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Abstract

We consider two Bayesian hierarchical one-way random effects models and establish geomet-

ric ergodicity of the corresponding random scan Gibbs samplers. Geometric ergodicity, along

with a moment condition, guarantees a central limit theorem for sample means and quantiles.

In addition, it ensures the consistency of various methods for estimating the variance in the

asymptotic normal distribution. Thus our results make available the tools for practitioners to

be as confident in inferences based on the observations from the random scan Gibbs sampler as

they would be with inferences based on random samples from the posterior.
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1 Introduction

Suppose that for i = 1, . . . ,K

Yi|θi, γi
ind∼ N(θi, γ

−1
i )

θi|µ, λθ, λi
ind∼ N(µ, λ−1θ λ−1i )

(µ, λθ, γ1, . . . , γK , λ1, . . . , λK) ∼ p(µ, λθ, γ1, . . . , γK , λ1, . . . , λK)

(1)

where p is a generic proper prior. Eventually we will consider two distinct choices for the prior

p, but we leave the description until section 2. In both cases, the hierarchy in (1) yields a proper

posterior which is intractable in the sense that the posterior quantities, such as expectations or

quantiles, required for Bayesian inference are not available in closed form. Thus we will consider

the use of Markov chain Monte Carlo (MCMC) methods.

Let y denote all of the data, λ = (λ1, . . . , λK)T , ξ = (θ1, . . . , θK , µ)T , and γ = (γ1, . . . , γK)T . In

section 2 we will see that the specific forms of the posterior full conditional densities f(ξ|λθ, λ, γ, y),

f(λθ|ξ, λ, γ, y), f(λ|ξ, λθ, γ, y) and f(γ|ξ, λθ, λ, y) are available and hence it is easy to construct

Gibbs samplers to help perform posterior inference. Gibbs samplers can be implemented in either a

deterministic scan or a random scan, among other variants (Johnson et al., 2013; Liu et al., 1994).

Although deterministic scan MCMC algorithms are currently popular in the statistics literature,

random scan algorithms were some of the first used in MCMC settings (Geman and Geman, 1984;

Metropolis et al., 1953) and remain useful in applications (Lee et al., 2013; Richardson et al.,

2010). Random scan Gibbs samplers can also be implemented adaptively while the deterministic

scan version cannot. In addition, there has been recent interest in the theoretical properties of

random scan algorithms (Diaconis et al., 2008; Johnson et al., 2013; Jones et al., 2014; Levine and

Casella, 2006; Roberts and Rosenthal, 2015; Tan et al., 2013).

We will study the random scan Gibbs sampler which is now described. Let r = (r1, r2, r3, r4)

with r1 + r2 + r3 + r4 = 1 and each ri > 0 where we call r the selection probabilities. If

(ξ(n), λ
(n)
θ , λ(n), γ(n)) is the current state of the Gibbs sampler, then the (n+ 1)st state is obtained

as follows.

Draw U ∼ Uniform(0, 1) and call the realized value u.

If u ≤ r1, draw ξ′ ∼ f(ξ|λ(n)θ , λ(n), γ(n), y) and set

(ξ(n+1), λ
(n+1)
θ , λ(n+1), γ(n+1)) = (ξ′, λ

(n)
θ , λ(n), γ(n))
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else if r1 < u ≤ r1 + r2, draw λ′θ ∼ f(λθ|ξ(n), λ(n), γ(n), y) and set

(ξ(n+1), λ
(n+1)
θ , λ(n+1), γ(n+1)) = (ξ(n), λ′θ, λ

(n), γ(n))

else if r1 + r2 < u ≤ r1 + r2 + r3, draw λ′ ∼ f(λ|ξ(n), λ(n)θ , γ(n), y) and set

(ξ(n+1), λ
(n+1)
θ , λ(n+1), γ(n+1)) = (ξ(n), λ

(n)
θ , λ′, γ(n))

else if r1 + r2 + r3 < u ≤ 1, draw γ′ ∼ f(γ|ξ(n), λ(n)θ , λ(n), y) and set

(ξ(n+1), λ
(n+1)
θ , λ(n+1), γ(n+1)) = (ξ(n), λ

(n)
θ , λ(n), γ′) .

Our goal is to investigate the conditions required for the random scan Gibbs sampler to produce

reliable simulation results. Specifically, we will investigate conditions under which the Markov chain

is geometrically ergodic, which we now define. Let X = RK ×R×R+×RK+ ×RK+ and B(X) denote

the Borel sets. Let Pn : X × B(X) → [0, 1] denote the n-step Markov kernel for the random scan

Gibbs sampler so that if A ∈ B(X) and n ≥ 1

Pn((ξ(1), λ
(1)
θ , λ(1), γ(1)), A) = Pr((ξ(n+1), λ

(n+1)
θ , λ(n+1), γ(n+1)) ∈ A | (ξ(1), λ(1)θ , λ(1), γ(1))) .

Let F denote the posterior distribution associated with (1) and ‖ · ‖ denote the total variation

norm. Then the random scan Gibbs sampler is geometrically ergodic if there exists M : X→ [0,∞)

and t ∈ [0, 1) such that for all ξ, λθ, λ, γ and n = 1, 2, . . .

‖Pn((ξ, λθ, λ, γ), ·)− F (·)‖ ≤M(ξ, λθ, λ, γ) tn . (2)

Geometric ergodicity is a useful stability property for MCMC samplers (Jones and Hobert, 2001;

Roberts and Rosenthal, 2004) in that it ensures rapid convergence of the Markov chain since t < 1,

the existence of a central limit theorem (CLT) (Chan and Geyer, 1994; Hobert et al., 2002; Jones,

2004; Roberts and Rosenthal, 1997), and consistency of various methods to estimate asymptotically

valid Monte Carlo standard errors (Flegal et al., 2008; Flegal and Jones, 2010, 2011; Jones et al.,

2006). To see the connection between (2) and the CLT let g : X→ R and f be the posterior density

and suppose we want to calculate

µg :=

∫
X
g(ξ, λθ, λ, γ)f(ξ, λθ, λ, γ|y) dξ dλθ dλ dγ .
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Assuming µg exists and the Markov chain is irreducible, aperiodic and Harris recurrent (see Meyn

and Tweedie (2009) for definitions and section 2 for discussion of these conditions for our two

random scan Gibbs samplers), then, as n→∞,

µn :=
1

n

n∑
i=1

g(ξ(i), λ
(i)
θ , λ

(i), γ(i))→ µg with probability 1.

Of course, µn will be much more valuable if we can equip it with an asymptotically valid standard

error. If the random scan Gibbs sampler is geometrically ergodic and∫
X
g2(ξ, λθ, λ, γ)f(ξ, λθ, λ, γ|y) dξ dλθ dλ dγ <∞ , (3)

then there exists δ2g <∞ such that, as n→∞, and for any initial distribution

√
n(µn − µg)

d→ N(0, δ2g) . (4)

The quantity δ2g is complicated (Häggström and Rosenthal, 2007), but if the Markov chain is

geometrically ergodic there are several methods for estimating it consistently (Flegal and Jones,

2010; Hobert et al., 2002; Jones et al., 2006). This then allows construction of asymptotically valid

interval estimates of µg to describe the precision of µn (Flegal et al., 2008) and hence the reliability

of the simulation. A similar approach is available for estimating posterior quantiles which, of

course, are often useful for constructing posterior credible intervals; see the recent work of Doss

et al. (2014).

