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Abstract

Time series data are frequently used to study the short-term effects of particulate

matter air pollution on mortality. Distributed lag models, are regression models having daily

mortality count as outcome and air pollution levels on the same day and on several previous

days as exposure variables. Distributed lag models allow to estimate the cumulative effect

of air pollution exposure over few days in the past and therefore provide a more realistic

measure of the health effects of air pollution than single lag models. However, estimation of

the cumulative effect in distributed lag models can be difficult because at many locations

air pollution levels are collected at a cruder time scale than the daily mortality counts.

This chapter presents a hierarchical model for estimating the distributed lag total effect

of air pollution on daily mortality when the pollutant data has patterned missingness. We

pay particular attention to the implementation of the MCMC sampler. A novel parallel

computing approach is introduced that exploits conditional independence relationships in

the full conditionals used for sampling. Proportional decreases in run times over the non-

parallelized version of the sample near the inverse of the number of compute nodes available

are observed.

1



1 Introduction

Patterned missing covariate data is a challenging issue in environmental epidemiology. For ex-

ample, particulate matter measures of air pollution are often collected only every third day or

every sixth day, while morbidity and mortality outcomes are collected daily. In this setting, many

desirable models cannot be directly fit. We investigate such a setting in so-called “distributed

lag” models when the lagged predictor is collected on a cruder time scale than the response. In

multi-site studies with complete predictor data at some sites, multilevel models can be used to

inform imputation for the sites with missing data.

We focus on the implementation of such multilevel models, both in the terms of model

development and computational implementation of the sampler. Specifically, we parallelize single

chain runs of sampler. This is of note, since the Markovian structure of MCMC samplers typically

makes effective parallelization of single chains difficult. However, the conditional independence

relationships of our developed model allow us to exploit parallel computing to run the chain.

As a first attempt at using parallel MCMC for Bayesian imputation on such data, this chapter

largely represents a proof of principle, though we demonstrate some promising potential for the

methodology. Specifically, we see proportional decreases in run-time over the non-parallelized

version near one over the number of available nodes.

In addition, we describe a novel software implementation of parallelization that is uniquely

suited to disk-based shared memory systems. We use a “blackboard” parallel computing scheme

where shared network storage is a used as a blackboard to tally currently completed and queued

tasks. This strategy allows for easy addition and subtraction of compute nodes and control of

load balancing. Moreover, it builds in automatic checkpointing.

Our investigation is motivated by multi-site time series studies of the short-term effects of

air pollution on disease or death rates. A common measure of air pollution used for such studies

is the amount in micro-grams per cubic meter of particulate matter of a specified maximum

aerodynamic diameter. We focus on PM2.5 (see Samet et al., 2000, .) Unfortunately, the

definitive source of particulate matter data in the United States, the Environmental Protection

Agency’s air pollution network of monitoring stations, collects data only a few times per week

at some locations. One of the most frequent observed data patterns for PM2.5 is data being
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recorded every third day. However, the disease rates that we consider are collected daily.

In this setting, directly fitting a model that includes several lags of PM2.5 simultaneously

is not possible. Such models are useful, for example, to investigate a cumulative weekly effect

of air pollution on health. They are also useful to more finely investigate the dynamics of the

relationship between the exposure and response. As an example, one might postulate that after

an increase in air pollution, high air pollution levels on later days may have a smaller impact,

as the risk set has been depleted from the initial increase (Zeger et al., 1999; Schwartz, 2000;

Dominici et al., 2002).

We focus on distributed lag models that relate the current day disease rate to particulate

matter levels over the past week. That is, our model includes the current day’s PM2.5 levels

as well as the previous six days. While direct estimation of the effect for any particular lag is

possible, joint estimation of the distributed lag model is not possible (see Section 3). Moreover,

missing data imputation for counties with patterned missing data is difficult. We consider a

situation where several independent time series are observed at different geographical regions,

some with complete PM2.5 data. We use multilevel models to borrow information across series

to fill in the missing data via Bayesian imputation. The hierarchical model is also used to combine

county-specific distributed lag effects into national estimates.

The rest of the chapter is organized as follows. In Section 2 we outline the data set used for

analysis and follow in section 3 with a discussion of Bayesian imputation. In Section 4 we describe

the distributed lag models of interest, and in Section 5 we illustrate a multiple imputation strategy.

Section 6 uses the imputation algorithm to analyze hospitalization rates of chronic obstructive

pulmnonary disease (COPD). Finally, Section 7 gives some conclusions, discussion and proposes

future work.

2 The dataset

The Johns Hopkins Environmental Biostatistics and Epidemiology Group has assembled a national

database comprising time series data on daily hospital admission rates for respiratory outcomes,

fine particles (PM2.5), and weather variables for the 206 largest US counties having a population

larger than 200, 000 and with at least one full year of PM2.5 data available. The study population,
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derived from Medicare claims, includes 21 million adults older than 65 with a place of residence

in one of the 206 counties included in the study.

Daily counts of hospital admissions and daily number of people enrolled in the cohort are

constructed from the Medicare National Claims History Files (NCHF). These counts are obtained

from billing claims of Medicare enrollees residing in the 206 counties. Each billing claim contains

the following information: date of service, treatment, disease (ICD 9 codes), age, gender, race

and place of residence (zip and county).

