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Abstract

Consider a parametric statistical model,P (dx|θ), and an improper prior distribution,ν(dθ),

that together yield a (proper) formal posterior distribution,Q(dθ|x). The prior is calledstrongly

admissibleif the generalized Bayes estimator of every bounded function of θ is admissible under

squared error loss. Eaton [5] used the Blyth-Stein Lemma to develop a sufficient condition, call itC,

for strong admissibility ofν. Our main result says that, under mild regularity conditions, if ν satisfies

C andg(θ) is a bounded, non-negative function, then theperturbed prior distributiong(θ)ν(dθ) also

satisfiesC and is therefore strongly admissible. Our proof has three basic components: (i) Eaton’s

[5] result that the conditionC is equivalent to thelocal recurrenceof the Markov chain whose

transition function isR(dθ|η) =
∫
Q(dθ|x)P (dx|η); (ii) a new result for general state space Markov

chains giving conditions under which local recurrence is equivalent to recurrence; and (iii) a new

generalization of Hobert and Robert’s [10] result that saysEaton’s Markov chain is recurrent if and

only if the chain with transition functioñR(dx|y) =
∫
P (dx|θ)Q(dθ|y) is recurrent. One important

application of our results involves the construction of strongly admissible prior distributions for

estimation problems with restricted parameter spaces.
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Key words and phrases.Admissibility, Dirichlet form, Estimation, Formal Bayes rule, Formal posterior distribution,
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1 Introduction

1.1 The problem

Consider a statistical decision problem involving a parametric statistical modelP (dx|θ) on a sample

spaceX and aσ-finite improperprior distributionν(dθ) on a parameter spaceΘ. BothX andΘ are

assumed to be Polish spaces equipped with their Borelσ-algebrasB(X ) andB(Θ). Since the prior is

improper, the existence of a proper posterior distributionis not guaranteed. However, when the marginal

measureM , defined as

M(dx) =

∫

Θ
P (dx|θ)ν(dθ) ,

is σ-finite, a formal posterior distributionQ(dθ|x) exists and is characterized by

P (dx|θ)ν(dθ) = Q(dθ|x)M(dx) . (1)

This equality means that the two joint measures onX × Θ given by the left and right-hand sides agree.

For eachx ∈ X , Q(·|x) is a probability measure and for eachC ∈ B(Θ), Q(C|·) is a measurable

function. See Eaton [4, 5] and the references therein for details regarding the existence and uniqueness

of Q(dθ|x). Throughout this paper,M is assumed to beσ-finite.

The formal posterior distribution can be used to solve statistical decision problems by choosing

actions to minimize posterior expected loss. In particular, the formal Bayes solution to the problem of

estimating a bounded, real-valued functionγ(θ) under squared error loss is the estimator

γ̂(x) =

∫

Θ
γ(θ)Q(dθ|x) , (2)

and the risk function of a generic estimator, sayδ, is its mean squared error; i.e.,

R(δ, θ) =

∫

X

(
δ(x) − γ(θ)

)2
P (dx|θ) .

We will judge estimators using the notion of almost-admissibility, which is now defined. Letα be a

non-trivial,σ-finite measure on(Θ,B(Θ)).

Definition 1. An estimatorδ is almost-α-admissible if for any estimatorδ′ such that

R(δ′, θ) ≤ R(δ, θ) ∀ θ ∈ Θ ,

the set
{
θ ∈ Θ : R(δ′, θ) < R(δ, θ)

}
hasα-measure zero.

If the statistical modelP (dx|θ) and the improper priorν(dθ) combine to yield a formal posterior

distribution that generates (almost) admissible estimators (via (2)) for a large class of functions ofθ,

then we might be willing to endorseν as a good “all purpose” prior to use in conjunction withP (dx|θ).

This idea provides motivation for the following definition.
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Definition 2. The improper priorν(dθ) (or, equivalently, the corresponding formal posteriorQ(dθ|x))

is called strongly admissible if, for every bounded, measurable functionγ : Θ → R, the estimator̂γ is

almost-ν-admissible.

Eaton [5] used the Blyth-Stein Lemma to develop a sufficient condition for strong admissibility of

ν and then went on to show that this sufficient condition is, in fact, equivalent to a recurrence property

of an associated Markov chain defined in terms ofP (dx|θ) andν(dθ). Our results build on this theory,

but this paper is not meant to be a review. For an expository look at this area, see Eaton [6, 8]. We begin

with the sufficient condition for strong admissibility. First, define a (symmetric) measure onΘ × Θ as

S(dθ, dη) =

∫

X
Q(dθ|x)Q(dη|x)M(dx) .

LetL2(ν) be the set ofν-square integrable functions defined onΘ. Forh ∈ L2(ν), define

∆(h) =
1

2

∫

Θ

∫

Θ

(
h(θ) − h(η)

)2
S(dθ, dη) .

It’s not hard to show that∆(h) < ∞ for all h ∈ L2(ν). A measurable setC ⊂ Θ is calledν-proper if

0 < ν(C) <∞. For eachν-proper setC, define

V (C) =
{
h ∈ L2(ν) : h is bounded, h(θ) ≥ IC(θ)

}
.

Here is a sufficient condition for strong admissibility.

Theorem 1. (Eaton, 1992) The priorν is strongly admissible if

inf
h∈V (C)

∆(h) = 0 for eachν-proper setC . (3)

Theorem 1 provides a single condition involvingP and ν that simultaneously implies the (almost)

admissibility of a large class of formal Bayes estimators. (For an extension that can handle unbounded

γ, see [7].) Moreover, if (3) holds, then it follows that a large class ofperturbationsof ν also satisfy (3)

and are therefore also strongly admissible. To be specific, consider a perturbation ofν given by

νg(dθ) = g(θ) ν(dθ) ,

whereg : Θ → [0,∞). Assume thatg is bounded away from 0 and away from∞; i.e., assume that

there exists anε > 0 such thatε < g(θ) < 1/ε for all θ ∈ Θ. Under this assumption,νg is aσ-finite,

improper prior and the corresponding marginalMg(B) =
∫
Θ P (B|θ) g(θ) ν(dθ) is alsoσ-finite. Hence,

the corresponding posteriorQg(dθ|x) exists and satisfies the following analogue of (1)

P (dx|θ) g(θ) ν(dθ) = Qg(dθ|x)Mg(dx) . (4)
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Let ∆g denote the analogue of∆ for the perturbed problem; i.e., forh ∈ L2(νg) = L2(ν), define

∆g(h) =
1

2

∫

Θ

∫

Θ

(
h(θ) − h(η)

)2
Sg(dθ, dη) ,

whereSg(dθ, dη) :=
∫
X Qg(dθ|x)Qg(dη|x)Mg(dx). Note thatC ⊂ Θ is ν-proper if and only if it is

νg-proper. Finally, the inequality∆g(h) ≤ ε−3∆(h), which is established in the Appendix, shows that

the analogue of (3) (for the perturbed problem) is satisfied and we have the following result.

Corollary 1. (Eaton, 1992) Suppose that(3) holds so thatν is strongly admissible. Ifg : Θ → [0,∞)

is bounded away from 0 and∞, then the priorνg(dθ) = g(θ) ν(dθ) is also strongly admissible.

Our proof that∆g(h) ≤ ε−3∆(h) breaks down wheng is not bounded away from zero (and when

g is unbounded). The question that motivated our research is “Does Corollary 1 hold truewithout the

assumption thatg is bounded away from 0?” We will show that (under mild regularity conditions)

the answer to the question is “yes.” This result has important implications for estimation problems

with restricted parameter spaces. Indeed, ifg is the indicator function ofΘ∗ ⊂ Θ, thenνg(dθ) =

IΘ∗(θ)ν(dθ) and the use of this prior is effectively the same as restricting the parameter space to be

Θ∗ from the start. Further details concerning this application are provided later in this section. It is

important to recognize that, in the absence of the assumption thatg is bounded away from 0, there is no

guarantee thatνg is improper.

1.2 Eaton’s Markov chain

Our arguments rely heavily on a result of Eaton [5] showing that the sufficient condition (3) is equivalent

to a recurrence property of a Markov chain associated with the decision problem. A precise description

of this equivalence involves a few basic concepts from the theory of general state space Markov chains.