There has been a fair amount of work on establishing geometric ergodicity of two-component

deterministic scan Gibbs samplers (see, among others, Hobert and Geyer, 1998; Jones and Hobert,

2004; Marchev and Hobert, 2004; Papaspiliopoulos and Roberts, 2008; Roberts and Polson, 1994;

Roberts and Rosenthal, 1999; Roy and Hobert, 2007; Tan and Hobert, 2012), while Doss and

Hobert (2010) and Jones and Hobert (2004) considered geometric ergodicity of three-component

deterministic scan Gibbs samplers. However, there has been almost no corresponding investigation

for random scan Gibbs samplers. Liu et al. (1995) did study geometric convergence of random scan

Gibbs samplers, but the required regularity conditions have so far precluded application of their

results outside of simple settings. More recently, Johnson et al. (2013) and Tan et al. (2013) studied

geometric ergodicity of some simple two-component random scan Gibbs samplers. In contrast, the

random scan Gibbs samplers we consider have more components, making the required analysis

substantially more complicated.

The rest of the paper is organized as follows. In section 2 we will fully specify our two Bayesian

hierarchical models and the random scan Gibbs samplers as well as our main results where we prove
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geometric ergodicity of both samplers. In section 3 we give some discussion and context for the

results. Many technical details and calculations are deferred to the appendices.

2 Two Models and Random Scan Gibbs Samplers

We now turn our attention to describing the two hierarchical models, the associated random scan

Gibbs samplers (RSGS), and our main results.

2.1 Two unknown variance components

Suppose for i = 1, . . . ,K

Yi|θi, γi
ind∼ N(θi, γ

−1
i )

θi|µ, λθ, λi
ind∼ N(µ, λ−1θ λ−1i )

µ ∼ N(m0, s
−1
0 ) γi

iid∼ Gamma(a3, b3)

λθ ∼ Gamma(a1, b1) λi
iid∼ Gamma(a2, b2)

(5)

where we assume the a1, a2, a3, b1, b2, b3 and s0 are known positive constants while m0 is a known

scalar. (Note that if X ∼ Gamma(a, b), then it has density proportional to xa−1e−bx for x > 0.)

The hierarchy results in a proper posterior density f(ξ, λθ, λ, γ|y) and four full conditional densities

f(λθ|ξ, λ, γ), f(λ|ξ, λθ, γ), f(γ|ξ, λθ, λ) and f(ξ|λθ, λ, γ) which are given by

λθ|ξ, λ, γ ∼ Gamma

(
a1 +

K

2
, b1 +

1

2

K∑
i=1

λi(θi − µ)2

)

λi|ξ, λθ, γ
ind∼ Gamma

(
a2 +

1

2
, b2 +

λθ
2

(θi − µ)2
)

(6)

γi|ξ, λθ, λ
ind∼ Gamma

(
a3 +

1

2
, b3 +

1

2
(θi − yi)2

)
ξ|λ, λθ, γ ∼ NK(ξ0, V )

where the components of ξ0 and V are reported in Appendix C.

Let δ denote Dirac’s delta and r = (r1, r2, r3, r4) be the selection probabilities. Define

k(ξ′, λ′θ, λ
′, γ′|ξ, λθ, λ, γ) = r1f(ξ′|λθ, λ, γ)δ(λ′θ − λθ)δ(λ′ − λ)δ(γ′ − γ)

+ r2f(λ′θ|ξ, λ, γ)δ(ξ′ − ξ)δ(λ′ − λ)δ(γ′ − γ)

+ r3f(λ′|ξ, λθ, γ)δ(ξ′ − ξ)δ(λ′θ − λθ)δ(γ′ − γ)

+ r4f(γ|ξ, λθ, λ)δ(ξ′ − ξ)δ(λ′ − λ)δ(λ′θ − λθ) .

5



For A ∈ B(X) the Markov kernel for the RSGS is given by

P ((ξ, λθ, λ, γ), A) =

∫
A
k(ξ′, λ′θ, λ

′, γ′|ξ, λθ, λ, γ)dξ′ dλ′θ dλ
′ dγ′

= r1Pξ((λθ, λ, γ), A) + r2Pλθ((ξ, λ, γ), A) + r3Pλ((ξ, λθ, γ), A) + r4Pγ((ξ, λθ, λ), A)

where

Pξ((λθ, λ, γ), A) =

∫
{ξ:(ξ,λθ,λ,γ)∈A}

f(ξ|λθ, λ, γ) dξ

and similarly for the remaining Gibbs updates Pλθ((ξ, λ, γ), A), Pλ((ξ, λθ, γ), A), and Pγ((ξ, λθ, λ), A).

It is well known that the RSGS kernel P is reversible with respect to the posterior F (see e.g.

Roberts and Rosenthal, 2004) and hence that the posterior is the invariant distribution for the

RSGS. Let

h(ξ′, λ′θ, λ
′, γ′|ξ, λθ, λ, γ) = f(ξ′|λθ, λ, γ)f(λ′θ|ξ′, λ, γ)f(λ′|ξ′, λ′θ, γ)f(γ′|ξ′, λ′θ, λ′) .

Note that h is a strictly positive density on X = RK ×R×R+×RK+ ×RK+ ; in fact, h is the Markov

transition density for the deterministic scan Gibbs sampler. Next observe that for A ∈ B(X)

P 4((ξ, λθ, λ, γ), A) ≥ r1r2r3r4
∫
A
h(ξ′, λ′θ, λ

′, γ′|ξ, λθ, λ, γ) dξ′ dλ′θ dλ
′ dγ′ .

It follows immediately that the RSGS is irreducible, aperiodic and Harris recurrent.

We turn our attention to establishing geometric ergodicity of the RSGS. The tool we will use to

do so is Lemma 15.2.8 in Meyn and Tweedie (2009). Geometric ergodicity will follow from finding

a function V : RK+1×R+×RK+ ×RK+ → R+ which is unbounded off compact sets–that is, the level

set

{(ξ, λθ, λ, γ) : V (ξ, λθ, λ, γ) ≤ T}

is compact for every T > 0–and a 0 < ρ < 1 and L <∞ such that

E[V (ξ′, λ′θ, λ
′, γ′)|ξ, λθ, λ, γ] ≤ ρV (ξ, λθ, λ, γ) + L . (7)

See Jones and Hobert (2001) for an accessible treatment of the connection between drift conditions,

such as the one in (7), and geometric ergodicity.

Theorem 1. If 2a1 +K − 2 > 0 and a3 > 1, then the RSGS is geometrically ergodic.

