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SUMMARY

We consider the central limit theorem and the calculation of asymptotic stan-
dard errors for the ergodic averages constructed in Markov chain Monte Carlo.
Chan & Geyer (1994) established a central limit theorem for ergodic averages
by assuming that the underlying Markov chain is geometrically ergodic and that
a simple moment condition is satisfied. While it is relatively straightforward to
check Chan and Geyer’s conditions, their theorem does not lead to a consistent
and easily computed estimate of the variance of the asymptotic normal distri-
bution. Conversely, Mykland et al. (1995) discuss the use of regeneration to
establish an alternative central limit theorem with the advantage that a simple,
consistent estimator of the asymptotic variance is readily available. However,
their result assumes a pair of unwieldy moment conditions whose verification is
difficult in practice. In this paper, we show that the conditions of Chan and
Geyer’s theorem are sufficient to establish Mykland et al.’s central limit theo-
rem. This result, in conjunction with other recent developments, should pave
the way for more widespread use of the regenerative method in Markov chain

Monte Carlo. Our results are illustrated in the context of the slice sampler.

Some key words: Asymptotic standard error; Burn-in; Central limit theorem;

Geometric ergodicity; Minorisation condition; Slice sampler.



1. INTRODUCTION

Suppose we want to know the value of Eg := [, g(z) m(dz), where m is a probability
distribution with support X and g is a real-valued, w-integrable function on X. Further
suppose that this integral cannot be evaluated analytically nor by standard quadrature
methods, and that classical Monte Carlo methods are not an option as obtaining independent
and identically distributed draws from = is prohibitively difficult. In such a case, we might

resort to Markov chain Monte Carlo methods which we now explain.

Suppose that & = { Xy, Xi, Xo, ... } is an aperiodic, irreducible, positive Harris recurrent
Markov chain with state space X and invariant distribution 7; for definitions see Meyn &

Tweedie (1993, Part I). The Ergodic Theorem implies that, with probability 1,

n—1

1
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The Markov chain Monte Carlo method entails constructing a Markov chain ® satisfying
the regularity conditions described above and then simulating ® for a finite number of steps,
n say, and using g, as an estimate of E,g. The popularity of the Markov chain Monte Carlo
method is due to the ease with which such a ® can be constructed and simulated (Robert

& Casella, 1999, Ch. 6-7).

An important question that has received too little attention in the Markov chain Monte
Carlo literature is that of how we construct a legitimate asymptotic standard error for g,. If
the X;’s comprising (1) were independent and identically distributed from 7 and E, g% < oo

then, by the central limit theorem,
\/n (gn - Eﬂ’g) —N {Oa E7rg2 - (Eﬂ'g)2} 3

in distribution, and the obvious moment estimator of the variance of the asymptotic distri-
bution is consistent. Unfortunately, when the X;’s comprising (1) follow a Markov chain, the
condition F,g? < oo is no longer sufficient for a central limit theorem to hold. Indeed, the

Markov chain must mix quickly in order to allow central limit theorems. Making this precise



requires a couple of definitions. Forn € N:= {1,2,3,...} let P"(z, dy) be the n-step Markov
transition kernel; i.e., for x € X and a measurable set A, P"(z, A) = pr (X, € A| Xy = z).

The assumptions we have made so far about ® guarantee that
[1P™(z,) =7()]| 4 0 asn— oo, (2)

where the left-hand side is the total variation distance between P"(z,-) and 7 (-), that is, the
supremum over measurable A of |P"(z, A) — w(A)|. We say that ® is geometrically ergodic
if this convergence occurs at a geometric rate; that is, if there exists a constant 0 < ¢ < 1

and a function M : X — R* such that, for any z € X,
|1P*(z,-) —m()[| < M(z) " (3)

for all n € N. Chan & Geyer (1994) have shown that geometric ergodicity along with
a moment condition on the function g guarantee a central limit theorem. Here is their

theorem.

