−D

and do a simplex lattice or simplex centroid design in the pseudocomponents.
The pseudocomponents map back to the original components via

xk = dk + (1−D)x′k .

Many realistic mixture problems are constrained in some way so that the
available design space is not the full simplex or even a simplex of pseudo-
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components. A regulatory constraint might say that ice cream must containMany mixture
problems have
constrained
design spaces

at least a certain percent fat, so we are constrained to use mixtures that con-
tain at least the required amount of fat; and an economic constraint requires
that our recipe cost less than a fixed amount. Mixture designs can be adapted
to such situations, but we often need special software to determine a good
design for a specific model over a constrained space.

19.8.2 Models for mixture designs

Polynomial models for a mixture response have fewer parameters than the
general polynomial model found in ordinary response surfaces for the sameMixture

constraints
reduce parameter
count

number of design variables. This reduction in parameters arises from the
simplex constraints on the mixture components—some terms disappear due
to the linear restrictions among the mixture components. For example, con-
sider a first-order model for a mixture with three components. In such a
mixture, we have x1 + x2 + x3 = 1. Thus,

f(x1, x2, x3) = β0 + β1x1 + β2x2 + β3x3
= β0(x1 + x2 + x3) + β1x1 + β2x2 + β3x3
= (β1 + β0)x1 + (β2 + β0)x2 + (β3 + β0)x3

= β̃1x1 + β̃2x2 + β̃3x3

In this model, the linear constraint on the mixture components has allowedCanonical form of
first-order model us to eliminate the constant from the model. This reducted model is called

the canonical form of the mixture polynomial. We will simply use β in place
of β̃ in the sequel.

Mixture constraints also permit simplifications in second-order models.
Not only can we eliminate the constant, but we can also eliminate the pure
quadratic terms! For example:

x21 = x1x1
= x1(1− x2 − x3 − · · · − xq)
= x1 − x1x2 − x1x3 − · · · − x1xq .

By making similar substitutions for all pure quadratic terms, we get the
canonical form:Canonical form of

second-order
model

f(x1, x2, · · · , xq) =

q∑
k=1

βkxk +

q∑
k<l

βklxkxl .

Third-order models are sometimes fit for mixtures; the canonical form for the
full third-order model is:

Canonical form of
third-order model
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f(x1, x2, · · · , xq) =

q∑
k=1

βkxk +

q∑
k<l

βklxkxl

+

q∑
k<l

δklxkxl(xk − xl) +

q∑
k<l<m

βklmxkxlxm .

A subset of the full cubic model called the special cubic model sometimes
appears: Special cubic

model

f(x1, x2, · · · , xq) =

q∑
k=1

βkxk +

q∑
k<l

βklxkxl +

q∑
k<l<n

βklnxkxlxn .

Coefficients in mixture canonical polynomials have interpretations that
are somewhat different from standard polynomials. If the mixture is pure
(that is, contains only a single component, say component k), then xk is 1
and the other components are 0. The predicted response is βk. Thus the Mixture

coefficients have
special

interpretations

“linear” coefficients give the predicted response when the mixture is simply
a single component. If the mixture is a 50-50 mix of components k and
l, then the predicted response is βk/2 + βl/2 + βkl/4. Thus the bivariate
interaction terms correspond to deviations from a simple additive fit, and in
particular show how the response for pairwise blends varies from additive.
The three-way interaction term βklm has a similar interpretation for triples.
The cubic interaction term δkl provides some asymmetry in the response to
two-way blends.

We may use ordinary polynomial models in q − 1 factors instead of re-
duced polynomial models in q factors. For example, the canonical quadratic
model in q = 3 factors is Fewer factors as

an alternative to
reduced modelsy = β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3 .

We can instead use the model

y = β̃0 + β̃1x1 + β̃2x2 + β̃12x1x2 + β̃11x
2
1 + β̃22x

2
2 ,

which is the usual quadratic model for q = 2 factors. The models are equiv-
alent mathematically, and which model you choose is personal preference.
There are linear relations between the models that allow you to transfer be-
tween the representations. For example, β̃0 = β3 (x3 = 1, x1 = x2 = 0),
and β̃0 + β̃1 + β̃11 = β1 (x1 = 1, x2 = x3 = 0).

Factorial ratios experiments also have the option of using polynomials in
the components, polynomials in the ratios, or a combination of the two. The
choice of model can sometimes be determined a priori but will frequently be
determined by choosing the model that best fits the data.

Example 19.7 Harvey Wallbangers, continued

Draft of March 4, 2021



668 Response Surface Designs

Example 19.6 introduced the Harvey Wallbanger data. Here are the re-
sults from fitting the canonical second-order model in MacAnova.

Coef StdErr t
g -518.14 41.143 -12.594
o -12.625 1.1111 -11.363
v 100.56 5.8373 17.226
og 812.73 55.472 14.651
vg 126.64 56.449 2.2435
ov -101.53 5.8706 -17.294

N: 7, MSE: 0.0042851, DF: 1, Rˆ2: 0.99996
Regression F(6,1): 4344.4, Durbin-Watson: 2.1195

All terms are significant with the exception of the vodka by Galliano inter-
action (though there is only 1 degree of freedom for error, so significance
testing is rather dubious).

It is difficult to interpret the coefficients directly. The usual interpreta-
tions for coefficients are for pure mixtures and two-component mixtures, but
this experiment was conducted on a small region in the interior of the design
space. Thus using the model for pure mixtures or two-component mixtures
would be an unwarranted extrapolation. The best approach is to plot the con-
tours of the fitted response surface, as shown in Figure 19.8. We see that
there is a saddle point near the fifth design point (the center point), and the
highest estimated responses are on the boundary between the first two design
points. This has the V/G ratio at 1.2 and the O/G ratio between 4.0 and 9.0,
but somewhat closer to 9.

19.9 Further Reading and Extensions
As might be expected, there is much more to the subjects discussed in this

chapter. Box and Draper (1987) and Cornell (1990) provide excellent book-
length coverage of response surfaces and mixture experiments respectively.

Earlier we alluded to the issue of constraints on the design space. These
constraints can make it difficult to run standard response surface or mixture
designs. Special-purpose computer software (for example, Design-Expert)
can construct good designs for constrained situations. These designs are
generally chosen to be optimal in the sense of minimizing the estimation
variance. See Cook and Nachtsheim (1980) or Cook and Nachtsheim (1989).
A second interesting area is trying to optimize when there is more than one
response. Multiple responses are common in the real world, and methods
have been proposed to compromise among the competing criteria. See My-
ers, Khuri, and Carter (1989) and the references cited there.

19.10 Problems
We run a central composite design and fit a second-order model. TheExercise 19.1

fitted coefficients are:

y = 86 + 9.2x1 + 7.3x2 − 7.8x21 − 3.9x22 − 6.0x1x2 .
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Figure 19.8: Contour plot for Harvey Wallbanger data, using S-Plus.
Letters indicate the points of Table 19.4 in the table order.

Perform the canonical analysis on this response surface.

Fit the second-order model to the fruit punch data of Example 19.5. Exercise 19.2
Which mixture gives the highest appeal?

The whiteness of acrylic fabrics after being washed at different deter- Exercise 19.3
gent concentrations (.09 to .21 percent) and temperatures (29 to 41oC) was
measured and the following model was obtained (Prato and Morris 1984):

y = −116.27 + 819.58x1 + 1.77x2 − 1145.34x21 − .01x22 − 3.48x1x2 .

Perform the canonical analysis on this response surface.

Briefly describe an experimental design appropriate for each of the fol- Problem 19.1
lowing situations. Describe treatments, blocks, etc.

(a) I like tortilla chips and salsa, but if you’re not careful at the store you
can wind up with tortilla chip crumbs instead of chips. What I want to
understand is the variability in the fraction of unbroken chips from bag
to bag (measured as fraction of whole chips by weight). It could just be
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variability from bag to bag, but it could also be variability from store to
store (some clumsy guy might keep dropping the bags). I’m willing to
buy 20 bags and do the separation and weighing in order to solve this
issue of vital importance.

(b) An Ankle Foot Orthosis (AFO) is a device worn by a person with sig-
nificant ankle impairment. An active AFO actually assists the person in
walking by moving the foot through the typical pointing and flexing as
required in various parts of the stride. However, any such active device
needs to be optimized for the individual user, as every user prefers some-
thing a little different from the standard settings. This involves finding
the best compromise settings for the motor speed and the length of a lever
that is part of the device.
Testing is done by setting the speed and length and then having the user
walk around for five minutes. At the end of that time, the user gives
a “comfort rating.” Users will test multiple possible settings, then the
technician will select the best speed and length for the user based on
all of the collected comfort ratings. Given the time required to do this
customization, we must be able to choose the best settings after just 12
trials.

(c) Alfalfa is grown and cut for animal fodder. We wish to investigate the
effects of variety of alfalfa and cutting schedule on the quality of the
alfalfa produced. We have four varieties to compare, and three cutting
schedules. There are 12 test sites available for our use, four at each of
three experiment stations. The seeds tend to get strewn pretty broadly
during planting, so we do not want to seed areas smaller than a test site.
However, the cutting can be done on a small scale.

(d) Computer systems are compared by their performance on standard bench-
mark programs. Computer source code for the benchmark is compiled
to make an executable which is then run to measure speed. The trick is
that our compiler has 24 options that can be turned off or on, and we
would like to find which options should be used for good performance.
Our boss wants the answer right away, and we will only have time to try
32 different combinations of compiler options.

(e) One test for whether a chemical causes mutations uses bacteria that can-
not produce an essential amino acid and thus cannot grow unless they
mutate to produce that acid. A measured dose of bacteria are spread on
a petri dish containing the mutagen and a nutritional broth (which does
not contain the missing amino acid!). The dish is placed in a gentle en-
vironment; three days later, we detect the presence of a mutation if there
is any bacterial growth. We wish to test five concentrations of the sus-
pected mutagen and two different broths using 50 petri dishes. We have
no reason to expect systematic differences between dishes.

(f) The Department of Natural Resources is under political pressure to keep
deer populations fairly high so that there will be plenty of deer for hunters.
The issue under consideration is whether farmers leaving some standing
crop in corn fields over winter decreases winter mortality of deer. (That
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is, does the additional food source make any difference?) Researchers
have identified twelve forested locations where the deer tend to group
(called “yards”) during the winter. These locations are near corn fields,
and the farmers have agreed to participate in the study. There are three of
each of four kinds of sites: evergreen forest cover immediately adjacent
to the fields, deciduous forest cover immediately adjacent to the fields,
evergreen forest cover across a highway from the fields, and deciduous
forest cover across a highway from the fields. We anticipate that both
forest cover type and vehicle traffic may affect the mortality rate over
the winter. We can assign crop left standing or no crop left standing to
any field, and measure the difference in fall and spring populations as the
response for any yarding area.

(g) The cookbook Joy of Cooking has a dynamite recipe for egg nog (and re-
peats an adage attributed to Mark Twain about how too much of anything
is bad, except for whisky, for which too much is just right). We want to
design an experiment that will compare the use of light rum, dark rum,
and bourbon in this recipe; we make a batch using each liquor. A rater
should drink at least four ounces of one of the egg nogs before giving his
or her rating, and we expect substantial rater to rater variability. Further-
more, this recipe contains a lot of alcohol, and, to put it gently, ratings
after the second cup are not reliable. We have twelve people at our party
willing to dedicate a few moments to science and participate in the ex-
periment.

The recipe is great, but it uses raw eggs. If you decide to try it, please use eggs
certified as salmonella free. Egg substitutes will work, but they’re not as good
as fresh eggs.

(h) Medical tablets (pills) contain active ingredients plus other constituents
including a binder, diluents, disintegrants, lubricants, and so on. The
manufacturer mixes up a batch and then presses the mixture into tablets
using a press. In the current experiment, we wish to study how the con-
centration of disintegrant affects how long it takes a tablet to dissolve in
water. Specifically, we want to study five different concentrations.

The standard protocol for measuring dissolve time is to produce a batch
of tablets with the given formula, randomly choose 12 of the produced
tablets, and take the average of the 12 dissolve times as the response.
However, since we are making these tablets under lab rather than fac-
tory conditions, we can only make two batches per day. Furthermore,
environmental conditions (e.g., humidity when pressing the tablets) can
affect dissolve times, and we would expect these conditions to vary from
day to day.

The boss wants this all finished in 10 days. Choose an appropriate design
for this experiment.

(i) Every year at Christmas I make “thumbprint” cookies. I want to perfect
them, and I need to find the right time and temperature for baking them. It
should be about 375 degrees for about 11 minutes, but it may not be that
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exactly. I’m going to make 12 trays of these cookies this week, and from
those trays I want to be able to estimate the best time and temperature
for baking. Each tray can have a different recipe, but every cookie on the
tray must be the same recipe. The response is how good the cookies taste
to me.

(j) Atmospheric carbon dioxide is increasing and causing global warming.
To add insult to very serious injury, increased carbon dioxide causes poi-
son ivy to grow faster. We want to determine the growth rate of poison
ivy as a function of carbon dioxide concentration and temperature. Our
range of interest is current average summer temperature up to current av-
erage plus 4 degrees C, and current carbon dioxide concentration up to
current concentration plus 25%. We have 12 environmental chambers in
which we can set temperature and carbon dioxide concentration. We put
poison ivy plants into the chambers, and then measure growth after three
months.

(k) The ramp meter controversy refuses to die! Someone finally decided
that just turning all the meters off for six weeks was a fairly crude way to
assess the effects of meters. This time around, we’re going to look at a
stretch of I-35 containing 7 metered on-ramps. Each of these meters can
be individually set to a fast or slow setting. We are trying to find which,
if any, of the meter settings affects the vehicle-miles per hour (vmph:
number of vehicles times speed) on the stretch of highway during rush
periods. Each setting should be used for a full week to get a reliable
response. Unfortunately, we have to finish the study in eight weeks.

(l) Whole house air exchangers have become important as houses become
more tightly sealed and the dangers of indoor air pollution become known.
Exchangers are used primarily in winter, when they draw in fresh air
from the outside and exhaust an equal volume of indoor air. In the pro-
cess, heat from the exhausted indoor air is used to warm the incoming air.
The design problem is to construct an exchanger that maximizes energy
efficiency while maintaining air flow volume within tolerances. Energy
efficiency is energy saved by heating the incoming air minus energy used
to power the fan. There are two design variables: the pore size of the ex-
changer and the fan speed. In general, as the pore size decreases the
energy saved through heat exchange increases, but for smaller pores the
fan must be run faster to maintain air flow, thus using more energy.

We have a current guess as to the best settings for maximum energy
efficiency (pore size P and fan speed S). Any settings with 15% of P
and S will provide acceptable air flow, and we feel that the optimum is
probably within about 5% of these current settings.

(m) Neuropeptide Y (NPY) is believed to be involved in the regulation of
feeding and basal metabolism. When rat brains are perfused with NPY,
the rats dramatically increase their food intake over the next 24 hours.
Naloxone (NLX) may potentially block the effects of NPY. If so, it could
be an important line of research in obesity studies. We wish to test the
effect of four treatments, the factorial combinations of brain perfusion

Draft of March 4, 2021



19.10 Problems 673

by either NPY or saline (as a control), and the subcutaneous injection
of either NLX or saline (as a control) on 24-hour post-treatment food
intake. We have available 32 male inbred, essentially similar rats.

(n) We are trying to produce a new cleaning solvent for circuit boards. We
anticipate that a combination of three standard solvents will work as well
as the specialty solvent currently in use, but beyond knowing that we
want each of the three to be at least 10% of the combination, we don’t
know how much of each to use.

(o) Child development specialists are interested in factors affecting the abil-
ity of children to solve “ten questions” puzzles. In these puzzles the child
is given a set of pictures, one of which has been chosen by the researcher.
The child gets to ask questions that the researcher answers either yes or
no; on the basis of these answers the child tries to determine which of the
pictures has been chosen. The response the researchers are looking at is
the number of questions (ten maximum) that the child asks before deter-
mining the chosen picture. Two factors are under study: the number of
pictures to choose from (either fifteen or twenty), and the familiarity of
the objects in the pictures (either dinosaurs or birds, and oddly enough, I
think the dinosaurs are the familiar objects!). The researchers have funds
to study twelve children, and they expect substantial child to child vari-
ation. All children will do four puzzles, one of each type. They expect
learning to take place, so that the later puzzles will generally be solved
more quickly.

(p) A fertilizer company is developing a rose fertilizer which consists of a ni-
trogen compound N, a phosphorus compound P, a potassium compound
K, and an inert binder to hold it all together. (The binder can be disre-
garded in the experiment.) The company believes that there are optimum
levels of N, P, and K to give best rose yield, and they believe that their
current settings N0 = 6, P0 = 6, and K0 = 4 (kg per 100 kg of fertilizer)
are pretty close to optimal; probably each is within 10% of the optimal
values. They want to find the optimal values.

For each of the following, briefly describe the design used and give a Problem 19.2
skeleton ANOVA.

(a) Laser light is scattered as it passes through a transparent PVC sample.
The amount of light that passes through the sample may depend on the
sample thickness and possibly on the degree of polishing given the sur-
face of the sample. In this experiment, there are five thicknesses of
PVC and three surface polishing treatments. We have 90 PVC blanks.
Eighteen of these blanks are randomly chosen for the first thickness and
shaved to that thickness. These 18 pieces are then randomly assigned to
the three polishing treatments, six per treatment. This procedure is then
repeated for the remaining blanks until all have been shaped and polished
(and all thicknesses have been used). The 90 pieces are then measured
(in random order) for laser light transmission.
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(b) Smooth operation of an automobile depends in part on the ease with
which the driver can reach and manipulate the controls. You are design-
ing the controls for a car and you have two possibilities (old and new) for
each of the following controls: windshield wiper switch, cruise control
switch, and headlights switch. Eight driving simulators have been set up,
one with each of the combinations of the three factors. The simulators
are held at separate locations. Those simulators with an even number
of new features are at location A, whereas those with an odd number of
new features are at location B. Twenty-four subjects are nonrandomly
divided into two groups, with the first 12 subjects sent to location A and
the second 12 to location B. Each subject will use all four simulators at
his or her location in random order and rate the overall ease-of-use for
each control setup as the response.

(c) Doctors wish to assess the influence of three anti-viral drugs (two actual
drugs and a control) on the survival of SARS patients. As new patients
are identified, they are randomly assigned to one of the three drugs. Sur-
vival over the next month is noted as the response. It is suspected that
patient age affects survival; age was noted for each patient, but it was not
logistically feasible to block on age.

(d) More and more states are requiring that students pass a major exam be-
fore they can get their high school diplomas. However, there is little re-
search into whether these exams improve achievement, affect graduation
rates, or have other consequences. One forward thinking state decides
to run an experiment to explore some of these issues. Twenty moder-
ate sized school districts will take part; each of these districts has two
high schools. The twenty districts are divided at random into two sets of
ten. Incoming ninth graders in the first group of districts will be required
to pass an exit exam before they can graduate. No test requirement is
made in the second set of districts. In each district, the two high schools
are randomly assigned to two different curricula. One curriculum is the
standard curriculum that the district was already using, and the other cur-
riculum is tailored to the exit exam. After four years (that is, when this
year’s freshmen are scheduled to graduate), we measure the graduation
rate at each of the 40 high schools.