LetZ be a Polish space with Borelσ-algebraB(Z). Suppose thatK : B(Z) × Z → [0, 1] is a Markov

transition function; i.e., for eachz ∈ Z, K(·|z) is a probability measure and for eachA ∈ B(Z),

K(A|·) is a measurable function. The transition functionK defines a Markov chainΦ = {Φn}
∞
n=0 on

the infinite product spaceZ∞ such that, givenΦn = z, the probability distribution ofΦn+1 isK(·|z).

Let Prz(·) denote the overall law governingΦ onZ∞ assuming thatΦ0 = z.

Two different notions of therecurrenceof a Markov chain are used in this article. The definition

used by Meyn and Tweedie [15, Chapter 8], which we refer to simply as “recurrence,” applies only

to Markov chains that satisfy certain irreducibility properties. In order to postpone a discussion of the

technical matter of irreducibility, we defer a formal statement of this definition until Section 2. The

Markov chains studied by Eaton [5] are not necessarily irreducible, so he used a different notion called

“local recurrence” that does not require any irreducibility. Let σA denote the first return toA; that is,

σA = min
{
n ≥ 1 : Φn ∈ A

}
with the understanding thatσA = ∞ if Φn ∈ Ac for all n ≥ 1. Also, let

α be a non-trivial,σ-finite measure onZ. Recall that a setA is α-proper if0 < α(A) <∞.
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Definition 3. The Markov chainΦ is called locally-α-recurrent if for eachα-proper setA, the set

{
z ∈ A : Prz

(
σA <∞

)
< 1

}

hasα-measure 0.

The definition says that, for everyα-proper setA, aside from a set of starting values inA that has

α-measure 0, the chain returns to the setA with probability 1.

If π is a non-trivial,σ-finite measure onZ such thatK(dw|z)π(dz) = K(dz|w)π(dw), then the

Markov chainΦ is calledπ-symmetric (or reversible with respect toπ). Suppose thatΦ is π-symmetric

and define a Dirichlet form associated withΦ as

D(h) =
1

2

∫

Z

∫

Z

(
h(z) − h(w)

)2
K(dz|w)π(dw) ,

for h ∈ L2(π). For eachπ-proper setA, define

U(A) =
{
h ∈ L2(π) : h is bounded, h(z) ≥ IA(z)

}
.

Here is a characterization of local-π-recurrence for aπ-symmetric Markov chain.

Theorem 2. (Eaton, 1992) Suppose the Markov chainΦ is π-symmetric. ThenΦ is locally-π-recurrent

if and only if

inf
h∈U(A)

D(h) = 0 for eachπ-proper setA . (5)

To see the connection between the sufficient condition (3) and local recurrence, define

R(dθ|η) =

∫

X
Q(dθ|x)P (dx|η) ,

which is a Markov transition function onB(Θ)×Θ, and note that, by using (1), we can writeS(dθ, dη) =

R(dθ|η)ν(dη). LetW = {Wn}
∞
n=0 denote the Markov chain corresponding toR. SinceS is a symmet-

ric measure, we haveR(dθ|η)ν(dη) = R(dη|θ)ν(dθ); that is,W is aν-symmetric chain. Therefore, to

each decision problem; i.e., to each(P, ν) pair, there corresponds a Markov chainW . With Theorem 2

in mind, Theorem 1 can be reinterpreted as saying that a sufficient condition for the strong admissibility

of ν is the local-ν-recurrence ofW . Not only is this an interesting connection between admissibility and

recurrence similar to those established by Brown [1] and Johnstone [12, 13], it has practical implications

as well. Indeed, while direct verification of (5) can be very difficult, there are alternative techniques for

establishing recurrence that are often effective in practice [see; e.g., 5, Example 3.1 & p.1163].

We now return to the original perturbed prior problem where it is assumed thatg is bounded away

from 0 and∞. Mimicking what was done earlier, define

Rg(dθ|η) =

∫

X
Qg(dθ|x)P (dx|η) ,
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which is a Markov transition function onB(Θ) × Θ, and note thatSg(dθ, dη) = Rg(dθ|η)νg(dη). Let

W g = {W g
n}∞n=0 denote the Markov chain corresponding toRg. Using Theorem 2, we can now state

the key result underlying Corollary 1 in the language of Markov chains as follows.

Theorem 3. If W is locally-ν-recurrent andg : Θ → [0,∞) is bounded away from zero and∞, then

W g is locally-νg-recurrent.

Figure 1 depicts the implications used in Corollary 1. Note that everything follows from the local-ν-

recurrence ofW .

W is locally-ν-recurrent ⇒ ν(dθ) is strongly admissible

⇓

W g is locally-νg -recurrent ⇒ g(θ) ν(dθ) is strongly admissible

Figure 1: Implications holding under the assumption thatg is bounded away from 0 and∞.

1.3 A closely related Markov chain onX

In the same way thatR(dθ|η) defines the Markov chainW on the parameter spaceΘ, the function

R̃(dy|x) =

∫

Θ
P (dy|θ)Q(dθ|x)

defines a Markov chain, saỹW = {W̃n}
∞
n=0, on the sample spaceX . Moreover, it’s easy to see that

W̃ is M -symmetric; that is,R̃(dy|x)M(dx) = R̃(dx|y)M(dy). So now each decision problem has

associated with it two Markov chains:W on the parameter space, and̃W on the sample space. Despite

the fact thatW andW̃ live on different spaces, they have similar stability properties due to the structural

similarity of their transition functions and we will exploit this later.

There are two decision problems under consideration here: the original problem with modelP (dx|θ)

and priorν(dθ) and the perturbed problem with modelP (dx|θ) and priorg(θ)ν(dθ), where it is assumed

that g is bounded away from 0 and∞. There are a total of four Markov chains associated with these

two problems and the only one that has not been introduced yetis W̃ g, the Markov chain onX with

Markov transition function

R̃g(dy|x) =

∫

Θ
P (dy|θ)Qg(dθ|x) .

The key to the proof of Corollary 1 is the inequality∆g(h) ≤ ε−3∆(h). A quick glance at the

Appendix reveals that this inequality is proved by establishing a simple relationship betweenS(dθ, dη)

andSg(dθ, dη). The Dirichlet forms corresponding tõW andW̃ g involve the (symmetric) measures

S̃(dy, dx) = R̃(dy|x)M(dx) and S̃g(dy, dx) = R̃g(dy|x)Mg(dx), respectively. It turns out that the

6



relationship betweeñS andS̃g is actually even simpler than the one betweenS andSg. Indeed, (1) can

be used to show that

S̃(dy, dx) =

∫

Θ
P (dy|θ)P (dx|θ) ν(dθ) ,

and

S̃g(dy, dx) =

∫

Θ
P (dy|θ)P (dx|θ) g(θ) ν(dθ) ,

and hence the two measures differ by just a single factor ofg(θ). This fact is used in the Appendix to

prove the following result.

Theorem 4. If W̃ is locally-M -recurrent andg : Θ → [0,∞) is bounded, theñW g is locally-Mg -

recurrent.

In contrast to Theorem 3, it isnot assumed in Theorem 4 thatg is bounded away from 0. Thus,

Theorem 4 is much more than just the analogue of Theorem 3 for the chains on the sample space.

On the other hand, to this point we have not mentioned any connections between the chains on the

sample space
(
W̃ & W̃ g

)
and strong admissibility. Thus, something more is needed before we can take

advantage of Theorem 4.

Remark1. Theorem 4 fails without the assumption thatg is bounded above (even if we add the as-

sumption thatg is bounded away from 0). Indeed, the results in [10] can be used to construct examples

whereW̃ is locally-M -recurrent andg is unbounded (and bounded away from zero), butW̃ g is not

locally-Mg -recurrent. Thus, an extension of our perturbation resultsto the case of unboundedg would

require a more delicate analysis.

1.4 Exploiting a relationship betweenW and W̃

The final piece of the puzzle is a stability relationship betweenW and W̃ that allows us to prove

Corollary 1 using Theorem 4 instead of Theorem 3 and hence to dispense with the assumption thatg is

bounded away from 0. Hobert and Robert [10] established a stability relationship betweenW andW̃

and one of the main results in this paper is a substantial generalization of their result. To describe this

generalization, we need to introduce a notion of irreducibility for general state space Markov chains.

