Fixed-Width Output Analysis for MCMC

Galin L. Jones
with James Flegal, Murali Haran, Ron Neath and Brian Caffo

School of Statistics
University of Minnesota

March 19, 2009
Let \(\pi \) be a probability distribution. I want the value of some feature \(\theta \). For example, \(\theta \) might be a quantile, a mode, an interval, or

\[
\theta = E_\pi g := \int_X g(x) \pi(dx)
\]

Assume that \(\theta \) is analytically intractable.

Treat \(\theta \) as an unknown parameter and simulate data to estimate it.
Simulate a Markov chain $X := \{X_n\}$

Use $\hat{\theta}_n = \hat{\theta}(X_0, X_1, \ldots, X_{n-1})$ to estimate θ so that

$$\hat{\theta}_n \to \theta \quad \text{as} \quad n \to \infty$$

Usual Case

$$\hat{\theta}_n = \bar{g}_n := \frac{1}{n} \sum_{i=0}^{n-1} g(X_i) \overset{a.s.}{\to} E_\pi g = \theta \quad \text{as} \quad n \to \infty$$
Fixed-Width Methodology

When is n large enough?

When is $\hat{\theta}_n$ a good estimate of θ?

Monte Carlo Error: $\hat{\theta}_n - \theta$

Sampling Distribution

$$\tau_n(\hat{\theta}_n - \theta) \xrightarrow{d} J \text{ as } n \to \infty$$

Simulate until

$$[\hat{\theta}_n - c_n, \hat{\theta}_n + c_n]$$

is sufficiently narrow.
Fixed-Width Methodology

Usual Case

\[\sqrt{n}(\bar{g}_n - E_{\pi}g) \xrightarrow{d} N(0, \sigma_g^2) \quad \text{as} \quad n \to \infty \]

Simulate until

\[t_* \frac{\hat{\sigma}_g}{\sqrt{n}} + a(n) \leq \text{desired half-width} \]

where \(t_* \) is an appropriate critical value and \(a(n) \downarrow 0 \) on \(\mathbb{Z}^+ \).
Questions

Old Question

1. When is \(\hat{\theta}_n \) a good estimate of \(\theta \)?

New Questions

1. When does the Monte Carlo error have a limiting distribution?
2. How can we construct confidence intervals for \(\theta \)?
3. Will the sequential procedure terminate at a finite time?
4. Will the resulting intervals have the desired coverage probability?
Regularity Conditions

$X = \{X_0, X_1, X_2, \ldots\}$ is a Markov chain

- invariant distribution is π
- π-irreducible
- aperiodic
- positive Harris recurrent

$$P^n(x, A) := Pr(X_{i+n} \in A | X_i = x)$$

As $n \to \infty$

$$\|P^n(x, \cdot) - \pi(\cdot)\| := \sup_A |P^n(x, A) - \pi(A)| \downarrow 0$$
Regularity Conditions

Rate of TV convergence is the key:

$$\| P^n(x, \cdot) - \pi(\cdot) \| \leq C(x)t^n$$

where $C(x) \geq 0$ and $t \in (0, 1)$.

Uniform / geometric ergodicity means C is bounded / unbounded.

There exist constructive techniques for establishing the rate of convergence.
Usual Case

\[\theta = E_{\pi} g \]

\[\sqrt{n}(\bar{g}_n - E_{\pi} g) \xrightarrow{d} N(0, \sigma_g^2) \text{ as } n \to \infty \]

Simulate until

\[t_\star \frac{\hat{\sigma}_g}{\sqrt{n}} + a(n) \leq \text{desired half-width} \]

where \(t_\star \) is an appropriate critical value and \(a(n) \downarrow 0 \) on \(\mathbb{Z}^+ \).
Usual Case: CLT

Suppose at least one of the following conditions hold.