(e) One criterion for a paper airplane is that it should glide for a long time.
This experiment compares three different designs for a paper airplane.
All of the airplanes are made from new standard US Letter paper from
the same package. Eighteen sheets of paper are randomly assigned to
three different airplane designs, six sheets per design. On Friday I fold
all of the planes. On Saturday, my two daughters and I test the planes.
Each of us flies one plane of each type, and each individual plane is only
flown once. The flights are randomized in order, but each type of plane
is flown once by each of us, and each type of plane is flown once in
the living room, once in the front yard, and once in the back yard. On
Sunday, the three of us repeat the experiment using the remaining nine
planes. The response is the length of time the plane glides.

(f) There is considerable concern about how drainage from farm fields de-
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grades water quality in the Minnesota river. One suggested treatment
is to install settling ponds on the drainage ditches just before they flow
into the river. The idea is that the nutrient-rich sediments will settle in
the ponds rather than go into the river. Twenty drainage ditches that are
suitable for settling pond installation have been located. Ten of these are
chosen at random for ponds; the other ten are left as is. For each ditch
we measure the nutrient flow into the river over a growing season as the
response. We also measure the volume of water flowing from each ditch,
as rainfall volume affects water volume, which probably affects nutrient
flow.

(g) National forests are managed for multiple uses, including wildlife habi-
tat. Suppose that we are managing our multiple-use forest, and we want
to know how snowmobiling and timber harvest method affect timber
wolf reproductive success (as measured by number of pups surviving
to 1 year of age over a 5-year interval). We may permit or ban snow-
mobiles; snowmobiles cover a lot of area when present, so we can only
change the snowmobile factor over large areas. We have three timber
harvest methods, and they are fairly easy to change over small areas. We
have six large, widely dispersed forest sections that we may use for the
experiment. We choose three sections at random and ban snowmobiles
there. The other three sections allow snowmobiles. Each of these sec-
tions is divided into three zones, and we randomly assign one of the three
harvest methods to each zone within each section. (Note that we do not
harvest the entire zone; we merely use that harvest method when we do
harvest within the zone.) We observe timber wolf success in each zone.

(h) Some aircraft have in-flight deicing systems that are designed to pre-
vent or remove ice buildup from the wings. A manufacturer wishes to
compare three different deicing systems. This is done by installing the
system on a test aircraft and flying the test aircraft behind a second plane
that sprays a fine mist into the path of the test aircraft. The wings are
photographed, and the ice buildup is estimated from interpretation of
the photographs. They make five test flights for each of the three sys-
tems. The amount of buildup is influenced by temperature and humid-
ity at flight altitude. The flights will be made at constant temperature
(achieved by slightly varying the altitude); relative humidity cannot be
controlled, but will be measured at the time of the flight.

(i) We wish to study new varieties of corn for disease resistance. We start
by taking four varieties (A, B, C, D) and cross them (pollen from type
A, B, C or D fertilizing flowers from type A, B, C, or D), getting sixteen
crosses. (This is called a diallel cross experiment, and yes, four of the
sixteen “crosses” are actually pure varieties.) The sixteen crosses pro-
duce seed, and we now treat the crosses as varieties for our experiment.
We have 48 plots available, 16 plots in each of St. Paul, Crookston, and
Waseca. We randomly assign each of the crosses to one of the sixteen
plots at each location.

(j) A political scientist wishes to study how polling methods affect results.
Two candidates (A and B) are seeking endorsement at their party con-
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vention. A random sample of 3600 voters has been taken and divided
at random into nine sets of 400. All voters were asked if they support
candidate A. However, before the question was asked, they were either
told (a) that the poll is funded by candidate A, (b) that the poll is funded
by candidate B, or (c) nothing. Due to logistical constraints, all voters in
a given set (of 400) were given the same information; the response for a
set of 400 is the number supporting candidate A. The three versions of
information were randomly assigned to the nine sets.

Three components of a rocket propellant are the binder (x1), the oxidizerProblem 19.3
(x2), and the fuel (x3). We want to find the mixtures that yield coefficients of
elasticity (y) less than 3000. All components must be present and there are
minimum proportions, so the investigators used a pseudocomponents design,
with the following pseudocomponent values and results (data from Kurotori
1966 via Park 1978, data set RocketFuel):

x1 x2 x3 y

1 0 0 2350
0 1 0 2450
0 0 1 2650

1/2 1/2 0 2400
1/2 0 1/2 2750
0 1/2 1/2 2950

1/3 1/3 1/3 3000
2/3 1/6 1/6 2690
1/6 2/3 1/6 2770
1/6 1/6 2/3 2980

Does this design correspond to any of our standard mixture designs?
Does it have an estimate of pure error? Fit the second-order mixture model.
Is the estimated maximum above 3000? Where is the estimated maximum,
and where is the region that has elasticity less than 3000?

Millers want to make bread flours that bake into large loaves. They needProblem 19.4
to mix flours from four varieties of wheat, so they run an experiment with
different mixtures and measure the volume of the resulting loaves (ml/100
g dough). The experiment was performed on 2 separate days, obtaining the
following results (data from Draper et al. 1993, data set LoafVolume):

Day 1 Day 2
x1 x2 x3 x4 Volume x1 x2 x3 x4 Volume

0 .25 0 .75 403 0 .75 0 .25 423
.25 0 .75 0 425 .25 0 .75 0 417

0 .75 0 .25 442 0 .25 0 .75 388
.75 0 .25 0 433 .75 0 .25 0 407

0 .75 .25 0 445 0 0 .25 .75 338
.25 0 0 .75 435 .25 .75 0 0 435

0 0 .75 .25 385 0 .25 .75 0 379
.75 .25 0 0 425 .75 0 0 .25 406
.25 .25 .25 .25 433 .25 .25 .25 .25 439
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Analyze these data to determine which mixture of flours yields the largest
loaves.

An experiment is performed to determine how a gasoline engine responds Problem 19.5
to various factors. The response of interest is CO emissions in grams per
hour. The design factors are engine load, in Newton meters, range (30,70);
engine speed, in rpm, range (1000, 4000); spark advance, in degrees, range
(10, 30); air-to-fuel ratio, dimensionless, range (13, 16.4); and exhaust gas
recycle, in percent, range (0, 10). The experimental design has 46 obser-
vations in two blocks of 23 each. The design factors have been coded to
the range (-1, 1) in the table below (data from Draper et al. 1994, data set
COEmissions). Analyze these data and describe how CO emissions de-
pend on engine settings.
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Load Speed Advance Ratio Recycle Block Response

–1 –1 0 0 0 1 81
1 –1 0 0 0 1 148

–1 1 0 0 0 1 348
1 1 0 0 0 1 530
0 0 –1 –1 0 1 1906
0 0 1 –1 0 1 1717
0 0 –1 1 0 1 91
0 0 1 1 0 1 42
0 –1 0 0 –1 1 86
0 1 0 0 –1 1 435
0 –1 0 0 1 1 93
0 1 0 0 1 1 474

–1 0 –1 0 0 1 224
1 0 –1 0 0 1 346

–1 0 1 0 0 1 147
1 0 1 0 0 1 287
0 0 0 –1 –1 1 1743
0 0 0 1 –1 1 46
0 0 0 –1 1 1 1767
0 0 0 1 1 1 73
0 0 0 0 0 1 195
0 0 0 0 0 1 233
0 0 0 0 0 1 236
0 –1 –1 0 0 2 100
0 1 –1 0 0 2 559
0 –1 1 0 0 2 118
0 1 1 0 0 2 406

–1 0 0 –1 0 2 1255
1 0 0 –1 0 2 2513

–1 0 0 1 0 2 53
1 0 0 1 0 2 54
0 0 –1 0 –1 2 270
0 0 1 0 –1 2 277
0 0 –1 0 1 2 303
0 0 1 0 1 2 213

–1 0 0 0 –1 2 171
1 0 0 0 –1 2 344

–1 0 0 0 1 2 180
1 0 0 0 1 2 280
0 –1 0 –1 0 2 548
0 1 0 –1 0 2 3046
0 –1 0 1 0 2 13
0 1 0 1 0 2 123
0 0 0 0 0 2 228
0 0 0 0 0 2 201
0 0 0 0 0 2 238
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Curing time and temperature affect the shear strength of an adhesive that Problem 19.6
bonds galvanized steel bars. The following experiment was repeated on 2
separate days. Twenty-four pieces of steel are obtained by random sampling
from warehouse stock. These are grouped into twelve pairs; the twelve pairs
are glued and then cured with one of nine curing treatments assigned at ran-
dom. The treatments are the three by three factorial combinations of temper-
ature (375o, 400o, and 450oF, coded -1, 0, 2) and time (30, 35, or 40 seconds,
coded -1, 0, 1). Four pairs were assigned to the center point, and one pair to
all other conditions. The response is shear strength (in psi, data from Khuri
1992, data set SteelBars):

Temp. Time Day 1 Day 2
-1 -1 1226 1213
0 -1 1898 1961
2 -1 2142 2184

-1 0 1472 1606
0 0 2010 2450
0 0 1882 2355
0 0 1915 2420
0 0 2106 2240
2 0 2352 2298

-1 1 1491 2298
0 1 2078 2531
2 1 2531 2609

Determine the temperature and time settings that give strong bonds.

Suppose we are fitting a first-order model using data from a 2q design Question 19.1
with m center points, but a second-order model is actually correct. Show
that the contrast formed by taking the average response at the factorial points
minus the average at the center points estimates the sum of the quadratic
coefficients of the second-order model. Show that the two-factor interaction
effects in the factorial points estimate the cross product terms in the second-
order model.
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Chapter 20

On Your Own

Adult birds push their babies out of the nest to force them to learn to fly. As
I write this, I have a 16-year-old daughter learning to drive. And you, our
statistical children, must leave the cozy confines of textbook problems and
graduate to the real world of designing and analyzing your own experiments
for your own goals. This final chapter is an attempt at a framework for the
experimental design process, to help you on your way to designing real-world
experiments.

20.1 Experimental Context

An individual experiment is usually part of a larger research enterprise; thus
planning an experiment takes place within this larger context. One way to
frame this larger context is hierarchically, with goals, objectives, and hy-
potheses. The (overall) goals are for the large research enterprise. For exam- Goals, objectives,

and hypothesesple, we might have the goal of developing artificial heated-butter aromas for
the food industry. The (immediate) objective is a refinement of the goals to
narrow the scope of investigation. Continuing the butter aroma example, we
might have the objective of determining which naturally occurring odorants
in heated butter influence the perceived butter aroma. Finally, hypotheses are
specific, answerable questions regarding an objective that can be addressed
in an experiment. We might ask, can human subjects detect the difference in
aroma between heated butter and this particular mixture of compounds?

We design experiments to answer the questions raised in our hypotheses.

20.2 Experiments by the Numbers

Many authors have presented guidelines for designing experiments. Note-
worthy among these are Kempthorne (1952), Cochran and Cox (1957), Cox
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(1958), Daniel (1976), and Box, Hunter, and Hunter (1978). I have tried
to synthesize a number of these recommendations into a sequence of steps
for designing an experiment, which are presented below. Experimentation,
like all science, is not one-size-fits-all, but these steps will work for many
investigations.

I have two basic rules when planning an experiment. The first is “Use
all the information you have available to you.” Most of this information isInformation and

simplicity subject matter information (what you know about treatments, units, and so
on) rather than statistical tactics. The second is “Use the simplest possible
design that gets the job done.” Thus when designing an experiment I consider
the fancy tricks of the trade only when they are needed.

1. Do background research. At a minimum, you should

• Determine what is already known about your problem. Researchers
know things that have been discovered by experiment and verified by
repeated experiments. You may wish to repeat a “known” experiment
if you are trying to verify it, extend it to a new population, or learn
an experimental technique, but more often you will be looking at new
hypotheses.

• Determine what other researchers suspect about your problem. Many
experiments are follow-up experiments on vague indications from ear-
lier research. For example, a preliminary experiment may have indi-
cated the possibility that a particular drug was effective against breast
cancer, but the sample size was too small to be conclusive.

• Determine what background or extraneous factors (for example, envi-
ronmental factors) might affect the outcome of your experiment. Here
we are looking ahead to the possibility that blocking might be needed,
so we identify the sources of extraneous variation on which we may
need to block.

• Find out what related experiments have been done, what types of de-
signs were used, and what kinds of problems were encountered. There
is always room for innovation, particularly if earlier experiments en-
countered problems, but experimental designs that work well are worth
imitating.

• Determine the cost or availability of experimental material such as an-
imals, equipment, and chemical stocks; determine your time and mon-
etary budgets. Time and money are major constraints on experimenta-
tion. Determine these constraints early.

This research takes time, but it will save you time later.

2. Decide which question to address next, and clearly state your question.
This process should include:

• A list of hypotheses to be tested or effects to be estimated.

• An ordering of these hypotheses or effects by importance.
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• An ordering of these hypotheses or effects by logical or time sequence
if some should be examined before others.

Your experiment is part of the research enterprise, so choose your hypotheses
to address your current objectives. Knowing if some hypotheses are more
important than others will matter for designs such as split plots, which are
more precise for split-plot factors than for whole-plot factors.

Remember, science is sequential, with new results building on old re-
sults. Unless you have an overwhelming argument to the contrary, plan for a
sequence of hypotheses and experiments and don’t try to do everything in a
single experiment!

3. Determine the treatments to be studied, experimental units to be used,
and responses to be measured. These depend on the hypotheses being ad-
dressed and the population about which you wish to make inferences. Choice
of treatments includes the consideration of controls (probably needed) and/or
placebo treatments.

The type of experimental units you use will determine the population
about which you can make inferences and usually the size of your experi-
mental errors. Homogeneous units generally lead to smaller experimental
errors and thus shorter confidence intervals and more powerful tests. On the
other hand, homogeneous units often represent a narrow subset of all poten-
tial units, and it can be difficult to argue that conclusions reached about a
homogeneous subset of a population hold for the entire population. If you
need to work with a heterogeneous population of units, you will probably
need to consider blocking the experiment.

The response or responses to be measured are usually determined by the
hypotheses, but you must still determine how they will be measured, what
the measurement units are, and whether blinding will be needed.

4. Design the current experiment. Try simple designs first; if upon inspec-
tion the simple design won’t do the job for some reason, you can design
a fancier experiment. But at least contemplate the simple experiment first.
Keep the qualities of a good design in mind—design to avoid systematic er-
ror, to be precise, to allow esimation of error, and to have broad validity.

5. Inspect the design for scientific adequacy and practicality.

• Are there any systematic problems that would invalidate your results
or reduce their range of generalization? For example, does your design
have confounding that biases your comparisons?

• Are there treatments or factor-level combinations that are impractical
or simply cannot be used? For example, you may have several factors
that involve time, and the overall time may be impractical when all
factors are at the high level; or perhaps some treatments are “a little
too exothermic” (as my chemistry T.A. described one of our proposed
experiments).

• Do you have the time and resources to carry out the experiment?
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If there are problems in any of these areas, you will need to go back to step 4
and revise your design. For example, the simple design was a full factorial,
but it was too big, so we could move to a fancier design such as a fractional
factorial.

6. Inspect the design for statistical adequacy and practicality.

• Do you know how to analyze the results?

• Will your experiment satisfy the statistical or model assumptions im-
plicit in the statistical analysis?

• Do you have enough degrees of freedom for error for all terms of in-
terest?

• Will you have adequate power or precision?

• Will the analysis be easy to interpret?

• Can you account for aliasing?

If you answer any of these in the negative, you will need to go back to step 4
and revise your design. For example, you might need to add blocking to re-
duce variability, or you might decide that a design with an unbalanced mixed-
effects model was simply too difficult to analyze. Study the design carefully
for oversights or mistakes. For example, I have seen split-plot designs with
no degrees of freedom for error at the whole-plot level. (The investigator had
intended to use an interaction for a surrogate error, but all interactions were
at the split-plot level.)

7. Run the experiment.

8. Analyze the results. Pay close attention to where model or distributional
assumptions might fail, and take corrective action if necessary. For example,

• Do factors assumed to be additive actually interact, or do treatments
act differently in different blocks?

• Is the error variance nonconstant?

• Are there outliers in the data?

• Do the random errors follow the normal distribution?

• Are there unmodeled dependencies in the data (for example, time de-
pendencies)?

Consider whether the experiment as run answers the questions, or if some
further observations are needed. For example, you might want to rerun sus-
pected outlier points, or you might need another fraction of a factorial to
disentangle some aliases.

9. Draw conclusions, giving estimates of error or reliability. Assess this
experiment in relation to similar experiments. Reporting is crucial, and it is
only a slight exaggeration to say that an experiment not reported is an experi-
ment not conducted. I like to begin reports with a short “executive summary”

Draft of Nov 18, 1999



20.3 Final Project 685

giving the conclusions, and then add sections on the experimental design and
analysis (many journals call such sections “Materials and Methods” and “Re-
sults”).

10. Consider what needs to be studied next. Research is ongoing and se-
quential, and one completed experiment leads to the design of the next.

It is clear that a carefully planned experiment requires a great deal of
effort. Many of the steps in planning an experiment are nonstatistical and re-
quire considerable background knowledge in the subject being studied, while
other steps require substantial statistical knowledge. Thus experimental de-
sign is often a team effort, with subject matter experts and statistical experts
working together. One goal of this book has been to make the statistical part
of the planning a little easier.

20.3 Final Project

Design an experiment, run the experiment, analyze the results, and report
your findings.

This is not an overnight homework problem, but a project with several
stages. Stage one is the project proposal, which should include a description
of your hypotheses and proposed experimental design. This proposal should
be sufficiently complete that anyone could replicate your experiment given
just your proposal. Submit your proposal to your instructor for approval
before conducting the experiment.

Stage two is running the experiment. Here you are on your own.
Stage three is analysis and reporting. Your report will typically be in the

five to ten page range and should include a summary giving the conclusions,
an introduction to the problem stating the background and hypothesis to be
tested, a description of the experimental design (similar to stage one), and a
description of the analysis. The description of the analysis should not be a
batch of unannotated computer output. It should say what you are doing, why
you are doing it, and what it tells you. Output and figures can be intermixed
or appended separately.

The subject of the experiment is up to you and your instructor. Those of
you in graduate school or at work in a research area may be able to adapt your
own ongoing work to this project. Or just try something fun—food experi-
ments (particularly desserts!) are always attractive, as are the experiments of
youth such as rolling balls down inclined planes.
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Appendix A

Linear Models for Fixed Effects

Much of our analysis has used the Analysis of Variance, and we have ap-
proached ANOVA in a classical way, with lots of sums over indices i, j,
and k. This approach is valid, but does not give insight into why ANOVA
works or where the formulae come from. This appendix is meant as a brief
introduction and survey of the theory of linear models for fixed effects. We
can achieve a great deal of simplification and unity in our analysis approach
through the use of linear models. Hocking (1985) is a good book-length
reference for this material.

