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Abstract

Consider a parametric statistical mod&i(dz|f), and an improper prior distribution,(d6),
that together yield a (proper) formal posterior distribatiQ(df|z). The prior is calledstrongly
admissibleif the generalized Bayes estimator of every bounded funaiifd is admissible under
squared error loss. Eaton [5] used the Blyth-Stein Lemmaveldp a sufficient condition, calldt,
for strong admissibility of’. Our main result says that, under mild regularity cond#iafv satisfies
C andg(60) is a bounded, non-negative function, thenpleeturbed prior distributiory(9)v(d6) also
satisfieC and is therefore strongly admissible. Our proof has thregclmmponents: (i) Eaton’s
[5] result that the conditior® is equivalent to thdocal recurrenceof the Markov chain whose
transition functionisk(df|n) = | Q(df|x)P(dz|n); (ii) a new result for general state space Markov
chains giving conditions under which local recurrence igiegjent to recurrence; and (iii) a new
generalization of Hobert and Robert’s [10] result that dagton’s Markov chain is recurrent if and
only if the chain with transition functiok(dz|y) = [ P(dxz|0)Q(df|y) is recurrent. One important
application of our results involves the construction obsgglly admissible prior distributions for
estimation problems with restricted parameter spaces.

AMS2000subject classification®rimary 62C15; secondary 60J05
Abbreviated title Perturbations of Strongly Admissible Priors
Key words and phrasesAdmissibility, Dirichlet form, Estimation, Formal Bayesile, Formal posterior distribution,

Improper prior distribution, Irreducibility, Symmetric &kov chain, Recurrence, Restricted parameter space



1 Introduction

1.1 The problem

Consider a statistical decision problem involving a partaimetatistical modelP(dz|f) on a sample
spaceX and ao-finite improper prior distribution(df) on a parameter spa¢¢. Both X and© are
assumed to be Polish spaces equipped with their Bosdgebras5(X') and53(0). Since the prior is
improper, the existence of a proper posterior distribuisomot guaranteed. However, when the marginal
measurel/, defined as

M(dz) = /@P(dm|9)1/(d9) ,

is o-finite, a formal posterior distributioy(df|z) exists and is characterized by
P(dz|0)v(df) = Q(db|z)M (dx) . 1)

This equality means that the two joint measurestor © given by the left and right-hand sides agree.
For eachz € X, Q(+|x) is a probability measure and for eaChe B(©), Q(C|-) is a measurable
function. See Eaton [4, 5] and the references therein faildetgarding the existence and uniqueness
of Q(df|z). Throughout this papei(/ is assumed to be-finite.

The formal posterior distribution can be used to solve siaél decision problems by choosing
actions to minimize posterior expected loss. In particulze formal Bayes solution to the problem of
estimating a bounded, real-valued functipi) under squared error loss is the estimator

A(x) = /@ 1(0)Q(db)z) @

and the risk function of a generic estimator, $ajs its mean squared error; i.e.,

R(5,0) = /X (5(z) — 1(6))* P(dal9) .

We will judge estimators using the notion of almost-adnhigisy, which is now defined. Letx be a
non-trivial, o-finite measure 0O, B(O)).

Definition 1. An estimator is almoste-admissible if for any estimataY such that
R(8',0) < R(6,0) VO €O,
the set{d € © : R(¢',0) < R(4,6)} hasa-measure zero.

If the statistical modeP(dz|#) and the improper prior(df) combine to yield a formal posterior
distribution that generates (almost) admissible estimaida (2)) for a large class of functions 6f
then we might be willing to endorseas a good “all purpose” prior to use in conjunction withidx|0).
This idea provides motivation for the following definition.
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Definition 2. The improper prior(df) (or, equivalently, the corresponding formal posteri@dé|z))
is called strongly admissible if, for every bounded, meaBl#r functiony : © — R, the estimatory is
almostyv-admissible.

Eaton [5] used the Blyth-Stein Lemma to develop a sufficiemtdition for strong admissibility of
v and then went on to show that this sufficient condition is aict,fequivalent to a recurrence property
of an associated Markov chain defined in term$6dx|6) andv(df). Our results build on this theory,
but this paper is hot meant to be a review. For an expositatly & this area, see Eaton [6, 8]. We begin
with the sufficient condition for strong admissibility. Eir define a (symmetric) measure ®nx © as

S(do, diy) = /X Q(db]x)Q(dn|x) M (da)

Let L»(v) be the set of-square integrable functions defined@®nForh € Ly(v), define

A =5 [ (40) = nn))*s(ao.dn).

It's not hard to show thaf\(h) < oo for all h € La(v). A measurable sef' C O is calledv-proper if
0 < v(C) < co. For eachv-proper setC, define

V(C)={h € Ly(v) : hisboundedh() > I-(0)} .
Here is a sufficient condition for strong admissibility.

Theorem 1. (Eaton, 1992) The prior is strongly admissible if

inf A(h) =0 for eachyv-proper setC' . 3
neite) (h) v-prop (3)

Theorem 1 provides a single condition involvirig and v that simultaneously implies the (almost)
admissibility of a large class of formal Bayes estimatoFor(an extension that can handle unbounded
~, see [7].) Moreover, if (3) holds, then it follows that a largass operturbationsof v also satisfy (3)
and are therefore also strongly admissible. To be specditsider a perturbation of given by

vg(dl) = g(0) v(do) ,

whereg : © — [0,00). Assume thay is bounded away from 0 and away fros; i.e., assume that
there exists am > 0 such that < g(#) < 1/¢ for all § € ©. Under this assumption, is ac-finite,
improper prior and the corresponding marging)(B) = [, P(B|0) g() v(df) is alsoo-finite. Hence,
the corresponding posteri@},(df|x) exists and satisfies the following analogue of (1)

P(dx]0) g(0) v(df) = Qg(d0]x) My(dz) . (4)



Let A, denote the analogue df for the perturbed problem; i.e., fare Lo(v,) = Lo(v), define

8y =5 [ [ (h0) =), a0,

whereS,(df, dn) = [ Qq(d0]x)Q4(dn|x)My(dx). Note thatC' C © is v-proper if and only if it is
vg-proper. Finally, the inequalitp\,(h) < e~3A(h), which is established in the Appendix, shows that
the analogue of (3) (for the perturbed problem) is satisfiedivae have the following result.

Corollary 1. (Eaton, 1992) Suppose thg) holds so that is strongly admissible. I§ : © — [0, o)
is bounded away from 0 ansb, then the priorv,(df) = ¢(#) v(d6) is also strongly admissible.

Our proof thatA (k) < e 3A(h) breaks down whep is not bounded away from zero (and when
g is unbounded). The question that motivated our researcbags$ Corollary 1 hold trugvithout the
assumption thay is bounded away from 0?” We will show that (under mild regtyaconditions)
the answer to the question is “yes.” This result has imporiaplications for estimation problems
with restricted parameter spaces. Indeed; i$ the indicator function ob* C ©, thenv,(df) =
Io+(0)rv(df) and the use of this prior is effectively the same as restigcthe parameter space to be
©* from the start. Further details concerning this applicatiwe provided later in this section. It is
important to recognize that, in the absence of the assumtitatg is bounded away from 0, there is no
guarantee that, is improper.