Consider again our generic Markov chainΦ with state spaceZ and suppose thatα is a non-trivial,

σ-finite measure onZ. The chainΦ is calledα-irreducible if for every setA with α(A) > 0 and every

z ∈ Z, there exists ann ≥ 1 (which may depend onz andA) such thatPrz
(
Φn ∈ A) > 0. Simply put,

Φ is α-irreducible if every set with positiveα-measure is accessible from every point in the state space.

Here is our result.

Theorem 5. Assume that eitherW is ν-irreducible orW̃ isM -irreducible. Then the Markov chainW

is recurrent if and only if the Markov chaiñW is recurrent.
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Note that Theorem 5 involves (Meyn and Tweedie’s definition of) recurrence. Thus, in order to use

this result in conjunction with the previous results, whichinvolve local recurrence, we need some results

relating the two forms of recurrence. Indeed, we will show that, under certain irreducibility conditions,

recurrence and local recurrence are equivalent. Hence, when the chains in question (W , W̃ , W g and

W̃ g) are all suitably irreducible andg is bounded, the set of implications in Figure 2 holds. Therefore, at

the expense of adding some mild irreducibility conditions to Corollary 1, we can remove the assumption

thatg is bounded away from zero. Corollary 2 is a formal statement of our extension of Corollary 1.

W̃ is recurrent ⇔ W is recurrent ⇒ ν(dθ) is strongly admissible

⇓

W̃ g is recurrent ⇔ W g is recurrent ⇒ g(θ) ν(dθ) is strongly admissible

Figure 2: Implications holding under (irreducibility and)the assumption thatg is bounded.

Corollary 2. Suppose that(3) holds so thatν is strongly admissible. Suppose thatg : Θ → [0,∞) is

bounded and that the following two conditions hold

1. EitherW is ν-irreducible orW̃ isM -irreducible.

2. EitherW g is νg-irreducible orW̃ g isMg-irreducible.

Then the priorνg(dθ) = g(θ) ν(dθ) is strongly admissible.

There is an important subtle difference between Corollary 1and Corollary 2. In order to apply

either result, one must show that (3) holds, or equivalently, thatW is locally-ν-recurrent. If Corollary 2

is applicable, that is, if the irreducibility conditions hold, then there are two different Markov chains,W

andW̃ , whose recurrence leads to the desired result. Thus, ifW happens to be analytically intractable,

one can operate oñW instead. This idea has proved useful in practice. Indeed, experience has shown

that, of the two chains,̃W is often more amenable to analysis [see; e.g. 9, 10, 11]. Thisfact may make

it slightly less surprising that we are able to make a stronger statement about the relationship between

W̃ andW̃ g (Theorem 4) than we can about that betweenW andW g (Theorem 3).

We now describe an application to estimation problems with restricted parameter spaces. Recall our

original decision problem with parameter spaceΘ, sample spaceX and statistical modelP (dx|θ). Call

this “Problem A.” Consider a slightly different problem where everything is the same except that the

parameter space is nowΘ∗ ∈ B(Θ), a proper subset ofΘ. Call this “Problem B.” Suppose thatν is an

improper prior onΘ that satisfies (3) soν is strongly admissible in Problem A. Letν∗ denote the measure

ν restricted toΘ∗. Sinceν is strongly admissible when the parameter space isΘ, it seems plausible that

ν∗ might be strongly admissible for Problem B. (This does not seem to follow immediately from the
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definition of almost admissibility.) In Section 4, we show that, under mild irreducibility conditions,ν∗

is strongly admissible for Problem B. We illustrate this result using an example concerning independent

and identically distributed random vectors from a translation family.

The rest of the paper is organized as follows. Section 2 contains a series of results for general

state space Markov chains that culminates in conditions under which local recurrence is equivalent to

recurrence. The results in Section 2 are used in Section 3 to prove Theorem 5 and Corollary 2. Fi-

nally, Section 4 describes the application of our results toestimation problems with restricted parameter

spaces.

2 Reconciling two different notions of recurrence

In this section, we will establish general conditions underwhich recurrence and local recurrence are

equivalent. After stating some definitions and results from[15], we proceed to state and prove several

new results that lead to the connection between recurrence and local recurrence.

Consider again our generic Markov chainΦ with state spaceZ and Markov transition function

K(·|·). Forn ∈ N := {1, 2, 3, . . . }, letKn : B(Z) × Z → [0, 1] denote then-step Markov transition

function defined inductively by

Kn+1(A|z) =

∫

Z

Kn(A|y)K(dy|z) ,

whereK1 ≡ K. Of course,Kn(A|z) = Prz

(
Φn ∈ A). Here is a formal definition ofα-irreducibility.

Definition 4. [15, p.87]. The chainΦ is calledα-irreducible ifα is a non-trivial,σ-finite measure on

(Z,B(Z)) such that for everyA ∈ B(Z) with α(A) > 0 and everyz ∈ Z, there exists ann ≥ 1 (which

may depend onz andA) withKn(A|z) > 0. The measureα is called an irreducibility measure forΦ.

Recall that two measures,µ1 andµ2, defined on the same measurable space areequivalent(written

µ1 ≡ µ2) if they have the same sets of measure 0; that is, ifµ1 ≻ µ2 andµ2 ≻ µ1. If Φ isα-irreducible,

then there exists amaximal irreducibility measure, ψ(·), that satisfies the following properties [15,

Section 4.2.2]:

MX1: Φ isψ-irreducible;

MX2: ψ is a probability measure;

MX3: if α′ is any other measure, the chainΦ is α′-irreducible if and only ifψ ≻ α′;

MX4: if ψ(A) = 0, thenψ
{
z ∈ Z : Prz

(
σA <∞

)
> 0

}
= 0 .
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While maximal irreducibility measures are not unique, it follows from MX3 that any two maximal

irreducibility measures are equivalent. When we say “Φ is aψ-irreducible Markov chain” we mean that

Φ is α-irreducible for someα and thatψ is a maximal irreducibility measure for the chain. It is usually

possible to analyze aψ-irreducible chain without knowingψ as long as the setB+(Z) := {A ∈ B(Z) :

ψ(A) > 0} is known. In fact, some of our effort in this section is dedicated to establishing that, ifΦ is

α-symmetric andα-irreducible, thenα ≡ ψ.

We now state Meyn and Tweedie’s definition of recurrence as well as some results that will be

required in the sequel. ForA ∈ B(Z), let ηA denote the number of times the chain visits the setA

after time zero; i.e.,ηA :=
∑∞

n=1 IA(Φn). Let Ez(·) denote the expectation operator corresponding to

Prz(·).

Definition 5. [15, Chapter 8] LetΦ be aψ-irreducible Markov chain. The chainΦ is recurrent if for

eachz ∈ Z and eachA ∈ B+(Z),

Ez(ηA) =

∞∑

n=1

Kn(A|z) = ∞ .

Remark2. Despite the fact that the name “ψ-recurrent” is probably more consistent with the general

terminology in this paper, we will stick to the more standard“recurrent” with its implicit reference to

the measureψ.

For a measurable setA, define the event

{Φ ∈ A i.o.} :=

∞⋂

N=1

∞⋃

k=N

{Φk ∈ A} .

Theorem 6. [15, p.201] If theψ-irreducible Markov chainΦ is recurrent, then there exists a setH ∈

B(Z) satisfyingψ(Z \H) = 0 and for eachz ∈ H and eachA ∈ B+(Z),

Prz

(
Φ ∈ A i.o.

)
= 1 .

The setH is called the maximal Harris set.

The next result is a useful characterization of recurrence.

Theorem 7. [15, p.187] Theψ-irreducible Markov chainΦ is recurrent if and only if there do not exist

two setsA, B in B+(Z) with

Prz(σA <∞) < 1 ∀ z ∈ B .

Define then-steptaboo probabilitiesas

AK
n(B|z) = Prz(Φn ∈ B,σA ≥ n) for z ∈ Z andA,B ∈ B(Z) .

This is simply the probability that the Markov chain startedat the pointz, ends up in the setB aftern

steps having avoided the setA along the way. Here is our first result concerning the generalstate space

Markov chainΦ.
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Lemma 1. Suppose thatΦ isψ-irreducible and thatA andB are disjoint sets inB+(Z). Thenψ(S) > 0

where

S =
{
z ∈ A : AK

n(B|z) > 0 for somen ∈ N
}
.