A.1 Models

Let y ∈ RN be a vector of length N ; y contains the responses in an experi-
ment. A model M is a linear subspace of RN . For example, in a one-factor
ANOVA the hypothesis of zero treatment effects corresponds to a model in
RNwhere all the vectors in M are constant vectors: x ∈ M ↔ x = 1β,
where 1 = (1, 1, . . ., 1)′ is a vector of all ones. In a one-factor ANOVA,
the hypothesis of k separate treatment means corresponds to a model in
RNwhere for any x ∈ M , the elements of x corresponding to the same
treatment must all be the same, but the elements corresponding to different
treatments can be different. Such a model can also be described as the range
of a matrix XN×k, where Xi,j is 1 if the ith response was in the jth treat-
ment group, and zero otherwise. This means that Y ∈M can be written as
Y = Xβ for a k-vector β with elements interpreted µ1, µ2, . . ., µk. If k = 3;
the treatment sample sizes were 2, 3, and 5; and the units were in treatment
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order; then X could be written

X =



1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1


.

There are many other matrices that span the same space, including:

(a)



1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
1 0 0 1
1 0 0 1
1 0 0 1


, (b)



1 0 0
1 0 0
1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1
1 0 1
1 0 1


,

(c)



1 1 0
1 1 0
1 0 1
1 0 1
1 0 1
1 −1 −1
1 −1 −1
1 −1 −1
1 −1 −1
1 −1 −1


, and (d)



1 1 0
1 1 0
1 0 1
1 0 1
1 0 1
1 −0.4 −0.6
1 −0.4 −0.6
1 −0.4 −0.6
1 −0.4 −0.6
1 −0.4 −0.6


.

These matrices are shown because they illustrate the use of restrictions. For
matrix (a), Y ∈ M if Y = Xβ, where β is a 4-vector with elements inter-
preted (µ, α1, α2, α3). Recall that the separate means model is overparam-
eterized if we don’t put some kind of restrictions on the αi’s. This is what
happens with matrix (a); if we add 100 to µ and subtract 100 from the αi’s,
we get the same Y . Note that matrix (a) has 4 columns but only spans a
subspace of dimension 3; matrix (a) is rank deficient.

To make the parameters unique, we need some restrictions. Some statis-
tics programs assume that α1 is zero and use µ, µ + α2, and µ + α3 as the
treatment means. Thus α2 is the difference in means between groups 2 and
1. Matrix (b) reflects this parameterization if we interpret the coefficients β
as (µ, α2, α3).
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One standard set of restrictions is that the treatment effects sum to 0,
or equivalently, that αg = −

∑g−1
i=1 αi. Thus we may replace the last αg

with minus the sum of the others. Matrix (c) reflects this parameterization.
For matrix (c), Y ∈ M if Y = Xβ, where β is a 3-vector with elements
interpreted (µ, α1, α2). The mean in the last treatment is µ − α1 − α2 =
µ+ α3.

Finally, a fourth possible set of restrictions is that the weighted sum of the
treatment effects is 0, or equivalently, that αg = −

∑g−1
i=1 niαi/ng. Matrix

(d) reflects this parameterization. For matrix (d), Y ∈M if Y = Xβ, where
β is a 3-vector with elements interpreted (µ, α1, α2). The mean in the last
treatment is µ − n1α1/n3 − n2α2/n3 = µ + α3. Notice that the last two
columns of matrix (d) are orthogonal to the first. This orthogonality is what
makes the weighted-sum restrictions easier for hand work.

We arrange models in a lattice. A lattice is a partially ordered set in which
every pair has a union and an intersection. For a lattice of models, the inter-
section is the largest submodel contained in both models (the intersection of
the two model subspaces), and the union is the smallest (or simplest) model
containing both submodels (the subspace spanned by the two models). The
role of lattices in linear models is that it is easy to compare models up and
down a lattice, but difficult to compare models if one model is not a subset
of the other. Here is a sample lattice for a two-factor factorial:

Zero mean

Single mean

Row effects Column effects

Additive model

Interactive model

We can easily compare the “no row effects” model with the “interactive
model,” but it is more difficult to compare the “no row effects” model with
the “no column effects” model. It should also be rather clear that lattice rep-
resentations of several models and Hasse diagrams are related.

A.2 Least Squares

Suppose that we have a model M which is spanned by a matrix XN×r; thus
M = C(X), where C(X) is the column space of X . We want to fit the
model M to the data y ∈ RN . This means we want to find the Y ∈ M
that is closest to y. We measure closeness by the sum of squared errors:
(y − Y )′(y − Y ). This is the same as finding the least squares regression of
y on the r independent variables given by the columns of X . The minimum
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occurs when
X ′ Xb = X ′y ,

(the normal equations), or when

X ′(y −Xb) = 0 .

The latter says that the residuals (y − Xb) are orthogonal to X , or equiva-
lently, to C(X). The observations are then decomposed into the sum of fitted
values Y and residuals y − Y . This may be formalized as a theorem.

Theorem A.1 For any y ∈ RN and any model M = C(XN×r), there exists
a unique Y ∈ C(X) such that y−Y ⊥ C(X). This Y is the least squares fit of
the model M to y. Y may be written as Xb for any b that solves the normal
equations. If X has full rank, then b is unique and b = (X ′ X)−1X ′y. IfM
is reparameterized to M = C(X?) where C(X) = C(X?), then Y remains
the same, though the parameter estimates b may change.

Look at Figure A.1; the triangle formed by Y0, Y , and y will be a right
triangle for any Y0 in C(X), so the Pythagorean Theorem gives us the fol-
lowing for any Y0 ∈ C(X):

(y − Y0)′(y − Y0) = (Y − Y0)′(Y − Y0) + (y − Y )′(y − Y ) .

In particular, if we take Y0 to be zero, this tells us that we may decompose
the (uncorrected) total sum of squares in y into a model sum of squares
(Y −Y0)′(Y −Y0) and a residual sum of squares (y−Y )′(y−Y ). If the vec-
tor 1 lies in M , then we may decompose the corrected total sum of squares
in y into a model sum of squares around the overall mean (Y −y1)′(Y −y1)
and a residual sum of squares (y − Y )′(y − Y ).

We may revise the usual ANOVA terminology to reflect this geometric
perspective. A source of variation is a model subspace. Variation of a certain
type is variation that lies in a particular subspace. The degrees of freedom
for a source or model is merely the dimension of the subspace. The sum
of squares for a model (source) is the squared length of the part of y that
lies in that subspace. The ANOVA table becomes (assuming that the model
subspace has dimension r)

Source DF SS
Model subspace Dimension of subspace Squared length in subspace

Model r Y ′ Y
M

Deviations N − r (y − Y )′(y − Y )
M⊥

Total N y′y
RN
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M

Y0 Y

y

Figure A.1: Fitting a model.

We can also construct an ANOVA table for observations corrected for the
grand mean, assuming that 1 ∈M , as is usually the case.
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Source DF SS
Subspace Dimension Squared length

Model corrected for r − 1 (Y − y1)′(Y − y1)
grand mean
M ∩ 1⊥

Deviations N − r (y − Y )′(y − Y )
M⊥

Corrected total N − 1 (y − y1)′(y − y1)
RN ∩ 1⊥

A.3 Comparison of Models

Suppose that we have two models with M1 ∩M2 = M1. Thus M1 is
aboveM2 in the model lattice. If we haveM1 = C(X1) andM2 = C(X2),
then M1 ∩M2 = M1 is equivalent to C(X1) ⊂ C(X2). Let C(X1) have
dimension r1, and let C(X2) have dimension r2. Y1 is the fit ofM1 to y, and
Y2 is the fit ofM2 to y.

Look at Figure A.2. Not only is Y1 the fit ofM1 to y, Y1 is the fit ofM1

to Y2. We have right triangles everywhere we look.

Right angle Right triangle
(y − Y2) ⊥M2 (0, Y2,y)

(y − Y1) ⊥M1 (0, Y1,y)

(Y2 − Y1) ⊥M1 (0, Y1, Y2)

Using these right triangles and the Pythagorean Theorem, we can make a
variety of squared-length decompositions.

y′y = Y ′2 Y2 + (y − Y2)′(y − Y2)

y′y = Y ′1 Y1 + (y − Y1)′(y − Y1)

Y ′2 Y2 = Y ′1 Y1 + (Y2 − Y1)′(Y2 − Y1)

y′y = Y ′1 Y1 + (Y2 − Y1)′(Y2 − Y1) + (y − Y2)′(y − Y2)

(y − Y1)′(y − Y1) = (Y2 − Y1)′(Y2 − Y1) + (y − Y2)′(y − Y2)

In an Analysis of Variance, these squared-length decompositions are usu-
ally arranged as follows:
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M1

M20

Y1

Y2

y

Y2

Figure A.2: Comparing two model fits.

Source DF SS
Subspace Dimension Squared length
Model 1 r1 Y ′1 Y1
M1

Improvement of model 2 r2 − r1 (Y2 − Y1)′(Y2 − Y1)
over model 1
M2 ∩M⊥

1

Deviations N − r2 (y − Y2)′(y − Y2)
M⊥

2

Total N y′y
RN
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For example, consider model 1 to be the model of common means,M1 =
C(1), and model 2 to be the model of separate treatment means in a one-factor
ANOVA. Then M1 ⊂M2, because the separate treatment means could all
be equal. We have r1 = 1, and r2 = g; thus the improvement in going from
model 1 to model 2 is a g − 1 dimensional improvement. In the ANOVA,
model 1 is usually called the constant or grand mean, and the improvement
sum of squares going from model 1 to model 2 is called the between treat-
ments sum of squares.

The parameterization in matrix (d) above is easier for hand work. It arises
when we want to compute the sum of squares for the improvement of model
2 (g group means) over model 1 (common mean). This is the sum of squares
for the orthogonal complement of model 1 in model 2. However, for matrix
(d), the orthogonal complement of model 1 in model 2 is spanned by the last
two columns of matrix (d). The orthogonality is built in.

We can, of course, extend model comparison to a series of three (or more)
nested models: M1 ⊂M2 ⊂M3. This gives an ANOVA table as follows:

Source DF SS
Subspace Dimension Squared length
Model 1 r1 Y ′1 Y1
M1

Improvement of model 2 r2 − r1 (Y2 − Y1)′(Y2 − Y1)
over model 1
M2 ∩M⊥

1

Improvement of model 3 r3 − r2 (Y3 − Y2)′(Y3 − Y2)
over model 2
M3 ∩M⊥

2

Deviations N − r3 (y − Y3)′(y − Y3)
M⊥

3

Total N y′y
RN

A.4 Projections

The sum of two subspaces U1 and U2 of a vector space V is U1 + U2 =
{u1+u2 : u1 ∈ U1, u2 ∈ U2}; U1+U2 is also a subspace of V . If U1∩U2 =
{0}, the sum is called direct and is written U1+̇U2. If V is the direct sum
of U1 and U2, then v ∈ V may be written uniquely as v = u1 + u2, where
u1 ∈ U1 and u2 ∈ U2.

If V is the direct sum of U1 and U2 with v ∈ V written as v = u1 + u2
(u1 ∈ U1, u2 ∈ U2), then the projection of V onto U1 parallel to U2 is the
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U2

U1

v

P(v) = u1

Figure A.3: Projection onto U1 parallel to U2.

linear map P : V → U1 given by P (v) = u1. See Figure A.3. A linear
mapping is a projection if and only if P 2 = P .

If two subspaces are orthogonal (U1 ⊥ U2), we write their direct sum as
U1⊕U2 to emphasize their orthogonality. If V = U1⊕U2, then the projection
of V onto U1 is called an orthogonal projection.

Suppose we have a space V = U1 ⊕ U2, with Pi being the orthogonal
projection onto Ui. Then P1P2 = 0. (Figure out why!) Furthermore, we
have that since v = u1 + u2, then v = P1v + P2v, so that (I − P1) = P2.

Linear maps from RN to RNcan be written as N by N matrices. Thus,
we can express projections in RNas matrices. The N by N matrix P is an
orthogonal projection onto U ∈ RN if and only if P is symmetric, idempo-
tent (that is, P 2 = P ), and C(P ) = U . If U = C(X) and X has full rank,
then P = X(X ′ X)−1X ′.

What does all this have to do with linear models? If M is a model and
P is the orthogonal projection onto M , then the fitted values for fitting M
to y are Py. Least-squares fitting of models to data is simply the use of the
orthogonal projection onto the model subspace.

Suppose we have two models M1 and M2, along with their union
M12 = M1+̇M2. When does the sum of squares forM12 equal the sum of
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squares forM1 plus the sum of squares forM2? By Pythagorean Theorem,
the sum of squares for M12 is the sum of the sum of squares for M1 and
the sum of squares forM12 ∩M⊥

1 . This second model isM2 if and only if
model 2 is orthogonal to model 1, so the sums of squares add up if and only
if the two original models are orthogonal.

How do we use this in ANOVA? We will have sums of squares that add
up properly if we breakRNup into orthogonal subspaces. Our model lattices
are hierarchical, with higher models including lower models. Thus to get
orthogonal subspaces, we must look at the orthogonal complement of the
smaller subspace in the larger subspace. This is the improvement in going
from the smaller subspace to the larger subspace.

In the usual two-factor balanced ANOVA, the model of separate column
means (MC) is not orthogonal to the model of separate row means (MR);
these models have the constant-mean model as intersection. However, the
model “improvement going from constant mean to separate column means”
(MC ∩ 1⊥) is orthogonal to the model “improvement going from constant
mean to separate row means” (MR ∩ 1⊥). This orthogonality is not present
in the general unbalanced case.

When we have two nonorthogonal models, we will get different sums of
squares if we decomposeM12 asM1⊕M12 ∩M⊥

1 orM2⊕M12 ∩M⊥
2 .

The first corresponds to fitting model 1, and then getting the improvement
going toM12, and the second corresponds to fitting model 2, and then getting
the improvement going toM12. These have different projections in different
orders. See Figure A.4. These changing subspaces are why sequential sums
of squares (Type I) depend on order. Thus the sum of squares for B will not
equal the sum of squares for B after A unless B and A represent orthogonal
subspaces. The same applies for A and A after B.

A.5 Random Variation

So far, the linear models computations have not included any random vari-
ation, but we add that in. Our observations y ∈ RN will have a normal
distribution with mean µ and variance matrix Σ| . The mean µ will lie in
some model M . We usually assume that Σ| = σ2I , where I is the N by N
identity matrix. If y has the above distribution, then Cy (where C is a p by
N matrix of constants) has a normal distribution with mean Cµ and variance
matrix CΣ| C ′.

Let’s assume that y ∼ N(µ, σ2I), where µ ∈M , and M = C(X) has
dimension r. We can thus find a β (possibly infinitely many β’s) such that
µ = Xβ. Let P be the orthogonal projection onto M ; (I − P ) is thus the
orthogonal projection ontoM⊥. The fitted values Y have the distribution

Y = Py ∼ N(Pµ, σ2PP ′)

= N(µ, σ2P )

= N(Xβ, σ2P ) .
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M2

M1

y

b

a

c

d

M12 ∩ M1⊥

M12 ∩ M2⊥

0

Figure A.4: Projecting in different orders.

The residuals have the distribution

y − Y = (I − P )y ∼ N((I − P )µ, σ2(I − P )(I − P )′)

= N(0, σ2(I − P )) .

These derivations give us the distributions of the fitted values and the
residuals: they are both normal. However, we need to know their joint dis-
tribution. To discover this, we use a little trick and look at two copies of y
just stacked into a vector of length 2N , and we do separate projections on the
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two copies. (
y
y

)
∼ N

((
µ
µ

)
, σ2

(
I I
I I

))
(
P 0
0 (I − P )

)(
y
y

)
∼ N

((
µ
0

)
, σ2

(
P P − P 2

P − P 2 I − P

))

∼ N

((
µ
0

)
, σ2

(
P 0
0 I − P

))
This shows that the residuals and fitted values are uncorrelated. Because they
are normally distributed, they are also independent.

How are the sums of squares distributed? Sums of squares are squared
lengths, or quadratic forms, of normally distributed vectors. Normal vectors
are easier to work with if they have a diagonal variance matrix, so let’s work
towards a diagonal variance matrix.

LetH1 (N by r) be an orthonormal basis forM ; thenH ′1H1 is the r by r
identity matrix. Let H2 (N by N − r) be an orthonormal basis forM⊥; then
H ′2H2 is the N − r by N − r identity matrix. Furthermore, both H ′1H2 and
H ′2H1 are 0. (The two matrices have columns that are bases for orthogonal
subspaces; their columns must be orthogonal.) Now let H be the N by N
matrix formed by joining H1 and H2 by H = (H1 : H2). H is an orthogonal
matrix, meaning that H ′H = HH ′ = I .

The squared length of z and H ′z is the same for any z ∈ RN , because

z′z = z′Iz = zHH ′z = (H ′z)′(H ′z)

So for sums of squares calculations, we may premultiply byH ′ before taking
the squared length without changing the value or distribution.

Let’s look at the residual sum of squares by looking at H ′(I − P )y.

H ′(I − P )y ∼ N

((
H ′1
H ′2

)
(I − P )µ, σ2

(
H ′1
H ′2

)
(I − P )(H1, H2)

)
∼ N

((
0
0

)
, σ2

(
H ′1
H ′2

)
(0, H2)

)
∼ N

((
0
0

)
, σ2

(
0 0
0 IN−r

))

Thus the distribution of the sum of squared residuals is the same as the dis-
tribution of the sum of N − r independent normals with mean 0 and variance
σ2. This is, of course, σ2 times a chi-square distribution with N − r degrees
of freedom. The expected sum of squared errors is just (N − r)σ2.
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What about the model sum of squares? Look at H ′Py.

H ′Py ∼ N

((
H ′1
H ′2

)
Pµ, σ2

(
H ′1
H ′2

)
P (H1, H2)

)
∼ N

((
H ′1µ
0

)
, σ2

(
H ′1
H ′2

)
(H1, 0)

)
∼ N

((
H ′1µ
0

)
, σ2

(
Ir 0
0 0

))

Thus the distribution of the model sum of squares is σ2 times a noncentral
chi-square with noncentrality parameter µ′H1H

′
1µ/σ

2 and r degrees of free-
dom. The noncentrality parameter µ′H1H

′
1µ/σ

2 also equals µ′µ/σ2, so the
expected model sum of squares is µ′µ+ rσ2. We may test the null hypothe-
sis H0 : µ = 0 against the alternative Ha : µ 6= 0 by taking the ratio of the
model mean square to the error mean square; this ratio has an F-distribution
under the null hypothesis and a noncentral F-distribution under the alterna-
tive.

We can generalize these distributional results to a sequence of models.
Consider models M1 = C(X1) and M2 = C(X2) with M1 ⊂M2. Let P1

and P2 be the orthogonal projections onto M1 and M2. As usual, µ ∈M2

is the expected value of y; decompose µ into P1µ and (P2 − P1)µ. These
are the parts of the mean that lie inM1 and that are orthogonal toM1. Work
with a pile of three copies of y.

