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General Setting

Let π be a probability distribution. I want the value of some feature
θ. For example, θ might be a quantile, a mode, an interval, or

θ = Eπg :=

∫
X

g(x)π(dx)

Assume that θ is analytically intractable.

Treat θ as an unknown parameter and simulate data to estimate it.

• Monte Carlo (MC, GOFMC)

• Markov chain Monte Carlo (MCMC)



Markov Chain Monte Carlo Basics

Simulate a Markov chain X := {Xn}

Xi ∼ Fi 6= π and Cov(Xi ,Xj) > 0

Use θ̂n = θ̂(X0,X1, . . . ,Xn−1) to estimate θ so that

θ̂n → θ as n →∞

Simplest Case

θ̂n = ḡn :=
1

n

n−1∑
i=0

g(Xi )
a.s.→ Eπg = θ as n →∞



Fixed-Width Methodology

When is n large enough?

When is θ̂n a good estimate of θ?

Monte Carlo Error: θ̂n − θ

Sampling Distribution

τn(θ̂n − θ)
d→ J as n →∞

Simulate until
[θ̂n − cn, θ̂n + cn]

is sufficiently narrow.



Fixed-Width Methodology

Simplest Case

√
n(ḡn − Eπg)

d→ N(0, σ2
g ) as n →∞

where

σ2
g = Varπ[g(X0)] + 2

∞∑
i=1

Covπ[g(X0), g(Xi )]

Simulate until

t∗
σ̂g√

n
+ a(n) ≤ desired half-width

where t∗ is an appropriate critical value and a(n) ↓ 0 on Z+.



Questions

Old Question

1 When is θ̂n a good estimate of θ?

New Questions

1 When does the Monte Carlo error have a limiting distribution?

2 How can we construct confidence intervals for θ?

3 Will the sequential procedure terminate at a finite time?

4 Will the resulting intervals have the desired coverage
probability?



Regularity Conditions

X = {X0,X1,X2, . . .} is a Markov chain

• invariant distribution is π
• π-irreducible
• aperiodic
• positive Harris recurrent

Pn(x ,A) := Pr(Xi+n ∈ A|Xi = x)

As n →∞

‖Pn(x , ·)− π(·)‖ := sup
A
|Pn(x ,A)− π(A)| ↓ 0



Regularity Conditions

Rate of TV convergence is the key:

‖Pn(x , ·)− π(·)‖ ≤ C (x)γ(n)

where C : X → [0,∞] and γ(n) ↓ on Z+.

• uniform/geometric ergodicity means γ(n) = tn for some
0 < t < 1.

• polynomial ergodicity of order m means γ(n) = 1/nm

There exist constructive techniques for establishing the rate of
convergence.



Simplest Case

θ = Eπg

√
n(ḡn − Eπg)

d→ N(0, σ2
g ) as n →∞

where

σ2
g = Varπ[g(X0)] + 2

∞∑
i=1

Covπ[g(X0), g(Xi )]

Simulate until

t∗
σ̂g√

n
+ a(n) ≤ desired half-width

where t∗ is an appropriate critical value and a(n) ↓ 0 on Z+.



Simplest Case: CLT

Suppose at least one of the following conditions hold.

• X is uniformly ergodic and Eπg2 < ∞
• X is geometrically ergodic, reversible and Eπg2 < ∞
• X is geometrically ergodic and Eπ|g |2+ε < ∞
• X is polynomially ergodic of order m and Eπ|g |2+ε < ∞

where mε > 2 + ε

• X is polynomially ergodic of order m > 1 and there exists a
B < ∞ such that |g(x)| ≤ B π-almost surely.

Then for any initial distribution, as n →∞
√

n(ḡn − Eπg)
d→ N(0, σ2

g )



Simplest Case: Estimating σ2
g

σ2
g = Varπ[g(X0)] + 2

∞∑
i=1

Covπ[g(X0), g(Xi )]

Batch Means (nonoverlapping, overlapping, spaced)

Regenerative Simulation

Spectral Methods

Subsampling Bootstrap (overlapping batch means)

Time Series Bootstrap



Simplest Case: Batch Means

Split a long run {X0,X1, . . . ,Xn−1} into bn batches of length an:

X0, . . . ,Xan−1 ḡ1 = 1
an

∑an−1
j=0 g(Xj)

Xan , . . . ,Xa2−1 ḡ2
...

...
Xan(bn−1), . . . ,Xn−1 ḡbn

σ̂2
BM =

an

bn − 1

bn∑
j=1

(ḡj − ḡn)
2



Theoretical results

Theorem If X is geometrically ergodic and Eπ|g(x)|2+ε1+ε2 < ∞
for ε1, ε2 > 0 then σ̂2

BM → σ2
g w.p. 1 as n →∞ if

1 an →∞ as n →∞
2 bn →∞ and bn/n → 0 as n →∞
3 b−1

n n2α[log n]3 → 0 as n →∞ where α = 1/(2 + ε1)

4 there exists c ≥ 1 such that
∑

n(bn/n)c < ∞.

Remark an = bn =
√

n (often) works.



General Case

θ̂n approximates θ

Sampling Distribution

τn(θ̂n − θ)
d→ J as n →∞

Simulate until
[θ̂n − cn, θ̂n + cn]

is sufficiently narrow.