- X is uniformly ergodic and $E_{\pi} g^2 < \infty$
- X is geometrically ergodic and $E_{\pi} |g|^{2+\epsilon} < \infty$

Then for any initial distribution there exists $\sigma_g^2 \in (0, \infty)$ such that as $n \to \infty$

$$\sqrt{n}(\bar{g}_n - E_{\pi} g) \xrightarrow{d} N(0, \sigma_g^2)$$
Usual Case: Estimating σ^2_g

Batch Means (nonoverlapping, overlapping, spaced)
Regenerative Simulation
Spectral Methods
Subsampling Bootstrap (overlapping batch means)
Time Series Bootstrap
Usual Case: Overlapping Batch Means

Split a long run \{X_0, X_1, \ldots, X_{n-1}\} into batches of length \(a_n\):

\[X_0, \ldots, X_{a_n-1}\]
\[X_1, \ldots, X_{a_n}\]
\[
\vdots
\]

There are \(n - a_n + 1\) batches of length \(a_n\).

\[
\hat{\sigma}_{OBM}^2 = \frac{na_n}{(n-a_n)(n-a_n+1)} \sum_{j=0}^{n-a_n} (\bar{g}_j - \bar{g}_n)^2
\]
Usual Case: Overlapping Batch Means

Theorem

Suppose

- \(X \) is geometrically ergodic,
- \(E_\pi |g(x)|^{2+\delta+\epsilon} < \infty \) for \(\delta, \epsilon > 0 \) and
- \(a_n = \lfloor n^\nu \rfloor \) and \(3/4 > \nu > (1 + \delta/2)^{-1} \),

then \(\hat{\sigma}^2_{OBM} \rightarrow \sigma_g^2 \) w.p. 1 as \(n \rightarrow \infty \).
General Case

\(\hat{\theta}_n \) approximates \(\theta \)

Sampling Distribution

\[
\tau_n(\hat{\theta}_n - \theta) \xrightarrow{d} J \quad \text{as} \quad n \to \infty
\]

Simulate until

\[
[\hat{\theta}_n - c_n, \hat{\theta}_n + c_n]
\]

is sufficiently narrow.
General Case: Subsampling Bootstrap

Split a long run \(\{X_0, X_1, \ldots, X_{n-1}\} \) into batches of length \(a_n \):

\[
\begin{align*}
X_0, & \ldots, X_{a_n-1} & \hat{\theta}_1 \\
X_1, & \ldots, X_{a_n} & \hat{\theta}_2 \\
\vdots & & \vdots
\end{align*}
\]

There are \(n - a_n + 1 \) batches of length \(a_n \). The collection

\[
\hat{\theta}_1, \hat{\theta}_2, \ldots, \hat{\theta}_{n-a_n+1}
\]

can be used to approximate the sampling distribution of \(\hat{\theta}_n \).
Theorem Assume that as \(n \to \infty \) \(\tau_n \to \infty \) and

\[
\tau_n(\hat{\theta}_n - \theta) \xrightarrow{d} J.
\]

Let \(J^* \) be the empirical distribution function of the \(\tau_{a_n}(\hat{\theta}_{a_n} - \hat{\theta}_n) \).

If \(X \) is geometrically ergodic and as \(n \to \infty \)

1. \(a_n \to \infty \) and \(a_n/n \to 0 \)
2. \(\tau_{a_n} \to \infty \) and \(\tau_{a_n}/\tau_n \to 0 \)

then \(J^* \to J \) at every continuity point and an “asymptotically valid” 100(1 - \(\alpha \))% confidence interval for \(\theta \) is

\[
[\hat{\theta}_n - \tau_n^{-1}J^{*^{-1}}(1 - \alpha/2), \hat{\theta}_n - \tau_n^{-1}J^{*^{-1}}(\alpha/2)].
\]
Goal: Consider a Pareto(α, β). Estimate the mean

$$\theta_1 = \frac{\alpha \beta}{\beta - 1}$$

and the median

$$\theta_2 = (1 + 2\alpha^{-\beta})^{-\beta}$$

We will pretend to require MCMC and use an independence sampler with a Pareto(α, λ) candidate.

$\lambda \leq \beta \Rightarrow$ uniformly ergodic

$\lambda > \beta \Rightarrow$ not even geometrically ergodic

$\lambda > 2\beta \Rightarrow \sigma_g^2 = \infty$.
Toy Example

5000 Replications
Target half-width = .005
Nominal 95% confidence interval

<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>λ</th>
<th>OBM</th>
<th>SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>.943</td>
<td>.948</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(.003)</td>
<td>(.003)</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>9</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Estimated Coverage Probability (median)

SS .952 (.003)
Summary

- Fixed-width methodology is useful in automating MCMC but requires a strongly consistent estimator of the asymptotic variance / asymptotically valid confidence interval.

- Fixed-width methods compare favorably to using diagnostics such as that developed by Gelman and Rubin.

- Spectral variance methods (Tukey-Hanning window) appear superior to batch means methods.

- The finite-sample properties of these methods have been extensively investigated and match the theory.

- There has been no assumption of stationarity.