Proof. Define V =
∑18

i=1Aiwi where the wi are defined as follows and the Ai are positive constants
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that will be determined later. For 0 < c < min{b1, b2, b3},

w1(λθ) = λ−1θ w2(λ) =
K∑
i=1

λ
−1/2
i w3(ξ) =

K∑
i=1

(θi − µ)2

w4(ξ, γ) =
K∑
i=1

γi(θi − yi)2 w5(λθ) = ecλθ w6(λ) =
K∑
i=1

ecλi

w7(ξ, λθ) =

K∑
i=1

[
λθ(θi − µ)2 + 2b2

]1/2
w8(ξ, λ) =

K∑
i=1

λi(θi − µ)2 w9(λθ) = λθ

w10(γ) =
K∑
i=1

ecγi w11(γ) =
K∑
i=1

γi w12(λθ, γ) = λθ

K∑
i=1

γ−1i

w13(λ, γ) =
K∑
i=1

λiγ
−1
i w14(γ) =

K∑
i=1

γ−1i w15(ξ, λθ) = λθ

K∑
i=1

(θi − yi)2

w16(λ) =

K∑
i=1

λi w17(ξ, λ) =

K∑
i=1

λi(θi − yi)2 w18(ξ) =

K∑
i=1

(θi − yi)2 .

We need to show that V is unbounded off compact sets. That is, for every T > 0 the level set

LT = {(ξ, λθ, λ, γ) : V (ξ, λθ, λ, γ) ≤ T}

is compact. Let T > 0 be arbitrary and observe that w1 →∞ as λθ → 0 and w5 →∞ as λθ →∞;

w2 → ∞ as λi → 0 and w6 → ∞ as λi → ∞; w14 → ∞ as γi → 0 and w10 → ∞ as γi → ∞;

w18 →∞ as |θi| → ∞; and conditional on θi ∈ LT , w3 →∞ as |µ| → ∞. It now follows from the

continuity of V that LT is closed and bounded, hence compact.

Now all that is left is to establish (7). It is sufficient to consider only r1 = r2 = r3 = r4 = 1/4,

since if the RSGS is geometrically ergodic for some selection probabilities it is geometrically ergodic

for all selection probabilities (Proposition 19 Jones et al., 2014). Next observe that due to the form

of k(ξ′, λ′θ, λ
′, γ′|ξ, λθ, λ, γ) the required expectation can be expressed as

E[V (ξ′, λ′θ, λ
′, γ′) | ξ, λθ, λ, γ] =

1

4

∫
V (ξ′, λθ, λ, γ)f(ξ′|λθ, λ, γ) dξ′

+
1

4

∫
V (ξ, λ′θ, λ, γ)f(λ′θ|ξ, λ, γ) dλ′θ

+
1

4

∫
V (ξ, λθ, λ

′, γ)f(λ′|ξ, λθ, γ) dλ′

+
1

4

∫
V (ξ, λθ, λ, γ

′)f(γ′|ξ, λθ, λ) dγ′ .

Hence we need to calculate expectations of the wi with respect to the posterior full conditional

densities. These calculations are done in appendix A yielding

E[V (ξ′, λ′θ, λ
′, γ′)|ξ, λθ, λ, γ] ≤ c1w1(λθ) + · · ·+ c18w18(ξ) + L
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where ci = 3Ai/4 for i = 1, 2, 5, 6, 10, c4 = A4/2,

c3 =
3

4
A3 +

2a1 +K

8b1
A7 +

2a2 + 1

8b2
A8 c7 =

1

2
A7 +

1

4
√

2

Γ(a2)

Γ(a2 + 1/2)
A2

c8 =
1

2
A8 +

1

4(2a1 +K − 2)
A1 c11 =

3

4
A11 +

s−10 + ∆2

4
A4

c12 =
1

2
A12 +

1

4
A7 +

1

4
A15 c13 =

1

2
A13 +

1

4
A8 +

1

4
A17

c15 =
1

2
A15 +

1

4(2a3 − 1)
A12 c17 =

1

2
A17 +

1

4(2a3 − 1)
A13

c9 =
3

4
A9 +

K(2s−10 + ∆2)

4
A7 +

Kb3
2(2a3 − 1)

A12 +
K(s−10 + ∆2)

4
A15

c14 =
3

4
A14 +

1

4
A3 +

2a1 +K

8b1
A12 +

2a2 + 1

8b2
A13 +

1

4
A18

c16 =
3

4
A16 +

2s−10 + ∆2

4
A8 +

b3
2(2a3 − 1)

A13 +
s−10 + ∆2

4
A17

c18 =
3

4
A18 +

2a3 + 1

8b3
A4 +

1

4(2a3 − 1)
A14 +

2a1 +K

8b1
A15 +

2a2 + 1

8b2
A17

and

L =
b1

2(2a1 +K − 2)
A1 +

K

4

(
2

s0
+ ∆2

)
A3 +

K

4
A4 +

1

4

(
b1

b1 − c

)a1+K/2
A5 +

K

4

(
b2

b2 − c

)a2+1/2

A6

+
K(2b2 + 1)

2
A7 +

2a1 +K

8b1
A9 +

K

4

(
b3

b3 − c

)a3+1/2

A10 +
K(2a3 + 1)

8b3
A11 +

Kb3
2(2a3 − 1)

A14

+
K(2a2 + 1)

8b2
A16 +

K

4

(
1

s0
+ ∆2

)
A18 .

Notice our assumption that 2a1 + K − 2 > 0 and a3 > 1 ensures that all of the above quantities

are well-defined.

To establish (7) we need to establish the existence of ρ < 1. Recall that we still have not chosen
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the values of the Ai. Let A4 > 0, A5 > 0, A6 > 0, A7 = A8 = 1, A10 > 0,

0 < A1 < 2(2a1 +K − 2) 0 < A2 <
2
√

2Γ(a2 + 1/2)

Γ(a2)

A3 >
2a1 +K

2b1
+

2a2 + 1

2b2
A9 > K

[
2s−10 + ∆2 +

2b3
2a3 − 1

A12 + (s−10 + ∆2)A15

]
A11 > [s−10 + ∆2]A4

1

2
+

1

2
A15 < A12 < 2(2a3 − 1)A15

1

2
+

1

2
A17 < A13 < 2(2a3 − 1)A17 A15 >

1

4(2a3 − 1)− 1

A16 >
2

s0
+ ∆2 +

2b3
2a3 − 1

A13 + (s−10 + ∆2)A17 A17 >
1

4(2a3 − 1)− 1

A3+
2a1 +K

2b1
A12+

2a2 + 1

2b2
A13+A18 < A14 < (2a3−1)

[
A18 −

2a3 + 1

2b3
A4 −

2a1 +K

2b1
A15 −

2a2 + 1

2b2
A17

]
and

A18 >
1

2a3 − 2

[
A3 +

2a1 +K

2b1
A12 +

2a2 + 1

2b2
A13

]
+

2a3 − 1

2a3 − 2

[
2a3 + 1

2b3
A4 +

2a1 +K

2b1
A15 +

2a2 + 1

2b2
A17

]
.