1.2 Eaton’s Markov chain

Our arguments rely heavily on a result of Eaton [5] showirad the sufficient condition (3) is equivalent
to a recurrence property of a Markov chain associated weéld#ctision problem. A precise description
of this equivalence involves a few basic concepts from thehof general state space Markov chains.
Let Z be a Polish space with Borelalgebra3(Z). Suppose thak : B(Z) x Z — [0,1] is a Markov
transition function; i.e., for each € Z, K(-|z) is a probability measure and for each ¢ B(Z2),

K (A|-) is a measurable function. The transition functisndefines a Markov chai® = {®,,}>°, on
the infinite product spacg°° such that, giverb,, = z, the probability distribution of,, ; is K(-|z).

Let Pr,(-) denote the overall law governing on Z*° assuming tha®, = z.

Two different notions of theecurrenceof a Markov chain are used in this article. The definition
used by Meyn and Tweedie [15, Chapter 8], which we refer tqbkiras “recurrence,” applies only
to Markov chains that satisfy certain irreducibility propes. In order to postpone a discussion of the
technical matter of irreducibility, we defer a formal statnt of this definition until Section 2. The
Markov chains studied by Eaton [5] are not necessarily ircdale, so he used a different notion called
“local recurrence” that does not require any irreducipiliLet o 4 denote the first return td; that is,

o4 =min{n > 1: ®, € A} with the understanding thaty = oo if ®,, € A°for all n > 1. Also, let
a be a non-trivial o-finite measure olr. Recall that a sefl is a-proper if0 < «(A4) < oo.
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Definition 3. The Markov chainb is called locallya-recurrent if for eachx-proper set4, the set
{z € A: PI‘Z(UA < oo) < 1}
hasa-measure 0.

The definition says that, for every-proper setd, aside from a set of starting values ihthat has
a-measure 0, the chain returns to the datith probability 1.

If 7 is a non-trivial, o-finite measure or¥ such thatk (dw|z)m(dz) = K(dz|w)n(dw), then the
Markov chain® is calledw-symmetric (or reversible with respecttd. Suppose thad is r-symmetric
and define a Dirichlet form associated wibhas

D(h) = & / / (h(z) — h(w)) 2K (dz|w) 7(dw) ,
2J)z)z
for h € Ly(7). For eachr-proper setd, define
U(A) = {h € Ly(r) : hisboundedh(z) > Ia(z)} .
Here is a characterization of locakrecurrence for a-symmetric Markov chain.

Theorem 2. (Eaton, 1992) Suppose the Markov chéins w-symmetric. Thed is locally-r-recurrent
if and only if

inf D(h) =0 for eachw-proper set4 . 5
neh (h) m-prop (5)

To see the connection between the sufficient condition (8)@cel recurrence, define
Ridoln) = | Quatla) Pldal)

which is a Markov transition function dfi(©) x ©, and note that, by using (1), we can writ&if, dn) =
R(dO|n)v(dn). LetW = {W,}>°, denote the Markov chain correspondingitoSinces is a symmet-
ric measure, we havB(df|n)v(dn) = R(dn|0)v(dl); that is,IW is av-symmetric chain. Therefore, to
each decision problem; i.e., to eadh v) pair, there corresponds a Markov ch&in With Theorem 2
in mind, Theorem 1 can be reinterpreted as saying that aisufficondition for the strong admissibility
of v is the localy-recurrence of//. Not only is this an interesting connection between adtilityi and
recurrence similar to those established by Brown [1] andistmime [12, 13], it has practical implications
as well. Indeed, while direct verification of (5) can be veifficllt, there are alternative techniques for
establishing recurrence that are often effective in pradsee; e.g., 5, Example 3.1 & p.1163].

We now return to the original perturbed prior problem whelie assumed thaj is bounded away
from 0 andoo. Mimicking what was done earlier, define

Ry (d6]) = /X Qb)) P(dxln) .
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which is a Markov transition function oB(©) x ©, and note thab,(df, dn) = R,(d0|n)vy(dn). Let
W9 = {W7}22, denote the Markov chain correspondingRg. Using Theorem 2, we can now state
the key result underlying Corollary 1 in the language of Markhains as follows.

Theorem 3. If W is locally-v-recurrent andg : © — [0, c0) is bounded away from zero and, then
W9 is locally-v,-recurrent.

Figure 1 depicts the implications used in Corollary 1. Ndtat teverything follows from the local-
recurrence ofV/.

W is locallyv-recurrent = 1/(df) is strongly admissible
4

W9 is locally-v,-recurrent = g(6) v(df) is strongly admissible

Figure 1: Implications holding under the assumption thstbounded away from 0 angb.

1.3 A closely related Markov chain onX’

In the same way thak(df|n) defines the Markov chaili” on the parameter spaég the function
Ridylo) = [ Playlo) Quatle)

defines a Markov chain, sa@? = {Wn};’ozo, on the sample spac&. Moreover, it's easy to see that
W is M-symmetric; that is R(dy|z)M (dz) = R(dz|y)M(dy). So now each decision problem has
associated with it two Markov chaingV’ on the parameter space, aidon the sample space. Despite
the fact that¥” and IV live on different spaces, they have similar stability pmbies due to the structural
similarity of their transition functions and we will exptdhis later.

There are two decision problems under consideration hieeeoriginal problem with modeP(dz|0)
and priorv(df) and the perturbed problem with mode{dx|0) and priorg(0)v(d#), where itis assumed
that ¢ is bounded away from 0 ansb. There are a total of four Markov chains associated withehes
two problems and the only one that has not been introduceﬂ;ﬁtg, the Markov chain oX’ with
Markov transition function

Ry(dylz) = /e P(dyl6) Qy(do])

The key to the proof of Corollary 1 is the inequality,(h) < e 3A(h). A quick glance at the
Appendix reveals that this inequality is proved by estdliig a simple relationship betweétid6, dn)
andSy(df,dn). The Dirichlet forms corresponding 0’ and W9 involve the (symmetric) measures
S(dy,dx) = R(dy|lx)M (dz) andS,(dy,dx) = R,(dy|z)M,(dz), respectively. It turns out that the
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relationship betweef anng is actually even simpler than the one betwekeand.S,. Indeed, (1) can
be used to show that

(dy, dz) = /@ P(dy|0) P(dz]0) v(d6) ,

and
S (duda) = [ P(aylo) P(del0) g(6) v(as)

and hence the two measures differ by just a single factgf@®f. This fact is used in the Appendix to
prove the following result.

Theorem 4. If W is locally-M-recurrent andg : © — [0,00) is bounded, thedV’? is locally-M, -
recurrent.