Theorem 1. Suppose that ® = { Xy, X1, Xo, ... } is an aperiodic, irreducible, positive Harris
recurrent Markov chain with invariant distribution w. If ® is geometrically ergodic and

Eq|g]*"® < 0o for some e > 0, then

\/n (gn - Ewg) - N(Q’Y;) ’ (4)

in distribution, where

ryg = var, {g(Xo)} + 2 Z cov{g9(Xo), 9(Xi)}-

i=1
Remark 1. Roberts & Rosenthal (1997) have shown that, if ® is reversible, the same result
holds without the ¢; that is, a finite second moment is sufficient. See also Kipnis & Varadhan
(1986). Furthermore, the necessity of the ¢ in the non-reversible case is an open question;
that is, no one has given an example of a geometrically ergodic chain such that the central

limit theorem fails to hold for a function g with E,¢? < co.



Remark 2. 1t is well known that geometric convergence is not necessary for central limit
theorems. On the other hand, the central limit theorems that involve weaker assumptions on
the convergence rate of ® do not hold for all functions with a 2+& moment. For example, the
central limit theorem in Corollary 7.3 of Nummelin (1984) holds for bounded functions and
the central limit theorem given in Chan (1993) holds for a single function. This attitude
is summed up concisely by Roberts & Rosenthal (1998a) who state that ‘While not the
weakest condition to imply central limit theorems, geometric ergodicity is one of the easiest

to check and leads to clean statements.’

Making practical use of Chan and Geyer’s result requires (i) showing that E, |g|*"¢ < oo,
(ii) establishing that ® converges at a geometric rate, and (iii) finding an easily computed
yet consistent estimate of 792. Since one must establish a moment condition for g even in

the independent and identically distributed case, (i) is not unduly restrictive.

Regarding (ii), during the last ten or so years, many standard Markov chains used in
Markov chain Monte Carlo have been shown to be geometrically ergodic; see for example
Meyn & Tweedie (1994), Mengersen & Tweedie (1996), Roberts & Tweedie (1996), Hobert
& Geyer (1998), Roberts & Rosenthal (1998b), Roberts & Rosenthal (1999) and Jarner &
Hansen (2000). However, there are still many chains used in Markov chain Monte Carlo to
which these results do not apply. The most straightforward method of establishing that a
Markov chain is geometrically ergodic is through the development of drift and minorisation
conditions (Meyn & Tweedie, 1993, Ch. 15); see Jones & Hobert (2001) for an introduction
to these ideas. In our opinion, (ii) is becoming less and less of a problem as time passes.
Remark 3. If a drift condition is used to establish that ® is geometrically ergodic, then it
may not be necessary to verify that E,|g|?>™ < co. To be specific, one method of establishing
geometric ergodicity entails finding a function V : X — [1,00) and a petite set C' such that
for all x € X,

E{V(Xp41)|Xn = 2z} < AV(2z) + blo(2) |
where A € (0,1), b < oo and [ is the usual indicator function; see Meyn & Tweedie (1993,

Part, IIT). This drift condition actually implies that a central limit theorem holds for every



function g such that g?(z) < V(z) for all z € X.

Unfortunately, (iii) is often a problem; finding an easily computed, consistent estimate of
7; can be quite challenging. Many estimators of fys have been suggested in the operational
research and time series literatures. Two of the most commonly used methods are batch
means (Bratley et al., 1987, Ch. 3) and window estimators (Geyer, 1992). The method
of batch means is popular because it is easily implemented, but it is well known that
this method will not produce a consistent estimator of 'yg as long as the batch sizes are
fixed. Generally speaking, it is possible to impose enough regularity conditions to ensure
consistency of window estimators (Geyer, 1992; Priestley, 1981, Ch. 6). However, the
optimal choice of lag window is often unclear and, in general, window estimators are quite
computationally intensive. Another disadvantage of batch means and window estimators is
that they tend to be more effective when the chain is stationary. Thus it may be necessary
to ascertain an appropriate burn-in period in order to use these methods effectively (see e.g.