The conditions on A1, . . . , A18 ensure the existence of ρ such that

max

{
c1
A1
,
c2
A2
, . . . ,

c18
A18

}
≤ ρ < 1

and hence we have shown the existence of 0 < ρ < 1 and an L <∞ such that

E[V (ξ′, λ′θ, λ
′, γ′)|ξ, λθ, λ, γ] ≤ c1w1(λθ) + · · ·+ c18w18(ξ) + L

=
c1
A1
A1w1(λθ) + · · ·+ c18

A18
A18w18(ξ) + L

≤ max

{
c1
A1
,
c2
A2
, . . . ,

c18
A18

}
V (ξ, λθ, λ, γ) + L

≤ ρV (ξ, λθ, λ, γ) + L .

We conclude that the RSGS is geometrically ergodic.

2.2 One unknown variance component

Doss and Hobert (2010) consider a hierarchical model which is a special case of the model presented
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in the previous section, that is, (5). Let λ = (λ1, . . . , λK)T and suppose that for i = 1, . . . ,K

Yi|θi
ind∼ N(θi, γ

−1
i )

θi|µ, λθ, λ
ind∼ N(µ, λ−1θ λ−1i )

µ ∼ N(m0, s
−1
0 )

λθ ∼ Gamma(a1, b1) λi
iid∼ Gamma(a2, b2)

(8)

where the γi are known and positive as are s0, a1, a2, b1 and b2. Also, m0 ∈ R is known. Doss and

Hobert (2010) use this model in the context of meta-analysis where it can be reasonable to assume

the γi are known. The posterior density is f(ξ, λθ, λ|y), yielding full conditional distributions

λθ|ξ, λ ∼ Gamma

(
a1 +

K

2
, b1 +

1

2

K∑
i=1

λi(θi − µ)2

)

λi|ξ, λθ
ind∼ Gamma

(
a2 +

1

2
, b2 +

λθ
2

(θi − µ)2
)

(9)

ξ|λ, λθ ∼ NK(ξ0, V )

where the components of ξ0 and V are reported in Appendix C. Notice that, due to the conditional

independence assumptions, these are the same as the full conditionals in (6).

Let δ denote Dirac’s delta and r = (r1, r2, r3) denote the selection probabilities. Define

k(ξ′, λ′θ, λ
′|ξ, λθ, λ) = r1f(ξ′|λθ, λ)δ(λ′θ − λθ)δ(λ′ − λ) + r2f(λ′θ|ξ, λ)δ(ξ′ − ξ)δ(λ′ − λ)

+ r3f(λ′|ξ, λθ)δ(ξ′ − ξ)δ(λ′θ − λθ)

so that if A ∈ B(X) then the Markov kernel for the RSGS is given by

P ((ξ, λθ, λ), A) =

∫
A
k(ξ′, λ′θ, λ

′|ξ, λθ, λ)dξ′ dλ′θ dλ
′

= r1Pξ((λθ, λ), A) + r2Pλθ((ξ, λ), A) + r3Pλ((ξ, λθ), A)

where

Pξ((λθ, λ), A) =

∫
{ξ:(ξ,λθ,λ)∈A}

f(ξ|λθ, λ) dξ

and similarly for the remaining Gibbs updates Pλθ((ξ, λ), A), and Pλ((ξ, λθ), A).

It is well known that the RSGS kernel P is reversible with respect to the posterior (see e.g.

Roberts and Rosenthal, 2004) and hence that the posterior is the invariant distribution for the

RSGS. Let

h(ξ′, λ′θ, λ
′|ξ, λθ, λ) = f(ξ′|λθ, λ)f(λ′θ|ξ′, λ)f(λ′|ξ′, λ′θ) ,
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which is a strictly positive density on X = RK × R× R+ × RK+ . Next observe that for A ∈ B(X)

P 3((ξ, λθ, λ), A) ≥ r1r2r3
∫
A
h(ξ′, λ′θ, λ

′|ξ, λθ, λ) dξ′ dλ′θ dλ
′

and it follows that the RSGS is irreducible, aperiodic and Harris recurrent.

As in section 2.1 we will establish geometric ergodicity using Lemma 15.2.8 from Meyn and

Tweedie (2009). Specifically, we construct a function V : RK+1 × R+ × RK+ → R+ which is

unbounded off compact sets and a 0 < ρ < 1 and L <∞ such that

E[V (ξ′, λ′θ, λ
′)|ξ, λθ, λ] ≤ ρV (ξ, λθ, λ) + L . (10)

Theorem 2. If 2a1 +K − 2 > 0, then the RSGS is geometrically ergodic.

Proof. Define V =
∑10

i=1Aiwi where the constants Ai are to be determined below and the functions

wi are as follows. Letting 0 < c < b1 ∧ b2, and αi = 1/γi + 2/s0 + ∆2 and α =
∑K

i=1 αi, set

w1(λθ) = λ−1θ w2(λ) =
K∑
i=1

λ
−1/2
i w3(ξ) =

K∑
i=1

(θi − µ)2

w4(ξ) =
K∑
i=1

γi(θi − yi)2 w5(λθ) = ecλθ w6(λ) =
K∑
i=1

ecλi

w7(ξ, λθ) =

K∑
i=1

[
λθ(θi − µ)2 + 2b2

]1/2
w8(ξ, λ) =

K∑
i=1

λi(θi − µ)2 w9(λθ) = λθ

w10(λ) =
K∑
i=1

αiλi .

We begin by showing that V is unbounded off compact sets, that is, the set

LT = {ξ, λθ, λ : V (ξ, λθ, λ) ≤ T}

is compact for every T > 0. The argument is the same as one given by Doss and Hobert (2010) in

their proof of geometric ergodicity of the deterministic scan Gibbs sampler, but is included here for

the sake of completeness since their drift function did not have our w8, w9 and w10. Let T > 0 be

arbitrary and observe that w5 → ∞ and w9 → ∞ as λθ → ∞ while w1 → ∞ as λθ → 0; w6 → ∞

and w10 → ∞ as λi → ∞ while w2 → ∞ as λi → 0; w4 → ∞ as |θi| → ∞; and conditional on

θi ∈ LT we see that w3 → ∞ and w8 → ∞ as |µ| → ∞. It now follows from the continuity of V

that LT is closed and bounded, hence compact.

Now we need to establish (10). It is sufficient to consider only r1 = r2 = r3 = 1/3 since if

the RSGS is geometrically ergodic for some selection probabilities it is geometrically ergodic for all

11



selection probabilities (Proposition 19 Jones et al., 2014). Notice that

E[V (ξ′, λ′θ, λ
′)|ξ, λθ, λ] = r1

∫
V (ξ′, λθ, λ)f(ξ′|λθ, λ) dξ′ + r2

∫
V (ξ, λ′θ, λ)f(λ′θ|ξ, λ) dλ′θ

+ r3

∫
V (ξ, λθ, λ

′)f(λ′|ξ, λθ) dλ′ .

Hence we need to calculate expectations of the wi with respect to the full conditional distributions.