[
y
y
y

]
∼ N

([
µ
µ
µ

]
, σ2

[
I I I
I I I
I I I

])
[
P1 0 0
0 P2 − P1 0
0 0 I − P2

][
y
y
y

]
∼ N

([
P1µ

(P2 − P1)µ
0

]
,

σ2

[
P1 0 0
0 P2 − P1 0
0 0 I − P2

])

Thus the fitted values Y1, the difference in fitted values between the two
models Y2 − Y1, and the residuals are all independent. The sum of squares
for error is a multiple of chi-square with N − r2 degrees of freedom. The
improvement sum of squares going from the smaller to the larger model is a
multiple of a chi-square with r2 − r1 degrees of freedom if the null is true
((P2 − P1)µ = 0); otherwise it is a multiple of a noncentral chi-square.
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A.6 Estimable Functions

Assume that y = µ + ε, where µ ∈M = C(X) and ε ∼ N(0, σ2I). Since
µ ∈ C(X), we have that µ = Xβ for some β. Let Y = Xb be the projection
of y ontoM .

A linear combination of the β’s given by h′β is estimable if there exists
a vector t ∈ RN such that

E(t′y) = h′β,

for all values of β. Note that estimability is defined in terms of a particular set
of parameters, so estimability depends on the matrix X , not just the model
spaceM . For h′β to be estimable, we must have

h′β = E(t′y) = t′E(y) = t′Xβ

for all β, so that
h = X ′t .

Thus h′β is estimable if and only if h = X ′t, or in other words, if h is a
linear combination of the rows of X .

We estimate h′β by h′b, where b is any solution of the normal equations.
There may be many solutions to the normal equations; is h′b unique? Yes, it
is unique because

h′b = t′Xb = t′Y ,

so the estimable function only depends on the fitted value Y . Note that t′y
has the same expectation as h′b, but we will see below that t′y can have a
larger variance.

What are the mean and variance of an estimable function? Let t? be the
projection of t ontoM , and let t = t? + tr. Then

E(h′b) = E(t′y)

= E(t?′y + t′ry)

= t?′Xβ + t′rXβ

= t?′Xβ + 0β

= t?′Xβ

So the expected value of t′y only depends on the part of t that lies in M .
Variance is a bit trickier. If we directly attack h′b we get

Var(h′b) = Var(t′Y ) = σ2t′P t = σ2t?′t? .

On the other hand, if we look at t′y, we find

Var(t′y) = σ2t′t = σ2(t?′t? + t′rtr) .

In the second version we only get minimum variance if tr is 0. Because tr
does not affect expected value, we may restrict our attention to t’s that lie
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entirely inM ; these will give us minimum variance no matter which way we
use them.

Consider a one-factor model with g treatments, parameterized by µ and
αi, for i = 1, 2, . . ., g. The ith treatment group has ni observations and mean
µ+ αi. The X matrix looks like

1
1
...
1

1
1
...
1

n1

0
0
...
0

· · ·

0
0
...
0

1
1
...
1

0
0
...
0

1
1
...
1

n2 · · ·

0
0
...
0

...
...

... · · ·
...

1
1
...
1

0
0
...
0

0
0
...
0

· · ·

1
1
...
1

ng

For an estimable function given by a vector t ∈M , the first n1 elements of t
are the same, the next n2 are the same, and so on. Call these g unique values
s1, s2, · · · , sg. An estimable h is of the form h = X ′t, and with this X , X ′t
leads to
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hµ =

g∑
i=1

nisi

hα1
= n1s1

hα2
= n2s2
...

hαg = ngsg

Thus for h′β to be estimable, we only need to have that

hµ = hα1
+ hα2

+ · · ·+ hαg .

A.7 Contrasts

An estimable function h′β for which the associated t ∈ M satisfies t′1 =
0 is called a contrast. A contrast thus describes a direction t ∈ M that
is orthogonal to the grand mean. For the one-factor ANOVA problem, an
estimable function is a contrast if

0 = hµ =

g∑
i=1

nisi =

g∑
i=1

hαi .

For contrasts, the overall mean must have a 0 coefficient, so we usually don’t
bother with a coefficient for µ at all, and denote the hαi by wi.

Two contrasts are orthogonal if their corresponding t vectors are orthog-
onal:

t ⊥ t? ⇔ 0 =
n∑
i=1

tit
?
i =

g∑
i=1

nisis
?
i =

g∑
i=1

wiw
?
i

ni
.

M has r dimensions, so M ∩ 1⊥ has r − 1 dimensions. All contrasts lie
in M ∩ 1⊥, so we can have at most r − 1 mutually orthogonal contrasts in
a collection. These contrasts form an orthogonal basis for M ∩ 1⊥, and of
course there are many such bases.

Every contrast determines a model C(t), and we may compute a sum of
squares for this model via

SS(t) =
(t′Y )2

t′t
.

We may do F -tests on this sum of squares exactly as we would on any model
sum of squares. For a complete set of orthogonal contrasts t(k), we have

M ∩ 1⊥ = C(t(1))⊕ C(t(2))⊕ · · · ⊕ C(t(r−1))

so that

SS(M ∩ 1⊥) = SS(t(1)) + SS(t(2)) + · · ·+ SS(t(r−1)) .
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A.8 The Scheffé Method 717

Alternatively, t′y = h′b ∼ N(h′β, σ2t′t), so we may use t-style inference
with the error mean square estimating σ2. If t′t? = 0, then t′y and t?′y are
independent.

A.8 The Scheffé Method

How large can the sum of squares for a contrast be? The sum of squares
for a contrast is the sum of squares for C(t), the model subspace spanned
by the contrast. All contrast subspaces lie in M ∩ 1⊥, so we can make the
decomposition

SS(M ∩ 1⊥) = SS(t) + SS(M ∩ 1⊥ ∩ t⊥) .

Thus the maximum that SS(t) could possibly be is SS(M ∩ 1⊥), which
equals (Y − Y 1)′(Y − Y 1). We can achieve this maximum by taking t =
(Y − Y 1):

(t′Y )2

t′t
=

((Y − Y 1)′Y )2

(Y − Y 1)′(Y − Y 1)

=
((Y − Y 1)′(Y − Y 1))2

(Y − Y 1)′(Y − Y 1)

= (Y − Y 1)′(Y − Y 1) .

In a one-factor ANOVA, the maximum sum of squares for a contrast is the
between groups sum of squares. Under the null hypothesis of no treatment
differences, this sum of squares is distributed as σ2 times a chi-square with
g − 1 degrees of freedom. We do inference by comparing the F-ratio to the
F distribution. Notice, however, that the maximal contrast sum of squares is
equal to the treatment sum of squares. Thus we can do inference on arbitrarily
many contrasts by treating them as if they were the maximal contrast. This
is the basis for the Scheffé method of multiple comparisons.

A.9 Problems

Let y be anN by 1 random vector withE y = Xβ, and V ar(y) = σ2IN , Question A.1
where X is N by p and β is p by 1. Let Y = Py, where P is a projection
(not necessarily orthogonal) onto the range of X . (a) Find the mean and
(co)variance of Y and y − Y . (b) Prove that Cov(Y , y − Y ) is 0 if and only
if P is an orthogonal projection.

Let y = Xβ + ε, where ε is iid N(0, σ2); y is N by 1, X is N by p, and Question A.2
β is p by 1. Let g be any N by 1 vector. What is the distribution of (g′y)2?
What, if anything, changes when g′X is zero?

Consider a linear model M = C(X) with parameters µ, β1, β2, and β3, Question A.3
where X is as follows:
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1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1

Which of the following are estimable (give a brief reason): (a) µ, (b) β1, (c)
β2 − β3, (d) µ+ (β1 + β2 + β3)/3, (e) β1 + β2 − β3.

Consider a two by three factorial with proportional balance: nij = ni•n• j/n••.Question A.4
Show that contrasts in factor A are orthogonal to contrasts in factor B.

Consider the following X matrices parameterizing models 1 and 2.Question A.5

X1 X2

1 0 1 0
1 0 0 1
1 0 -1 -1
0 1 1 0
0 1 0 1
0 1 -1 -1

-1 -1 1 0
-1 -1 0 1
-1 -1 -1 -1

Let model 3 be the union of the models spanned by these two matrices.
Will the sum of squares for model 3 be the sum of the sums of squares for
models 1 and 2? Why or why not?
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In the one-way ANOVA problem, show that the three restrictions
∑
αi = Question A.6

0,
∑
niαi = 0, and α1 = 0 lead to the same values of α1−α2. Interpret this

result in terms of estimable functions.

Consider a one-factor model parameterized by the following matrix: Question A.7

1 1 0
1 1 0
1 0 1
1 0 1
1 –1 –1
1 –1 –1

The parameters are µ, α1, and α2. Which of the following are estimable: (a)
µ , (b) µ+ α1, (c) α1 + α2, (d) µ− α1, and (e) α1 − α2?

Consider a completely randomized design with twelve treatments and Question A.8
24 units (all ni = 2). The twelve treatments have a three by four factorial
structure.

(a) Find the variance/covariance matrix for the estimated factor A effects.

(b) Find the variance/covariance matrix for the estimated interaction ef-
fects.

(c) Show that the t-test for testing the equality of two factor A main effects
can be found by treating the two estimated main effects as means of
independent samples of size eight.

(d) Show that the t-test for testing the equality of two interaction effects
can not be found by treating the two estimated interaction effects as
means of independent samples of size two.

Consider the one-way ANOVA model with g groups. The sample sizes Question A.9
are ni are not all equal. The treatments correspond to the levels of a quanti-
tative factor; the level for treatment i is zi, and the zi are not equally spaced.
We may compute linear, quadratic (adjusted for linear), and cubic (adjusted
for linear and quadratic) sums of squares by linear regression. We may also
compute these sums of squares via contrasts in the treatment means, but we
need to find the contrast coefficients. Describe how to find the contrast coef-
ficients for linear and quadratic (adjusted for linear). (Hint: use the t and si
formulation in Sections A.6 and A.7, and remember your linear regression.)
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Suppose that YN×1 is multivariate normal with mean µ and variance σ2I ,Question A.10
and that we have models M1 and M2 with M1 contained in M2; M1 has di-
mension r1, M2 has dimension r2, and P1 and P2 are the orthogonal projec-
tions onto M1 and M2.

(a) Find the distribution of (P2 − P1)Y .

(b) What can you say in addition about the distribution of (P2 − P1)Y
when µ lies in M1?

Consider a proportionally balanced two-factor model with nij units inQuestion A.11
the ijth factor-level combination. Let MA be the model of factor A effects
(Eyijk = µ + αi) and let MB be the model of factor B effects (Eyijk =

µ+ βj). Show that MA ∩ 1⊥ is orthogonal to MB ∩ 1⊥.

If X and X? are n by p matrices and X has rank p, show that the rangeQuestion A.12
of X equals the range of X? if and only if there exists a p by p nonsingular
matrix Q such that X? = XQ.
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Appendix B

Experimental Design Plans

B.1 Latin Squares

The plans are presented in two groups. First we present sets of standard
squares for several values of g. These sets are complete for g = 3, 4 and
are incomplete for larger g. Next we present sets of up to four orthogonal
Latin Squares (there are at most g−1 orthogonal squares for any g). Graeco-
Latin squares (and hyper-Latin squares) may be constructed by combining
two (or more) orthogonal Latin Squares. All plans come from Fisher and
Yates (1963).

B.1.1 Standard Latin Squares

3 × 3
A B C
B C A
C A B

4 × 4
A B C D A B C D A B C D A B C D
B A D C B C D A B D A C B A D C
C D B A C D A B C A D B C D A B
D C A B D A B C D C B A D C B A
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5 × 5
A B C D E A B C D E A B C D E A B C D E
B A E C D B C E A D B D A E C B E A C D
C D A E B C D B E A C E D B A C A D E B
D E B A C D E A C B D C E A B D C E B A
E C D B A E A D B C E A B C D E D B A C

6 × 6
A B C D E F A B C D E F A B C D E F
B C A F D E B A E F C D B A E C F D
C A B E F D C F A B D E C F B A D E
D F E B A C D E B A F C D E F B C A
E D F A C B E D F C B A E D A F B C
F E D C B A F C D E A B F C D E A B

7 × 7
A B C D E F G A B C D E F G A B C D E F G
B E A G F D C B F E G C A D B C D E F G A
C F G B D A E C D A E B G F C D E F G A B
D G E F B C A D C G A F E B D E F G A B C
E D B C A G F E G B F A D C E F G A B C D
F C D A G E B F A D C G B E F G A B C D E
G A F E C B D G E F B D C A G A B C D E F

B.1.2 Orthogonal Latin Squares

3 × 3
A B C A B C
B C A C A B
C A B B C A

4 × 4
A B C D A B C D A B C D
B A D C C D A B D C B A
C D A B D C B A B A D C
D C B A B A D C C D A B
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5 × 5
A B C D E A B C D E A B C D E A B C D E
B C D E A C D E A B D E A B C E A B C D
C D E A B E A B C D B C D E A D E A B C
D E A B C B C D E A E A B C D C D E A B
E A B C D D E A B C C D E A B B C D E A

7 × 7
A B C D E F G A B C D E F G A B C D E F G
E F G A B C D F G A B C D E G A B C D E F
B C D E F G A D E F G A B C F G A B C D E
F G A B C D E B C D E F G A E F G A B C D
C D E F G A B G A B C D E F D E F G A B C
G A B C D E F E F G A B C D C D E F G A B
D E F G A B C C D E F G A B B C D E F G A

B.2 Balanced Incomplete Block Designs

The plans are sorted first by number of treatments g, then by size of block
k. The number of blocks is b; the replication for any treatment is r; any
pair of treatments occurs together in λ = r(k − 1)/(g − 1) blocks; and the
efficiency is E = g(k − 1)/[(g − 1)k]. Designs that can be arranged as
Youden Squares are marked with YS and shown as Youden Squares. Designs
involving all combinations of g treatments taken k at a time that cannot be
arranged as Youden Squares are simply labeled unreduced. Some designs
are generated as complements of other designs, that is, by including in one
block all those treatments not appearing in the corresponding block of the
other design. Additional plans can be found in Cochran and Cox (1957),
who even include some plans with 91 treatments. Fisher and Yates (1963)
describe methods for generating BIBD designs. BIBD plans given here were
generated using the instructions in Fisher and Yates or de novo and then
arranged in Youden Squares when feasible.

BIBD 1 g = 3, k = 2, b = 3, r = 2, λ = 1, E = .75, YS

1 2 3
2 3 1

BIBD 2 g = 4, k = 2, b = 6, r = 3, λ = 1, E = .67

Unreduced

BIBD 3 g = 4, k = 3, b = 4, r = 3, λ = 2, E = .89, YS

1 2 3 4
2 3 4 1
3 4 1 2
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BIBD 4 g = 5, k = 2, b = 10, r = 4, λ = 1, E = .63, YS

1 1 4 5 2 5 3 3 4 2
2 3 1 1 4 2 4 5 5 3

BIBD 5 g = 5, k = 3, b = 10, r = 6, λ = 3, E = .83, YS

1 2 5 1 3 4 2 5 4 3
2 4 1 3 1 5 3 2 5 4
3 1 2 4 5 1 4 3 2 5

BIBD 6 g = 5, k = 4, b = 5, r = 4, λ = 3, E = .94, YS

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3

BIBD 7 g = 6, k = 2, b = 15, r = 5, λ = 1, E = .6

Unreduced

BIBD 8 g = 6, k = 3, b = 10, r = 5, λ = 2, E = .8

1 2 3 5 5 6 4 1 5 6
4 4 4 6 6 1 1 2 2 3
5 6 5 1 2 3 2 3 3 4

BIBD 9 g = 6, k = 4, b = 15, r = 10, λ = 6, E = .9

Unreduced

BIBD 10 g = 6, k = 5, b = 6, r = 5, λ = 4, E = .96, YS

1 2 3 4 5 6
2 3 4 5 6 1
3 4 5 6 1 2
4 5 6 1 2 3
5 6 1 2 3 4

BIBD 11 g = 7, k = 2, b = 21, r = 6, λ = 1, E = .58, YS

1 1 1 5 6 7 3 4 2 2 2
2 3 4 1 1 1 2 2 5 6 7

3 3 6 7 5 4 4 5 7 6
4 5 3 3 4 6 7 6 5 7

BIBD 12 g = 7, k = 3, b = 7, r = 3, λ = 1, E = .78, YS
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1 3 7 5 4 2 6
2 1 4 3 6 7 5
5 6 1 4 2 3 7

BIBD 13 g = 7, k = 4, b = 7, r = 4, λ = 2, E = .88, YS

3 1 2 7 6 5 4
4 2 7 1 5 6 3
6 7 4 5 3 1 2
7 6 5 3 2 4 1

BIBD 14 g = 7, k = 5, b = 21, r = 15, λ = 10, E = .93, YS

1 6 4 3 2 1 5 7 2 6 1 4 7 3 5
2 1 7 5 3 2 1 4 6 5 6 1 3 7 4
3 2 1 6 5 3 2 1 4 7 4 7 1 5 6
4 3 2 1 7 6 4 5 1 2 3 5 6 1 7
5 4 3 2 1 7 6 2 7 1 5 3 4 6 1

2 7 6 5 4 3
3 2 7 6 5 4
4 3 2 7 6 5
5 4 3 2 7 6
6 5 4 3 2 7

BIBD 15 g = 7, k = 6, b = 7, r = 6, λ = 5, E = .97, YS

1 2 3 4 5 6 7
2 3 4 5 6 7 1
3 4 5 6 7 1 2
4 5 6 7 1 2 3
5 6 7 1 2 3 4
6 7 1 2 3 4 5

BIBD 16 g = 8, k = 2, b = 28, r = 7, λ = 1, E = .57

Unreduced

BIBD 17 g = 8, k = 3, b = 56, r = 21, λ = 6, E = .76, YS
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1 4 2 1 7 2 3 5 1 3 8 1 6 4 1
2 1 5 2 1 8 1 3 6 1 3 4 1 7 4
3 2 1 6 2 1 4 1 3 7 1 5 4 1 8

6 5 1 1 8 7 2 3 4 5 6 7 8 2 3
1 7 5 8 1 6 3 4 5 6 7 8 2 4 5
5 1 8 6 6 1 7 8 2 3 4 5 6 8 2

4 5 6 7 8 2 3 4 5 6 7 8 2 3 4
6 7 8 2 3 3 4 5 6 7 8 2 5 6 8
3 4 5 6 7 5 6 7 8 2 3 4 7 8 2

5 6 7 8 2 3 4 5 6 7 8
2 3 4 5 6 7 8 2 3 4 5
3 4 5 6 8 2 3 4 5 6 7

BIBD 18 g = 8, k = 4, b = 14, r = 7, λ = 3, E = .86

1 5 1 3 1 2 1 2 1 3 1 2 1 2
2 6 2 4 3 4 4 3 2 4 3 4 4 3
3 7 7 5 6 5 6 5 5 7 5 6 5 6
4 8 8 6 8 7 7 8 6 8 7 8 8 7

BIBD 19 g = 8, k = 5, b = 56, r = 35, λ = 20, E = .91, YS

1 6 4 3 2 1 5 7 2 6 1 4 7 3 5
2 1 7 5 3 2 1 4 6 5 6 1 3 7 4
3 2 1 6 5 3 2 1 4 7 4 7 1 5 6
4 3 2 1 7 6 4 5 1 2 3 5 6 1 7
5 4 3 2 1 7 6 2 7 1 5 3 4 6 1