In contrast to Theorem 3, it isot assumed in Theorem 4 thatis bounded away from 0. Thus,
Theorem 4 is much more than just the analogue of Theorem Ghéochains on the sample space.
On the other hand, to this point we have not mentioned anyegiioms between the chains on the
sample spac(aW & Wg) and strong admissibility. Thus, something more is needéatd&ve can take
advantage of Theorem 4.

Remarkl. Theorem 4 fails without the assumption thats bounded above (even if we add the as-
sumption thay is bounded away from 0). Indeed, the results in [10] can bd tseonstruct examples
where W is locally-M -recurrent andy is unbounded (and bounded away from zero), Bt is not
locally-M,-recurrent. Thus, an extension of our perturbation resaltee case of unboundeodwould
require a more delicate analysis.

1.4 Exploiting a relationship betweenlV and W

The final piece of the puzzle is a stability relationship begwil and W that allows us to prove

Corollary 1 using Theorem 4 instead of Theorem 3 and hencispedse with the assumption thais

bounded away from 0. Hobert and Robert [10] establishedhlistarelationship betweerl and W

and one of the main results in this paper is a substantialrgiéretion of their result. To describe this

generalization, we need to introduce a notion of irredlitjtior general state space Markov chains.
Consider again our generic Markov cha@mnwith state spac& and suppose that is a non-trivial,

o-finite measure otf. The chain® is calleda-irreducible if for every setd with «(A) > 0 and every

z € Z, there exists an > 1 (which may depend on and A) such thatPrz(<I>n € A) > 0. Simply put,

® is a-irreducible if every set with positiva-measure is accessible from every point in the state space.

Here is our result.

Theorem 5. Assume that eithdl is v-irreducible or W is M-irreducible. Then the Markov chaiiV’
is recurrent if and only if the Markov chail is recurrent.



Note that Theorem 5 involves (Meyn and Tweedie’s definitifrrecurrence. Thus, in order to use
this result in conjunction with the previous results, whityolve local recurrence, we need some results
relating the two forms of recurrence. Indeed, we will shoattlunder certain irreducibility conditions,
recurrence and local recurrence are equivalent. Hencen wigechains in questiordi(, W, W¢ and
Wg) are all suitably irreducible anglis bounded, the set of implications in Figure 2 holds. Thanefat
the expense of adding some mild irreducibility conditiom€orollary 1, we can remove the assumption
thatg is bounded away from zero. Corollary 2 is a formal stateméntioextension of Corollary 1.

W is recurrent < W is recurrent = v(de) is strongly admissible

4

W9 is recurrent <> W9 is recurrent = g(0) v(d8) is strongly admissible

Figure 2: Implications holding under (irreducibility anttie assumption thatis bounded.

Corollary 2. Suppose thaf3) holds so that is strongly admissible. Suppose that © — [0, c0) is
bounded and that the following two conditions hold

1. EitherW is v-irreducible or W is M-irreducible.
2. EitherW?Y is y4-irreducible orW? is M-irreducible.
Then the priory, (df) = g(0) v(d0) is strongly admissible.

There is an important subtle difference between Corollagnd Corollary 2. In order to apply
either result, one must show that (3) holds, or equivaletiigt IV is locally--recurrent. If Corollary 2
is applicable, that is, if the irreducibility conditionsltpthen there are two different Markov chaing),
and W, whose recurrence leads to the desired result. ThiE, lflappens to be analytically intractable,
one can operate ol instead. This idea has proved useful in practice. Indegagréence has shown
that, of the two chaind}V’ is often more amenable to analysis [see; e.g. 9, 10, 11]. fibisnay make
it slightly less surprising that we are able to make a strostgtement about the relationship between
W andW9 (Theorem 4) than we can about that betw&érand1/9 (Theorem 3).

We now describe an application to estimation problems veisitricted parameter spaces. Recall our
original decision problem with parameter sp&tesample spac&’ and statistical modeP(dz|6). Call
this “Problem A.” Consider a slightly different problem wieeverything is the same except that the
parameter space is no®" € 5(0), a proper subset ¢b. Call this “Problem B.” Suppose thatis an
improper prior orP that satisfies (3) seis strongly admissible in Problem A. Let denote the measure
v restricted ta®*. Sincev is strongly admissible when the parameter spaég is seems plausible that
v* might be strongly admissible for Problem B. (This does nens¢o follow immediately from the
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definition of almost admissibility.) In Section 4, we shovathunder mild irreducibility conditions;*
is strongly admissible for Problem B. We illustrate thisulesising an example concerning independent
and identically distributed random vectors from a tramstatamily.

The rest of the paper is organized as follows. Section 2 emhia series of results for general
state space Markov chains that culminates in conditiongiuwnthich local recurrence is equivalent to
recurrence. The results in Section 2 are used in Section Boteprheorem 5 and Corollary 2. Fi-
nally, Section 4 describes the application of our resulsstomation problems with restricted parameter
spaces.

2 Reconciling two different notions of recurrence

In this section, we will establish general conditions undéich recurrence and local recurrence are
equivalent. After stating some definitions and results f{@hj, we proceed to state and prove several
new results that lead to the connection between recurramtéeal recurrence.

Consider again our generic Markov chainwith state spaceZ and Markov transition function
K(-|). Forn € N:={1,2,3,... }, let K" : B(Z) x Z — [0, 1] denote the:-step Markov transition
function defined inductively by

KH(Alz) = / K™(Aly) K(dyl2) |
Z

whereK! = K. Of course K" (A|z) = Pr.(®, € A). Here is a formal definition of-irreducibility.

Definition 4. [15, p.87]. The chaind is called a-irreducible if « is a non-trivial, o-finite measure on
(Z,B(Z)) such that for everyl € B(Z) with a(A) > 0 and everyz € Z, there exists am > 1 (which
may depend on and 4) with K™(A|z) > 0. The measure is called an irreducibility measure fob.

Recall that two measures; andus, defined on the same measurable spaceaué/alent(written
w1 = o) if they have the same sets of measure 0; that js, it 1o andug > . If @ is a-irreducible,
then there exists anaximal irreducibility measurey(-), that satisfies the following properties [15,
Section 4.2.2]:

MX1: & isy-irreducible;
MX2: 1 is a probability measure;
MX3: if o/ is any other measure, the chaiis o’-irreducible if and only ifiy) = o/;

MX4: if ¥(A) =0, then¢{z €7 :Pr.(o4 <o) > o} —0.



While maximal irreducibility measures are not unique, ildas from MX3 that any two maximal
irreducibility measures are equivalent. When we says'a-irreducible Markov chain” we mean that
® is a-irreducible for somey and thaty is a maximal irreducibility measure for the chain. It is ugua
possible to analyze @-irreducible chain without knowing as long as the sé#*(2) := {A € B(Z) :
(A) > 0} is known. In fact, some of our effort in this section is detiéchto establishing that, # is
a-symmetric andv-irreducible, thery = .

We now state Meyn and Tweedie’s definition of recurrence d agesome results that will be
required in the sequel. Fot € B(Z), let n4 denote the number of times the chain visits the 4et
after time zero; i.e;ma := > 7, I4(®,). Let E;(-) denote the expectation operator corresponding to
Pr.(-).