We calculate the required expectations in appendix B. If

L =
2b1

3(2a1 +K − 2)
A1 +

α

3
A3 +

1

3

[
K + (∆2 + s−10 )

K∑
i=1

γi

]
A4 +

1

3

(
b1

b1 − c

)a1+K/2
A5

+
K

3

(
b2

b2 − c

)a2+1/2

A6 +
2K(2b2 + 1)

3
A7 +

2a1 +K

6b1
A9 +

(2a2 + 1)α

6b2
A10

and

c1 =
2

3
A1 c2 =

2

3
A2

c3 =
2

3
A3 +

2a1 +K

6b1
A7 +

2a2 + 1

6b2
A8 c4 =

2

3
A4

c5 =
2

3
A5 c6 =

2

3
A6

c7 =
1

3
√

2

Γ(a2)

Γ(a2 + 1/2)
A2 +

1

3
A7 c8 =

1

3(2a1 +K − 2)
A1 +

1

3
A8

c9 =
α

3
A7 +

2

3
A9 c10 =

1

3
A8 +

2

3
A10 ,

then our calculations yield

E[V (ξ′, λ′θ, λ
′)|ξ, λθ, λ] ≤ c1w1(λθ) + · · ·+ c10w10(λ) + L .

Now we need to choose the Ai so as to ensure the existence of ρ < 1 in (10). To this end let A4 > 0,

A5 > 0, A6 > 0, A7 = A8 = 1, A9 > α, A10 > 1,

0 < A1 < 2(2a1 +K − 2), 0 < A2 <
2
√

2Γ(a2 + 1/2)

Γ(a2)
and A3 >

2a1 +K

2b1
+

2a2 + 1

2b2
.

Then there exists ρ such that

max

{
c1
A1
, . . . ,

c10
A10

}
≤ ρ < 1 .

Hence we have shown that

E[V (ξ′, λ′θ, λ
′)|ξ, λθ, λ] ≤ c1w1(λθ) + · · ·+ c10w10(λ) + L

=
c1
A1
A1w1(λθ) + · · ·+ c10

A10
A10w10(λ) + L

≤ max

{
c1
A1
, . . . ,

c10
A10

}
V (ξ, λθ, λ) + L

≤ ρV (ξ, λθ, λ) + L .
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We conclude that the RSGS is geometrically ergodic.

3 Discussion

MCMC methods can produce asymptotically valid point estimates of posterior quantities such

as means and quantiles under benign regularity conditions. Indeed these conditions often hold

by construction of the algorithm. However, ensuring reliability of the simulation requires some

idea of the quality of the estimation and this is best addressed through the construction of an

asymptotically valid Monte Carlo standard error (Flegal et al., 2008; Jones and Hobert, 2001).

This requires a central limit theorem as in (4) and methods to consistently estimate the variance

of the asymptotic normal distribution (Jones et al., 2006). In general, it is much more difficult to

establish a central limit theorem for Markov chains than for a random sample. However, when the

Markov chain is reversible and geometrically ergodic, then the same moment condition is required

for both settings; recall (3). By establishing geometric ergodicity the practitioner has all of the tools

available to perform rigorous output analysis to describe the quality of the estimation procedure.

See Flegal and Hughes (2012) for an R package which allows easy implementation of the suggested

methodology.

We have focused on establishing geometric ergodicity of random scan Gibbs samplers for two

Bayesian one-way random effects models. While the random scan Gibbs sampler is as easy to im-

plement as the deterministic scan version, there has been little work in comparing the two methods.

However, Roberts and Rosenthal (2015) recently have shown in some examples the random scan

version is more efficient while in other examples the deterministic scan is more efficient. Unfortu-

nately, their results do not apply to the Gibbs samplers considered here. Generally, comparison of

random scan with deterministic scan is difficult. There seem to be two technical reasons for this.

Notice that the computational cost to complete one sweep of the deterministic scan algorithm is

essentially the same as that required to complete 4 steps of the random scan version in section 2.1

and 3 steps of the random scan version in 2.2. Also, the random scan Gibbs sampler is reversible

with respect to the posterior while the deterministic scan Gibbs sampler is not. However, there has

been speculation (Johnson et al., 2013) that random scan Gibbs samplers and deterministic scan

Gibbs samplers converge at the same qualitative rate for the two-component setting. There has

been some progress in this direction (Tan et al., 2013), but little is known in the case where there

are more than two components.

The RSGS considered in section 2.1 has four components and it is unknown whether the de-
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terministic scan Gibbs sampler is geometrically ergodic. However, Hobert and Geyer (1998) and

Jones and Hobert (2004) considered deterministic scan Gibbs samplers for the same hierarchy in

(5) except that they assumed each λi = 1 and hence our work required much new analysis. Inter-

estingly, the conditions on the sample size in our Theorem 1 are slightly weaker than those obtained

by either Hobert and Geyer (1998) or Jones and Hobert (2004) for the deterministic scan Gibbs

sampler.

Doss and Hobert (2010) consider the setting of section 2.2 and prove that the deterministic

scan Gibbs sampler is geometrically ergodic when a2 = b2 = d/2, d ≥ 1 and 2a1 + K − 2 > 0.

However, we think that their restrictions on a2 and b2 play no role in their argument. That is,

the sufficient conditions for geometric ergodicity of RSGS are the same as those Doss and Hobert

(2010) obtained for geometric ergodicity of the deterministic scan Gibbs sampler.

We note that establishing geometric ergodicity of random scan Gibbs samplers also has impli-

cations for other MCMC algorithms. For example, Latuszynski et al. (2013) require the standard

RSGS to be geometrically ergodic to implement asymptotically valid adaptive RSGS algorithms.

Thus our work allows rigorous implementation of adaptive RSGS algorithms. Finally, our results

imply geometric ergodicity of the class of random scan Metropolis-Hastings-within-Gibbs samplers

where each ratio of the proposal density to the target full conditional is bounded; see Theorem 9

in Jones et al. (2014) for the details.

A Conditional Expectations for the Proof of Theorem 1

This section contains the calculation of the conditional expectations required for the proof of

Theorem 1. Some supplementary calculations are given in appendix C. Note that

E[w1(λ
′
θ)|ξ, λθ, λ, γ] =

3

4
w1(λθ) +

1

4
E[(λ′θ)

−1|ξ, λ, γ]

=
3

4
w1(λθ) +

1

4(2a1 +K − 2)
w8(ξ, λ) +

b1
2(2a1 +K − 2)

,

E[w2(λ
′)|ξ, λθ, λ, γ] =

3

4
w2(λ) +

1

4

K∑
i=1

E[(λ′i)
−1/2|ξ, λθ, γ]

=
3

4
w2(λ) +

1

4

K∑
i=1

Γ(a2)

Γ(a2 + 1/2)

(
b2 +

λθ
2

(θi − µ)2
)1/2

=
3

4
w2(λ) +

1

4
√

2

Γ(a2)

Γ(a2 + 1/2)
w7(ξ, λθ)
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and

E[w3(ξ
′)|ξ, λθ, λ, γ] =

3

4
w3(ξ) +

1

4

K∑
i=1

E[(θ′i − µ′)2|λθ, λ, γ]

≤ 3

4
w3(ξ) +

1

4

K∑
i=1

[
1

γi
+

2

s0
+ ∆2

]
by (12)

=
3

4
w3(ξ) +

1

4
w14(γ) +

K

4

(
2

s0
+ ∆2

)
.