2 7 6 5 4 3 8 8 8 8 8 8 8 1 2
3 2 7 6 5 4 1 2 3 4 5 6 7 8 8
4 3 2 7 6 5 2 3 4 5 6 7 1 2 3
5 4 3 2 7 6 3 4 5 6 7 1 2 3 4
6 5 4 3 2 7 4 5 6 7 1 2 3 5 6

3 4 5 6 7 1 2 3 4 5 6 7 1 3 3
8 8 8 8 8 2 3 4 5 6 7 1 2 3 4
4 5 6 7 1 8 8 8 8 8 8 8 4 5 6
5 6 7 1 2 3 4 5 6 7 1 2 8 8 8
7 1 2 3 4 6 7 1 2 3 4 5 5 6 7

4 5 6 7 1 2 3 4 5 6 7
5 6 7 1 2 3 4 5 6 7 1
7 1 2 3 4 5 6 7 1 2 3
8 8 8 8 6 7 1 2 3 4 5
1 2 3 4 8 8 8 8 8 8 8
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BIBD 20 g = 8, k = 6, b = 28, r = 21, λ = 15, E = .95

Unreduced

BIBD 21 g = 8, k = 7, b = 8, r = 7, λ = 6, E = .98, YS

1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 1
3 4 5 6 7 8 1 2
4 5 6 7 8 1 2 3
5 6 7 8 1 2 3 4
6 7 8 1 2 3 4 5
7 8 1 2 3 4 5 6

BIBD 22 g = 9, k = 2, b = 36, r = 8, λ = 1, E = .56, YS

1 1 1 1 6 7 8 9 3 4 5 2 2 2 2 7 8 9
2 3 4 5 1 1 1 1 2 2 2 6 7 8 9 8 7 9

3 3 3 7 8 9 5 6 4 4 4 5 5 8 9 7 6 6
4 5 6 3 3 3 4 4 7 8 9 6 7 5 5 6 8 9

Draft of Nov 18, 1999



728 Experimental Design Plans

BIBD 23 g = 9, k = 3, b = 12, r = 4, λ = 1, E = .75

1 4 7 1 2 3 1 2 3 1 2 3
2 5 8 4 5 6 6 4 5 5 6 4
3 6 9 7 8 9 8 9 7 9 7 8

BIBD 24 g = 9, k = 4, b = 18, r = 8, λ = 3, E = .84, YS

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
2 3 4 5 6 7 8 9 1 4 5 6 7 8 9 1 2 3
3 4 5 6 7 8 9 1 2 6 7 8 9 1 2 3 4 5
5 6 7 8 9 1 2 3 4 9 1 2 3 4 5 6 7 8

BIBD 25 g = 9, k = 5, b = 18, r = 10, λ = 5, E = .9, YS

4 5 6 7 8 9 1 2 3 2 3 4 5 6 7 8 9 1
6 7 8 9 1 2 3 4 5 3 4 5 6 7 8 9 1 2
7 8 9 1 2 3 4 5 6 5 6 7 8 9 1 2 3 4
8 9 1 2 3 4 5 6 7 7 8 9 1 2 3 4 5 6
9 1 2 3 4 5 6 7 8 8 9 1 2 3 4 5 6 7

BIBD 26 g = 9, k = 6, b = 12, r = 8, λ = 5, E = .94

4 1 1 2 1 1 2 1 1 2 1 1
5 2 2 3 3 2 3 3 2 3 3 2
6 3 3 5 4 4 4 5 4 4 4 5
7 7 4 6 6 5 5 6 6 6 5 6
8 8 5 8 7 7 7 7 8 7 8 7
9 9 6 9 9 8 9 8 9 8 9 9

BIBD 27 g = 9, k = 7, b = 36, r = 28, λ = 21, E = .96, YS

3 4 5 6 7 8 9 1 2 2 3 4 5 6 7 8 9 1
4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3
5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4
6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5
7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6
8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7
9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8

2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1
3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2
5 6 7 8 9 1 2 3 4 4 5 6 7 8 9 1 2 3
6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5
7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6
8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7
9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8

BIBD 28 g = 9, k = 8, b = 9, r = 8, λ = 7, E = .98, YS

Draft of Nov 18, 1999



B.3 Efficient Cyclic Designs 729

1 2 3 4 5 6 7 8 9
2 3 4 5 6 7 8 9 1
3 4 5 6 7 8 9 1 2
4 5 6 7 8 9 1 2 3
5 6 7 8 9 1 2 3 4
6 7 8 9 1 2 3 4 5
7 8 9 1 2 3 4 5 6
8 9 1 2 3 4 5 6 7

B.3 Efficient Cyclic Designs

Using this table you can generate an incomplete block design for g treatments
in b = mg blocks of size k with each treatment appearing r = mk times.
The design will be the union of m individual cyclic patterns, with these m
patterns determined by the first m rows of this table for a given k. See John
and Williams (1995).

kth treatment, g =
k r First k − 1 treatments 6 7 8 9 10 11 12 13 14 15
2 2 1 2 2 2 2 2 2 2 2 2 2

4 1 3 4 4 4 4 4 4 6 5 5
6 1 4 3 3 3 3 6 6 3 7 3
8 1 6 5 5 5 5 3 3 5 4 8

10 1 5 6 6 6 6 5 5 4 6 6
3 3 1 2 4 4 4 4 5 5 5 5 5 5

6 1 3 2 4 8 7 8 8 6 8 8 9
9 1 2 4 4 5 6 4 4 7 5 7 6

4 4 1 2 4 3 7 8 8 7 8 8 10 8 8
8 1 2 5 3 7 8 9 3 7 7 7 7 7

kth treatment, g =
k r First k − 1 treatments 6 7 8 9 10 11 12 13 14 15
5 5 1 2 3 5 6 6 8 8 8 8 8 8 10 11

10 1 3 4 5 6 6 8 9 10 9
10 1 3 4 7 8 12 13 11

6 6 1 2 3 4 7 6 6 6 6 11 11 11 11 11
7 7 1 2 3 4 5 8 6 6 10 10 10 10 10 11
8 8 1 2 3 4 5 7 9 6 10 10 10 10 12 12
9 9 1 2 3 4 5 6 8 10 9 9 9 11 11 11

10 10 1 2 3 4 5 6 7 10 11 8 8 8 13 13

B.4 Alpha Designs

Alpha Designs are resolvable block designs for g = mk treatments in b =
mr blocks of size k. These tables give the initial alpha arrays for 5 ≤ m ≤
15, block sizes from 4 up to the minimum of m and 100/m, and up to four
replications. These tables are adapted from Table 2 of Patterson, Williams,
and Hunter (1978).
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m = 5 m = 6 m = 7
4 ≤ k ≤ 5 4 ≤ k ≤ 6 4 ≤ k ≤ 7

1 1 1 1 1 1 1 1 1 1 1 1
1 2 5 3 1 2 6 5 1 2 4 3
1 3 4 5 1 4 3 6 1 3 7 5
1 4 3 2 1 3 4 2 1 5 6 2
1 5 2 4 1 5 2 3 1 4 3 7

1 6 2 4 1 6 2 4
1 7 5 6

m = 8 m = 9 m = 10
4 ≤ k ≤ 8 4 ≤ k ≤ 9 4 ≤ k ≤ 10

1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 7 1 2 9 8 1 2 10 6
1 4 8 2 1 4 7 5 1 4 7 10
1 6 4 5 1 8 3 4 1 6 8 3
1 3 6 4 1 3 4 6 1 5 6 7
1 5 2 7 1 5 2 7 1 7 4 2
1 7 1 3 1 6 8 3 1 8 3 5
1 8 7 6 1 7 6 2 1 9 5 8

1 9 5 8 1 10 9 3
1 3 7 4

m = 11 m = 12 m = 13
4 ≤ k ≤ 9 4 ≤ k ≤ 8 4 ≤ k ≤ 7

1 1 1 1 1 1 1 1 1 1 1 1
1 2 7 8 1 2 3 4 1 2 5 11
1 5 9 2 1 8 6 2 1 4 9 12
1 10 8 6 1 10 7 5 1 10 3 2
1 3 4 7 1 5 12 9 1 13 11 7
1 6 2 4 1 12 4 11 1 9 6 13
1 7 6 11 1 11 5 8 1 7 8 9
1 4 10 5 1 6 2 7
1 8 5 2

m = 14 m = 15
4 ≤ k ≤ 7 4 ≤ k ≤ 6

1 1 1 1 1 1 1 1
1 2 9 11 1 2 9 8
1 10 11 8 1 4 13 15
1 12 14 3 1 8 3 6
1 3 7 2 1 11 14 12
1 6 12 13 1 15 4 9
1 4 2 12
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B.5 Two-Series Confounding and Fractioning Plans

The table gives suggested defining contrasts for confounding a 2k design
into 2p blocks. It also gives the generalized interactions that are confounded.
When only a particular block of the design is run, the resulting 2k−p frac-
tional factorial has aliases of I the same as the defining contrasts and their
interactions. Other fractions have the same basic aliases, though the signs
differ.

k 2p Defining contrasts Generalized interactions

3 2 ABC
4 AB, BC AC

4 2 ABCD
4 ABC, AD BCD
8 AB, BC, CD AC, AD, BD, ABCD
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732 Experimental Design Plans

k 2p Defining contrasts Generalized interactions

5 2 ABCDE
4 ABCD, BCE ADE
8 ABC, BD, AE ACD, BCE, ABDE, CDE

16 AB, BC, CD, DE AC, ABCD, BD, AD, ABDE,
BCDE, ACDE, CE, ABCE, BE, AE

6 2 ABCDEF
4 BCDE, ABDF ACEF
8 ABCD, BCE, ACF ADE, BDF, ABEF, CDEF

16 CD, ACE, BCF, ABC ADE, BDF, ABEF, ABCDEF, ABD,
BE, BCDE, AF, ACDF, CEF, DEF

32 AB, BC, CD, DE, EF All other two-factor interactions,
plus all four-factor and six-factor
interactions

7 2 ABCDEFG
4 ADEF, ABCDG BCEFG
8 BCDE, ACDF, ABCG ABEF, ADEG, BDFG, CEFG

16 ABCD, BCE, ACF,
ABG

ADE, BDF, ABEF, CDEF, CDG,
ACEG, BDEG, BCFG, ADFG,
EFG, ABCDEFG

32 ADG, ACG, ABG,
ABF, CEF

CD, BD, BC, ABCDG, BDFG,
BCFG, ABCDF, FG, ADF, ACF,
CDFG, ACDEFG, AEFG, DEF,
ABCEFG, BCDEF, BEF, ABDEFG,
ABCE, BCDEG, BEG, ABDE,
CEG, ACDE, AE, DEG

64 AB, BC, CD, DE, EF,
FG

All other two-factor interactions,
plus all four-factor and six-factor
interactions

8 2 ABCDEFGH
4 ABDFG, BCDEH ACEFGH
8 BCEG, BCDH, ACDEF DEGH, ABDFG, ABEFH, ACFGH

16 BCDE, ACDF, ABDG,
ABCH

ABEF, ACEG, BCFG, DEFG,
ADEH, BDFH, CEFH, CDGH,
BEGH, AFGH, ABCDEFGH
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k 2p Defining contrasts Generalized interactions

8 32 ABD, ACE, BCF,
ABCG, ABCH

BCDE, ACDF, ABEF, DEF, CDG,
BEG, ADEG, AFG, BDFG, CEFG,
ABCDEFG, CDH, BEH, ADEH,
AFH, BDFH, CEFH, ABCDEFH,
GH, ABDGH, ACEGH, BCDEGH,
BCFGH, ACDFGH, ABEFGH,
DEFGH

64 AG, BF, BCE, AEF,
BDG, ADH

ABFG, ABCEG, CEF, ACEFG,
EFG, ABE, BEG, ABCF, BCFG,
AC, CG, ABD, DFG, ADF, CDEG,
ACDE, BCDEFG, ABCDEF,
ABDEFG, BDEF, ADEG, DE,
ACDFG, CDF, ABCDG, BCD,
DGH, ABDFH, BDFGH, ABCDEH,
BCDEGH, ACDEFH, CDEFGH,
DEFH, ADEFGH, BDEH,
ABDEGH, BCDFH, ABCDFGH,
CDH, ACDGH, ABGH, BH, AFGH,
FH, ACEGH, CEH, ABCEFGH,
BCEFH, BEFGH, ABEFH, EGH,
AEH, CFGH, ACFH, BCGH,
ABCH
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Appendix C

Tables
Table C.1 Random digits.
Table C.2 Tail areas for the standard normal distribution.
Table C.3 Percent points for the Student’s t distribution.
Table C.4 Percent points for the chi-square distribution.
Table C.5 Percent points for the F distribution.

You may use the relation F1−E,ν1,ν2 = 1/FE,ν2,ν1 to determine lower per-
cent points of F .

Table C.6 Coefficients of orthogonal polynomial contrasts.
Table C.7 Critical values for Bonferroni t.
Table C.8 Percent points for the Studentized range.
Table C.9 Critical values for Dunnett’s t.

All table values were computed in MacAnova.



736 Tables

Table C.1: Random digits.

68094 23539 18913 86955 39327 02225 69423 06689 99791 76722
01909 10889 72439 61293 21529 36388 14555 95914 25254 38422
81253 33731 00873 30545 50227 94749 07761 77740 19743 21724
20501 57876 10081 07431 91817 25296 52198 75278 45922 19728
30557 32116 68368 18292 37433 27636 92360 74374 00155 19623
91740 24671 12987 73192 97251 12516 38695 12790 63529 58111
08388 48988 91806 24777 61809 84551 29619 26471 87362 05818
76006 06178 10765 76938 42086 66950 90720 88483 66611 19710
72600 85770 88793 66291 41081 61031 60104 02545 86041 62345
32209 77328 41324 68614 57322 94583 07415 27313 26322 93218
38420 57120 12268 15017 44456 90919 73640 69974 61200 82209
49690 34002 11553 49387 44354 92179 79960 61804 70374 71782
85210 59681 38002 41958 90125 02819 78165 44800 17792 96272
35229 78839 46776 00944 67288 59471 23715 05753 87214 06758
78568 94584 71728 81741 38433 59390 57344 27554 90465 95245
00679 26121 29667 83237 67154 10246 33005 72851 34876 29007
15398 98457 22406 30927 90111 14065 51246 18592 85397 92122
89014 44909 62227 24503 59774 69233 29556 14126 26810 67044
84538 98456 19149 54714 36332 89999 02248 26089 77989 98072
33618 91123 84227 34110 74523 73244 27365 89167 02035 90366
48194 17487 33892 64522 69065 98755 49765 90609 57786 31991
54929 29666 72716 59146 86232 38765 33335 35127 71464 69505
13639 16775 89564 73978 73321 63868 65447 15689 37789 22178
28420 16687 25081 99131 15641 59055 11472 31110 58669 49621
57905 96871 07126 01978 06563 18504 80138 96710 51019 13183
36490 13154 96356 90278 47401 47783 14283 47107 43874 73050
15852 60522 54438 97802 18869 06219 62244 67309 21556 62034
28614 54310 58953 24393 09880 69588 34399 19114 17086 19286
92594 10130 04030 12348 62118 35368 11032 28513 38832 49642
10119 22185 14692 59461 98941 51851 82728 60066 75060 48027
27970 68214 84216 82761 54280 98276 48123 50611 11562 44945
83423 24025 55539 30343 44943 79061 54400 09157 08448 81417
91821 56637 02232 65331 24585 58902 70981 84902 30673 66372
56385 90995 94482 90187 15461 78394 38276 07567 17556 42504
45081 92518 67475 26920 36524 67476 11973 65938 74470 80782
87655 77363 79749 74171 35109 51652 32671 47315 50862 24683
77287 08196 64511 04557 45941 87701 00805 64707 43178 32760
60633 66288 95791 18232 14346 80974 50836 21944 24407 95112
03089 42195 14802 55732 92821 48338 27293 61239 70050 83121
10570 71691 04943 33707 35118 06278 28534 79418 85857 52665
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Table C.1: Random digits, continued.
30263 25135 17075 56131 64430 43573 77506 09510 65985 17159
13811 98464 48063 98483 60748 07379 89540 07699 60560 93391
80280 46665 54480 90895 94555 77376 55074 69674 22124 86546
96302 09821 31198 06423 69016 71408 48673 22035 92401 40242
34922 65539 17012 69492 97661 66351 94296 00451 99255 98999
81090 48413 74876 24165 42912 58517 51494 80415 28758 96355
67224 24891 38160 78489 73226 95368 19123 78424 47010 44371
63204 25405 51831 00562 23640 97596 73613 31668 81299 13975
39678 79440 84900 06251 93120 57470 68970 82673 88484 93689
30374 19502 99804 25596 07763 02914 05334 52321 74595 47068
06813 76019 12479 03459 51078 44527 02086 01367 26591 69118
57097 14846 92151 95357 73479 53708 04442 30282 82320 99043
09521 48055 19823 82346 38890 31327 98995 37520 73670 48277
77991 19227 65802 92645 13378 06593 52303 15173 98557 43631
47605 33709 36996 22976 78611 39221 95962 06137 72056 44395
29969 01292 47429 28477 72881 83330 57842 96953 66190 29761
26978 10916 24087 68880 42657 93404 74540 22069 56907 53591
43115 41945 85148 43539 19452 69583 88827 22232 52494 19895
51493 62141 57091 26829 61899 03433 04983 85869 31376 31307
57731 27002 19954 12314 10234 99589 59101 28150 65083 85057
37816 75263 68459 32095 15844 20352 46919 82419 59487 78779
65009 90859 76655 46234 24073 93183 85770 60190 69870 44997
89443 17030 30366 18026 64815 64790 24439 24153 75360 85068
19978 11146 54195 18001 39458 50082 47801 79655 11199 00978
69137 35105 62192 60958 32109 00787 79202 74700 27231 39559
00102 19753 27900 16409 42548 81604 16881 03009 62624 94651
86465 06647 56974 45774 38612 54604 35113 14259 08609 86134
74692 64914 61361 55581 79265 85121 94402 66705 02455 63518
25531 67924 61704 95032 48824 40759 83063 89562 74811 42721
87057 63223 84910 27744 36979 00578 63738 47473 66356 59676
22723 61335 89609 98968 78238 94353 11790 62264 78866 86637
61837 60095 22904 83603 57362 85576 24298 25868 08558 17143
07208 30664 53006 15714 92246 91157 97898 43295 26162 85001
09265 97806 06556 70909 24791 81907 92463 80405 32493 57985
60079 09778 70500 69276 16192 39024 42519 69661 59750 15740
11620 30055 59498 63231 90667 12729 99405 17906 20684 65483
20210 31650 23408 32631 87779 62148 03322 98071 41217 03952
91935 61772 67324 44921 75176 32383 21611 23145 51109 13168
15449 91085 09246 06833 93677 60567 20180 59763 01650 41798
33759 00216 03782 18185 98508 07890 02365 50624 55194 85954
59706 03210 55372 71993 55247 40554 12783 36287 19884 58491
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Table C.2: Tail areas for the standard normal distribution.