Bratley et al., 1987, Ch. 3; Ripley, 1987, Ch. 6).

Fortunately, there is an alternative central limit theorem that allows one to construct
legitimate asymptotic standard errors without having to estimate 75 directly and without
having to worry about burn-in. The basic idea is as follows. By identifying random times
at which ® probabilistically restarts itself, we can represent g, as the ratio of two empirical
averages each involving independent and identically distributed terms. This allows us to
write the central limit theorem for g, in a slightly different way such that there is an obvious,
easily computed, consistent estimator of the variance of the asymptotic normal distribution.
This method is known as regenerative simulation and does not require that the Markov chain
be stationary. In fact, the initial value is drawn from a prescribed distribution. Given these
advantages, it is not surprising that regenerative simulation, when available, is considered

the preferred method for variance estimation (Bratley et al., 1987, Ch. 3).

A major stumbling block that has prevented more widespread use of regenerative simula-
tion in the Markov chain Monte Carlo context is the pair of complicated moment conditions

that must be verified in order to ensure that the alternative central limit theorem, upon



which regenerative simulation is based, holds. Mykland et al. (1995) introduced the sta-
tistical community to regenerative simulation as a way of calculating standard errors of
estimators based on Markov chain Monte Carlo, but these authors did not address the
problem of verifying these moment conditions. In this paper, we provide a solution to this

problem.

In the next section, we discuss regenerative simulation and the moment assumptions
that are necessary to make legitimate use of regenerative simulation in the Markov chain
Monte Carlo context. This section also contains a statement of our main result, Theorem 2,
which provides a checkable sufficient condition that guarantees that the moment conditions
are satisfied. The proof of Theorem 2 is given in § 3, and our results are illustrated using

the slice sampler in § 4.

2. MINORISATION, REGENERATION AND THE CENTRAL LIMIT THEOREM

In order to use regenerative simulation in Markov chain Monte Carlo, we need a minori-
sation condition on ®; that is, we need a function s : X — [0, 1] for which E; s > 0 and a

probability measure () such that, for all z € X and all measurable sets A,
P(z, A) > s(z) Q(A). (5)

Nummelin (1984) calls s a ‘small function’ and @ a ‘small measure’. When X is countable,
it is trivial to establish (5) by fixing a point z* € X and taking s(z) = I(zx = z*) and
Q(-) = P(z*,-), but our assumptions about ® do not guarantee the existence of an s and a
@ satisfying (5) for general X and P; they do guarantee the existence of a k& > 1 such that
a minorisation condition holds for the k-step transition kernel, P*, but it may be difficult
to exploit this in practice. Generally speaking, it can be very difficult, if not impossible, to
establish a viable minorisation condition for a complex Markov chain Monte Carlo algorithm.
Fortunately, Mykland et al. (1995) and Rosenthal (1995) have given recipes for constructing
s and @ satisfying (5) for many of the Gibbs samplers and Metropolis—Hastings algorithms

that arise in Markov chain Monte Carlo. Jones & Hobert (2001) use simple examples to



demonstrate techniques for constructing s and Q.

This minorisation condition can be used to divide the Markov chain into independent
and identically distributed blocks. To be specific, note that (5) allows us to write P(z, dy)

as a mixture of two distributions,

P(xa dy) = 8(32) Q(dy) + {1 - s(x)}R(x, dy): (6)

where R(z,dy) := {1 — s(z)} " {P(z,dy) — s(z) Q(dy)} is called the residual distribution;
define R(z,dy) as 0 if s(z) = 1. In practice, this mixture can be used to generate X4
sequentially as follows. Given X; = z, generate §; ~ Ber{s(z)}. If §; = 1, then draw
Xit1 ~ Q(-); otherwise draw X;,; ~ R(z,-). This is actually a recipe for simulating the

so-called ‘split chain’ (Athreya & Ney, 1978; Nummelin, 1978, 1984)