Now

E[w4(ξ
′, γ′)|ξ, λθ, λ, γ] =

1

2
w4(ξ, γ) +

1

4
E[w4(ξ

′, γ)|λθ, λ, γ] +
1

4
E[w4(ξ, γ

′)|ξ, λθ, λ]

and hence we consider E[w4(ξ
′, γ)|λθ, λ, γ] and E[w4(ξ, γ

′)|ξ, λθ, λ] individually before returning to

the calculation for E[w4(ξ
′, γ′)|ξ, λθ, λ, γ]:

E[w4(ξ
′, γ)|λθ, λ, γ] =

K∑
i=1

γiE
[
(θ′i − yi)2|λθ, λ, γ

]
≤

K∑
i=1

γi

(
1

γi
+

1

s0
+ ∆2

)
by (13)

= K + (s−10 + ∆2)w11(γ)

and

E[w4(ξ, γ
′)|ξ, λθ, λ] =

K∑
i=1

(θi − yi)2E
[
γ′i|ξ, λθ, λ

]
=

K∑
i=1

(θi − yi)2
2a3 + 1

2b3 + (θi − yi)2

≤ 2a3 + 1

2b3
w18(ξ) .

Therefore,

E[w4(ξ
′, γ′)|ξ, λθ, λ, γ] ≤ 1

2
w4(ξ, γ) +

1

4

[
K + (s−10 + ∆2)w11(γ)

]
+

1

4

[
2a3 + 1

2b3
w18(ξ)

]
=

1

2
w4(ξ, γ) +

s−10 + ∆2

4
w11(γ) +

2a3 + 1

8b3
w18(ξ) +

K

4
.

Recall that 0 < c < min{b1, b2, b3}. Thus

E[w5(λ
′
θ)|ξ, λθ, λ, γ] =

3

4
w5(λθ) +

1

4
E
[
ecλ
′
θ |ξ, λ, γ

]
=

3

4
w5(λθ) +

1

4

(
2b1 +

∑K
i=1 λi(θi − µ)2

2b1 +
∑K

i=1 λi(θi − µ)2 − 2c

)a1+K/2

≤ 3

4
w5(λθ) +

1

4

(
b1

b1 − c

)a1+K/2
.
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Similarly,

E[w6(λ
′)|ξ, λθ, λ, γ] ≤ 3

4
w6(λ) +

K

4

(
b2

b2 − c

)a2+1/2

.

Next,

E[w7(ξ
′, λ′θ)|ξ, λθ, λ, γ] =

1

2
w7(ξ, λθ) +

1

4
E[w7(ξ

′, λθ)|λθ, λ, γ] +
1

4
E[w7(ξ, λ

′
θ)|ξ, λ, γ]

where

E[w7(ξ
′, λθ)|λθ, λ, γ] =

K∑
i=1

E
([
λθ(θ

′
i − µ′)2 + 2b2

]1/2 |λθ, λ, γ)
≤

K∑
i=1

(
λθ E[(θ′i − µ′)2|λθ, λ, γ] + 2b2

)1/2
by Jensen’s inequality

≤
K∑
i=1

[
λθ

(
1

γi
+

2

s0
+ ∆2

)
+ 2b2

]1/2
by (12)

≤
K∑
i=1

[
λθ

(
1

γi
+

2

s0
+ ∆2

)
+ 2b2 + 1

]
= K(2s−10 + ∆2)w9(λθ) + w12(λθ, γ) +K(2b2 + 1)

and

E[w7(ξ, λ
′
θ)|ξ, λ, γ] =

K∑
i=1

E
([
λ′θ(θi − µ)2 + 2b2

]1/2 |ξ, λ, γ)
≤

K∑
i=1

[
(θi − µ)2E(λ′θ|ξ, λ, γ) + 2b2

]1/2
by Jensen’s inequality

=
K∑
i=1

[
(θi − µ)2

2a1 +K

2b1 +
∑K

i=1 λi(θi − µ)2
+ 2b2

]1/2

≤
K∑
i=1

[
2a1 +K

2b1
(θi − µ)2 + 2b2 + 1

]
=

2a1 +K

2b1
w3(ξ) +K(2b2 + 1) .

Hence

E[w7(ξ
′, λ′θ)|ξ, λθ, λ, γ] =

2a1 +K

8b1
w3(ξ) +

1

2
w7(ξ, λθ) +

K(2s−10 + ∆2)

4
w9(λθ) +

1

4
w12(λθ, γ)

+
K(2b2 + 1)

2
.
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Further,

E[w8(ξ
′, λ′)|ξ, λθ, λ, γ] =

1

2
w8(ξ, λ) +

1

4
E[w8(ξ

′, λ)|λθ, λ, γ] +
1

4
E[w8(ξ, λ

′)|ξ, λθ, γ]

where

E[w8(ξ
′, λ)|λθ, λ, γ] =

K∑
i=1

λiE[(θ′i − µ′)2|λθ, λ, γ]

≤
K∑
i=1

λi

(
1

γi
+

2

s0
+ ∆2

)
by (12)

= w13(λ, γ) +

(
2

s0
+ ∆2

)
w16(λ)

and

E[w8(ξ, λ
′)|ξ, λθ, γ] =

K∑
i=1

(θi − µ)2E[λ′i|λθ, λ, γ]

=

K∑
i=1

(θi − µ)2
2a2 + 1

2b2 + λθ(θi − µ)2

≤ 2a2 + 1

2b2
w3(ξ) .

Hence

E[w8(ξ
′, λ′)|ξ, λθ, λ, γ] ≤ 2a2 + 1

8b2
w3(ξ) +

1

2
w8(ξ, λ) +

1

4
w13(λ, γ) +

2s−10 + ∆2

4
w16(λ) .

Continuing with the calculations,

E[w9(λ
′
θ)|ξ, λθ, λ, γ] =

3

4
w9(λθ) +

1

4
E(λ′θ|ξ, λ, γ)

=
3

4
w9(λθ) +

1

4

2a1 +K

2b1 +
∑K

i=1 λi(θi − µ)2

≤ 3

4
w9(λθ) +

2a1 +K

8b1
,

E[w10(γ
′)|ξ, λθ, λ, γ] =

3

4
w10(γ) +

1

4

K∑
i=1

E
[
ecγ
′
i |ξ, λθ, λ

]
=

3

4
w10(γ) +

1

4

K∑
i=1

(
2b3 + (θi − yi)2

2b3 + (θi − yi)2 − 2c

)a3+1/2

≤ 3

4
w10(γ) +

K

4

(
b3

b3 − c

)a3+1/2
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and

E[w11(γ
′)|ξ, λθ, λ, γ] =

3

4
w11(γ) +

1

4

K∑
i=1

E
[
γ′i|ξ, λθ, λ

]
=

3

4
w11(γ) +

1

4

K∑
i=1

2a3 + 1

2b3 + (θi − yi)2

≤ 3

4
w11(γ) +

K(2a3 + 1)

8b3
.