Table entries are E = P (Z > zE) = 1− Φ(zE).

zE .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
.0 .50000 .49601 .49202 .48803 .48405 .48006 .47608 .47210 .46812 .46414
.1 .46017 .45620 .45224 .44828 .44433 .44038 .43644 .43251 .42858 .42465
.2 .42074 .41683 .41294 .40905 .40517 .40129 .39743 .39358 .38974 .38591
.3 .38209 .37828 .37448 .37070 .36693 .36317 .35942 .35569 .35197 .34827
.4 .34458 .34090 .33724 .33360 .32997 .32636 .32276 .31918 .31561 .31207
.5 .30854 .30503 .30153 .29806 .29460 .29116 .28774 .28434 .28096 .27760
.6 .27425 .27093 .26763 .26435 .26109 .25785 .25463 .25143 .24825 .24510
.7 .24196 .23885 .23576 .23270 .22965 .22663 .22363 .22065 .21770 .21476
.8 .21186 .20897 .20611 .20327 .20045 .19766 .19489 .19215 .18943 .18673
.9 .18406 .18141 .17879 .17619 .17361 .17106 .16853 .16602 .16354 .16109

1.0 .15866 .15625 .15386 .15151 .14917 .14686 .14457 .14231 .14007 .13786
1.1 .13567 .13350 .13136 .12924 .12714 .12507 .12302 .12100 .11900 .11702
1.2 .11507 .11314 .11123 .10935 .10749 .10565 .10383 .10204 .10027 .09853
1.3 .09680 .09510 .09342 .09176 .09012 .08851 .08691 .08534 .08379 .08226
1.4 .08076 .07927 .07780 .07636 .07493 .07353 .07215 .07078 .06944 .06811
1.5 .06681 .06552 .06426 .06301 .06178 .06057 .05938 .05821 .05705 .05592
1.6 .05480 .05370 .05262 .05155 .05050 .04947 .04846 .04746 .04648 .04551
1.7 .04457 .04363 .04272 .04182 .04093 .04006 .03920 .03836 .03754 .03673
1.8 .03593 .03515 .03438 .03362 .03288 .03216 .03144 .03074 .03005 .02938
1.9 .02872 .02807 .02743 .02680 .02619 .02559 .02500 .02442 .02385 .02330
2.0 .02275 .02222 .02169 .02118 .02068 .02018 .01970 .01923 .01876 .01831
2.1 .01786 .01743 .01700 .01659 .01618 .01578 .01539 .01500 .01463 .01426
2.2 .01390 .01355 .01321 .01287 .01255 .01222 .01191 .01160 .01130 .01101
2.3 .01072 .01044 .01017 .00990 .00964 .00939 .00914 .00889 .00866 .00842
2.4 .00820 .00798 .00776 .00755 .00734 .00714 .00695 .00676 .00657 .00639
2.5 .00621 .00604 .00587 .00570 .00554 .00539 .00523 .00508 .00494 .00480
2.6 .00466 .00453 .00440 .00427 .00415 .00402 .00391 .00379 .00368 .00357
2.7 .00347 .00336 .00326 .00317 .00307 .00298 .00289 .00280 .00272 .00264
2.8 .00256 .00248 .00240 .00233 .00226 .00219 .00212 .00205 .00199 .00193
2.9 .00187 .00181 .00175 .00169 .00164 .00159 .00154 .00149 .00144 .00139
3.0 .00135 .00131 .00126 .00122 .00118 .00114 .00111 .00107 .00104 .00100
3.1 .00097 .00094 .00090 .00087 .00084 .00082 .00079 .00076 .00074 .00071
3.2 .00069 .00066 .00064 .00062 .00060 .00058 .00056 .00054 .00052 .00050
3.3 .00048 .00047 .00045 .00043 .00042 .00040 .00039 .00038 .00036 .00035
3.4 .00034 .00032 .00031 .00030 .00029 .00028 .00027 .00026 .00025 .00024
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Table C.3: Percent points for the Student t distribution.

Table entries are tE,ν where Pν(t > tE,ν) = E .

E
ν .2 .1 .05 .025 .01 .005 .001 .0005 .0001
1 1.376 3.078 6.314 12.71 31.82 63.66 318.3 636.6 3183
2 1.061 1.886 2.920 4.303 6.965 9.925 22.33 31.60 70.70
3 .978 1.638 2.353 3.182 4.541 5.841 10.22 12.92 22.20
4 .941 1.533 2.132 2.776 3.747 4.604 7.173 8.610 13.03
5 .920 1.476 2.015 2.571 3.365 4.032 5.893 6.869 9.678
6 .906 1.440 1.943 2.447 3.143 3.707 5.208 5.959 8.025
7 .896 1.415 1.895 2.365 2.998 3.499 4.785 5.408 7.063
8 .889 1.397 1.860 2.306 2.896 3.355 4.501 5.041 6.442
9 .883 1.383 1.833 2.262 2.821 3.250 4.297 4.781 6.010

10 .879 1.372 1.812 2.228 2.764 3.169 4.144 4.587 5.694
11 .876 1.363 1.796 2.201 2.718 3.106 4.025 4.437 5.453
12 .873 1.356 1.782 2.179 2.681 3.055 3.930 4.318 5.263
13 .870 1.350 1.771 2.160 2.650 3.012 3.852 4.221 5.111
14 .868 1.345 1.761 2.145 2.624 2.977 3.787 4.140 4.985
15 .866 1.341 1.753 2.131 2.602 2.947 3.733 4.073 4.880
16 .865 1.337 1.746 2.120 2.583 2.921 3.686 4.015 4.791
17 .863 1.333 1.740 2.110 2.567 2.898 3.646 3.965 4.714
18 .862 1.330 1.734 2.101 2.552 2.878 3.610 3.922 4.648
19 .861 1.328 1.729 2.093 2.539 2.861 3.579 3.883 4.590
20 .860 1.325 1.725 2.086 2.528 2.845 3.552 3.850 4.539
21 .859 1.323 1.721 2.080 2.518 2.831 3.527 3.819 4.493
22 .858 1.321 1.717 2.074 2.508 2.819 3.505 3.792 4.452
23 .858 1.319 1.714 2.069 2.500 2.807 3.485 3.768 4.415
24 .857 1.318 1.711 2.064 2.492 2.797 3.467 3.745 4.382
25 .856 1.316 1.708 2.060 2.485 2.787 3.450 3.725 4.352
26 .856 1.315 1.706 2.056 2.479 2.779 3.435 3.707 4.324
27 .855 1.314 1.703 2.052 2.473 2.771 3.421 3.690 4.299
28 .855 1.313 1.701 2.048 2.467 2.763 3.408 3.674 4.275
29 .854 1.311 1.699 2.045 2.462 2.756 3.396 3.659 4.254
30 .854 1.310 1.697 2.042 2.457 2.750 3.385 3.646 4.234
35 .852 1.306 1.690 2.030 2.438 2.724 3.340 3.591 4.153
40 .851 1.303 1.684 2.021 2.423 2.704 3.307 3.551 4.094
45 .850 1.301 1.679 2.014 2.412 2.690 3.281 3.520 4.049
50 .849 1.299 1.676 2.009 2.403 2.678 3.261 3.496 4.014
60 .848 1.296 1.671 2.000 2.390 2.660 3.232 3.460 3.962
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Table C.4: Percent points for the chi-square distribution.

Table entries are χ2
E,ν where Pν(χ2 > χ2

E,ν) = E .

E
ν .995 .99 .975 .95 .05 .025 .01 .005
1 .000039 .00016 .0010 .0039 3.841 5.024 6.635 7.879
2 .0100 .0201 .0506 .1026 5.991 7.378 9.210 10.60
3 .0717 .1148 .2158 .3518 7.815 9.348 11.34 12.84
4 .2070 .2971 .4844 .7107 9.488 11.14 13.28 14.86
5 .4117 .5543 .8312 1.145 11.07 12.83 15.09 16.75
6 .6757 .8721 1.237 1.635 12.59 14.45 16.81 18.55
7 .9893 1.239 1.690 2.167 14.07 16.01 18.48 20.28
8 1.344 1.646 2.180 2.733 15.51 17.53 20.09 21.95
9 1.735 2.088 2.700 3.325 16.92 19.02 21.67 23.59

10 2.156 2.558 3.247 3.940 18.31 20.48 23.21 25.19
11 2.603 3.053 3.816 4.575 19.68 21.92 24.72 26.76
12 3.074 3.571 4.404 5.226 21.03 23.34 26.22 28.30
13 3.565 4.107 5.009 5.892 22.36 24.74 27.69 29.82
14 4.075 4.660 5.629 6.571 23.68 26.12 29.14 31.32
15 4.601 5.229 6.262 7.261 25.00 27.49 30.58 32.80
16 5.142 5.812 6.908 7.962 26.30 28.85 32.00 34.27
17 5.697 6.408 7.564 8.672 27.59 30.19 33.41 35.72
18 6.265 7.015 8.231 9.390 28.87 31.53 34.81 37.16
19 6.844 7.633 8.907 10.12 30.14 32.85 36.19 38.58
20 7.434 8.260 9.591 10.85 31.41 34.17 37.57 40.00
21 8.034 8.897 10.28 11.59 32.67 35.48 38.93 41.40
22 8.643 9.542 10.98 12.34 33.92 36.78 40.29 42.80
23 9.260 10.20 11.69 13.09 35.17 38.08 41.64 44.18
24 9.886 10.86 12.40 13.85 36.42 39.36 42.98 45.56
25 10.52 11.52 13.12 14.61 37.65 40.65 44.31 46.93
26 11.16 12.20 13.84 15.38 38.89 41.92 45.64 48.29
27 11.81 12.88 14.57 16.15 40.11 43.19 46.96 49.64
28 12.46 13.56 15.31 16.93 41.34 44.46 48.28 50.99
29 13.12 14.26 16.05 17.71 42.56 45.72 49.59 52.34
30 13.79 14.95 16.79 18.49 43.77 46.98 50.89 53.67
35 17.19 18.51 20.57 22.47 49.80 53.20 57.34 60.27
40 20.71 22.16 24.43 26.51 55.76 59.34 63.69 66.77
45 24.31 25.90 28.37 30.61 61.66 65.41 69.96 73.17
50 27.99 29.71 32.36 34.76 67.50 71.42 76.15 79.49
60 35.53 37.48 40.48 43.19 79.08 83.30 88.38 91.95
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Table C.5: Percent points for the F distribution.

Table entries are F.05,ν1,ν2 where Pν1,ν2(F > F.05,ν1,ν2) = .05 .

ν1
ν2 1 2 3 4 5 6 7 8 9 10 12 15 20 25 30 40

1 161 200 216 225 230 234 237 239 241 242 244 246 248 249 250 251
2 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.5 19.5 19.5
3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.63 8.62 8.59
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.52 4.50 4.46
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.83 3.81 3.77
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.40 3.38 3.34
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.11 3.08 3.04
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.89 2.86 2.83

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.73 2.70 2.66
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.60 2.57 2.53
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.50 2.47 2.43
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.41 2.38 2.34
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.34 2.31 2.27
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.28 2.25 2.20
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.23 2.19 2.15
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.18 2.15 2.10
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.14 2.11 2.06
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.11 2.07 2.03
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.07 2.04 1.99
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18 2.10 2.05 2.01 1.96
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 2.02 1.98 1.94
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 2.00 1.96 1.91
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11 2.03 1.97 1.94 1.89
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.96 1.92 1.87
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.88 1.84 1.79
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.78 1.74 1.69
50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.95 1.87 1.78 1.73 1.69 1.63
75 3.97 3.12 2.73 2.49 2.34 2.22 2.13 2.06 2.01 1.96 1.88 1.80 1.71 1.65 1.61 1.55

100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.85 1.77 1.68 1.62 1.57 1.52
200 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.93 1.88 1.80 1.72 1.62 1.56 1.52 1.46
∞ 3.84 3.00 2.61 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.51 1.46 1.40
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Table C.5: Percent points for the F distribution, continued.

Table entries are F.01,ν1,ν2 where Pν1,ν2(F > F.01,ν1,ν2) = .01 .

ν1
ν2 1 2 3 4 5 6 7 8 9 10 12 15 20 25 30 40

2 98.5 99.0 99.2 99.2 99.3 99.3 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.5 99.5 99.5
3 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.3 27.2 27.1 26.9 26.7 26.6 26.5 26.4
4 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.7 14.5 14.4 14.2 14.0 13.9 13.8 13.7
5 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.2 10.1 9.89 9.72 9.55 9.45 9.38 9.29
6 13.7 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.30 7.23 7.14
7 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 6.06 5.99 5.91
8 11.3 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.26 5.20 5.12
9 10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 4.96 4.81 4.71 4.65 4.57

10 10.0 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.31 4.25 4.17
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.40 4.25 4.10 4.01 3.94 3.86
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01 3.86 3.76 3.70 3.62
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.96 3.82 3.66 3.57 3.51 3.43
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.80 3.66 3.51 3.41 3.35 3.27
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 3.28 3.21 3.13
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.55 3.41 3.26 3.16 3.10 3.02
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.46 3.31 3.16 3.07 3.00 2.92
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.37 3.23 3.08 2.98 2.92 2.84
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.30 3.15 3.00 2.91 2.84 2.76
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.84 2.78 2.69
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.17 3.03 2.88 2.79 2.72 2.64
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.12 2.98 2.83 2.73 2.67 2.58
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.07 2.93 2.78 2.69 2.62 2.54
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.03 2.89 2.74 2.64 2.58 2.49
25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 2.99 2.85 2.70 2.60 2.54 2.45
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 2.45 2.39 2.30
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.66 2.52 2.37 2.27 2.20 2.11
50 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78 2.70 2.56 2.42 2.27 2.17 2.10 2.01
75 6.99 4.90 4.05 3.58 3.27 3.05 2.89 2.76 2.65 2.57 2.43 2.29 2.13 2.03 1.96 1.87

100 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59 2.50 2.37 2.22 2.07 1.97 1.89 1.80
200 6.76 4.71 3.88 3.41 3.11 2.89 2.73 2.60 2.50 2.41 2.27 2.13 1.97 1.87 1.79 1.69
∞ 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.18 2.04 1.88 1.77 1.70 1.59
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Table C.5: Percent points for the F distribution, continued.

Table entries are F.001,ν1,ν2 where Pν1,ν2(F > F.001,ν1,ν2) = .001 .

ν1
ν2 1 2 3 4 5 6 7 8 9 10 12 15 20 25 30 40

2 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999
3 167 149 141 137 135 133 132 131 130 129 128 127 126 126 125 125
4 74.1 61.2 56.2 53.4 51.7 50.5 49.7 49.0 48.5 48.1 47.4 46.8 46.1 45.7 45.4 45.1
5 47.2 37.1 33.2 31.1 29.8 28.8 28.2 27.6 27.2 26.9 26.4 25.9 25.4 25.1 24.9 24.6
6 35.5 27.0 23.7 21.9 20.8 20.0 19.5 19.0 18.7 18.4 18.0 17.6 17.1 16.9 16.7 16.4
7 29.2 21.7 18.8 17.2 16.2 15.5 15.0 14.6 14.3 14.1 13.7 13.3 12.9 12.7 12.5 12.3
8 25.4 18.5 15.8 14.4 13.5 12.9 12.4 12.0 11.8 11.5 11.2 10.8 10.5 10.3 10.1 9.92
9 22.9 16.4 13.9 12.6 11.7 11.1 10.7 10.4 10.1 9.89 9.57 9.24 8.90 8.69 8.55 8.37

10 21.0 14.9 12.6 11.3 10.5 9.93 9.52 9.20 8.96 8.75 8.45 8.13 7.80 7.60 7.47 7.30
11 19.7 13.8 11.6 10.3 9.58 9.05 8.66 8.35 8.12 7.92 7.63 7.32 7.01 6.81 6.68 6.52
12 18.6 13.0 10.8 9.63 8.89 8.38 8.00 7.71 7.48 7.29 7.00 6.71 6.40 6.22 6.09 5.93
13 17.8 12.3 10.2 9.07 8.35 7.86 7.49 7.21 6.98 6.80 6.52 6.23 5.93 5.75 5.63 5.47
14 17.1 11.8 9.73 8.62 7.92 7.44 7.08 6.80 6.58 6.40 6.13 5.85 5.56 5.38 5.25 5.10
15 16.6 11.3 9.34 8.25 7.57 7.09 6.74 6.47 6.26 6.08 5.81 5.54 5.25 5.07 4.95 4.80
16 16.1 11.0 9.01 7.94 7.27 6.80 6.46 6.19 5.98 5.81 5.55 5.27 4.99 4.82 4.70 4.54
17 15.7 10.7 8.73 7.68 7.02 6.56 6.22 5.96 5.75 5.58 5.32 5.05 4.78 4.60 4.48 4.33
18 15.4 10.4 8.49 7.46 6.81 6.35 6.02 5.76 5.56 5.39 5.13 4.87 4.59 4.42 4.30 4.15
19 15.1 10.2 8.28 7.27 6.62 6.18 5.85 5.59 5.39 5.22 4.97 4.70 4.43 4.26 4.14 3.99
20 14.8 9.95 8.10 7.10 6.46 6.02 5.69 5.44 5.24 5.08 4.82 4.56 4.29 4.12 4.00 3.86
21 14.6 9.77 7.94 6.95 6.32 5.88 5.56 5.31 5.11 4.95 4.70 4.44 4.17 4.00 3.88 3.74
22 14.4 9.61 7.80 6.81 6.19 5.76 5.44 5.19 4.99 4.83 4.58 4.33 4.06 3.89 3.78 3.63
23 14.2 9.47 7.67 6.70 6.08 5.65 5.33 5.09 4.89 4.73 4.48 4.23 3.96 3.79 3.68 3.53
24 14.0 9.34 7.55 6.59 5.98 5.55 5.23 4.99 4.80 4.64 4.39 4.14 3.87 3.71 3.59 3.45
25 13.9 9.22 7.45 6.49 5.89 5.46 5.15 4.91 4.71 4.56 4.31 4.06 3.79 3.63 3.52 3.37
30 13.3 8.77 7.05 6.12 5.53 5.12 4.82 4.58 4.39 4.24 4.00 3.75 3.49 3.33 3.22 3.07
40 12.6 8.25 6.59 5.70 5.13 4.73 4.44 4.21 4.02 3.87 3.64 3.40 3.14 2.98 2.87 2.73
50 12.2 7.96 6.34 5.46 4.90 4.51 4.22 4.00 3.82 3.67 3.44 3.20 2.95 2.79 2.68 2.53
75 11.7 7.58 6.01 5.16 4.62 4.24 3.96 3.74 3.56 3.42 3.19 2.96 2.71 2.55 2.44 2.29

100 11.5 7.41 5.86 5.02 4.48 4.11 3.83 3.61 3.44 3.30 3.07 2.84 2.59 2.43 2.32 2.17
200 11.2 7.15 5.63 4.81 4.29 3.92 3.65 3.43 3.26 3.12 2.90 2.67 2.42 2.26 2.15 2.00
∞ 10.8 6.91 5.42 4.62 4.10 3.74 3.47 3.27 3.10 2.96 2.74 2.51 2.27 2.10 1.99 1.84
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Table C.6: Coefficients of orthogonal polynomial contrasts.