(I)I = {(XOa 50), (Xla 51), (Xz, (52), ... } ,
which has state space X x {0,1} and Markov transition kernel

QUdy)s(y) {1 —sy)} 7, ifo=1,
P'{(z,0),dy x p} = Y (7)
R(z,dy)s(y)? {1 —s(y)} ~*, ifd=0,
where §,p € {0,1} (Nummelin, 1984, § 4.4). Note that the split chain, ®’, retains the key
properties, namely aperiodicity, irreducibility, and positive Harris recurrence, of the original

chain, ® (Nummelin, 1984, § 4.4).

Let (Xo,dq) be the starting value for ®'. The split chain is defined in such a way that,
given X;, the distribution of ¢; is Ber{s(X;)}. Thus, whenever we discuss starting ®', we
only specify a distribution for X, and we use Eg and E, to denote expectation for both the

split chain @' and the marginal chain ® started with X, ~ Q(-) and X, ~ 7 (-), respectively.

If 0; = 1, then time ¢+ 1 is a ‘regeneration time’ when ®' probabilistically restarts itself.
To be specific, suppose we start & with Xy ~ ). Then, each time that ¢; = 1, X;.1 ~ @

and the chain is, in effect, probabilistically starting over again.

Remark 4. Sampling directly from the residual distribution can be problematic. Fortunately,

there is a simple and clever way around this. If we write the transition as X; — 0; — X;11,



we need to generate from (0;, X;11)|X;. Above, we suggested doing this by first drawing
from ¢;|X; and then drawing from X;,1|d;, X;, which, if §; = 0, entails simulation from
R(X;,dy). Mykland et al. (1995) note that simulating from the residual density can be
avoided by first drawing from X;,1|X;, in the usual way, and then drawing from §;| X;, X; 1.
Nummelin (1984, p.62) notes that

5(X;) ¢(Xiq1)

pr((sz = 1|Xi7Xi+1) = k(X+1|X) ) (8)

where ¢(-) and k(-|z) are densities corresponding to Q(-) and P(xz, ).

We now explain how this regenerative structure can be exploited to construct an alterna-
tive central limit theorem that leads to a simple method for computing asymptotic standard
errors; see Geyer & Thompson (1995) and Ripley (1987, Ch. 6) for similar developments.
Assume that @' is started with Xy ~ Q(-). Let 0 = 70 < 71 < T < --- be the random
regeneration times; i.e., 7,47 = min{i > 7, : §; ;1 = 1}. Also assume that @ is run for a
fixed number, R, of tours, that is, the simulation is stopped on the Rth occasion that a
0; = 1. Thus, the total length of the simulation, 7, is random. Let N; be the length of the
tth tour, that is, N; = 7w — 73_1, and define

J=Te-1
fort =1,...,R. The (N, S;) pairs are independent and identically distributed since each
is based on a different tour. Let N be the average tour length, that is, N = R™' S N,
and, analogously, let S = R~} Zf:l S;. Note that 7 — oo with probability 1 as R — oo.
This combined with the Ergodic Theorem yields

1

R G TR
S S 1

gTR - R -
>Ny N TR =0

with probability 1 as R — oo.

By Kac’s theorem, Eg(N;y) = 1/(Ers) < oo. It follows from the Strong Law of Large
Numbers that N — Eg(N;) with probability 1 as R — oo, which together with (9) implies



that S — Eg(N;) E,g with probability 1 as R — co. Thus, it must be true that Eq|S;| <
co. Appealing to the Strong Law again, we know that g,, converges almost surely to
Eg(S1)/Eg(Ny). Therefore, Eg(S1) = Eg(N1)Erg and hence the random variables S; —
N;FE,g,t=1,...,R, are independent and identically distributed with mean zero. Then, if

EgN} and EgS? are both finite, we can appeal to the central limit theorem to show that