Definition 5. [15, Chapter 8] Let® be aw-irreducible Markov chain. The chai is recurrent if for
eachz € Z and eachd € B (2),

E.(na) = > K"(Alz) = .
n=1

Remark2. Despite the fact that the name-tecurrent” is probably more consistent with the general
terminology in this paper, we will stick to the more stand&eturrent” with its implicit reference to
the measure.

For a measurable sdit, define the event

{Pedio}:= ﬁ D{cbkeA}.

N=1k=N
Theorem 6. [15, p.201] If thet-irreducible Markov chain® is recurrent, then there exists a sdt €
B(Z) satisfyingy(Z \ H) = 0 and for each: € H and eachA € BT (Z2),

Prz(q) cA i.O.) =1.
The setH is called the maximal Harris set.
The next result is a useful characterization of recurrence.

Theorem 7. [15, p.187] They-irreducible Markov chaind is recurrent if and only if there do not exist
two setsA, B in Bt (Z) with
Pri(ca<o0)<1 VzeB.

Define then-steptaboo probabilitiesas
AK"(B|z) =Pr,(®, € Boa>n) forze ZandA,B e B(Z) .

This is simply the probability that the Markov chain startgdhe pointz, ends up in the seB aftern
steps having avoided the sétalong the way. Here is our first result concerning the gerstad space
Markov chain®.

10



Lemma 1. Suppose thab is y-irreducible and thatd and B are disjoint sets i3 (Z). Theny(S) > 0
where
S={zeA: ,K"(B|z) >0 forsomen € N} .

Proof. Suppose thap(S) = 0. It follows from MX3 that the set
D={zeZ:K"(S|z) >0 forsomen € N}

also hag)-measure zero. Hence, the skt (D U S) has positive)-measure and f* € A\ (D U S),
then, K"(B|z*) = 0 foralln € NandK"(S|z*) = 0 for all n € N. Now for anyn € N, thelast-exit
decompositiorof K(B|z*) [15, p.180] yields

n—1
K"(B|z*) = AK"(B|Z*)+Z/Kj(dw|z*)AK"j(B|w)
j=174

n—1

= AK(Bl)+ Y

K (dw|z*) 4K/ (Blw) + / K (dw|z*) 4K/ (B|w)
j=1 o

A\S

= 0.

Hence, K" (B|z*) = 0 for all n € N; that is, the setB is not accessible from the poiat. This
contradicts the)-irreducibility of ® sincey(B) > 0. O

Lemma 2. Suppose the Markov chaidnis v -irreducible and locallyz-recurrent and thatr = . Then
for eachr-proper set4, the set

{z€Z:Pr.(ca <o0) <1}
hasm-measure 0.

Proof. Of course, locak-recurrence implies that{z € A : Pr.(04 < 00) < 1} = 0. Thus, it suffices
to show thatB = {z € A: Pr.(c4 < oo) < 1} also hasr-measure zero. Assume to the contrary that
m(B) > 0. Then there exists an> 0 such that the set

B.={2€A:Pr.(o4 <o0)<1—¢}
has positiver-measure. Lemma 1 then implies that the set
S={z€eA: ,K"(B.|z) >0 for somen € N}

has positiver-measure. It: € S, there exists am = n(z) such thaty K™*)(B.|z) > 0. Moreover,
once the chain enters the g8t, there is a probability of at leastthat the chain never returns tb.
Thus,Pr.(c4 = oo) > e 4K™?)(B.|z) > 0. This contradicts the locat-recurrence ofb since
0<7m(S) < o0. O
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Here is the main result of this section.

Theorem 8. Suppose the Markov chaib is ¢ -irreducible and thatr is a measure ofiZ, B(Z)) such
thatw = 4. Then recurrence and local-recurrence are equivalent.

Proof. Assume thab is recurrent and letl be ar-proper set. The equivalence ofandq implies that
1(A) > 0 and from Theorem 6 it follows that

Pr.(®eAio)=1
for all z € H. From this we deduce th&r,(c4 < co) = 1 forall z € H. Therefore,
{z€eA:Pr.(oa<o0)<1}C{z€Z:Pr(oa<o0)<1} CZ\H.

Thus, the se{z € A:Pry(og < ) < 1} hasiy-measure zero and, singeand are equivalent, it
also hasr-measure 0 and hendeis locally-r-recurrent.
Conversely, assume thdtis locally-r-recurrent. Lemma 2 implies that for everyproper setA4,
we have
m{z€Z:Pry(oa <o0) <1} =0. (6)

Now suppose thab is not recurrent so that by Theorem 7 there exist §gtandCs with ¢)(C7) > 0
andy(C3) > 0 such that
Pr.(oc, <o) <1 Vze(Cy. (7

The equivalence of and implies thatr(C7) > 0 and7(C3) > 0. There are two possible cases: (i)
m(C1) < oo and (i) 7(C1) = oo. In case (i),C is ar-proper set so (7) directly contradicts (6). In case
(ii), becauser is o-finite, there exists a s€t; C C; such thatC; is w-proper. Then

Pr.(og; < o0) < Pri(oc, <o0) <1 VzeCl,,
which again contradicts (6). Thu®, must be recurrent. O

Remark3. An obvious implication of Theorem 8 is that foryairreducible Markov chain, recurrence
and local¢)-recurrence are equivalent.

We now develop a specialized version of Theorem 8 for symmktarkov chains that will be used
to analyze the chains described in the Introduction.
Definition 6. [15, p.229]. Letr be a non-trivial,o-finite measure o0z, B(Z)). The measure is said

to be invariant for® if 7(A) = [, K(Ajw)n(dw) forall A € B(Z).

Remarkd. Supposeb is ay-irreducible Markov chain and thatis invariant for®. If 7(Z) < oo, then
® is recurrent and is callepositive recurrent If 7(Z) = oo, then® may or may not be recurrent. If
m(Z) = oo and® is recurrent, then it is calledull recurrent
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Lemma 3. Supposer is invariant for the Markov chair®. If 7(A) = 0, then the set
{z € Z: K"(A|z) > 0 for somen € N}

hasm-measure zero.

Proof. DefineD,, = {z € Z : K™(A|z) > 0} for n € N and note that
{z€ Z:K"(A|z) >0 forsomen € N} =U>>, D, .

Thus, it suffices to show that for eaehe N, 7(D,,) = 0. We will accomplish this using an induction

:/K(A|z)7r(dz).
Z

Hence{z € Z : K(A|z) > 0} = 0;i.e.,m(D;) = 0. Now assume that(D,,) = 0. Then

argument. First, invariance yields

K" (Al2) /K” Alu) K (dulz) / K"(Alu) K (dulz) .

Now, D,, hasm-measure 0, so it follows (from what we have already showa){th € Z : K(D,,|z) >
0} hasm-measure 0. Hence,(D,, 1) = 0. O

Lemma 4. Suppose that the measuras invariant for the Markov chai® and that® is w-irreducible.
Thenr is equivalent to the maximal irreducibility measute,that is, ) = 7. Consequently3t(Z) :=
{AeB(Z):y(A) >0} ={AeB(Z):n(A) > 0}.