Coefficients
g Order 1 2 3 4 5 6 7
3 1 -1 0 1

2 1 -2 1
4 1 -3 -1 1 3

2 1 -1 -1 1
3 -1 3 -3 1

5 1 -2 -1 0 1 2
2 2 -1 -2 -1 2
3 -1 2 0 -2 1
4 1 -4 6 -4 1

6 1 -5 -3 -1 1 3 5
2 5 -1 -4 -4 -1 5
3 -5 7 4 -4 -7 5
4 1 -3 2 2 -3 1
5 -1 5 -10 10 -5 1

7 1 -3 -2 -1 0 1 2 3
2 5 0 -3 -4 -3 0 5
3 -1 1 1 0 -1 -1 1
4 3 -7 1 6 1 -7 3
5 -1 4 -5 0 5 -4 1
6 1 -6 15 -20 15 -6 1
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Table C.7: Critical values for the two-sided Bonferroni t statistic.

Table entries are tE,ν where Pν(t > tE,ν) = E and E = .05/2/K .

K
ν 2 3 4 5 6 7 8 9 10 15 20 30 50

1 25.5 38.2 50.9 63.7 76.4 89.1 102 115 127 191 255 382 637
2 6.21 7.65 8.86 9.92 10.9 11.8 12.6 13.4 14.1 17.3 20.0 24.5 31.6
3 4.18 4.86 5.39 5.84 6.23 6.58 6.90 7.18 7.45 8.58 9.46 10.9 12.9
4 3.50 3.96 4.31 4.60 4.85 5.07 5.26 5.44 5.60 6.25 6.76 7.53 8.61
5 3.16 3.53 3.81 4.03 4.22 4.38 4.53 4.66 4.77 5.25 5.60 6.14 6.87
6 2.97 3.29 3.52 3.71 3.86 4.00 4.12 4.22 4.32 4.70 4.98 5.40 5.96
7 2.84 3.13 3.34 3.50 3.64 3.75 3.86 3.95 4.03 4.36 4.59 4.94 5.41
8 2.75 3.02 3.21 3.36 3.48 3.58 3.68 3.76 3.83 4.12 4.33 4.64 5.04
9 2.69 2.93 3.11 3.25 3.36 3.46 3.55 3.62 3.69 3.95 4.15 4.42 4.78

10 2.63 2.87 3.04 3.17 3.28 3.37 3.45 3.52 3.58 3.83 4.00 4.26 4.59
11 2.59 2.82 2.98 3.11 3.21 3.29 3.37 3.44 3.50 3.73 3.89 4.13 4.44
12 2.56 2.78 2.93 3.05 3.15 3.24 3.31 3.37 3.43 3.65 3.81 4.03 4.32
13 2.53 2.75 2.90 3.01 3.11 3.19 3.26 3.32 3.37 3.58 3.73 3.95 4.22
14 2.51 2.72 2.86 2.98 3.07 3.15 3.21 3.27 3.33 3.53 3.67 3.88 4.14
15 2.49 2.69 2.84 2.95 3.04 3.11 3.18 3.23 3.29 3.48 3.62 3.82 4.07
16 2.47 2.67 2.81 2.92 3.01 3.08 3.15 3.20 3.25 3.44 3.58 3.77 4.01
17 2.46 2.65 2.79 2.90 2.98 3.06 3.12 3.17 3.22 3.41 3.54 3.73 3.97
18 2.45 2.64 2.77 2.88 2.96 3.03 3.09 3.15 3.20 3.38 3.51 3.69 3.92
19 2.43 2.63 2.76 2.86 2.94 3.01 3.07 3.13 3.17 3.35 3.48 3.66 3.88
20 2.42 2.61 2.74 2.85 2.93 3.00 3.06 3.11 3.15 3.33 3.46 3.63 3.85
21 2.41 2.60 2.73 2.83 2.91 2.98 3.04 3.09 3.14 3.31 3.43 3.60 3.82
22 2.41 2.59 2.72 2.82 2.90 2.97 3.02 3.07 3.12 3.29 3.41 3.58 3.79
23 2.40 2.58 2.71 2.81 2.89 2.95 3.01 3.06 3.10 3.27 3.39 3.56 3.77
24 2.39 2.57 2.70 2.80 2.88 2.94 3.00 3.05 3.09 3.26 3.38 3.54 3.75
25 2.38 2.57 2.69 2.79 2.86 2.93 2.99 3.03 3.08 3.24 3.36 3.52 3.73
26 2.38 2.56 2.68 2.78 2.86 2.92 2.98 3.02 3.07 3.23 3.35 3.51 3.71
27 2.37 2.55 2.68 2.77 2.85 2.91 2.97 3.01 3.06 3.22 3.33 3.49 3.69
28 2.37 2.55 2.67 2.76 2.84 2.90 2.96 3.00 3.05 3.21 3.32 3.48 3.67
29 2.36 2.54 2.66 2.76 2.83 2.89 2.95 3.00 3.04 3.20 3.31 3.47 3.66
30 2.36 2.54 2.66 2.75 2.82 2.89 2.94 2.99 3.03 3.19 3.30 3.45 3.65
35 2.34 2.51 2.63 2.72 2.80 2.86 2.91 2.96 3.00 3.15 3.26 3.41 3.59
40 2.33 2.50 2.62 2.70 2.78 2.84 2.89 2.93 2.97 3.12 3.23 3.37 3.55
45 2.32 2.49 2.60 2.69 2.76 2.82 2.87 2.91 2.95 3.10 3.20 3.35 3.52
50 2.31 2.48 2.59 2.68 2.75 2.81 2.85 2.90 2.94 3.08 3.18 3.32 3.50

100 2.28 2.43 2.54 2.63 2.69 2.75 2.79 2.83 2.87 3.01 3.10 3.23 3.39
∞ 2.24 2.39 2.50 2.58 2.64 2.69 2.73 2.77 2.81 2.94 3.02 3.14 3.29
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Table C.7: Critical values for the two-sided Bonferroni t statistic, continued.

Table entries are tE,ν where Pν(t > tE,ν) = E and E = .01/2/K .

K
ν 2 3 4 5 6 7 8 9 10 15 20 30 50

1 127 191 255 318 382 446 509 573 637 955 1273 1910 3183
2 14.1 17.3 20.0 22.3 24.5 26.4 28.3 30.0 31.6 38.7 44.7 54.8 70.7
3 7.45 8.58 9.46 10.2 10.9 11.5 12.0 12.5 12.9 14.8 16.3 18.7 22.2
4 5.60 6.25 6.76 7.17 7.53 7.84 8.12 8.38 8.61 9.57 10.3 11.4 13.0
5 4.77 5.25 5.60 5.89 6.14 6.35 6.54 6.71 6.87 7.50 7.98 8.69 9.68
6 4.32 4.70 4.98 5.21 5.40 5.56 5.71 5.84 5.96 6.43 6.79 7.31 8.02
7 4.03 4.36 4.59 4.79 4.94 5.08 5.20 5.31 5.41 5.80 6.08 6.50 7.06
8 3.83 4.12 4.33 4.50 4.64 4.76 4.86 4.96 5.04 5.37 5.62 5.97 6.44
9 3.69 3.95 4.15 4.30 4.42 4.53 4.62 4.71 4.78 5.08 5.29 5.60 6.01

10 3.58 3.83 4.00 4.14 4.26 4.36 4.44 4.52 4.59 4.85 5.05 5.33 5.69
11 3.50 3.73 3.89 4.02 4.13 4.22 4.30 4.37 4.44 4.68 4.86 5.12 5.45
12 3.43 3.65 3.81 3.93 4.03 4.12 4.19 4.26 4.32 4.55 4.72 4.96 5.26
13 3.37 3.58 3.73 3.85 3.95 4.03 4.10 4.16 4.22 4.44 4.60 4.82 5.11
14 3.33 3.53 3.67 3.79 3.88 3.96 4.03 4.09 4.14 4.35 4.50 4.71 4.99
15 3.29 3.48 3.62 3.73 3.82 3.90 3.96 4.02 4.07 4.27 4.42 4.62 4.88
16 3.25 3.44 3.58 3.69 3.77 3.85 3.91 3.96 4.01 4.21 4.35 4.54 4.79
17 3.22 3.41 3.54 3.65 3.73 3.80 3.86 3.92 3.97 4.15 4.29 4.47 4.71
18 3.20 3.38 3.51 3.61 3.69 3.76 3.82 3.87 3.92 4.10 4.23 4.42 4.65
19 3.17 3.35 3.48 3.58 3.66 3.73 3.79 3.84 3.88 4.06 4.19 4.36 4.59
20 3.15 3.33 3.46 3.55 3.63 3.70 3.75 3.80 3.85 4.02 4.15 4.32 4.54
21 3.14 3.31 3.43 3.53 3.60 3.67 3.73 3.78 3.82 3.99 4.11 4.28 4.49
22 3.12 3.29 3.41 3.50 3.58 3.64 3.70 3.75 3.79 3.96 4.08 4.24 4.45
23 3.10 3.27 3.39 3.48 3.56 3.62 3.68 3.72 3.77 3.93 4.05 4.21 4.42
24 3.09 3.26 3.38 3.47 3.54 3.60 3.66 3.70 3.75 3.91 4.02 4.18 4.38
25 3.08 3.24 3.36 3.45 3.52 3.58 3.64 3.68 3.73 3.88 4.00 4.15 4.35
26 3.07 3.23 3.35 3.43 3.51 3.57 3.62 3.67 3.71 3.86 3.97 4.13 4.32
27 3.06 3.22 3.33 3.42 3.49 3.55 3.60 3.65 3.69 3.84 3.95 4.11 4.30
28 3.05 3.21 3.32 3.41 3.48 3.54 3.59 3.63 3.67 3.83 3.94 4.09 4.28
29 3.04 3.20 3.31 3.40 3.47 3.52 3.58 3.62 3.66 3.81 3.92 4.07 4.25
30 3.03 3.19 3.30 3.39 3.45 3.51 3.56 3.61 3.65 3.80 3.90 4.05 4.23
35 3.00 3.15 3.26 3.34 3.41 3.46 3.51 3.55 3.59 3.74 3.84 3.98 4.15
40 2.97 3.12 3.23 3.31 3.37 3.43 3.47 3.51 3.55 3.69 3.79 3.92 4.09
45 2.95 3.10 3.20 3.28 3.35 3.40 3.44 3.48 3.52 3.66 3.75 3.88 4.05
50 2.94 3.08 3.18 3.26 3.32 3.38 3.42 3.46 3.50 3.63 3.72 3.85 4.01

100 2.87 3.01 3.1 3.17 3.23 3.28 3.32 3.36 3.39 3.51 3.60 3.72 3.86
∞ 2.81 2.94 3.02 3.09 3.14 3.19 3.23 3.26 3.29 3.40 3.48 3.59 3.72
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Table C.8: Percent points for the Studentized range.

Table entries are q.05(K, ν).

K
ν 2 3 4 5 6 7 8 9 10 15 20 30 50

1 18.0 27.0 32.8 37.1 40.4 43.1 45.4 47.4 49.1 55.4 59.6 65.1 71.7
2 6.09 8.33 9.80 10.9 11.7 12.4 13.0 13.5 14.0 15.7 16.8 18.3 20.0
3 4.50 5.91 6.82 7.50 8.04 8.48 8.85 9.18 9.46 10.5 11.2 12.2 13.4
4 3.93 5.04 5.76 6.29 6.71 7.05 7.35 7.60 7.83 8.66 9.23 10.0 10.9
5 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.72 8.21 8.87 9.67
6 3.46 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49 7.14 7.59 8.19 8.91
7 3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16 6.76 7.17 7.73 8.40
8 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.48 6.87 7.40 8.03
9 3.20 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74 6.28 6.64 7.14 7.75

10 3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60 6.11 6.47 6.95 7.53
11 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 5.98 6.33 6.79 7.35
12 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.39 5.88 6.21 6.66 7.21
13 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 5.79 6.11 6.55 7.08
14 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.71 6.03 6.46 6.98
15 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 5.65 5.96 6.38 6.89
16 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.59 5.90 6.31 6.81
17 2.98 3.63 4.02 4.30 4.52 4.70 4.86 4.99 5.11 5.54 5.84 6.25 6.74
18 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07 5.50 5.79 6.20 6.68
19 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 5.46 5.75 6.15 6.63
20 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 5.43 5.71 6.10 6.58
21 2.94 3.56 3.94 4.21 4.42 4.60 4.74 4.87 4.98 5.40 5.68 6.07 6.53
22 2.93 3.55 3.93 4.20 4.41 4.58 4.72 4.85 4.96 5.37 5.65 6.03 6.49
23 2.93 3.54 3.91 4.18 4.39 4.56 4.70 4.83 4.94 5.34 5.62 6.00 6.45
24 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.32 5.59 5.97 6.42
25 2.91 3.52 3.89 4.15 4.36 4.53 4.67 4.79 4.90 5.30 5.57 5.94 6.39
26 2.91 3.51 3.88 4.14 4.35 4.51 4.65 4.77 4.88 5.28 5.55 5.92 6.36
27 2.90 3.51 3.87 4.13 4.33 4.50 4.64 4.76 4.86 5.26 5.53 5.89 6.34
28 2.90 3.50 3.86 4.12 4.32 4.49 4.62 4.74 4.85 5.24 5.51 5.87 6.31
29 2.89 3.49 3.85 4.11 4.31 4.47 4.61 4.73 4.84 5.23 5.49 5.85 6.29
30 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 5.21 5.47 5.83 6.27
35 2.87 3.46 3.81 4.07 4.26 4.42 4.56 4.67 4.77 5.15 5.41 5.76 6.18
40 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73 5.11 5.36 5.70 6.11
45 2.85 3.43 3.77 4.02 4.21 4.36 4.49 4.61 4.70 5.07 5.32 5.66 6.06
50 2.84 3.42 3.76 4.00 4.19 4.34 4.47 4.58 4.68 5.04 5.29 5.62 6.02

100 2.81 3.36 3.70 3.93 4.11 4.26 4.38 4.48 4.58 4.92 5.15 5.46 5.83
∞ 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.80 5.01 5.30 5.65
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Table C.8: Percent points for the Studentized range, continued.

Table entries are q.01(K, ν).

K
ν 2 3 4 5 6 7 8 9 10 15 20 30 50

1 90.2 135 164 186 202 216 227 237 246 277 298 326 359
2 14.0 19.0 22.3 24.7 26.6 28.2 29.5 30.7 31.7 35.4 38.0 41.3 45.3
3 8.27 10.6 12.2 13.3 14.2 15.0 15.6 16.2 16.7 18.5 19.8 21.4 23.4
4 6.51 8.12 9.17 9.96 10.6 11.1 11.5 11.9 12.3 13.5 14.4 15.6 17.0
5 5.70 6.98 7.80 8.42 8.91 9.32 9.67 9.97 10.2 11.2 11.9 12.9 14.0
6 5.24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9.10 9.95 10.5 11.3 12.3
7 4.95 5.92 6.54 7.01 7.37 7.68 7.94 8.17 8.37 9.12 9.65 10.4 11.2
8 4.75 5.64 6.20 6.62 6.96 7.24 7.47 7.68 7.86 8.55 9.03 9.68 10.5
9 4.60 5.43 5.96 6.35 6.66 6.91 7.13 7.33 7.49 8.13 8.57 9.18 9.91

10 4.48 5.27 5.77 6.14 6.43 6.67 6.87 7.05 7.21 7.81 8.23 8.79 9.49
11 4.39 5.15 5.62 5.97 6.25 6.48 6.67 6.84 6.99 7.56 7.95 8.49 9.15
12 4.32 5.05 5.50 5.84 6.10 6.32 6.51 6.67 6.81 7.36 7.73 8.25 8.87
13 4.26 4.96 5.40 5.73 5.98 6.19 6.37 6.53 6.67 7.19 7.55 8.04 8.65
14 4.21 4.89 5.32 5.63 5.88 6.08 6.26 6.41 6.54 7.05 7.39 7.87 8.46
15 4.17 4.84 5.25 5.56 5.80 5.99 6.16 6.31 6.44 6.93 7.26 7.73 8.29
16 4.13 4.79 5.19 5.49 5.72 5.92 6.08 6.22 6.35 6.82 7.15 7.60 8.15
17 4.10 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27 6.73 7.05 7.49 8.03
18 4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 6.65 6.97 7.40 7.92
19 4.05 4.67 5.05 5.33 5.55 5.73 5.89 6.02 6.14 6.58 6.89 7.31 7.83
20 4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 6.52 6.82 7.24 7.74
21 4.00 4.61 4.99 5.26 5.47 5.65 5.79 5.92 6.04 6.47 6.76 7.17 7.67
22 3.99 4.59 4.96 5.22 5.43 5.61 5.75 5.88 5.99 6.42 6.71 7.11 7.60
23 3.97 4.57 4.93 5.20 5.40 5.57 5.72 5.84 5.95 6.37 6.66 7.05 7.53
24 3.96 4.55 4.91 5.17 5.37 5.54 5.69 5.81 5.92 6.33 6.61 7.00 7.48
25 3.94 4.53 4.89 5.14 5.35 5.51 5.65 5.78 5.89 6.29 6.57 6.95 7.42
26 3.93 4.51 4.87 5.12 5.32 5.49 5.63 5.75 5.86 6.26 6.53 6.91 7.37
27 3.92 4.49 4.85 5.10 5.30 5.46 5.60 5.72 5.83 6.22 6.50 6.87 7.33
28 3.91 4.48 4.83 5.08 5.28 5.44 5.58 5.70 5.80 6.20 6.47 6.84 7.29
29 3.90 4.47 4.81 5.06 5.26 5.42 5.56 5.67 5.78 6.17 6.44 6.80 7.25
30 3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 6.14 6.41 6.77 7.21
35 3.85 4.40 4.74 4.98 5.17 5.32 5.45 5.57 5.67 6.04 6.29 6.64 7.07
40 3.82 4.37 4.70 4.93 5.11 5.26 5.39 5.50 5.60 5.96 6.21 6.55 6.96
45 3.80 4.34 4.66 4.89 5.07 5.22 5.34 5.45 5.55 5.90 6.14 6.47 6.88
50 3.79 4.32 4.63 4.86 5.04 5.19 5.31 5.41 5.51 5.85 6.09 6.42 6.81

100 3.71 4.22 4.52 4.73 4.90 5.03 5.14 5.24 5.33 5.65 5.86 6.16 6.51
∞ 3.64 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 5.45 5.65 5.91 6.23
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Table C.9: Critical values for one-sided Dunnett’s t.

Entries are d′.05(K, ν) where P (maxKj=1 t0j > d′.05(K, ν)) = .05 .