R

1 ) 1
gr, — Erg) = = R 2 - N, E, ——NJ[0,E, {(S1 — N1 E,g)?}] ,
\/R (g R ) N Rz — (St t g) - EQ(Nl) [ Q {( 1 1 g) }]
in distribution. Thus, also in distribution,
\/R (gTR - Eﬂg) — N(07 0;) ) (10)

where
o = Eo{(5 - N1E27r9)2}
{Eq(N1)}
The advantage of (10) over (4) is that there is an obvious and easily computed consistent

estimator of 03. Indeed, consider the estimator

Zfézl (St - gTRNt)z
o . (11)

A2
O'g—

A straightforward calculation shows that the difference between 63 and

11&

R (S; — NyErg)* (12)

t=1

converges almost surely to 0 as R — 0o. Thus, since (12) is consistent, so is 63.

There is another important advantage of regenerative simulation over other methods.
The regenerative simulation method does not require the Markov chain to be stationary. In

fact, the algorithm dictates that Xy ~ Q(-). Therefore, burn-in is not an issue.

We reiterate that it may be difficult, if not impossible, to establish the minorisation
condition necessary for the implementation of the regenerative simulation procedure. How-
ever, in our experience, once such a minorisation condition is established, implementing the
procedure is nearly trivial. Some applications of regenerative simulation are discussed in

Geyer & Thompson (1995), Gilks et al. (1998), Jones & Hobert (2001) and Robert (1995).



Recall that the derivation of the central limit theorem (10) requires the assumption that
EoN? and EgS? are both finite. In practice, this needs to be verified before one can make
legitimate use of the regenerative method. Given Chan & Geyer’s (1994) result, one might
hope that geometric ergodicity of ® along with E,|g|*** < oo would imply that EqN? and

E¢S? are finite. Our main result shows that this is indeed the case.

Theorem 2. Let & = { Xy, X1, Xo,...} be an aperiodic, irreducible, positive Harris recur-
rent Markov chain with invariant distribution w. Assume that (5) holds. If ® is geometri-

cally ergodic and E.|g|>™® < oo for some € > 0, then EqN? and EqS? are both finite.

This theorem shows that, in conjunction with the minorisation condition (5), the con-
ditions of Chan & Geyer’s (1994) central limit theorem are sufficient to assure asymptotic
normality of g,, and the consistency of the variance estimator 63 given in (11). Note also
that the conclusions of Theorem 2 are precisely the moment conditions required by the
central limit theorem given in Theorem 17.2.2 of Meyn & Tweedie (1993), thus providing
an alternative proof of Chan & Geyer’s (1994) central limit theorem, though again with the
additional assumption of the minorisation condition (5). Since a minorisation condition is
generally established en route to verifying geometric ergodicity, this additional requirement
is not as stringent as it may first appear. Since it is also the key element that make regen-
erative simulation and the variance estimator &3 possible, the practical payoff is great when

an appropriate minorisation condition can be developed for a given problem.

Remark 5. Of course, the two central limit theorems (4) and (10) are closely connected.

Note that

VR (G = Brt) = <=7 i (10 — Fr).

Thus, if 7 were a deterministic sequence satisfying 7r/R — 1/E,(s) as R — oo, it would
follow from (4) that /R (§r, — Exg) — N(0,72 Ers), in distribution, and hence that o2 =
Y2Eqs in (10). In fact, the proof of Meyn & Tweedie’s (1993) Theorem 17.2.2 shows that
this remains true despite the fact that 75 is actually a random sequence converging to oo

with probability 1.



3. PROOF OF THE MAIN RESULT

Lemma 1. Let ® = { Xy, X1, Xo,...} be an aperiodic, irreducible, positive Harris recurrent
Markov chain with invariant distribution w. Assume that (5) holds. Then for any function

h: X — R we have that
Eﬂ|h(X0,X1, . )| 2 CEQ|h(X0,X1, . )| 5
where c = E; s.