Proof. Becausey is the maximal irreducibility measure, we know that> . Thus, to show that
¥ = m, we need only establish that - ¢. If 7(A) = 0, then we know from Lemma 3 that the
set{z € Z : K"(Alz) > 0 for somen € N} hasw-measure zero. Hence, there exists*ac Z
such thatK™(A|z*) = 0 for all n € N and sincey is an irreducibility measure fob, it follows that
P(A) =0. O

Supposeb is T-symmetric and thatl € B(Z). Then

A) = (A) /Z K (dulv) = /Z K (dulv) /A (dv) = /Z /A K (dv|u) m(du) = /Z K (Alu) 7(du) ;

i.e., w is an invariant measure fab. Combining Theorem 8, Lemma 4 and the relationship between
symmetry and invariance yields the following result.

Corollary 3. Suppose the Markov chaib is m-symmetric andr-irreducible. Then recurrence and
local-r-recurrence are equivalent.
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3 Relationships betweeri’ and W

Recall that we have a statistical mod&(dz|6) and ac-finite, improper prior (df) such that the result-
ing marginalM (dz) = [, P(dx|0)v(df) is alsoo-finite. Thus, a formal posterior distributiai(df|x)
exists and is characterized by (1). We have defined two Mackains:W is thev-symmetric Markov
chain on© whose Markov transition function i®(df|n) = [, Q(df|x)P(dz|n) and W is the M-
symmetric Markov chain o whose Markov transition function i8(dy|z) = Jo P(dy|0)Q(db)|x).
In this section, we will prove Theorem 5 and Corollary 2. Wetstvith a result concerning irreducibility.

Theorem 9. Thev-symmetric Markov chaifl is v-irreducible if and only if thel/-symmetric Markov
chainW is M-irreducible.

Proof. Suppose thatl” is not v-irreducible. Then there exists a s€twith v(C) > 0 and a point
0* € © such thatR™(C|6*) = 0 for all n € N. We will demonstrate thal/ is not M-irreducible. Since

= [,Q(Clz)M(dx) > 0, we haveM {z € X : Q(C|z) > 0} > 0. Therefore, there exists an
> 0 such thatM{z € X : Q(C|z) > e} > 0. SetB, = {z € X : Q(C|z) > ¢}. Define

ﬁz{xEX:R”(BE\x):OforaIInEN}.

We will show thatP (D|¢*) = 1 and hence there exists afi € X’ such thatR"(B.|z*) = 0 for all
n € N, which implies that¥’ is not M-irreducible. For each € N, define

D, ={z € X : R*(B.|z) > 0} .

Note that
U2 Dy, = {x € X : R*(B.|z) > 0 for somen € N} = D .

n

Hence, it suffices to show th&(D,,|0*) = 0 for eachn € N. A straightforward induction argument
shows that

Rl = [ [ Q(Cla) R (daly) PLayier)
Hence, if for somer € N, P(D,|0*) > 0, then

n+1 * _ DN *
RTH(C107) = /X /X Q(Clx) R (dly) P(dy|6")
> / Q(Clx) R (daly) P(dy|o)
e J Dp
> e[ [ Rl o)

_ / R (Bely) P(dyl6) > 0
Dy,

which contradicts the assumption regarding Hence,P(D,|6*) = 0 for all n € N. The other
direction is analogous and is left to the reader. O
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Remarks. Note thatlV andW have invariant measuregdd) and M (dx), respectively. Suppose both
chains arej-irreducible. Since/(©) = M (X) = co, W and W cannot be positive recurrent.

The key to proving thatV’ and W have the same stability is that they can be represented as the
“marginal” Markov chains associated with a “joint” Markoha&n onX’ x ©. Indeed, consider the
Markov transition function

R*(df, dz|n,y) = Q(df|z) P(dz|n) , (8)

defined on the measurable spgde x ©, B(X) x B(©)). Let{f/[v/n, W, 152, denote the corresponding
Markov chain. Due to the special structure of the transifiorction R* (that is, the fact that the right-
hand side of (8) is free qf), givenW,,, the future of the process; i.qu, W;}52,, 41, is conditionally
independent oWn. Analogously, giveri7l7n, the future of the process is conditionally independent of
W,,—1. We shall denote the overall probability law governing tttgin byPr*(-). Using the Markov
property and the other property described above, we have

Pr* (WnJrl € C|Wn =wp, W1 =wp—1q,..., Wy = U}) = Pr (Wn+1 € C|Wn = wn)
_ /XQ(C\x) Pdz|w,)

Thus, the marginal sequené® = {IW,,}°° is itself a Markov chain or® with Markov transition
function

R(dbln) = /X Q(db|r) P(dzly)

A similar argument shows that’ = {Wn};’ozl is a Markov chain ot with Markov transition function

Ridyle) = [ Pldylo) Quatle)
We now prove Theorem 5, which is restated here for conveaienc

Theorem 5. Assume that eithd¥’ is v-irreducible or W is M-irreducible. Then the Markov chaii’
is recurrent if and only if the Markov chail is recurrent.

Proof. Theorem 9 implies thaltl” is v-irreducibleand W is M-irreducible. Hence, Lemma 4 implies
thatv and M are equivalent to the maximal irreducibility measure$loind W, respectively.

Now assume thalll’ is recurrent. Fixd € © and suppos€ € B(©) is such that/(C) > 0. We
need to show thap " | R"(C|#) = oco. Sincev(C) = [,Q(Clx)M(dx) > 0, we haveM{z €
X : Q(Clz) > 0} > 0. Therefore, there exists an> 0 such thatM {z € X : Q(C|z) > ¢} > 0.
SetB. = {x € X : Q(C|z) > €}. Let E;(-) denote the expectation operator corresponding to

15



Pr* (- Wy = 0). Now
S RNC) = Y EIe,)]
n=2 n=2

= S & [ W) W]

n=2

> ZEQ[IBE WE [T (W)W
= ZEG [15. (W) Q(C|W,)]
> 6ZEZ[IBE(Wn)]

n=2

= &> Pr*(W, € B|Wy = 0)
n=2

- 52[/ Pr*(W,, € B.|W; = x, Wy = 0) P(dz|6)

:/ZB|x

where the last equality follows from the fact tHat is recurrent and/(B;) > 0.

The other direction is similar, but there are some importhifierences so we provide the details.
Now assume thalV is recurrent. Fixx € X and supposeB € B(X) is such thatV (B) > 0. We
need to show thad " | R"(Blz) = cc. SinceM(B) = [o P(B|#)v(df) > 0, we haver{f €
© : P(B|0) > 0} > 0. Therefore, there exists an> O such that{6 € © : P(B|f) > ¢} > 0.
SetC. = {# € © : P(B|f) > ¢}. Again, Ej(-) denotes the expectation operator corresponding to
Pr*(-|Wy = 6). Now

P(dz|0) =

Y R(Blz) = Y Pr'(W, e BW, =)
= n=2
= nz; [/@Pr*(Wn € B|W; = e)Q(deyx)]

= /@ Li E; [15(W)]

Q(dba) .

