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General Setting

Let 7 be a probability distribution. | want the value of some feature
0. For example, 8 might be a quantile, a mode, an interval, or

0=Eg = /Xg(x)ﬁ(dx)

Assume that @ is analytically intractable.

Treat 6 as an unknown parameter and simulate data to estimate it.

¢ Monte Carlo (MC, GOFMC()
e Markov chain Monte Carlo (MCMCQ)



Markov Chain Monte Carlo Basics

Simulate a Markov chain X := {X,}
Xi~ F; ;é 7 and COV(X,’,)(j) >0
Use 0, = é(Xo,Xl, ..., Xp—1) to estimate 6 so that

0,—0 as n— o

Simplest Case



Fixed-Width Methodology

When is n large enough?
When is 0, a good estimate of 67

Monte Carlo Error: é,, —0

Sampling Distribution

A

7',,(9,,—9)i>J as n — 0o

Simulate until
[en — Cp, Qn + Cn]

is sufficiently narrow.



Fixed-Width Methodology

Simplest Case

Vn(g, — Exg) Lt N(O,aé) as n — oo
where

op = Varg[g(X0)] + 2 Cova[g(Xo), 8(Xi)]
i=1

Simulate until

~

t, ZE 4 a(n) < desired half-width
n

Vvn

where t, is an appropriate critical value and a(n) | 0 on Z*.



Questions

Old Question

. When is 6, a good estimate of 67

New Questions

. When does the Monte Carlo error have a limiting distribution?

How can we construct confidence intervals for 67
Will the sequential procedure terminate at a finite time?

Will the resulting intervals have the desired coverage
probability?



Regularity Conditions

X = {Xo, X1, X2, ...} is a Markov chain

e invariant distribution is 7
e m-irreducible

e aperiodic

e positive Harris recurrent

P"(x,A) :=Pr(Xitn € A|Xi = x)

As n — oo

1P (x;-) = m() == sup |P"(x,A) —m(A) 10



Regularity Conditions

Rate of TV convergence is the key:
1P"(x,-) = m()Il < C(x)v(n)

where C : X — [0, 00] and v(n) | on Z*.

e uniform/geometric ergodicity means ~y(n) = t” for some
O<t< 1.

e polynomial ergodicity of order m means v(n) = 1/n™

There exist constructive techniques for establishing the rate of
convergence.



Simplest Case

0=E.g

Vi(Zn — Exg) % N(0,02) as n— oo

where
[ee]

op = Varg[g(X0)] + 2 Cova[g(Xo), 8(Xi)]
i=1

Simulate until

~

t, ZE 4 a(n) < desired half-width
n

Vvn

where t, is an appropriate critical value and a(n) | 0 on Z*.



Simplest Case: CLT

Suppose at least one of the following conditions hold.
e X is uniformly ergodic and E,g? < oo
e X is geometrically ergodic, reversible and E,g? < oo
e X is geometrically ergodic and E;|g|*T¢ < oo

e X is polynomially ergodic of order m and E,|g|*T¢ < oo
where me > 2 4 €

e X is polynomially ergodic of order m > 1 and there exists a
B < oo such that |g(x)| < B m-almost surely.

Then for any initial distribution, as n — oo

\/E(gn - Ewg) i) N(0,0’é)
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Simplest Case: Estimating o,

a:, = Var,[g(Xo)] + 2 Z Cov.[g(Xo), g(Xi)]
i=1

Batch Means (nonoverlapping, overlapping, spaced)
Regenerative Simulation

Spectral Methods

Subsampling Bootstrap (overlapping batch means)

Time Series Bootstrap



Simplest Case: Batch Means

Split a long run {Xo, X1,...,Xh—1} into b, batches of length a,:

X0,y Xap—1 g1 = i fLEl g(X;)
Xan,-'-7Xa2—1 g2
Xan(bnfl), ooy Xno 8b,
bn




Theoretical results

Theorem If X is geometrically ergodic and E,|g(x)[>T1+ < oo
for €1,€x > 0 then 623,\/, — 02 w.p. las n— o if

. @p — 00 as N — 00

. by — oo and b,/n—0asn— o

. b,tn**[logn]®> — 0 as n — oo where a = 1/(2 + €1)

. there exists ¢ > 1 such that ) (bn/n)° < oo.

Remark a, = b, = v/n (often) works.



General Case

~

0, approximates 6

Sampling Distribution

A

Tn(9,,—9)$J as n — oo

Simulate until
[On —Cp, O + Cn]

is sufficiently narrow.