Proof. For any measurable set A it follows from (5) that

m(A) :/Xw(dx)P(x,A) > Q(A)/Xw(dac)s(;v) (13)
and hence 7(-) > ¢Q(-). Next note that
Ex|h(Xo,X1,...)| = Ex[E{|h(Xo, X1,...)|| X0}] -

The inner expectation is a nonnegative function of X, not depending on the starting distri-

bution. Thus, we can use (13) and the Markov property to obtain

Ex|h(Xo,X1,...)| > cEQ[E{|h(Xo, X1,...)|| X0 }] = c Eq|h(Xo, X1,...)| . O

In order to use Lemma, 1 in conjunction with ®’, we need to establish that a minorisation
condition of the form (5) holds for ®'. Fortunately, this is straightforward. From (7) we

have
P'{(z,6),dy x p} > Q(dy) s(y)* {1 - s(y)} " 1(6=1)
=1(6 =1)Q'(dy x p),
where the probability measure @' is defined in the obvious way. Thus, the split chain also

satisfies a minorisation condition; see also Meyn & Tweedie (1993, Proposition 5.5.6).

Lemma 2. Assume that ® = {Xo, X1, Xs, ...} is an aperiodic, irreducible, positive Harris
recurrent Markov chain with invariant distribution w. Assume further that (5) holds. If ®

is geometrically ergodic, then there exists a B > 1 such that E.AN < 0.

10



Proof. First note that Ny = 7, = min{i > 0: (X;_1,0;,1) € X x {1}}; that is, Ny is just
the hitting time on the set X x {1}. Now note that ® and ®' are what Roberts & Rosenthal
(2001) call ‘co-de-initializing’ Markov chains. Consequently, the two chains converge to
stationarity at exactly the same rate. In particular, since ® is geometrically ergodic, so is
®'. Let 7' denote the invariant distribution of ® and note that a random vector (X, )
with distribution 7’ satisfies X ~ 7(-), and, conditional on X, §|X ~ Ber{s(X)}. Thus

m'(X x {1}) = E,(s) > 0, and, since ¢’ is geometrically ergodic, Theorem 2.5 of Nummelin
& Tuominen (1982) then implies that there exists a > 1 such that

E.pM < oco. O

Proof of Theorem 2. From Lemmas 1 and 2, it follows that EgB8™ < ¢ 'E, M < oo for
some (3 > 1. This of course implies that EgN} < oo for any p > 0 and in particular that
EqN? < oo.
Next note that
-1 -1 2 00 2
St = (Z ) (Z 19(X ) = (ZI(OSJST1—1)|9(XJ')|>
J=0 j=0

:ZZIo<z<ﬁ—1)I(O<J<ﬁ—1)\g( i)l 19(X;)]-

= —

Thus,

ESP <) Y EAI0<i<m—-1)I0<j<m—1)|g(X)]lg(X))]},

i=0 j=0

and, by the Cauchy-Schwartz inequality,

ST <Y Y V(B {10 <i < n = )]g(X) V] B {I0 <3 <1 = 1)]g(X)}])

:( VE: [{I(0<i <7 —1)|g( z-)\}ﬂ)

3

:(Z\/E {10<i<mn—1)|g(Xy)f }> -

=0

11



Now set ¢ =1+¢/2 and p = 1 + 2/e. By Holder’s inequality,
. 2 . 1 2 1
EA{I(0<i<7 —1)]g(Xi)]*} <{E(0<i<m —1)}r {Ef|g(Xi)[*},

and, since {E,|g(X:)[?}7 = {Ey|g(Xo)[>"}7 = ¢ < oo, it follows that

o 2 00 9
Brsisd (Z {Bel(0Si<m— 1)}*) = (Z {ore(m > i+ 1)}ﬁ)
=0 i=0

We know from Lemma 2 that there exists a B > 1 such that E,8V < oo, and a simple

calculation shows that, for any i =0,1,...,

B > B pro(n > i+ 1). (14)
Thus,
00 N N 00 en)
S (o > i+ D} < (B85 % 3055 < o
=0 -
Therefore, F,S? is finite and an application of Lemma 1 again yields the result. -