General Case: Subsampling Bootstrap

Split a long run {X0,X1, . . . ,Xn−1} into batches of length an:

X0, . . . ,Xan−1 θ̂1

X1, . . . ,Xan θ̂2
...

...

There are n − an + 1 batches of length an. The collection

θ̂1, θ̂2, · · · , θ̂n−an+1

can be used to approximate the sampling distribution of θ̂n.



Subsampling Bootstrap

Theorem Assume that as n →∞ τn →∞ and

τn(θ̂n − θ)
d→ J .

Let J∗ be the empirical distribution function of the τan(θ̂an − θ̂n).
If X is geometrically ergodic and as n →∞

1 an →∞ and an/n → 0

2 τan →∞ and τan/τn → 0

then J∗ → J at every continuity point and an “asymptotically
valid” 100(1− α)% confidence interval for θ is

[θ̂n − τ−1
n J∗

−1
(1− α/2), θ̂n − τ−1

n J∗
−1

(α/2)] .



Toy Example

Goal: Estimate the mean of a Pareto(α, β) ie.

θ =
αβ

β − 1

We will pretend to require MCMC and use an independence
sampler with a Pareto(α, λ) candidate.
λ ≤ β ⇒ uniformly ergodic
λ > β ⇒ not even geometrically ergodic
λ > 2β ⇒ σ2

g = ∞.



Toy Example

5000 Replications
Target half-width=.005
Nominal 95% confidence interval

Table: Estimated Coverage Probabilities

α β λ BM SS BM25

1 4 3 .943 .948 .898
(.003) (.002) (.004)

1 4 9 NA NA –



Baseball

Efron and Morris (1975) give a data set consisting of the raw
batting averages (based on 45 official at-bats) and a
transformation (

√
45 arcsin(2x − 1)) for 18 Major League Baseball

players during the 1970 season.

Suppose for i = 1, . . . ,K that

Yi |γi ∼ N(γi , 1) γi |µ, λ ∼ N(µ, λ)

λ ∼ IG(2, 2) f (µ) ∝ 1 .

Block Gibbs Sampler: (λ′, µ′, γ′) → (λ, µ, γ)

Theorem (Rosenthal,1996) The Markov chain is geometrically
ergodic.



Baseball

Goal: Estimate the posterior median, θ, of γ9, the “true” long-run
(transformed) batting average of the Chicago Cubs’ Ron Santo.

2000 Replications
Target half-width=.005
Nominal 95% confidence interval
Estimated Coverage Probability

SS .951 (.005)



Hierarchical Linear Model

Y |β, u, λR ∼ NN(Xβ + Zu, λ−1
R IN)

β|u ∼ Np(β0,B
−1)

u|λD ∼ Nn(0, λ−1
D In)

λR ∼ Gamma(r1, r2)

λD ∼ Gamma(d1, d2)

Block Gibbs Sampler: Let ξ = (uT , βT )T .

(λ′, ξ′) → (λ, ξ′) → (λ, ξ)

TheoremThe Markov chain is geometrically ergodic if d1 > 1.



Hierarchical Linear Model

Measure 2 subjects 5 times each at equal intervals.

Y |β, λR ∼ N10(xβ + zu, λ−1
R I10)

β|u ∼ N(0, 10)

u|λD ∼ N2(0, λ−1
D I2)

λR ∼ Gamma(2, 2)

λD ∼ Gamma(2, 2)

2000 Replications
Target half-width=.02
Nominal 95% confidence interval for θ = E [β|y ]
Estimated Coverage Probabilities

BM .947 (.005) SS .943 (.005) BM30 .912 (.006)



Summary

• Fixed-width methodology is useful in automating MCMC but
requires a strongly consistent estimator of the asymptotic
variance / asymptotically valid confidence interval.

• SS is often closer to the nominal level than BM but...

• SS requires more computational effort and can be slower than
BM.

• Fixed-width methods require storing the entire simulation.

• There has been no assumption of stationarity.



MLEs for Logistic-Normal

Observable data Y = {Yij : j = 1, . . . , ni ; i = 1, . . . , q}
Unobservable random effects U = (U1, . . . ,Uq)

Yij |U = u ∼ indep Bernoulli(πij)

where

log

(
πij

1− πij

)
= βxij + ui

where
U1, . . . ,Uq ∼ i.i.d. N(0, σ2)

Goal: Likelihood-based inference about (β, σ)



MLEs for Logistic-Normal

Find MLE using MCEM, MCLA, MCNR, etc.

All require simulation from π(u | y).

Independence sampler: one-at-a-time updates
Update component i for i = 1, . . . , q
Proposal: u∗i ∼ hi (ui ;σ)
Let u∗ = (u1, . . . , ui−1, u

∗
i , ui+1, . . . , uq)

T

Theorem This sampler is uniformly ergodic.



MCEM

Goal: Estimate the Q-function

θ = E [logπ(y , u | β, σ) | y , β(t), σ(t)]

based on simulated data in Booth and Hobert (1999, JRSSB).
1000 Replications
Target half-width=.05
Nominal 95% confidence interval
Estimated Coverage Probabilities

BM .942 (.007)

SS .949 (.007)

BM30 .903 (.009)