Proof. Suppose thatψ(S) = 0. It follows from MX3 that the set

D = {z ∈ Z : Kn(S|z) > 0 for somen ∈ N}

also hasψ-measure zero. Hence, the setA \ (D ∪ S) has positiveψ-measure and ifz∗ ∈ A \ (D ∪ S),

thenAK
n(B|z∗) = 0 for all n ∈ N andKn(S|z∗) = 0 for all n ∈ N. Now for anyn ∈ N, thelast-exit

decompositionof Kn(B|z∗) [15, p.180] yields

Kn(B|z∗) = AK
n(B|z∗) +

n−1∑

j=1

∫

A

Kj(dw|z∗) AK
n−j(B|w)

= AK
n(B|z∗) +

n−1∑

j=1

[∫

A\S
Kj(dw|z∗) AK

n−j(B|w) +

∫

S

Kj(dw|z∗) AK
n−j(B|w)

]

= 0 .

Hence,Kn(B|z∗) = 0 for all n ∈ N; that is, the setB is not accessible from the pointz∗. This

contradicts theψ-irreducibility of Φ sinceψ(B) > 0.

Lemma 2. Suppose the Markov chainΦ isψ-irreducible and locally-π-recurrent and thatπ ≡ ψ. Then

for eachπ-proper setA, the set

{z ∈ Z : Prz(σA <∞) < 1
}

hasπ-measure 0.

Proof. Of course, local-π-recurrence implies thatπ{z ∈ A : Prz(σA <∞) < 1
}

= 0. Thus, it suffices

to show thatB = {z ∈ A : Prz(σA < ∞) < 1
}

also hasπ-measure zero. Assume to the contrary that

π(B) > 0. Then there exists anε > 0 such that the set

Bε =
{
z ∈ A : Prz(σA <∞) < 1 − ε

}

has positiveπ-measure. Lemma 1 then implies that the set

S = {z ∈ A : AK
n(Bε|z) > 0 for somen ∈ N}

has positiveπ-measure. Ifz ∈ S, there exists ann = n(z) such thatAKn(z)(Bε|z) > 0. Moreover,

once the chain enters the setBε, there is a probability of at leastε that the chain never returns toA.

Thus, Prz(σA = ∞) ≥ εAK
n(z)(Bε|z) > 0. This contradicts the local-π-recurrence ofΦ since

0 < π(S) <∞.
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Here is the main result of this section.

Theorem 8. Suppose the Markov chainΦ is ψ-irreducible and thatπ is a measure on(Z,B(Z)) such

thatπ ≡ ψ. Then recurrence and local-π-recurrence are equivalent.

Proof. Assume thatΦ is recurrent and letA be aπ-proper set. The equivalence ofπ andψ implies that

ψ(A) > 0 and from Theorem 6 it follows that

Prz
(
Φ ∈ A i.o.

)
= 1

for all z ∈ H. From this we deduce thatPrz(σA <∞) = 1 for all z ∈ H. Therefore,

{
z ∈ A : Prz(σA <∞) < 1

}
⊆

{
z ∈ Z : Prz(σA <∞) < 1

}
⊆ Z \H .

Thus, the set
{
z ∈ A : Prz(σA < ∞) < 1

}
hasψ-measure zero and, sinceπ andψ are equivalent, it

also hasπ-measure 0 and henceΦ is locally-π-recurrent.

Conversely, assume thatΦ is locally-π-recurrent. Lemma 2 implies that for everyπ-proper setA,

we have

π
{
z ∈ Z : Prz(σA <∞) < 1

}
= 0 . (6)

Now suppose thatΦ is not recurrent so that by Theorem 7 there exist setsC1 andC2 with ψ(C1) > 0

andψ(C2) > 0 such that

Prz(σC1 <∞) < 1 ∀ z ∈ C2 . (7)

The equivalence ofπ andψ implies thatπ(C1) > 0 andπ(C2) > 0. There are two possible cases: (i)

π(C1) <∞ and (ii)π(C1) = ∞. In case (i),C1 is aπ-proper set so (7) directly contradicts (6). In case

(ii), becauseπ is σ-finite, there exists a setC ′
1 ⊂ C1 such thatC ′

1 is π-proper. Then

Prz(σC′

1
<∞) ≤ Prz(σC1 <∞) < 1 ∀ z ∈ C2 ,

which again contradicts (6). Thus,Φ must be recurrent.

Remark3. An obvious implication of Theorem 8 is that for aψ-irreducible Markov chain, recurrence

and local-ψ-recurrence are equivalent.

We now develop a specialized version of Theorem 8 for symmetric Markov chains that will be used

to analyze the chains described in the Introduction.

Definition 6. [15, p.229]. Letπ be a non-trivial,σ-finite measure on(Z,B(Z)). The measureπ is said

to be invariant forΦ if π(A) =
∫
Z
K(A|w)π(dw) for all A ∈ B(Z).

Remark4. SupposeΦ is aψ-irreducible Markov chain and thatπ is invariant forΦ. If π(Z) <∞, then

Φ is recurrent and is calledpositive recurrent. If π(Z) = ∞, thenΦ may or may not be recurrent. If

π(Z) = ∞ andΦ is recurrent, then it is callednull recurrent.
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Lemma 3. Supposeπ is invariant for the Markov chainΦ. If π(A) = 0, then the set

{z ∈ Z : Kn(A|z) > 0 for somen ∈ N}

hasπ-measure zero.

Proof. DefineDn = {z ∈ Z : Kn(A|z) > 0} for n ∈ N and note that

{z ∈ Z : Kn(A|z) > 0 for somen ∈ N} = ∪∞
n=1Dn .

Thus, it suffices to show that for eachn ∈ N, π(Dn) = 0. We will accomplish this using an induction

argument. First, invariance yields

0 = π(A) =

∫

Z

K(A|z)π(dz) .

Hence,π{z ∈ Z : K(A|z) > 0} = 0; i.e.,π(D1) = 0. Now assume thatπ(Dn) = 0. Then

Kn+1(A|z) =

∫

Z

Kn(A|u)K(du|z) =

∫

Dn

Kn(A|u)K(du|z) .

Now,Dn hasπ-measure 0, so it follows (from what we have already shown) that{z ∈ Z : K(Dn|z) >

0} hasπ-measure 0. Hence,π(Dn+1) = 0.

Lemma 4. Suppose that the measureπ is invariant for the Markov chainΦ and thatΦ is π-irreducible.

Thenπ is equivalent to the maximal irreducibility measure,ψ; that is,ψ ≡ π. Consequently,B+(Z) :=

{A ∈ B(Z) : ψ(A) > 0} = {A ∈ B(Z) : π(A) > 0}.

Proof. Becauseψ is the maximal irreducibility measure, we know thatψ ≻ π. Thus, to show that

ψ ≡ π, we need only establish thatπ ≻ ψ. If π(A) = 0, then we know from Lemma 3 that the

set {z ∈ Z : Kn(A|z) > 0 for somen ∈ N} hasπ-measure zero. Hence, there exists az∗ ∈ Z

such thatKn(A|z∗) = 0 for all n ∈ N and sinceψ is an irreducibility measure forΦ, it follows that

ψ(A) = 0.

SupposeΦ is π-symmetric and thatA ∈ B(Z). Then

π(A) = π(A)

∫

Z

K(du|v) =

∫

Z

K(du|v)

∫

A

π(dv) =

∫

Z

∫

A

K(dv|u)π(du) =

∫

Z

K(A|u)π(du) ;

i.e., π is an invariant measure forΦ. Combining Theorem 8, Lemma 4 and the relationship between

symmetry and invariance yields the following result.

Corollary 3. Suppose the Markov chainΦ is π-symmetric andπ-irreducible. Then recurrence and

local-π-recurrence are equivalent.
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3 Relationships betweenW and W̃

Recall that we have a statistical modelP (dx|θ) and aσ-finite, improper priorν(dθ) such that the result-

ing marginalM(dx) =
∫
Θ P (dx|θ)ν(dθ) is alsoσ-finite. Thus, a formal posterior distributionQ(dθ|x)

exists and is characterized by (1). We have defined two Markovchains:W is theν-symmetric Markov

chain onΘ whose Markov transition function isR(dθ|η) =
∫
X Q(dθ|x)P (dx|η) and W̃ is theM -

symmetric Markov chain onX whose Markov transition function is̃R(dy|x) =
∫
Θ P (dy|θ)Q(dθ|x).