Remark 6. One of the hypotheses of Theorem 2 is that ® is geometrically ergodic. Note
that, in proving Theorem 2, the only place we use this assumption is in Lemma 2 to conclude
that there exists a 8 > 1 such that E,8Y < oo. In fact, the arguments after Lemma 2
still go through, with minor changes, if we replace the assumption that E,BY* < oo for
some 3 > 1 with the weaker assumption that F,N{* < oo for all m € {0,1,...}. The key
difference is that (14) is replaced by E,Ni* > (i + 1)™ pr,(m > i+ 1). Therefore, we could
replace the assumption that ® is geometrically ergodic with the weaker assumption that
® is polynomially ergodic of all orders (Jarner & Roberts, 2002; Nummelin & Tuominen,
1983; Tuominen & Tweedie, 1994), a consequence of which is that, for all z € X and all
m € {0,1,...},
n™||P"(z,-) —7w(-)|| 4 0 asn— 0.

The difference between geometric and polynomial convergence can be important from a
practical standpoint because some commonly used Markov chain Monte Carlo algorithms

are not geometrically ergodic, but are polynomially ergodic of all orders; see Fort & Moulines

(2000) for an example involving the Metropolis—Hastings algorithm.

12



4. REGENERATION AND THE SLICE SAMPLER

4-1. Background

Let m : R — [0, 0) be a d-dimensional probability density function. Suppose that m can
be factored as 7(z) = q(z)l(x), where ¢ is nonnegative and [ is strictly positive. Consider

a univariate auxiliary variable w such that the joint density of x and w is given by
m(z,w) = q(z) I{0 < w < I(z)}.

Note that [ 7(z,w)dw = 7(z). The simple slice sampler is just the Gibbs sampler applied

to the joint density m(z,w). Our Markov chain therefore takes the form

¢ = {(UJO,.Z'O), (wl,xl), ... } ,
and the Markov transition density is simply
k(z,w|lr',w') = m(w|z") m(z|w),

where w|z ~ Un{0,(z)} and 7(z|w) x q(z)I{l(z) > w}. The Markov chain ® is aperiodic,
w-irreducible and Harris recurrent (Mira & Tierney, 2001; Roberts & Rosenthal, 1999); see
Neal (2002) for a general treatment of slice sampling.

In order to use regenerative simulation in conjunction with ®, we must show that ®
is geometrically ergodic and we must establish a minorisation condition of the form (5).
As we pointed out in § 1, a great deal of work has been done over the last few years
establishing conditions under which some popular Markov chain Monte Carlo algorithms

are geometrically ergodic. The following result is due to Roberts & Rosenthal (1999).

Theorem 3. Let ® be the simple slice sampler described above. Define

Qw) = / o(z) Hl(z) > w}dz

and



If 7 is bounded and there exists an o > 1 such that G(w) is nonincreasing on (0, €) for some

€ > 0, then ® is geometrically ergodic.

We now use a technique described by Mykland et al. (1995) to construct a minorisation

condition for ®. Fix a ‘distinguished point’ Z € R¢. Now
{0 < w < I(z')}

(")
{0 <lc:$1§) N 110 < w <13 U > 1)}

{0 < w < 1(3)} [U#)
1(7) I(z')

= q(z,w)s(z’, ) ,

k(z,w|z',w') = m(z|w)

> m(z|w)

Ki(«") > 1(7)}

= m(z|w)

where ¢(z,w) = m(w|Z) 7(z|w) is simply a special case of the Markov transition density of

® and s(2',w') = s(z’) = I{l(z") > I(Z)}{(Z)/I(z') is a function of 2’ only. With this choice

of s and ¢ the residual density is given by

Hi(z) <w<I(z')}
I(z') = 1(2)

which is easily derived after noting that {1 — s(z")}~! = I{l(z") < I(Z)} + I{l(z") >