K
ν 2 3 4 5 6 7 8 9 10 15 20 30 40
1 9.51 11.6 13.1 14.3 15.2 16.0 16.7 17.3 17.9 19.9 21.3 23.2 24.5
2 3.80 4.34 4.71 5.00 5.24 5.43 5.60 5.75 5.88 6.38 6.72 7.18 7.50
3 2.94 3.28 3.52 3.70 3.85 3.97 4.08 4.17 4.25 4.56 4.78 5.07 5.27
4 2.61 2.88 3.08 3.22 3.34 3.44 3.52 3.59 3.66 3.90 4.07 4.30 4.46
5 2.44 2.68 2.85 2.98 3.08 3.16 3.24 3.30 3.36 3.57 3.71 3.92 4.05
6 2.34 2.56 2.71 2.83 2.92 3.00 3.06 3.12 3.17 3.37 3.50 3.68 3.81
7 2.27 2.48 2.62 2.73 2.81 2.89 2.95 3.00 3.05 3.23 3.36 3.53 3.64
8 2.22 2.42 2.55 2.66 2.74 2.81 2.87 2.92 2.96 3.14 3.25 3.41 3.52
9 2.18 2.37 2.50 2.60 2.68 2.75 2.81 2.86 2.90 3.06 3.18 3.33 3.44

10 2.15 2.34 2.47 2.56 2.64 2.70 2.76 2.81 2.85 3.01 3.12 3.27 3.37
11 2.13 2.31 2.43 2.53 2.60 2.67 2.72 2.77 2.81 2.96 3.07 3.21 3.31
12 2.11 2.29 2.41 2.50 2.58 2.64 2.69 2.74 2.78 2.93 3.03 3.17 3.27
13 2.09 2.27 2.39 2.48 2.55 2.61 2.66 2.71 2.75 2.90 3.00 3.14 3.23
14 2.08 2.25 2.37 2.46 2.53 2.59 2.64 2.69 2.73 2.87 2.97 3.11 3.20
15 2.07 2.24 2.36 2.44 2.51 2.57 2.62 2.67 2.71 2.85 2.95 3.08 3.17
16 2.06 2.23 2.34 2.43 2.50 2.56 2.61 2.65 2.69 2.83 2.93 3.06 3.15
17 2.05 2.22 2.33 2.42 2.49 2.54 2.59 2.64 2.67 2.81 2.91 3.04 3.13
18 2.04 2.21 2.32 2.41 2.48 2.53 2.58 2.62 2.66 2.80 2.89 3.02 3.11
19 2.03 2.20 2.31 2.40 2.47 2.52 2.57 2.61 2.65 2.79 2.88 3.01 3.10
20 2.03 2.19 2.30 2.39 2.46 2.51 2.56 2.60 2.64 2.77 2.87 2.99 3.08
21 2.02 2.19 2.30 2.38 2.45 2.50 2.55 2.59 2.63 2.76 2.86 2.98 3.07
22 2.02 2.18 2.29 2.37 2.44 2.50 2.54 2.58 2.62 2.75 2.85 2.97 3.06
23 2.01 2.17 2.28 2.37 2.43 2.49 2.54 2.58 2.61 2.75 2.84 2.96 3.05
24 2.01 2.17 2.28 2.36 2.43 2.48 2.53 2.57 2.60 2.74 2.83 2.95 3.04
25 2.00 2.17 2.27 2.36 2.42 2.48 2.52 2.56 2.60 2.73 2.82 2.94 3.03
26 2.00 2.16 2.27 2.35 2.42 2.47 2.52 2.56 2.59 2.72 2.81 2.94 3.02
27 2.00 2.16 2.27 2.35 2.41 2.47 2.51 2.55 2.59 2.72 2.81 2.93 3.01
28 1.99 2.15 2.26 2.34 2.41 2.46 2.51 2.55 2.58 2.71 2.80 2.92 3.01
29 1.99 2.15 2.26 2.34 2.40 2.46 2.50 2.54 2.58 2.71 2.80 2.92 3.00
30 1.99 2.15 2.25 2.34 2.40 2.45 2.50 2.54 2.57 2.70 2.79 2.91 2.99
35 1.98 2.13 2.24 2.32 2.38 2.44 2.48 2.52 2.55 2.68 2.77 2.89 2.97
40 1.97 2.13 2.23 2.31 2.37 2.42 2.47 2.51 2.54 2.67 2.75 2.87 2.95
45 1.96 2.12 2.22 2.30 2.36 2.41 2.46 2.50 2.53 2.66 2.74 2.86 2.94
50 1.96 2.11 2.22 2.29 2.36 2.41 2.45 2.49 2.52 2.65 2.73 2.85 2.93

100 1.94 2.09 2.19 2.26 2.32 2.37 2.42 2.45 2.48 2.61 2.69 2.80 2.88
∞ 1.92 2.06 2.16 2.23 2.29 2.34 2.38 2.42 2.45 2.57 2.65 2.75 2.83
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Table C.9: Critical values for one-sided Dunnett’s t, continued.

Entries are d′.01(K, ν) where P (maxKj=1 t0j > d′.01(K, ν)) = .01 .

K
ν 2 3 4 5 6 7 8 9 10 15 20 30 40

1 47.7 58.1 65.6 71.5 76.3 80.3 83.8 86.8 89.5 99.6 107 116 122
2 8.88 10.0 10.9 11.5 12.0 12.5 12.8 13.2 13.5 14.6 15.3 16.4 17.1
3 5.48 6.04 6.44 6.74 6.99 7.20 7.38 7.54 7.67 8.20 8.56 9.06 9.41
4 4.41 4.80 5.07 5.28 5.45 5.59 5.72 5.82 5.92 6.28 6.53 6.87 7.11
5 3.90 4.21 4.43 4.60 4.73 4.85 4.94 5.03 5.11 5.39 5.59 5.87 6.06
6 3.61 3.88 4.06 4.21 4.32 4.42 4.51 4.58 4.64 4.89 5.06 5.30 5.46
7 3.42 3.66 3.83 3.96 4.06 4.15 4.22 4.29 4.35 4.57 4.72 4.93 5.08
8 3.29 3.51 3.66 3.78 3.88 3.96 4.03 4.09 4.14 4.35 4.49 4.68 4.81
9 3.19 3.40 3.54 3.66 3.75 3.82 3.89 3.94 3.99 4.18 4.31 4.49 4.62

10 3.11 3.31 3.45 3.56 3.64 3.72 3.78 3.83 3.88 4.06 4.18 4.35 4.47
11 3.06 3.25 3.38 3.48 3.56 3.63 3.69 3.74 3.79 3.96 4.08 4.24 4.35
12 3.01 3.19 3.32 3.42 3.50 3.56 3.62 3.67 3.71 3.88 3.99 4.15 4.26
13 2.97 3.15 3.27 3.37 3.44 3.51 3.56 3.61 3.65 3.81 3.92 4.08 4.18
14 2.94 3.11 3.23 3.33 3.40 3.46 3.52 3.56 3.60 3.76 3.87 4.01 4.12
15 2.91 3.08 3.20 3.29 3.36 3.42 3.47 3.52 3.56 3.71 3.82 3.96 4.06
16 2.88 3.05 3.17 3.26 3.33 3.39 3.44 3.48 3.52 3.67 3.78 3.92 4.01
17 2.86 3.03 3.14 3.23 3.30 3.36 3.41 3.45 3.49 3.64 3.74 3.88 3.97
18 2.84 3.01 3.12 3.21 3.28 3.33 3.38 3.43 3.46 3.61 3.71 3.84 3.94
19 2.83 2.99 3.10 3.18 3.25 3.31 3.36 3.40 3.44 3.58 3.68 3.81 3.90
20 2.81 2.97 3.08 3.17 3.23 3.29 3.34 3.38 3.42 3.56 3.65 3.78 3.88
21 2.80 2.96 3.07 3.15 3.22 3.27 3.32 3.36 3.40 3.53 3.63 3.76 3.85
22 2.79 2.94 3.05 3.13 3.20 3.25 3.30 3.34 3.38 3.51 3.61 3.74 3.83
23 2.78 2.93 3.04 3.12 3.18 3.24 3.28 3.33 3.36 3.50 3.59 3.72 3.81
24 2.77 2.92 3.03 3.11 3.17 3.22 3.27 3.31 3.35 3.48 3.57 3.70 3.79
25 2.76 2.91 3.02 3.10 3.16 3.21 3.26 3.30 3.33 3.47 3.56 3.68 3.77
26 2.75 2.90 3.01 3.08 3.15 3.20 3.25 3.29 3.32 3.45 3.54 3.67 3.75
27 2.74 2.89 3.00 3.07 3.14 3.19 3.24 3.27 3.31 3.44 3.53 3.65 3.74
28 2.74 2.88 2.99 3.07 3.13 3.18 3.22 3.26 3.30 3.43 3.52 3.64 3.72
29 2.73 2.88 2.98 3.06 3.12 3.17 3.22 3.25 3.29 3.42 3.51 3.63 3.71
30 2.72 2.87 2.97 3.05 3.11 3.16 3.21 3.25 3.28 3.41 3.50 3.62 3.70
35 2.70 2.84 2.94 3.02 3.08 3.13 3.17 3.21 3.24 3.37 3.45 3.57 3.65
40 2.68 2.82 2.92 2.99 3.05 3.10 3.14 3.18 3.21 3.34 3.42 3.54 3.62
45 2.67 2.81 2.90 2.98 3.03 3.08 3.12 3.16 3.19 3.31 3.40 3.51 3.59
50 2.65 2.79 2.89 2.96 3.02 3.07 3.11 3.14 3.18 3.30 3.38 3.49 3.57

100 2.61 2.74 2.83 2.90 2.95 3.00 3.04 3.07 3.10 3.22 3.29 3.40 3.47
∞ 2.56 2.69 2.77 2.84 2.89 2.93 2.97 3.00 3.03 3.14 3.21 3.31 3.38
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Table C.9: Critical values for two-sided Dunnett’s t, continued.

Entries are d.05(K, ν) where P (maxKj=1 t0j > d.05(K, ν)) = .05 .

K
ν 2 3 4 5 6 7 8 9 10 15 20 30 40

1 17.4 20.0 21.9 23.2 24.3 25.2 25.9 26.6 27.1 29.3 30.7 32.6 33.9
2 5.42 6.06 6.51 6.85 7.12 7.35 7.54 7.71 7.85 8.40 8.77 9.28 9.62
3 3.87 4.26 4.54 4.75 4.92 5.06 5.18 5.28 5.37 5.72 5.95 6.27 6.49
4 3.31 3.62 3.83 3.99 4.13 4.23 4.33 4.41 4.48 4.75 4.94 5.19 5.36
5 3.03 3.29 3.48 3.62 3.73 3.82 3.90 3.97 4.03 4.26 4.42 4.64 4.79
6 2.86 3.10 3.26 3.39 3.49 3.57 3.64 3.71 3.76 3.97 4.11 4.31 4.45
7 2.75 2.97 3.12 3.24 3.33 3.41 3.47 3.53 3.58 3.78 3.91 4.09 4.22
8 2.67 2.88 3.02 3.13 3.22 3.29 3.35 3.41 3.46 3.64 3.76 3.93 4.05
9 2.61 2.81 2.95 3.05 3.14 3.20 3.26 3.32 3.36 3.53 3.65 3.82 3.93

10 2.57 2.76 2.89 2.99 3.07 3.14 3.19 3.24 3.29 3.45 3.57 3.72 3.83
11 2.53 2.72 2.84 2.94 3.02 3.08 3.14 3.19 3.23 3.39 3.50 3.65 3.76
12 2.50 2.68 2.81 2.90 2.98 3.04 3.09 3.14 3.18 3.34 3.45 3.59 3.69
13 2.48 2.65 2.78 2.87 2.94 3.00 3.06 3.10 3.14 3.29 3.40 3.54 3.64
14 2.46 2.63 2.75 2.84 2.91 2.97 3.02 3.07 3.11 3.26 3.36 3.50 3.60
15 2.44 2.61 2.73 2.82 2.89 2.95 3.00 3.04 3.08 3.23 3.33 3.47 3.56
16 2.42 2.59 2.71 2.80 2.87 2.92 2.97 3.02 3.06 3.20 3.30 3.43 3.53
17 2.41 2.58 2.69 2.78 2.85 2.90 2.95 3.00 3.03 3.18 3.27 3.41 3.50
18 2.40 2.56 2.68 2.76 2.83 2.89 2.94 2.98 3.01 3.16 3.25 3.38 3.48
19 2.39 2.55 2.66 2.75 2.81 2.87 2.92 2.96 3.00 3.14 3.23 3.36 3.45
20 2.38 2.54 2.65 2.73 2.80 2.86 2.90 2.95 2.98 3.12 3.22 3.34 3.43
21 2.37 2.53 2.64 2.72 2.79 2.84 2.89 2.93 2.97 3.11 3.20 3.33 3.42
22 2.36 2.52 2.63 2.71 2.78 2.83 2.88 2.92 2.96 3.09 3.19 3.31 3.40
23 2.36 2.51 2.62 2.70 2.77 2.82 2.87 2.91 2.95 3.08 3.17 3.30 3.38
24 2.35 2.51 2.61 2.70 2.76 2.81 2.86 2.90 2.94 3.07 3.16 3.29 3.37
25 2.34 2.50 2.61 2.69 2.75 2.81 2.85 2.89 2.93 3.06 3.15 3.27 3.36
26 2.34 2.49 2.60 2.68 2.74 2.80 2.84 2.88 2.92 3.05 3.14 3.26 3.35
27 2.33 2.49 2.59 2.67 2.74 2.79 2.84 2.88 2.91 3.04 3.13 3.25 3.34
28 2.33 2.48 2.59 2.67 2.73 2.78 2.83 2.87 2.90 3.03 3.12 3.24 3.33
29 2.32 2.48 2.58 2.66 2.73 2.78 2.82 2.86 2.90 3.03 3.11 3.24 3.32
30 2.32 2.47 2.58 2.66 2.72 2.77 2.82 2.86 2.89 3.02 3.11 3.23 3.31
35 2.30 2.46 2.56 2.64 2.70 2.75 2.79 2.83 2.86 2.99 3.08 3.20 3.28
40 2.29 2.44 2.54 2.62 2.68 2.73 2.77 2.81 2.84 2.97 3.05 3.17 3.25
45 2.28 2.43 2.53 2.61 2.67 2.72 2.76 2.80 2.83 2.95 3.04 3.15 3.23
50 2.28 2.42 2.52 2.60 2.66 2.71 2.75 2.79 2.82 2.94 3.02 3.14 3.22

100 2.24 2.39 2.48 2.55 2.61 2.66 2.70 2.74 2.77 2.88 2.96 3.07 3.15
∞ 2.21 2.35 2.44 2.51 2.57 2.61 2.65 2.69 2.72 2.83 2.91 3.01 3.08
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Table C.9: Critical values for two-sided Dunnett’s t, continued.

Entries are d.01(K, ν) where P (maxKj=1 t0j > d.01(K, ν)) = .01 .

K
ν 2 3 4 5 6 7 8 9 10 15 20 30 40

1 87.0 100 109 116 122 126 130 133 136 146 154 163 169
2 12.4 13.8 14.8 15.6 16.2 16.7 17.1 17.5 17.8 19.1 19.9 21.0 21.8
3 6.97 7.64 8.10 8.46 8.75 8.99 9.19 9.37 9.53 10.1 10.5 11.1 11.5
4 5.36 5.81 6.12 6.36 6.55 6.72 6.85 6.98 7.08 7.49 7.77 8.15 8.41
5 4.63 4.97 5.22 5.41 5.56 5.68 5.79 5.89 5.97 6.29 6.51 6.81 7.02
6 4.21 4.51 4.71 4.87 5.00 5.10 5.20 5.28 5.35 5.62 5.80 6.06 6.24
7 3.95 4.21 4.39 4.53 4.64 4.74 4.82 4.89 4.95 5.19 5.35 5.58 5.74
8 3.77 4.00 4.17 4.29 4.40 4.48 4.56 4.62 4.68 4.90 5.05 5.25 5.40
9 3.63 3.85 4.01 4.12 4.22 4.30 4.37 4.43 4.48 4.68 4.82 5.01 5.15

10 3.53 3.74 3.88 3.99 4.08 4.16 4.22 4.28 4.33 4.52 4.65 4.83 4.96
11 3.45 3.65 3.79 3.89 3.98 4.05 4.11 4.16 4.21 4.39 4.52 4.69 4.81
12 3.39 3.58 3.71 3.81 3.89 3.96 4.02 4.07 4.12 4.29 4.41 4.57 4.69
13 3.33 3.52 3.65 3.74 3.82 3.89 3.94 3.99 4.04 4.20 4.32 4.48 4.59
14 3.29 3.47 3.59 3.69 3.76 3.83 3.88 3.93 3.97 4.13 4.24 4.40 4.50
15 3.25 3.43 3.55 3.64 3.71 3.78 3.83 3.88 3.92 4.07 4.18 4.33 4.43
16 3.22 3.39 3.51 3.60 3.67 3.73 3.78 3.83 3.87 4.02 4.13 4.27 4.37
17 3.19 3.36 3.47 3.56 3.63 3.69 3.74 3.79 3.83 3.98 4.08 4.22 4.32
18 3.17 3.33 3.45 3.53 3.60 3.66 3.71 3.75 3.79 3.94 4.04 4.18 4.28
19 3.15 3.31 3.42 3.50 3.57 3.63 3.68 3.72 3.76 3.90 4.00 4.14 4.24
20 3.13 3.29 3.40 3.48 3.55 3.60 3.65 3.69 3.73 3.87 3.97 4.11 4.20
21 3.11 3.27 3.37 3.46 3.52 3.58 3.63 3.67 3.71 3.85 3.94 4.08 4.17
22 3.09 3.25 3.36 3.44 3.50 3.56 3.61 3.65 3.68 3.82 3.92 4.05 4.14
23 3.08 3.23 3.34 3.42 3.48 3.54 3.59 3.63 3.66 3.80 3.89 4.02 4.11
24 3.07 3.22 3.32 3.40 3.47 3.52 3.57 3.61 3.64 3.78 3.87 4.00 4.09
25 3.05 3.21 3.31 3.39 3.45 3.51 3.55 3.59 3.63 3.76 3.85 3.98 4.07
26 3.04 3.19 3.30 3.37 3.44 3.49 3.54 3.58 3.61 3.74 3.83 3.96 4.05
27 3.03 3.18 3.28 3.36 3.42 3.48 3.52 3.56 3.60 3.73 3.82 3.94 4.03
28 3.03 3.17 3.27 3.35 3.41 3.46 3.51 3.55 3.58 3.71 3.80 3.93 4.01
29 3.02 3.16 3.26 3.34 3.40 3.45 3.50 3.54 3.57 3.70 3.79 3.91 3.99
30 3.01 3.15 3.25 3.33 3.39 3.44 3.49 3.52 3.56 3.69 3.77 3.90 3.98
35 2.98 3.12 3.22 3.29 3.35 3.40 3.44 3.48 3.51 3.64 3.72 3.84 3.92
40 2.95 3.09 3.19 3.26 3.32 3.37 3.41 3.44 3.48 3.60 3.68 3.80 3.88
45 2.93 3.07 3.16 3.24 3.29 3.34 3.38 3.42 3.45 3.57 3.65 3.76 3.84
50 2.92 3.05 3.15 3.22 3.27 3.32 3.36 3.40 3.43 3.55 3.63 3.74 3.82

100 2.86 2.98 3.07 3.14 3.19 3.24 3.27 3.31 3.34 3.45 3.52 3.63 3.70
∞ 2.79 2.92 3.00 3.06 3.11 3.15 3.19 3.22 3.25 3.35 3.42 3.52 3.59
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