Thus, it is enough to show that, for eaglE ©
> B [Ip(W,)] = oo
n=2
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Now, for fixedd € ©, we have

S ElIs(Wn)] = 3 E[E[In(Wa) W]
n=2 n=2

> i E} :ICS(Wn_1) Ep [IB(fWVn)\Wn—lﬂ
n=2
- f: Ej | L. (Wa-1) P(BIW, )|
n=2
> S OB e (W )]
n=2
= 5iR”(CE|9) =00,
n=1
where the last equality follows from the fact tHat is recurrent and/(C.) > 0. [

Remarke. It is clear that, instead aR*(df, dx|n,y) = Q(df|z) P(dx|n), we could just as easily have
used the Markov transition function

R*(dx,d0)y,n) = P(dx|0) Q(d0]y)

as the basis of our joint chain. Moreover, the meagt(éz|d) v(df) is invariant for bothR* and R*.

Theorem 5 is a substantial generalization of Hobert and Relj&0] Theorem 1 which assumes
that X and© are both subsets @ and that the collection of sefsB € B(X) : P(B|f) > 0} is the
same for alld € O; that is, that the support dP(dz|0) is the same for alb € ©. We will see below
that this second condition actually implies th&t and 17" are irreducible. We now provide a proof of
Corollary 2.

Proof of Corollary 2. According to Theorem 1, (3) implies the strong admissipitif ». What we need
to show is that (3) in conjunction with the boundednesg ahd the irreducibility assumptions implies
thatv,(df) is strongly admissible. We will accomplish this by followia string of implications shown
in Figure 2. First, Theorem 9 implies thit is v-irreducible, IV is M-irreducible, W9 is vg-irreducible,
andW9 is Mg-irreducible. Now, by Theorem 2, (3) implies that is locally-v-recurrent and hence re-
current by Corollary 3. Theorem 5 then shows thatis recurrent and hence localbf£-recurrent by
Corollary 3. Theorem 4 implies that’9 is locally-M,-recurrent and hence recurrent by Corollary 3.
Another application of Theorem 5 shows th&¥ is recurrent and hence locally-recurrent by Corol-
lary 3. Finally, Theorem 2 and Theorem 1 together showitha strongly admissible. O

Here is a simple example illustrating the application ofdlary 2.

17



Examplel. Let X1,..., X, be independent and identically distributed random vaemllom a distri-
bution with density

1
p(z|0) = 51(0,6)(90) ;

wheref) € © = Ry := (0,00). Take the prior distribution to be(df) = df/0, wheredf denotes
Lebesgue measure @n It's easy to show that the marginal measure is

M(dz) = dff ,
nx
(n)
wheredx denotes Lebesgue measure®nr= R} andz, := max{z1, ..., z,}. The posterior is given
by Q(df|x) = q(0|x)dd where
n:c?n)

a0l = o1, 0).

($(n),OO
It follows that R(df|n) = r(6|n)dd where

nen—l nnn

r(0ln) = Wf(om](‘g) + Wf(n,oo)(‘g) -
Note thatr(6|n) > 0 for all 6,7 € R,.. Now, if C'is a set iR such that/(C') > 0, thenC must have
positive Lebesgue measure. Thus, for gny 0, R(C|n) > 0 so the Markov chai#V is v-irreducible.
Because) ! is a scale parameter in the densify|n), the chain = {W,,}2, can be represented
as
W1 = WnUnia, )

whereUy, U,, ... are independent and identically distributed with density

nu™1 n

flu) = TI(O,H (u) + Wl(l,oo)(u) .
Taking logs in (9) yields a random walk with increment distition equal to that ofog U; and, since
E[log U1 = 0, this random walk is recurrent [15, p.247]. It follows tfiitis also recurrent [10, Section
3] so the prior distribution/(df) = df/6 is strongly admissible. (We note that strong admissibiity
v, or equivalently, local-recurrence o/, can also be deduced from the results in Example 3.1 of
[5].) Since W is v-irreducible and recurrent, Corollary 2 is applicable. Fwstance, suppose that
g(0) = Ie-(0) where©* = U5 (2,2 + 1). Letry(0|n) denote the Markov transition function @f,.
It's easy to see that,(0|n) > 0 for all # € ©* and allp € © and it follows (using arguments like those
above) thatiV, is v,-irreducible. Thus, by Corollary 2,(df) = g(0)v(df) is strongly admissible.
This ends Example 1.

In most applications, the-step transition functionR™, is intractable so irreducibility must be
established through indirect methods. Notice, howevet, ith the preceding example, we were able
to establish the/-irreducibility of W quite straightforwardly because every géwith v(C) > 0 is
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accessible from every poititin a single step We now describe a simple condition that ensures such
behavior. Suppose the collection of sét8 € B(X) : P(B|f) > 0} is the same for alb € ©
and denote this collection by. When this is the case, we say that the “SFP condition” holdigre
SFP stands for “support free of parameter.” The followinguteshows that the SFP condition implies
(among other things) thdt(C'|¢) > 0 for all § € © whenever (C') > 0.
Lemma 5. Suppose the SFP condition holds anddet {B € B(X) : P(B|¢) > 0}. Then

1. {B€eB(X): M(B) >0} =5,

2. ForC € B(©),v(C) > 0= R(C|9) >0 forall 6 < 0O,

3. ForC € B(©),v(C)=0= R(C|9) =0 forall 60O,

4. For B € B(X), M(B) > 0= R(Bl|z) >0 forall z € X, and

(621

. ForB € B(X), M(B) = 0= R(B|z) =0 forall z € X.
Hence,IW is v-irreducible andWV is M-irreducible.

Proof. (1) This follows easily from the fact that/ (B f@ (B|6)v(df). (2) Of coursey(C) =
[ Q(Clz) M(dx). DefineA = {z € X : Q(C|z) > O}. Sincerv(C) > O, M(A) > 0 and it follows
from (1) thatP(A|0) > 0 for all 6. Thus, for any) € ©, we have

R(C|0) = /X Q(Clz) P(dz|0) = /AQ(C\x) P(dz|6) > 0
(3) Sincerv(C) = 0, M(A) = 0 and henceP(A|f) = 0 for all . Thus, for any € O, R(C|0) = 0.
(4) SinceM (B) > 0, P(B|#) > 0for all 6. Thus, for anyr € X, we have
R(BJz) = /@P(B\H) Q(dblz) > 0
(5) SinceM (B) = 0, P(B|6) = 0 for all 8. Thus, for anyr € X, R(B|x) = 0. O

While the SFP condition does not hold in Example 1, it doesl dienP(dx|0) is an exponential
family onR? [see; e.g., 2, Chapter 1]. Here is another example whereRRec8ndition holds.
Example2. Let f : R? — [0,00) be a density with respect to Lebesgue measure and suppdse tha
Xi,...,X, areindependent and identically distributed random vedtom f (z1 — 0) wheref € © C
RP. In this caseX = RP"™ and withdz denoting Lebesgue measure &n P(dz|0) = p(x|0)dz where
x = (x1,...,2,) and

p((0) = T f(z: -
=1

Suppose thaf > 0. Then it's easy to see that the collection of s{a&e B(X): P(B|o) > 0} is the
same for alb € ©. Thus, Lemma 5 implies that for amyfinite, improper priorw(df), the resultingV’
andW will be v-irreducible and\/-irreducible, respectively. We return to this examplerlate
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We now examine a more complicated example where there @€' seth »(C) > 0 andR(C|0) =
0.