In this section, we will prove Theorem 5 and Corollary 2. We start with a result concerning irreducibility.

Theorem 9. Theν-symmetric Markov chainW is ν-irreducible if and only if theM -symmetric Markov

chainW̃ isM -irreducible.

Proof. Suppose thatW is not ν-irreducible. Then there exists a setC with ν(C) > 0 and a point

θ∗ ∈ Θ such thatRn(C|θ∗) = 0 for all n ∈ N. We will demonstrate that̃W is notM -irreducible. Since

ν(C) =
∫
XQ(C|x)M(dx) > 0, we haveM{x ∈ X : Q(C|x) > 0} > 0. Therefore, there exists an

ε > 0 such thatM{x ∈ X : Q(C|x) > ε} > 0. SetBε = {x ∈ X : Q(C|x) > ε}. Define

D =
{
x ∈ X : R̃n(Bε|x) = 0 for all n ∈ N

}
.

We will show thatP
(
D|θ∗

)
= 1 and hence there exists anx∗ ∈ X such thatR̃n(Bε|x

∗) = 0 for all

n ∈ N, which implies that̃W is notM -irreducible. For eachn ∈ N, define

Dn =
{
x ∈ X : R̃n(Bε|x) > 0} .

Note that

∪∞
n=1Dn =

{
x ∈ X : R̃n(Bε|x) > 0 for somen ∈ N

}
= D .

Hence, it suffices to show thatP (Dn|θ
∗) = 0 for eachn ∈ N. A straightforward induction argument

shows that

Rn+1(C|θ∗) =

∫

X

∫

X
Q(C|x) R̃n(dx|y)P (dy|θ∗) .

Hence, if for somen ∈ N, P (Dn|θ
∗) > 0, then

Rn+1(C|θ∗) =

∫

X

∫

X
Q(C|x) R̃n(dx|y)P (dy|θ∗)

≥

∫

Bε

∫

Dn

Q(C|x) R̃n(dx|y)P (dy|θ∗)

≥ ε

∫

Bε

∫

Dn

R̃n(dx|y)P (dy|θ∗)

= ε

∫

Dn

R̃n(Bε|y)P (dy|θ∗) > 0 ,

which contradicts the assumption regardingW . Hence,P (Dn|θ
∗) = 0 for all n ∈ N. The other

direction is analogous and is left to the reader.
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Remark5. Note thatW andW̃ have invariant measuresν(dθ) andM(dx), respectively. Suppose both

chains areψ-irreducible. Sinceν(Θ) = M(X ) = ∞,W andW̃ cannot be positive recurrent.

The key to proving thatW andW̃ have the same stability is that they can be represented as the

“marginal” Markov chains associated with a “joint” Markov chain onX × Θ. Indeed, consider the

Markov transition function

R∗(dθ, dx|η, y) = Q(dθ|x)P (dx|η) , (8)

defined on the measurable space
(
X ×Θ,B(X )×B(Θ)

)
. Let {W̃n,Wn}

∞
n=0 denote the corresponding

Markov chain. Due to the special structure of the transitionfunctionR∗ (that is, the fact that the right-

hand side of (8) is free ofy), givenWn, the future of the process; i.e.,{W̃i,Wi}
∞
i=n+1, is conditionally

independent of̃Wn. Analogously, giveñWn, the future of the process is conditionally independent of

Wn−1. We shall denote the overall probability law governing thischain byPr∗(·). Using the Markov

property and the other property described above, we have

Pr∗
(
Wn+1 ∈ C

∣∣Wn = wn,Wn−1 = wn−1, . . . ,W0 = w
)

= Pr∗
(
Wn+1 ∈ C

∣∣Wn = wn

)

=

∫

X
Q(C|x)P (dx|wn) .

Thus, the marginal sequenceW = {Wn}
∞
n=0 is itself a Markov chain onΘ with Markov transition

function

R(dθ|η) =

∫

X
Q(dθ|x)P (dx|η) .

A similar argument shows that̃W = {W̃n}
∞
n=1 is a Markov chain onX with Markov transition function

R̃(dy|x) =

∫

Θ
P (dy|θ)Q(dθ|x) .

We now prove Theorem 5, which is restated here for convenience.

Theorem5. Assume that eitherW is ν-irreducible orW̃ isM -irreducible. Then the Markov chainW

is recurrent if and only if the Markov chaiñW is recurrent.

Proof. Theorem 9 implies thatW is ν-irreducibleand W̃ is M -irreducible. Hence, Lemma 4 implies

thatν andM are equivalent to the maximal irreducibility measures ofW andW̃ , respectively.

Now assume that̃W is recurrent. Fixθ ∈ Θ and supposeC ∈ B(Θ) is such thatν(C) > 0. We

need to show that
∑∞

n=1R
n(C|θ) = ∞. Sinceν(C) =

∫
XQ(C|x)M(dx) > 0, we haveM{x ∈

X : Q(C|x) > 0} > 0. Therefore, there exists anε > 0 such thatM{x ∈ X : Q(C|x) > ε} > 0.

SetBε = {x ∈ X : Q(C|x) > ε}. Let E∗
θ(·) denote the expectation operator corresponding to
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Pr∗(·|W0 = θ). Now

∞∑

n=2

Rn(C|θ) =
∞∑

n=2

E∗
θ

[
IC(Wn)

]

=

∞∑

n=2

E∗
θ

[
E∗

θ

[
IC(Wn)|W̃n

]]

≥
∞∑

n=2

E∗
θ

[
IBε

(W̃n)E∗
θ

[
IC(Wn)|W̃n

]]

=

∞∑

n=2

E∗
θ

[
IBε

(W̃n)Q(C|W̃n)
]

≥ ε

∞∑

n=2

E∗
θ

[
IBε

(W̃n)
]

= ε
∞∑

n=2

Pr∗
(
W̃n ∈ Bε|W0 = θ

)

= ε

∞∑

n=2

[∫

X
Pr∗(W̃n ∈ Bε|W̃1 = x,W0 = θ)P (dx|θ)

]

= ε

∫

X

[
∞∑

n=1

R̃n(Bε|x)

]
P (dx|θ) = ∞ ,

where the last equality follows from the fact that̃W is recurrent andM(Bε) > 0.

The other direction is similar, but there are some importantdifferences so we provide the details.

Now assume thatW is recurrent. Fixx ∈ X and supposeB ∈ B(X ) is such thatM(B) > 0. We

need to show that
∑∞

n=1 R̃
n(B|x) = ∞. SinceM(B) =

∫
Θ P (B|θ) ν(dθ) > 0, we haveν{θ ∈

Θ : P (B|θ) > 0} > 0. Therefore, there exists anε > 0 such thatν{θ ∈ Θ : P (B|θ) > ε} > 0.

SetCε = {θ ∈ Θ : P (B|θ) > ε}. Again, E∗θ(·) denotes the expectation operator corresponding to

Pr∗(·|W0 = θ). Now

∞∑

n=1

R̃n(B|x) =
∞∑

n=2

Pr∗(W̃n ∈ B|W̃1 = x)

=

∞∑

n=2

[∫

Θ
Pr∗(W̃n ∈ B|W1 = θ)Q(dθ|x)

]

=

∫

Θ

[
∞∑

n=1

E∗
θ

[
IB(W̃n)

]
]
Q(dθ|x) .

Thus, it is enough to show that, for eachθ ∈ Θ,

∞∑

n=2

E∗
θ

[
IB(W̃n)

]
= ∞ .
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Now, for fixedθ ∈ Θ, we have

∞∑

n=2

E∗
θ

[
IB(W̃n)

]
=

∞∑

n=2

E∗
θ

[
E∗

θ

[
IB(W̃n)|Wn−1

]]

≥
∞∑

n=2

E∗
θ

[
ICε

(Wn−1) E∗
θ

[
IB(W̃n)|Wn−1

]]

=

∞∑

n=2

E∗
θ

[
ICε

(Wn−1)P (B|Wn−1)
]

≥ ε

∞∑

n=2

E∗
θ

[
ICε

(Wn−1)
]

= ε

∞∑

n=1

Rn(Cε|θ) = ∞ ,

where the last equality follows from the fact thatW is recurrent andν(Cε) > 0.