Further,

E[w12(λ
′
θ, γ
′)|ξ, λθ, λ, γ] =

1

2
w12(λθ, γ) +

1

4
E[w12(λ

′
θ, γ)|ξ, λ, γ] +

1

4
E[w12(λθ, γ

′)|ξ, λθ, λ]

where

E[w12(λ
′
θ, γ)|ξ, λ, γ] = w14(γ)E[λ′θ|ξ, λ, γ]

= w14(γ)
2a1 +K

2b1 +
∑K

i=1 λi(θi − µ)2

≤ 2a1 +K

2b1
w14(γ)

and

E[w12(λθ, γ
′)|ξ, λθ, λ] = w9(λθ)

K∑
i=1

E

(
1

γ′i
|ξ, λθ, λ

)

= w9(λθ)

K∑
i=1

2b3 + (θi − yi)2

2a3 − 1

=
2b3K

2a3 − 1
w9(λθ) +

1

2a3 − 1
w15(ξ, λθ) .

Hence

E[w12(λ
′
θ, γ
′)|ξ, λθ, λ, γ] ≤ b3K

2(2a3 − 1)
w9(λθ) +

1

2
w12(λθ, γ) +

2a1 +K

8b1
w14(γ)

+
1

4(2a3 − 1)
w15(ξ, λθ) .

Similarly,

E[w13(λ
′, γ′)|ξ, λθ, λ, γ] =

1

2
w13(λ, γ) +

1

4
E[w13(λ

′, γ)|ξ, λθ, γ] +
1

4
E[w13(λ, γ

′)|ξ, λθ, λ]

where

E[w13(λ
′, γ)|ξ, λθ, γ] =

K∑
i=1

1

γi
E[λ′i|ξ, λθ, γ]

=
K∑
i=1

1

γi

2a2 + 1

2b2 + λθ(θi − µ)2

≤ 2a2 + 1

2b2
w14(γ)
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and

E[w13(λ, γ
′)|ξ, λθ, λ] =

K∑
i=1

λiE

(
1

γ′i
|ξ, λθ, λ

)

=
K∑
i=1

λi
2b3 + (θi − yi)2

2a3 − 1

=
2b3

2a3 − 1
w16(λ) +

1

2a3 − 1
w17(ξ, λ) .

Hence

E[w13(λ
′, γ′)|ξ, λθ, λ, γ] ≤ 1

2
w13(λ, γ) +

2a2 + 1

8b2
w14(γ) +

b3
2(2a3 − 1)

w16(λ) +
1

4(2a3 − 1)
w17(ξ, λ) .

Next

E[w14(γ
′)|ξ, λθ, λ, γ] =

3

4
w14(γ) +

1

4

K∑
i=1

E

(
1

γ′i
|ξ, λθ, λ

)

=
3

4
w14(γ) +

1

4

K∑
i=1

2b3 + (θi − yi)2

2a3 − 1

=
3

4
w14(γ) +

1

4(2a3 − 1)
w18(ξ) +

Kb3
2(2a3 − 1)

.

Further,

E[w15(ξ
′, λ′θ)|ξ, λθ, λ, γ] =

1

2
w15(ξ, λθ) +

1

4
E[w15(ξ

′, λθ)|λθ, λ, γ] +
1

4
E[w15(ξ, λ

′
θ)|ξ, λ, γ]

where

E[w15(ξ
′, λθ)|λθ, λ, γ] = λθ

K∑
i=1

E
[
(θ′i − yi)2|λθ, λ, γ

]
≤ λθ

K∑
i=1

[
1

γi
+

1

s0
+ ∆2

]
by (13)

≤ K
(

∆2 +
1

s0

)
w9(λθ) + w12(λθ, γ)

and

E[w15(ξ, λ
′
θ)|ξ, λ, γ] = w18(ξ)E[λ′θ|ξ, λ, γ]

= w18(ξ)
2a1 +K

2b1 +
∑K

i=1 λi(θi − µ)2

≤ 2a1 +K

2b1
w18(ξ) .
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Hence

E[w15(ξ
′, λ′θ)|ξ, λθ, λ, γ] ≤ K

4

(
∆2 +

1

s0

)
w9(λθ) +

1

4
w12(λθ, γ) +

1

2
w15(ξ, λ) +

2a1 +K

8b1
w18(ξ) .

Now

E[w16(λ
′)|ξ, λθ, λ, γ] =

3

4
w16(λ) +

1

4

K∑
i=1

E[λ′i|ξ, λθ, γ]

=
3

4
w16(λ) +

1

4

K∑
i=1

2a2 + 1

2b2 + λθ(θi − µ)2

≤ 3

4
w16(λ) +

K(2a2 + 1)

8b2
.

Note that

E[w17(ξ
′, λ′)|ξ, λθ, λ, γ] =

1

2
w17(ξ, λ) +

1

4
E[w17(ξ

′, λ)|λθ, λ, γ] +
1

4
E[w17(ξ, λ

′)|ξ, λθ, γ]

where

E[w17(ξ
′, λ)|λθ, λ, γ] =

K∑
i=1

λiE
[
(θ′i − yi)2|λθ, λ, γ

]
≤

K∑
i=1

λi

(
1

γi
+

1

s0
+ ∆2

)
by (13)

≤
(

1

s0
+ ∆2

)
w16(λ) + w13(λ, γ)

and

E[w17(ξ, λ
′)|ξ, λθ, γ] =

K∑
i=1

(θi − yi)2E[λ′i|ξ, λθ, γ]

=

K∑
i=1

(θi − yi)2
2a2 + 1

2b2 + λθ(θi − µ)2

≤ 2a2 + 1

2b2
w18(ξ) .

Hence

E[w17(ξ
′, λ′)|ξ, λθ, λ, γ] ≤ 1

4
w13(λ, γ) +

1

4

(
1

s0
+ ∆2

)
w16(λ) +

1

2
w17(ξ, λ) +

2a2 + 1

8b2
w18(ξ) .

Finally,

E[w18(ξ
′)|ξ, λθ, λ, γ] =

3

4
w18(ξ) +

1

4

K∑
i=1

E
[
(θ′i − yi)2|λθ, λ, γ

]
≤ 3

4
w18(ξ) +

1

4

K∑
i=1

[
1

γi
+

1

s0
+ ∆2

]
by (13)

≤ 1

4
w14(γ) +

3

4
w18(ξ) +

K

4

[
1

s0
+ ∆2

]
.
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B Conditional Expectations for the Proof of Theorem 2

This section contains the calculation of the conditional expectations required for the proof of

Theorem 2. Some supplementary calculations are given in appendix C. Note that

E[w1(λ
′
θ)|ξ, λθ, λ] =

2

3
w1(λθ) +

1

3
E[w1(λ

′
θ)|ξ, λ]

=
2

3
w1(λθ) +

1

3(2a1 +K − 2)
w8(ξ, λ) +

2b1
3(2a1 +K − 2)

,

E[w2(λ
′)|ξ, λθ, λ] =

2

3
w2(λ) +

1

3

K∑
i=1

E[(λ′i)
−1/2|ξ, λθ]

=
2

3
w2(λ) +

1

3
√

2

Γ(a2)

Γ(a2 + 1/2)
w7(ξ, λθ) ,

E[w3(ξ
′)|ξ, λθ, λ] =

2

3
w3(ξ) +

1

3

K∑
i=1

E[(θ′i − µ′)2|λθ, λ]

≤ 2

3
w3(ξ) +

1

3

K∑
i=1

[
1

γi
+

2

s0
+ ∆2

]
by (12)

=
2

3
w3(ξ) +

α

3

and

E[w4(ξ
′)|ξ, λθ, λ] =

2

3
w4(ξ) +

1

3

K∑
i=1

γiE[(θ′i − yi)2|λθ, λ]

≤ 2

3
w4(ξ) +

1

3

K∑
i=1

γi

[
1

γi
+

1

s0
+ ∆2

]
by (13)

≤ 2

3
w4(ξ) +

1

3

[
K + (∆2 + s−10 )

K∑
i=1

γi

]
.