@)} U(=")/{U(=") = U(2)}-

In this particular case, it is easy to sample from the residual density. Here is an overview

Hi(z") > (%)} + m(w|z") I{l(z") <1()}| m(z|w),

r(z,wla',w') =

of how to simulate the split chain. Suppose the current value is (w;, z;). If I(z;) < (%),
then ¢; = 0 with probability 1 and we draw (w; 1, Z;+1) as usual from 7(w|z;) 7(z|w). Now
suppose that I(z;) > I(%). First, draw &; ~ Ber {I(Z)/l(x;)}. If 6; = 1, draw (wii1, Tsv1)
from 7(w|Z) 7(z|w). If, on the other hand, ¢; = 0, draw w;;; uniformly from the interval
({(%),1(z;)) and then, conditional on w;y1, draw z; 11 ~ m(x|w;y1).

Now, suppose we know (z;,w;) and (z;41,w;+1) and consider trying to infer the value of
d;, as in Remark 4. If I(z;) < I(Z), then we know that §; = 0. Now suppose that I(z;) > I(Z).
If w1 < () then §; must have been 1. Conversely, if w11 € (I(Z),[l(x;)), then §; must

have been 0. Thus, it is easy to see, without using (8), that

pr {(51 = 1|(mi,wi), (a:,-+1,wz-+1)} = I{O < w1 < l(.’;?) < l(:c,)}
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4-2. An Example

The following example was introduced by Damien et al. (1999). Fix 7 € R and consider

the univariate density
1
(x;T) o< exp {—e“ - E(a: - 7')2} :
Suppose we want to know E, g, where g(x) = z; that is, we want to calculate

_ fo exp {—e“c — %(m — T)2} dz

R e =

While these integrals have no closed-form solution, 7(z; 7) is univariate and hence it is quite

straightforward to approximate F, g using numerical integration or rejection sampling. We
will use this simple example to illustrate the application of regeneration in the slice sampler.

The result will be checked against an essentially exact answer based on rejection sampling.

Consider an application of the simple slice sampler with ¢(z) = exp {—1(z — 7)?} and

I(z) = exp{—e®}. Note that

{z:1l(z) >w} ={z: 2 <loglog(l/w)}.

Therefore, in this case, m(z|w) is just a truncated normal density; to be specific, 7(z|w) o
¢(x — 7) I [z < loglog(1/w)] where ¢(-) is the standard normal density. We now show that
this simple slice sampler satisfies the conditions of Theorem 3 and is thus geometrically
ergodic.

First, 7 is clearly bounded. Now,

1

G(w) = o q{loglog(1/w)}.

og(w)

Thus,

0 . wh (q{loglog(1/w)} ,

o Gla) = oo ((LHOERBUI 1 togtog(1/)} - g flostog(1/0)}]).

where ¢’ denotes the derivative of q. A straightforward calculation shows that

q' {loglog(1/w)} — g {loglog(1/w)}

15



is negative as long as w < exp (—e” 1) < 1. Hence, for any a > 1, G(w) is nonincreasing for

w < exp (—e™1). Hence, by Theorem 3, this simple slice sampler is geometrically ergodic.

Note that the moment generating function associated with the density = (z;7) exists,
so that E;|X|*** < oo for any positive e. We set 7 = 0 and & = —1/2 and ran the
simple slice sampler for 1 million regenerations. This took about two minutes on a fast
workstation. The resulting estimate of E, g was g,, = S/N = —1.5383/2.2671 = —0.6785
and &3 = 2.0795. Thus, the asymptotic standard error is about 0.0014. As a check, we
used a rejection sampler with a N(—1/2, 1) candidate to get an independent and identically
distributed sample of size 10 million from 7(z; 0). Based on this sample, an asymptotic 95%

confidence interval for F, g is —0.6782 + 0.0005.
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