Remark6. It is clear that, instead ofR∗(dθ, dx|η, y) = Q(dθ|x)P (dx|η), we could just as easily have

used the Markov transition function

R̃∗(dx, dθ|y, η) = P (dx|θ)Q(dθ|y)

as the basis of our joint chain. Moreover, the measureP (dx|θ) ν(dθ) is invariant for bothR∗ andR̃∗.

Theorem 5 is a substantial generalization of Hobert and Robert’s [10] Theorem 1 which assumes

thatX andΘ are both subsets ofR and that the collection of sets
{
B ∈ B(X ) : P (B|θ) > 0

}
is the

same for allθ ∈ Θ; that is, that the support ofP (dx|θ) is the same for allθ ∈ Θ. We will see below

that this second condition actually implies thatW andW̃ are irreducible. We now provide a proof of

Corollary 2.

Proof of Corollary 2. According to Theorem 1, (3) implies the strong admissibility of ν. What we need

to show is that (3) in conjunction with the boundedness ofg and the irreducibility assumptions implies

thatνg(dθ) is strongly admissible. We will accomplish this by following a string of implications shown

in Figure 2. First, Theorem 9 implies thatW is ν-irreducible,W̃ isM -irreducible,W g is νg-irreducible,

andW̃ g isMg-irreducible. Now, by Theorem 2, (3) implies thatW is locally-ν-recurrent and hence re-

current by Corollary 3. Theorem 5 then shows thatW̃ is recurrent and hence locally-M -recurrent by

Corollary 3. Theorem 4 implies that̃W g is locally-Mg -recurrent and hence recurrent by Corollary 3.

Another application of Theorem 5 shows thatW g is recurrent and hence locally-νg -recurrent by Corol-

lary 3. Finally, Theorem 2 and Theorem 1 together show thatνg is strongly admissible.

Here is a simple example illustrating the application of Corollary 2.
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Example1. LetX1, . . . ,Xn be independent and identically distributed random variables from a distri-

bution with density

p(x|θ) =
1

θ
I(0,θ)(x) ,

whereθ ∈ Θ = R+ := (0,∞). Take the prior distribution to beν(dθ) = dθ/θ, wheredθ denotes

Lebesgue measure onΘ. It’s easy to show that the marginal measure is

M(dx) =
dx

nxn
(n)

,

wheredx denotes Lebesgue measure onX = R
n
+ andx(n) := max{x1, . . . , xn}. The posterior is given

byQ(dθ|x) = q(θ|x)dθ where

q(θ|x) =
nxn

(n)

θn+1
I(

x(n),∞
)(θ) .

It follows thatR(dθ|η) = r(θ|η)dθ where

r(θ|η) =
nθn−1

2ηn
I(0,η](θ) +

nηn

2θn+1
I(η,∞)(θ) .

Note thatr(θ|η) > 0 for all θ, η ∈ R+. Now, if C is a set inR+ such thatν(C) > 0, thenC must have

positive Lebesgue measure. Thus, for anyη > 0, R(C|η) > 0 so the Markov chainW is ν-irreducible.

Becauseη−1 is a scale parameter in the densityr(θ|η), the chainW = {Wn}
∞
n=0 can be represented

as

Wn+1 = WnUn+1 , (9)

whereU1, U2, . . . are independent and identically distributed with density

f(u) =
nun−1

2
I(0,1](u) +

n

2un+1
I(1,∞)(u) .

Taking logs in (9) yields a random walk with increment distribution equal to that oflogU1 and, since

E
[
logU1

]
= 0, this random walk is recurrent [15, p.247]. It follows thatW is also recurrent [10, Section

3] so the prior distributionν(dθ) = dθ/θ is strongly admissible. (We note that strong admissibilityof

ν, or equivalently, local-ν-recurrence ofW , can also be deduced from the results in Example 3.1 of

[5].) SinceW is ν-irreducible and recurrent, Corollary 2 is applicable. Forinstance, suppose that

g(θ) = IΘ∗(θ) whereΘ∗ = ∪∞
i=0(2i, 2i+ 1). Let rg(θ|η) denote the Markov transition function ofWg.

It’s easy to see thatrg(θ|η) > 0 for all θ ∈ Θ∗ and allη ∈ Θ and it follows (using arguments like those

above) thatWg is νg-irreducible. Thus, by Corollary 2,νg(dθ) = g(θ)ν(dθ) is strongly admissible.

This ends Example 1.

In most applications, then-step transition function,Rn, is intractable so irreducibility must be

established through indirect methods. Notice, however, that in the preceding example, we were able

to establish theν-irreducibility of W quite straightforwardly because every setC with ν(C) > 0 is
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accessible from every pointθ in a single step. We now describe a simple condition that ensures such

behavior. Suppose the collection of sets
{
B ∈ B(X ) : P (B|θ) > 0

}
is the same for allθ ∈ Θ

and denote this collection byS. When this is the case, we say that the “SFP condition” holds,where

SFP stands for “support free of parameter.” The following result shows that the SFP condition implies

(among other things) thatR(C|θ) > 0 for all θ ∈ Θ wheneverν(C) > 0.

Lemma 5. Suppose the SFP condition holds and letS =
{
B ∈ B(X ) : P (B|θ) > 0

}
. Then

1.
{
B ∈ B(X ) : M(B) > 0

}
= S,

2. ForC ∈ B(Θ), ν(C) > 0 ⇒ R(C|θ) > 0 for all θ ∈ Θ,

3. ForC ∈ B(Θ), ν(C) = 0 ⇒ R(C|θ) = 0 for all θ ∈ Θ,

4. ForB ∈ B(X ),M(B) > 0 ⇒ R̃(B|x) > 0 for all x ∈ X , and

5. ForB ∈ B(X ),M(B) = 0 ⇒ R̃(B|x) = 0 for all x ∈ X .

Hence,W is ν-irreducible andW̃ isM -irreducible.

Proof. (1) This follows easily from the fact thatM(B) =
∫
Θ P (B|θ) ν(dθ). (2) Of course,ν(C) =∫

X Q(C|x)M(dx). DefineA = {x ∈ X : Q(C|x) > 0}. Sinceν(C) > 0, M(A) > 0 and it follows

from (1) thatP (A|θ) > 0 for all θ. Thus, for anyθ ∈ Θ, we have

R(C|θ) =

∫

X
Q(C|x)P (dx|θ) =

∫

A

Q(C|x)P (dx|θ) > 0 .

(3) Sinceν(C) = 0, M(A) = 0 and henceP (A|θ) = 0 for all θ. Thus, for anyθ ∈ Θ, R(C|θ) = 0.

(4) SinceM(B) > 0, P (B|θ) > 0 for all θ. Thus, for anyx ∈ X , we have

R̃(B|x) =

∫

Θ
P (B|θ)Q(dθ|x) > 0 .

(5) SinceM(B) = 0, P (B|θ) = 0 for all θ. Thus, for anyx ∈ X , R̃(B|x) = 0.

While the SFP condition does not hold in Example 1, it does hold whenP (dx|θ) is an exponential

family on R
p [see; e.g., 2, Chapter 1]. Here is another example where the SFP condition holds.

Example2. Let f : R
p → [0,∞) be a density with respect to Lebesgue measure and suppose that

X1, . . . ,Xn are independent and identically distributed random vectors fromf(x1 − θ) whereθ ∈ Θ ⊂

R
p. In this case,X = R

pn and withdx denoting Lebesgue measure onX , P (dx|θ) = p(x|θ)dx where

x = (x1, . . . , xn) and

p(x|θ) =

n∏

i=1

f(xi − θ) .

Suppose thatf > 0. Then it’s easy to see that the collection of sets
{
B ∈ B(X ) : P (B|θ) > 0

}
is the

same for allθ ∈ Θ. Thus, Lemma 5 implies that for anyσ-finite, improper priorν(dθ), the resultingW

andW̃ will be ν-irreducible andM -irreducible, respectively. We return to this example later.
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We now examine a more complicated example where there are setsC with ν(C) > 0 andR(C|θ) =

0.