Further

E[w5(λ
′
θ)|ξ, λθ, λ] =

2

3
w5(λθ) +

1

3
E(ecλ

′
θ |ξ, λ)

=
2

3
w5(λθ) +

1

3

(
b1 + w8(ξ, λ)/2

b1 − c+ w8(ξ, λ)/2

)a1+K/2
≤ 2

3
w5(λθ) +

1

3

(
b1

b1 − c

)a1+K/2
and, similarly,

E[w6(λ
′)|ξ, λθ, λ] ≤ 2

3
w6(λ) +

K

3

(
b2

b2 − c

)a2+1/2

.
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Next,

E[w7(ξ
′, λ′θ)|ξ, λθ, λ] =

1

3
w7(ξ, λθ) +

1

3
E[w7(ξ, λ

′
θ)|ξ, λ] +

1

3
E[w7(ξ

′, λθ)|λθ, λ]

where

E[w7(ξ, λ
′
θ)|ξ, λ] =

K∑
i=1

E{[λ′θ(θi − µ)2 + 2b2]
1/2 |ξ, λ}

≤
K∑
i=1

[(θi − µ)2E(λ′θ|ξ, λ) + 2b2]
1/2 by Jensen’s inequality

=

K∑
i=1

[
(θi − µ)2

2a1 +K

2b1 +
∑K

i=1 λi(θi − µ)2
+ 2b2

]1/2

≤
K∑
i=1

[
(θi − µ)2

2a1 +K

2b1
+ 2b2

]1/2

≤
K∑
i=1

[
(θi − µ)2

2a1 +K

2b1
+ 2b2 + 1

]
=

2a1 +K

2b1
w3(ξ) +K(2b2 + 1)

and

E[w7(ξ
′, λθ)|λθ, λ] =

K∑
i=1

E{[λθ(θ′i − µ′)2 + 2b2]
1/2 |λθ, λ}

≤
K∑
i=1

{λθE[(θ′i − µ′)2|λθ, λ] + 2b2}1/2 by Jensen’s inequality

≤
K∑
i=1

{
λθ

[
1

γi
+

2

s0
+ ∆2

]
+ 2b2

}1/2

by (12)

≤
K∑
i=1

{αiλθ + 2b2 + 1}1/2

≤ αw9(λθ) +K(2b2 + 1) .

It follows that

E[w7(ξ
′, λ′θ)|ξ, λθ, λ] ≤ 1

3
w7(ξ, λθ) +

2a1 +K

6b1
w3(ξ) +

α

3
w9(λθ) +

2K(2b2 + 1)

3
.

Further,

E[w8(ξ
′, λ′)|ξ, λθ, λ] =

1

3
w8(ξ, λ) +

1

3
E[w8(ξ

′, λ)|λθ, λ] +
1

3
E[w8(ξ, λ

′)|ξ, λθ]
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where

E[w8(ξ
′, λ)|λθ, λ] =

K∑
i=1

λiE[(θ′i − µ′)2|λθ, λ] ≤
K∑
i=1

αiλi = w10(λ)

and

E[w8(ξ, λ
′)|ξ, λθ] =

K∑
i=1

(θi − µ)2E[λ′i|ξ, λθ] =

K∑
i=1

(θi − µ)2
2a2 + 1

2b2 + λθ(θi − µ)2
≤ 2a2 + 1

2b2
w3(ξ) .

Putting this together we obtain

E[w8(ξ
′, λ′)|ξ, λθ, λ] =

1

3
w8(ξ, λ) +

1

3
w10(λ) +

2a2 + 1

6b2
w3(ξ) .

Continuing the calculations:

E[w9(λ
′
θ)|ξ, λθ, λ] =

2

3
w9(λθ) +

1

3
E[w9(λ

′
θ)|ξ, λ]

=
2

3
w9(λθ) +

1

3

2a1 +K

2b1 +
∑K

i=1 λi(θi − µ)2

≤ 2

3
w9(λθ) +

2a1 +K

6b1

and

E[w10(λ
′)|ξ, λθ, λ] =

2

3
w10(λ) +

1

3

10∑
i=1

αiE[λ′i|ξ, λθ]

=
2

3
w10(λ) +

1

3

10∑
i=1

αi
2a2 + 1

2b2 + λθ(θi − µ)2

≤ 2

3
w10(λ) +

(2a2 + 1)α

6b2
.

C Components of ξ0 and V

Doss and Hobert (2010) derive the components of ξ0 and V and upper bounds for them. Letting

t =

K∑
i=1

γiλθλi
λθλi + γi

,

ξ0 has components

E[θi|λθ, λ] =
λθλi

λθλi + γi

 1

s0 + t

 K∑
j=1

γjλθλjyj
λθλj + γj

+m0s0

+
γiyi

λθλi + γi

and

E[µ|λθ, λ] =
1

s0 + t

 K∑
j=1

γjλθλjyj
λθλj + γj

+m0s0

 .
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Let ∆ denote the length of the convex hull of {y1, . . . , yK ,m0}. Note that E[µ|λθ, λ] is a con-

vex combination of y1, . . . , yK ,m0 and that E[θi|λθ, λ] is a convex combination of E[µ|λθ, λ] and

y1, . . . , yK . Hence

(E[θi|λθ, λ]− E[µ|λθ, λ])2 ≤ ∆2 and (E[θi|λθ, λ]− yi)2 ≤ ∆2 for i = 1, . . . ,K . (11)

The components of V are given by

Var(θi|λθ, λ) =
1

λθλi + γi

[
1 +

λ2θλ
2
i

(λθλi + γi)(s0 + t)

]
≤ 1

γi
+

1

s0

Cov(θi, θj |λθ, λ) =
λ2θλiλj

(λθλi + γi)(λθλj + γj)(s0 + t)
≤ 1

s0

Cov(θi, µ|λθ, λ) =
λθλi

(λθλi + γi)(s0 + t)
≤ 1

s0

Var(µ|λθ, λ) =
1

s0 + t
≤ 1

s0
.

Now we can see that for i = 1, . . . ,K

E[(θi − µ)2|λθ, λ] = Var(θi|λθ, λ) + Var(µ|λθ, λ)− 2Cov(θi, µ|λθ, λ) + [E(θi|λθ, λ)− E(µ|λθ, λ)]2

≤ 1

γi
+

2

s0
+ ∆2 (12)

and

E[(θi − yi)2|λθ, λ] = Var(θi|λθ, λ) + [E(θi|λθ, λ)− yi]2

≤ 1

γi
+

1

s0
+ ∆2 . (13)
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