Example3. Let ¥ = © = R andP(dz|0) = p(x|0)dx where

p(x]0) = Ig,p11)(2)

and dz denotes Lebesgue measure &n If we take the prior distribution to be(df) = db, it's
easy to show that the marginal M (dz) = dx, which is clearlyo-finite. The posterior is given by
Q(df|x) = q(0|x)dd where

q(0lz) = I(z—1,2)(0) -
It follows that R(df|n) = r(6|n)dd where

r(@n) = (1+ (0 —n)I—1,0)(0 —n) + (1= (0 — 1)) Lo,1)(0 —n) .

Sincer is a location parameter in the density|n), the Markov chailV’ can be expressed as a random

walk

Wht1 =Wy + Zyy1
whereZy, Z,, ... is an independent and identically distributed sequencarafom variables with den-
sity given by

f(2) = (1 +2)[(—10)(2) + (1= 2)[9,1)(2) -
Note that, ifiWy = w, thenT; € (w — 1,w + 1) with probability one, so there are many sets with
positive Lebesgue measure that are not accessible drama single step. On the other hand, for any
5 € (0,1), we have
P(Zy € (0,0)) = P(Z1 € (=4,0)) > 0.
This implies that the chaifl” can make arbitrarily small jumps in either direction. Heritshould be
intuitively clear that any sef’ with positive Lebesgue measure is accessible from any goinR and
hence thatV is v-irreducible. A formal proof of this irreducibility can benstructed using the ideas
in Section 4.3.3 of [15]. This ends Example 3.
The next example shows thHf is not always/-irreducible.

Exampled. Let ¥ =R\ {0}, © = R andP(dx|0) = p(x|6)dz where

p(z]0) = e g ) (2)T0,00)(0) + €T 9y (@) (00 0)(6)

anddx denotes Lebesgue measuretn If we take the prior distribution to be Lebesgue measure on
©; that is,v(df) = db, then it’s straightforward to show that the posterior disttion is given by
Q(df|x) = q(0|x)dd where

0l = { =T Vo (#) 2> 0
L ez_ef(%o)(e) z<0.

1—e®
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The Markov transition function o’ is R(df|n) = r(0|n)d6 wherer(0|n) = [, q(0|z)p(x|n)dz. Now
p(z|n) = 0 wheneverr < 0 andn > 0. Also, ¢(f|x) = 0 whenever < 0 andz > 0. Consequently, if
n > 0 andd < 0, we have

0

rwmzﬁawwummz/

— 00

qwum@MMx+Awqwum@MMx=o.

Thus, ifn > 0, we have
0

mewmm:/ F(Bln)do = 0.

—0
and a simple induction argument shows tRét(—oc,0)|n) = 0 for all » > 0 and alln € N. Thus, the
set(—o0,0), which has positive’-measure, is not accessible from apy> 0 and it follows thati is

notv-irreducible. In fact, ifiV is started irf0, co), it stays in[0, co) forever, and ifit starts in(—oc, 0),

it stays in(—oo, 0) forever. This ends Example 4.

Several of the results developed in this paper are appéaatly in situations wher&/” andW are
irreducible. As shown above, establishing this irreduitjbgenerally requires direct analysis of the
Markov chains. One exception is when the (easily checkedd &mndition holds and the irreducibil-
ity conditions are automatically satisfied. In particulae have the following simplified version of
Corollary 2.

Corollary 4. Suppose thaP(dx|0) satisfies the SFP condition and th@) holds so thaw is strongly
admissible. Iy : © — [0, c0) is bounded, then the priar, (df) = ¢(0) v(df) is also strongly admissi-
ble.

Exampleb. Let X be a random vector fromavariate normal distribution with mean vectbre © =
R? and identity covariance matrix; i.eX, ~ N, (6, I,). Assume thap > 3. Lai [14] considers priors of
the form

v(d) = (a+|0]?) "d6 ,

wherea > 0, b € R, ||0]|*> = YF_, 62 anddf denotes Lebesgue measureRh It is straightforward
to show that/(0©) = oo if and only if b < p/2 and that the marginal measuredidinite for anyb in
this range. Together with Wen-Lin Lai, the authors have médgeshown that Eaton’s Markov chain,
{Whn}py, is locallyv-recurrent as long ds> £ — 1. Thus,v(df) is improper and strongly admissible
forallb e [5—1,%].

Now suppose thate [5—1,2], g : R? — [0, c0) is bounded and,(d6) = v/(d6)g(6) is improper.
The SFP condition is clearly satisfied in this example. He@aollary 4 is applicable and implies that

v4(d8) is strongly admissible. This ends Example 5.

Clearly, a general result that would allow one to check thedincibility conditions without direct
analysis of the Markov chains would be extremely useful @sdywe now explain, may be attainable.
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Note that in Example 4, there are sélsC X andC C © such thatP(B|f#) = 0 for all § € C and
P(B|#) = 0forall § € C. Itis not hard to show that (under regularity conditions lyig that the
sets and their complements have positive measure), themrsésof such sets implies that the chains are
reducible. We believe that this existence is also nece$sargducibility, although we have been able to
prove this only for the case where one or botttb&dnd© have a countable number of elements. If our
conjecture is correct, one could establish irreducibgityply by showing that set8 andC' satisfying

the conditions above do not exist.

4 Priors for estimation problems with restricted parameter spaces

Recall that “Problem A’ is the one with parameter sp&esample spacel’ and statistical model
P(dzx|0), whereas “Problem B” is the same as Problem A except thattaneter space 8* € B(0),
a proper subset dd. We assume throughout this section thas ao-finite improper prior on® that
satisfies (3) so thdtl is locally+-recurrent (and- is strongly admissible). Let* be the measure
restricted to®* and assume* is improper. We now show that, under mild irreducibility ditions, *
is strongly admissible for Problem B.