Example3. LetX = Θ = R andP (dx|θ) = p(x|θ)dx where

p(x|θ) = I(θ,θ+1)(x) ,

and dx denotes Lebesgue measure onX . If we take the prior distribution to beν(dθ) = dθ, it’s

easy to show that the marginal isM(dx) = dx, which is clearlyσ-finite. The posterior is given by

Q(dθ|x) = q(θ|x)dθ where

q(θ|x) = I(x−1,x)(θ) .

It follows thatR(dθ|η) = r(θ|η)dθ where

r(θ|η) =
(
1 + (θ − η)

)
I(−1,0)(θ − η) +

(
1 − (θ − η)

)
I(0,1)(θ − η) .

Sinceη is a location parameter in the densityr(θ|η), the Markov chainW can be expressed as a random

walk

Wn+1 = Wn + Zn+1 ,

whereZ1, Z2, . . . is an independent and identically distributed sequence of random variables with den-

sity given by

f(z) = (1 + z)I(−1,0)(z) + (1 − z)I(0,1)(z) .

Note that, ifW0 = w, thenW1 ∈ (w − 1, w + 1) with probability one, so there are many sets with

positive Lebesgue measure that are not accessible fromw in a single step. On the other hand, for any

δ ∈ (0, 1), we have

P
(
Z1 ∈ (0, δ)

)
= P

(
Z1 ∈ (−δ, 0)

)
> 0 .

This implies that the chainW can make arbitrarily small jumps in either direction. Hence, it should be

intuitively clear that any setC with positive Lebesgue measure is accessible from any pointθ ∈ R and

hence thatW is ν-irreducible. A formal proof of this irreducibility can be constructed using the ideas

in Section 4.3.3 of [15]. This ends Example 3.

The next example shows thatW is not alwaysν-irreducible.

Example4. LetX = R \ {0}, Θ = R andP (dx|θ) = p(x|θ)dx where

p(x|θ) = e−(x−θ)I(θ,∞)(x)I[0,∞)(θ) + ex−θI(−∞,θ)(x)I(−∞,0)(θ) ,

anddx denotes Lebesgue measure onX . If we take the prior distribution to be Lebesgue measure on

Θ; that is, ν(dθ) = dθ, then it’s straightforward to show that the posterior distribution is given by

Q(dθ|x) = q(θ|x)dθ where

q(θ|x) =

{
1

1−e−x e
−(x−θ)I(0,x)(θ) x > 0

1
1−ex e

x−θI(x,0)(θ) x < 0 .
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The Markov transition function ofW isR(dθ|η) = r(θ|η)dθ wherer(θ|η) =
∫
X q(θ|x)p(x|η)dx. Now

p(x|η) = 0 wheneverx < 0 andη ≥ 0. Also, q(θ|x) = 0 wheneverθ < 0 andx > 0. Consequently, if

η ≥ 0 andθ < 0, we have

r(θ|η) =

∫

X
q(θ|x)p(x|η)dx =

∫ 0

−∞
q(θ|x)p(x|η)dx+

∫ ∞

0
q(θ|x)p(x|η)dx = 0 .

Thus, ifη ≥ 0, we have

R
(
(−∞, 0)|η

)
=

∫ 0

−∞
r(θ|η)dθ = 0 ,

and a simple induction argument shows thatRn
(
(−∞, 0)|η

)
= 0 for all η ≥ 0 and alln ∈ N. Thus, the

set(−∞, 0), which has positiveν-measure, is not accessible from anyη ≥ 0 and it follows thatW is

notν-irreducible. In fact, ifW is started in[0,∞), it stays in[0,∞) forever, and ifW starts in(−∞, 0),

it stays in(−∞, 0) forever. This ends Example 4.

Several of the results developed in this paper are applicable only in situations whereW andW̃ are

irreducible. As shown above, establishing this irreducibility generally requires direct analysis of the

Markov chains. One exception is when the (easily checked) SFP condition holds and the irreducibil-

ity conditions are automatically satisfied. In particular,we have the following simplified version of

Corollary 2.

Corollary 4. Suppose thatP (dx|θ) satisfies the SFP condition and that(3) holds so thatν is strongly

admissible. Ifg : Θ → [0,∞) is bounded, then the priorνg(dθ) = g(θ) ν(dθ) is also strongly admissi-

ble.

Example5. LetX be a random vector from ap-variate normal distribution with mean vectorθ ∈ Θ =

R
p and identity covariance matrix; i.e.,X ∼ Np(θ, Ip). Assume thatp ≥ 3. Lai [14] considers priors of

the form

ν(dθ) =
(
a+ ‖θ‖2

)−b
dθ ,

wherea > 0, b ∈ R, ‖θ‖2 =
∑p

i=1 θ
2
i anddθ denotes Lebesgue measure onR

p. It is straightforward

to show thatν(Θ) = ∞ if and only if b ≤ p/2 and that the marginal measure isσ-finite for anyb in

this range. Together with Wen-Lin Lai, the authors have recently shown that Eaton’s Markov chain,

{Wn}
∞
n=0, is locally-ν-recurrent as long asb ≥ p

2 − 1. Thus,ν(dθ) is improper and strongly admissible

for all b ∈
[

p
2 − 1, p

2

]
.

Now suppose thatb ∈
[

p
2 −1, p

2

]
, g : R

p → [0,∞) is bounded andνg(dθ) = ν(dθ)g(θ) is improper.

The SFP condition is clearly satisfied in this example. Hence, Corollary 4 is applicable and implies that

νg(dθ) is strongly admissible. This ends Example 5.

Clearly, a general result that would allow one to check the irreducibility conditions without direct

analysis of the Markov chains would be extremely useful and,as we now explain, may be attainable.
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Note that in Example 4, there are setsB ⊂ X andC ⊂ Θ such thatP (B|θ) = 0 for all θ ∈ C and

P (B|θ) = 0 for all θ ∈ C. It is not hard to show that (under regularity conditions implying that the

sets and their complements have positive measure), the existence of such sets implies that the chains are

reducible. We believe that this existence is also necessaryfor reducibility, although we have been able to

prove this only for the case where one or both ofX andΘ have a countable number of elements. If our

conjecture is correct, one could establish irreducibilitysimply by showing that setsB andC satisfying

the conditions above do not exist.

4 Priors for estimation problems with restricted parameter spaces

Recall that “Problem A” is the one with parameter spaceΘ, sample spaceX and statistical model

P (dx|θ), whereas “Problem B” is the same as Problem A except that the parameter space isΘ∗ ∈ B(Θ),

a proper subset ofΘ. We assume throughout this section thatν is aσ-finite improper prior onΘ that

satisfies (3) so thatW is locally-ν-recurrent (andν is strongly admissible). Letν∗ be the measureν

restricted toΘ∗ and assumeν∗ is improper. We now show that, under mild irreducibility conditions,ν∗

is strongly admissible for Problem B.

For the time being, we focus on Problem A and the perturbed prior νg(dθ) = IΘ∗(θ)ν(dθ) with

associated marginalMg. Assume that Conditions 1 and 2 of Corollary 2 hold so thatW g and W̃ g

are both recurrent. To connect Problem A with Problem B we need to examine the Dirichlet form

corresponding to theMg-symmetric Markov chaiñW g. For anMg-proper setB, define

Ṽg(B) =
{
h ∈ L2(Mg) : h is bounded, h(x) ≥ IB(x)

}
. (10)

The Dirichlet form associated with the Markov chaiñW g is defined forh ∈ L2(Mg) as

∆̃g(h) =
1

2

∫

X

∫

X

(
h(x) − h(y)

)2
R̃g(dx|y)Mg(dy) . (11)

Now, sinceW̃ g is recurrent (and hence locally-Mg -recurrent), we have

inf
h∈Ṽg(B)

∆̃g(h) = 0 for eachMg-proper setB . (12)

Now, back to Problem B. LetW ∗ andW̃ ∗ denote the Markov chains associated with Problem B;

that is, they are the analogues ofW andW̃ from Problem A. (There are actually three different decision
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problems and six different Markov chains under consideration here.) Note that

∆̃g(h) =
1

2

∫

X

∫

X

(
h(x) − h(y)

)2
R̃g(dx|y)Mg(dy)

=
1

2

∫

X

∫

X

(
h(x) − h(y)

)2
∫

Θ
P (dx|θ)P (dy|θ)νg(dθ)

=
1

2

∫

X

∫

X

(
h(x) − h(y)

)2
∫

Θ∗

P (dx|θ)P (dy|θ)ν∗(dθ)

=
1

2

∫

X

∫

X

(
h(x) − h(y)

)2
R̃∗(dx|y)M∗(dy) ,

whereR̃∗(dx|y) is the Markov transition function of̃W ∗ andM∗ is the marginal corresponding toν∗ for

Problem B. Therefore,̃∆g(h) is simultaneously the Dirichlet form for both̃W g andW̃ ∗. Furthermore,

sinceνg(dθ) = IΘ∗(θ)ν(dθ), we have

Mg(B) =

∫

Θ
P (B|θ)νg(dθ) =

∫

Θ∗

P (B|θ)ν∗(dθ) = M∗(B) .