General Case: Subsampling Bootstrap

Split a long run {Xp, X1, ..., X,—1} into batches of length a:
Xo,. ..,Xan_l 01
X1y X, 02
There are n — a, + 1 batches of length a,. The collection
é\lv é27 e 7é\nfa,,+1

can be used to approximate the sampling distribution of 0,.



Subsampling Bootstrap

Theorem Assume that as n — oo 7, — oo and

(0 —0) S J.

~

Let J* be the empirical distribution function of the 7, (8, — 0,).
If X is geometrically ergodic and as n — oo

. ap — o0 and a,/n—0
. Ta, — 00 and 75, /7, — 0

then J* — J at every continuity point and an “asymptotically
valid" 100(1 — )% confidence interval for 6 is

[0, — 720 (1= a/2), 0, — 7710 ' (a)2)] .



Toy Example

Goal: Estimate the mean of a Pareto(«, () ie.

af
51

We will pretend to require MCMC and use an independence
sampler with a Pareto(a, \) candidate.

A < B = uniformly ergodic

A > 3 = not even geometrically ergodic

A>23= 03 =o0.

0 =




Toy Example

5000 Replications
Target half-width=.005
Nominal 95% confidence interval

Table: Estimated Coverage Probabilities

a« B A BM SS BM25

1 4 3 943 948 898
(.003) (.002) (.004)

9 NA NA -

[y
S




Baseball

Efron and Morris (1975) give a data set consisting of the raw
batting averages (based on 45 official at-bats) and a
transformation (v/45 arcsin(2x — 1)) for 18 Major League Baseball
players during the 1970 season.

Suppose for i =1,..., K that
Y/|’Y/ ~ N(7171) 71’N7AN N(/J'7A)
A ~1G(2,2) f(p)ox1.
Block Gibbs Sampler: (X, p/,v") — (A, 1, 7)

Theorem (Rosenthal, 1996) The Markov chain is geometrically
ergodic.




Baseball

Goal: Estimate the posterior median, 6, of g, the “true” long-run
(transformed) batting average of the Chicago Cubs’ Ron Santo.

2000 Replications

Target half-width=.005

Nominal 95% confidence interval
Estimated Coverage Probability

SS .951 (.005)



Hierarchical Linear Model

Y8, u, Ar ~ Nn(XB + Zu, \gIn)
Blu ~ Np(fo, B)
ulAp ~ Nu(0,A5MH0)
Ar ~ Gamma(ry, r)
Ap ~ Gamma(di, d»)

Block Gibbs Sampler: Let & = (uT,87)7.

(N, &) = (X&) = (A9

TheoremThe Markov chain is geometrically ergodic if di > 1.



Hierarchical Linear Model

Measure 2 subjects 5 times each at equal intervals.

Y|ﬁ, AR ~ Nlo(Xﬁ + zu, )\Elflo)
Blu ~ N(0, 10)
ulAp ~ Na(0, A5 k)
Ar ~ Gamma(2,2)
Ap ~ Gamma(2,2)

2000 Replications

Target half-width=.02

Nominal 95% confidence interval for § = E[3]y]
Estimated Coverage Probabilities

BM .947 (.005) SS .943 (.005) BM30 .912 (.006)



Summary

Fixed-width methodology is useful in automating MCMC but
requires a strongly consistent estimator of the asymptotic
variance / asymptotically valid confidence interval.

SS is often closer to the nominal level than BM but...

SS requires more computational effort and can be slower than
BM.

Fixed-width methods require storing the entire simulation.

There has been no assumption of stationarity.



MLEs for Logistic-Normal

Observable data Y ={Yj;:j=1,...,n;i=1,...,q}
Unobservable random effects U = (Uy, ..., Uy)

y,.j|U = u ~ indep Bernou||i(7TU)

where

log <7TU> = ,BX,'J' + uj

1—my

where
Ui, ..., Uy ~iid. N(0,0?)

Goal: Likelihood-based inference about (3, o)



MLEs for Logistic-Normal

Find MLE using MCEM, MCLA, MCNR, etc.
All require simulation from 7(u | y).

Independence sampler: one-at-a-time updates
Update component i for i =1,...,q
Proposal: uf ~ hi(uj; o)

Let u* = (U1, ..., Uj1, Uy Uig1, - Ug) |

Theorem This sampler is uniformly ergodic.



MCEM

Goal: Estimate the Q-function

0 = Ellogn(y,u| B,0) | y,59, )]

based on simulated data in Booth and Hobert (1999, JRSSB).
1000 Replications

Target half-width=.05

Nominal 95% confidence interval

Estimated Coverage Probabilities

BM .942 (.007)
SS .949 (.007)
BM30 .903 (.009)