For the time being, we focus on Problem A and the perturbeat pfi(df) = Ig-(0)v(df) with
associated marginal/,. Assume that Conditions 1 and 2 of Corollary 2 hold so théat and w9
are both recurrent. To connect Problem A with Problem B wealrteeexamine the Dirichlet form
corresponding to tha/,-symmetric Markov chai¥’9. For anM -proper setB, define

Vy(B) = {h € Ly(M,) : hisboundedh(z) > Ip(z)} . (10)

The Dirichlet form associated with the Markov chaif¥ is defined forh € Ly(M,) as

X ]. 2 ~

By =5 [ [ (hla) = nio)*Ry(daly) My (dn) a1
Now, sincelV'¥ is recurrent (and hence locallyf, -recurrent), we have

inf A,(h) =0 foreachM,-proper seiB . (12)
heVy(B)

Now, back to Problem B. Leli’* and W* denote the Markov chains associated with Problem B;
that is, they are the analoguesWTandW from Problem A. (There are actually three different decisio
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problems and six different Markov chains under considenaliere.) Note that
By = 5 [ [ (o) = ha)* Ry (daly) M )
= 5 [ [ () =n)? [ Paslo)Playioye, a0
1 2 *
-1 /X /X (hte) = h(w)* | Plazlo)P(dylo)” (do)
= 5[ (@) = nw)* Rl )

whereR*(dz|y) is the Markov transition function dh* andM* is the marginal corresponding #6 for
Problem B. Therefore{&g(h) is simultaneously the Dirichlet form for bot9 and17*. Furthermore,
sincev, (df) = Ie+(0)v(dh), we have
My(B) = / P(B|0)vy(df) = / P(B|9)v*(df) = M™*(B) .
e

Hence,B is M,-proper if and only ifB is M*-proper andL(M,) = Lo(M*). Therefore, (12) implies
that W* is recurrent. Finally, if* is v*-irreducible (or if W* is M*-irreducible), then an argument
similar to that used in the proof of Corollary 2 shows thatis strongly admissible in Problem B. We
now continue with the translation example introduced ingrevious section.

Example 2 contRecall thatX;,..., X,, are independent and identically distributed random vector
from f(x; — 0) wheref is a density ofiR? andf € ©* C RP is an unknown parameter to be estimated.
We assume that > 0 so that the SFP condition holds. To preclude uninterestisgs, assume that
has infinite Lebesgue measure and tR&t ©* has positive Lebesgue measure. We will use our results
to show that (under regularity conditions), Lebesgue mmeasestricted ta®* is strongly admissible
whenp € {1, 2}.

Consider the unrestricted version of the problem where #narpeter space 8 = RP and take the
prior distribution to be Lebesgue measureRih i.e.,v(df) = df. Assume, for simplicity, that

m(x) = / p(x|6)do
RP
isin (0, c0) for all z. Then a version of the posterior distribution is given by

p(z|0)
m(x)
It follows that R(df|n) = r(6|n)dd where the density(0|n) is given by

o = [ 2eloreln,

m(z)

Q(db|z) = do .

Eaton [8] shows that(f|n) is only a function off — n and that we can write(f|n) = r(6 — n|0) =:
t(6 — n) wheret is a symmetric density with respect to Lebesgue measuret (g = ¢(—u) for all
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u € R? and [, t(u)du = 1. It follows that the Markov transition function iB(d6|n) = t(6 — n)dé,
which implies thail” can be expressed as a random walk

Wn+1 - Wn + Un+1 5

wherelU1, Us, . .. is an independent and identically distributed sequencarafom vectors with density
t(u). A sufficient condition for recurrence 6% whenp = 1is [ ult(u)du < oo [3, 15]. Eaton [5]
shows that this condition holds if

/R]x\f(x)dx <00 . (13)

Thus, ifp = 1 and (13) holds, we can appeal to the arguments above (the @feltion ensures that
all of the irreducibility conditions are satisfied) to comgé that Lebesgue measure & C R is
strongly admissible for the restricted parameter probl&milar arguments show that if = 2 and
Jge2 l|z||*f(z)dz < oo, then Lebesgue measure 61 C R? is strongly admissible for the restricted
parameter problem. This argument cannot be extended bayen® because there are no recurrent
random walks ofR? (driven by increment distributions having densities wigbpect to Lebesgue mea-
sure onR?) whenp > 2. As Eaton [6] says, “The parallel with Stein estimation isions.” This ends
Example 2.

A Appendix: Relationships between Dirichlet forms

The following result was stated but not proved in Eaton [GmRek 3.3].
Proposition 1. If there exists am > 0 such that < g(f) < 1/ forall 0 € ©, thenA,(h) < e 3A(h).

Proof. Defineg(z) = [, 9(9)Q(df|z). Note thatg(x) > ¢ and hencd /g(x) < 1/e. Itis clear from
(1) thatg(x) is the Radon-Nikodym derivative @i/, with respect ta\/; i.e., My(dx) = g(x)M (dx). It
follows that the se{z € X : g(z) = 0} hasM,-measure 0. Now, following [8], a version &f,(d6|x)
is given by

0
0.

{9§0 Q(do|z) if §(z) >
Q(db|x) if §(z)

Ay(h) = /@ /@ (1(8) — h(n))>S, (d, dn) .

S, (d6, dn) / Qy(dB]x) P(dx|n)g () (din)

/X Q4 (d8])Q (dn|) M, (dx)
n)/X Q(dHIEE%(anw)M(dx).

Recall that

Now using (4) we have
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Putting all of this together, we have

Ag(h) = /@ /@ (h(6) — h(n))S,(d6. dn)

) e [ QUBQU)
= [ [ s (ne) —hen)* | HEEEDD a1
< o [ ()= h)’ / Qd012)Q(dnl) M (dx)

_ 3 / / )25(d6, dn)

= ¢ 3A

We now prove Theorem 4, which is restated here for conveaienc

Theorem 4. If W is locally-M -recurrent andg : © — [0, 00) is bounded, thedl’s is locally-M,, -
recurrent.

Proof. Sinceg is nonnegative and bounded, there exisi§ & 0 such thay(0) < K forall § € ©. Let
A denote the Dirichlet form associated with the Markov cfﬁinthat is, forh € Lo(M), define

/ / *R(dz|y) M(dy) .

Also, for eachM -proper setB, define
V(B) = {h € Ly(M) : hisboundedh(z) > I5(z)} .
SincelV is locally-M-recurrent, Theorem 2 implies that

inf A(h) =0 for eachM-proper setB .
heV (B)
Let A, andV, be the analogues @ andV’ for the perturbed problem. These quantities were defined at
(10) and (11). ClearlyM (B) < oo = My(B) < co andLy(M) C Lo(M,). Hence, ifB is M-proper
andM,(B) > 0, thenB is M -proper andV (B) C V,(B). It's also easy to see that, fore L(M),
A, (h) < KA(h). Therefore, ifB is M-proper andVl,(B) > 0, we have

inf Ay(h) < inf Ay(h) <K inf A(h).
heV,(B) heV(B) heV(B)

Now sinceM is o-finite, there exists a sequence/df-proper setd3; C By C --- such that;2, B; =
X. The locald/-recurrence ofV/ implies that for eachi € N,

inf A(h)=0.
heV (B;)
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Without loss of generality, we may assume théf(3;) > 0 for all i € N. Putting all of this together,
we have a sequence 6f,-proper setsp; C By C --- such thaty??, B; = X and such that for each
1 € N, we have

inf  Ag(h)=0.
heVy(Bi)

The result now follows from Theorem 3.2 of Eaton [8]. O
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