Hence,B isMg-proper if and only ifB isM∗-proper andL2(Mg) = L2(M
∗). Therefore, (12) implies

that W̃ ∗ is recurrent. Finally, ifW ∗ is ν∗-irreducible (or ifW̃ ∗ is M∗-irreducible), then an argument

similar to that used in the proof of Corollary 2 shows thatν∗ is strongly admissible in Problem B. We

now continue with the translation example introduced in theprevious section.

Example 2 cont.Recall thatX1, . . . ,Xn are independent and identically distributed random vectors

from f(x1 − θ) wheref is a density onRp andθ ∈ Θ∗ ⊂ R
p is an unknown parameter to be estimated.

We assume thatf > 0 so that the SFP condition holds. To preclude uninteresting cases, assume thatΘ∗

has infinite Lebesgue measure and thatR
p \Θ∗ has positive Lebesgue measure. We will use our results

to show that (under regularity conditions), Lebesgue measure restricted toΘ∗ is strongly admissible

whenp ∈ {1, 2}.

Consider the unrestricted version of the problem where the parameter space isΘ = R
p and take the

prior distribution to be Lebesgue measure onR
p; i.e.,ν(dθ) = dθ. Assume, for simplicity, that

m(x) =

∫

Rp

p(x|θ)dθ

is in (0,∞) for all x. Then a version of the posterior distribution is given by

Q(dθ|x) =
p(x|θ)

m(x)
dθ .

It follows thatR(dθ|η) = r(θ|η)dθ where the densityr(θ|η) is given by

r(θ|η) =

∫

X

p(x|θ)p(x|η)

m(x)
dx .

Eaton [8] shows thatr(θ|η) is only a function ofθ − η and that we can writer(θ|η) = r(θ − η|0) =:

t(θ − η) wheret is a symmetric density with respect to Lebesgue measure; i.e., t(u) = t(−u) for all
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u ∈ R
p and

∫
Rp t(u)du = 1. It follows that the Markov transition function isR(dθ|η) = t(θ − η)dθ,

which implies thatW can be expressed as a random walk

Wn+1 = Wn + Un+1 ,

whereU1, U2, . . . is an independent and identically distributed sequence of random vectors with density

t(u). A sufficient condition for recurrence ofW whenp = 1 is
∫

R
|u|t(u)du < ∞ [3, 15]. Eaton [5]

shows that this condition holds if ∫

R

|x|f(x)dx <∞ . (13)

Thus, if p = 1 and (13) holds, we can appeal to the arguments above (the SFP condition ensures that

all of the irreducibility conditions are satisfied) to conclude that Lebesgue measure onΘ∗ ⊂ R is

strongly admissible for the restricted parameter problem.Similar arguments show that ifp = 2 and∫
R2 ||x||

2f(x)dx < ∞, then Lebesgue measure onΘ∗ ⊂ R
2 is strongly admissible for the restricted

parameter problem. This argument cannot be extended beyondp = 2 because there are no recurrent

random walks onRp (driven by increment distributions having densities with respect to Lebesgue mea-

sure onRp) whenp > 2. As Eaton [6] says, “The parallel with Stein estimation is obvious.” This ends

Example 2.

A Appendix: Relationships between Dirichlet forms

The following result was stated but not proved in Eaton [5, Remark 3.3].

Proposition 1. If there exists anε > 0 such thatε < g(θ) < 1/ε for all θ ∈ Θ, then∆g(h) ≤ ε−3∆(h).

Proof. Defineĝ(x) =
∫
Θ g(θ)Q(dθ|x). Note thatĝ(x) ≥ ε and hence1/ĝ(x) ≤ 1/ε. It is clear from

(1) thatĝ(x) is the Radon-Nikodym derivative ofMg with respect toM ; i.e.,Mg(dx) = ĝ(x)M(dx). It

follows that the set
{
x ∈ X : ĝ(x) = 0

}
hasMg-measure 0. Now, following [8], a version ofQg(dθ|x)

is given by {
g(θ)
ĝ(x)Q(dθ|x) if ĝ(x) > 0

Q(dθ|x) if ĝ(x) = 0 .

Recall that

∆g(h) =

∫

Θ

∫

Θ

(
h(θ) − h(η)

)2
Sg(dθ, dη) .

Now using (4) we have

Sg(dθ, dη) =

∫

X
Qg(dθ|x)P (dx|η)g(η)ν(dη)

=

∫

X
Qg(dθ|x)Qg(dη|x)Mg(dx)

= g(θ)g(η)

∫

X

Q(dθ|x)Q(dη|x)

ĝ(x)
M(dx) .
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Putting all of this together, we have

∆g(h) =

∫

Θ

∫

Θ

(
h(θ) − h(η)

)2
Sg(dθ, dη)

=

∫

Θ

∫

Θ
g(θ)g(η)

(
h(θ) − h(η)

)2
∫

X

Q(dθ|x)Q(dη|x)

ĝ(x)
M(dx)

≤ ε−3

∫

Θ

∫

Θ

(
h(θ) − h(η)

)2
∫

X
Q(dθ|x)Q(dη|x)M(dx)

= ε−3

∫

Θ

∫

Θ

(
h(θ) − h(η)

)2
S(dθ, dη)

= ε−3∆(h) .

We now prove Theorem 4, which is restated here for convenience.

Theorem 4. If W̃ is locally-M -recurrent andg : Θ → [0,∞) is bounded, theñW g is locally-Mg -

recurrent.

Proof. Sinceg is nonnegative and bounded, there exists aK > 0 such thatg(θ) < K for all θ ∈ Θ. Let

∆̃ denote the Dirichlet form associated with the Markov chainW̃ ; that is, forh ∈ L2(M), define

∆̃(h) =
1

2

∫

X

∫

X

(
h(x) − h(y)

)2
R̃(dx|y)M(dy) .

Also, for eachM -proper setB, define

Ṽ (B) =
{
h ∈ L2(M) : h is bounded, h(x) ≥ IB(x)

}
.

SinceW̃ is locally-M -recurrent, Theorem 2 implies that

inf
h∈Ṽ (B)

∆̃(h) = 0 for eachM -proper setB .

Let ∆̃g andṼg be the analogues of̃∆ andṼ for the perturbed problem. These quantities were defined at

(10) and (11). Clearly,M(B) < ∞ ⇒Mg(B) < ∞ andL2(M) ⊆ L2(Mg). Hence, ifB isM -proper

andMg(B) > 0, thenB isMg-proper andṼ (B) ⊆ Ṽg(B). It’s also easy to see that, forh ∈ L2(M),

∆̃g(h) ≤ K∆̃(h). Therefore, ifB isM -proper andMg(B) > 0, we have

inf
h∈Ṽg(B)

∆̃g(h) ≤ inf
h∈Ṽ (B)

∆̃g(h) ≤ K inf
h∈Ṽ (B)

∆̃(h) .

Now sinceM is σ-finite, there exists a sequence ofM -proper setsB1 ⊂ B2 ⊂ · · · such that∪∞
i=1Bi =

X . The local-M -recurrence of̃W implies that for eachi ∈ N,

inf
h∈Ṽ (Bi)

∆̃(h) = 0 .
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Without loss of generality, we may assume thatMg(Bi) > 0 for all i ∈ N. Putting all of this together,

we have a sequence ofMg-proper sets,B1 ⊂ B2 ⊂ · · · such that∪∞
i=1Bi = X and such that for each

i ∈ N, we have

inf
h∈Ṽg(Bi)

∆̃g(h) = 0 .

The result now follows from Theorem 3.2 of Eaton [8].
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