Air pollution data for fine particles are collected and posted by the United States Eniviron-

mental Protection Agency Aerometric Information Retrieval Service (AIRS, now called the Air

Quality System, AQS). To protect against outlying observations, a 10% trimmed mean is used to

average across monitors after correction for yearly averages for each monitor. Specifically, after

removing a smoothly varying annual trend from each monitor time series, the trimmed mean

was computed using the deviations from this smooth trend. Weather data is obtained from the

National Weather Monitoring Network which comprises daily temperature and daily dew points

temperature for approximately 8, 000 monitoring stations in the USA. We aggregate data across

monitors to obtain temperature time series data for each of the 206 counties of which 196 were

used in analysis. Details about aggregation algorithms for the air pollution and weather are posted

at http://www.biostat.jhsph.edu/MCAPS and further information about data collection in

Dominici et al. (2006).

Figure 1 illustrates the salient features of the missing data pattern for PM2.5 in this database.

This study considered 1, 096 monitoring days. Figure 1 displays the proportion of the 1, 096 days

with observed PM2.5 data for each county (dark gray line). The associated number of observed

days is displayed on the right scale. This figure also displays the proportion the 1, 096 days with

observed PM2.5 data where the lag-1 was also observed (the black line).

The plots show that nearly half of the 196 counties have measurements on roughly one third

of the total possible days. Ninety six of these counties have over 40% of the air pollution data

observed and enough instances of seven consecutive observed PM2.5 days to estimate the desired

distributed lag model (see Section 4). For these counties, any missing data is often due to

a large contiguous block, for example several weeks where the monitor malfunctioned. Such

uninformative missing data leaves ample daily measurements to estimate distributed lag models,
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so is ignored in our model. The remaining counties have PM2.5 data collected every third day and

possibly also have blocks of missing data, hence have data on less than 33% of the days under

study. Because of the systematically missing PM2.5 data in these counties, there is little hope

of fitting a distributed lag model without borrowing information on the exposure-response curve

from daily time series data from other counties. The plot further highlights this by showing that

direct estimates of the lag-1 autocovariances are not available for roughly half of the counties.

However, because of the missing data pattern, all of the counties have direct estimates of the

lag-3 autocovariances.

3 Bayesian imputation

In this section, we discuss the relative merits of Bayesian imputation. We focus on our particular

missing data problem, and refer the reader to Carlin and Louis (2009) and Little and Rubin (2002)

for general introductions to Bayesian statistics, missing data and computation. We argue that

imputation for systematic missingness in the predictor time series is relevant for distributed lag

models, and particularly for the data set in question, while it is less relevant for single lag models.

In this section, we restrict our discussion to the consideration of a single outcome time series,

say Yt, and single predictor time series, Xt. For context, consider the outcome to be the natural

log of the county-specific medicare emergency admissions rate for chronic obstructive pulmonary

disease (COPD), and the predictor to be PM2.5 levels for that county. To make this thought

experiment more realistic, let Yt and Xt be the residual time series obtained after having regressed

out relevant confounding variables. We assume that the {Yt} are completely observed and the

{Xt} are observed only every third day, so that X0, X3, X6, ... are recorded; and evaluate whether

or not to impute the missing predictors. In our subsequent analysis of the data, we will treat this

problem more formally using Poisson regression.

3.1 Single-lag models

A single-lag model relates the Yt to Xt−u for some u = 0, 1, 2, . . . via the mean model E[Yt] =

θuXt−u, when an identity link function is used. We argue that, for any such single lag model,

implementing imputation strategies for the missing predictor values is unnecessary. Consider that
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direct evidence regarding any single lag model is available in the form of simple lagged cross-

correlations. For example, the pairs (Y0, X0), (Y3, X3), (Y6, X6), . . . provide direct evidence for

u = 0; the pairs (Y1, X0), (Y4, X3), (Y7, X6),. . . provide direct evidence for u = 1 and so on.

Imputing the missing predictors only serves to inject unneeded assumptions. Furthermore, there

is a trade-off where more variation in the predictor series benefits the model’s ability to estimate

the associated parameter, yet hampers the ability to informatively impute. Hence, in the typical

cases where the natural variation in the predictor series is large enough to be of interest, we

suggest that imputing systematically missing predictor data for single lag models is not worth

the trouble. In less desirable situations with low variation in the predictor series, imputation for

single-lag models may be of use.

3.2 Distributed lag models

Now consider a distributed lag model, such as E[Yt] =
∑d

u=0 θuXt−u. Here, if a county has

predictor data recorded every third day, there is no direct information to estimate this relationship.

Specifically, let t = 0, . . . , T − 1 and D be the design matrix associated with the distributed lag

model and Y be the vector of responses. Then the least squares estimates of the coefficients

are ( 1
T
DtD)−1 1

T
DtY . The off diagonal terms of 1

T
DtD contain the lagged auto-covariances in

the {Xt} series; 1
T
DtY contains the lagged cross-covariances between the {Yt} and {Xt}. As

was previously noted, these lagged cross-covariances are directly estimable, even with patterned

missing data in the predictor series. In contrast, the auto-covariances in the predictor series are

only directly estimable for lags that are multiples of three. Thus, without addressing the missing

predictor data, the distributed lag model cannot be fit. For our data, this would eliminate

information from nearly fifty percent of the counties studied. Hence a study of the utility of

predicting the missing data is warranted.

One might consider using a model, such as an AR(p), to extrapolate the missing autocorre-

lations. However, a single time series with this degree of systematic missingness may not have

enough information to estimate the parameters. Consider an AR(1) process. To illustrate, Figure

2 shows the likelihood for the AR(1) coefficient for data simulated under an AR(1) model with

a correctly known innovation variance of 1 and data observed every day (solid), every third day
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(dashed) and every sixth day (dotted). Any inference for the AR(1) parameter (at .5, depicted

with a horizontal line) would be imprecise with the systematically missing data. For the data

observed every sixth day, notice that the likelihood is multimodal and symmetric about zero.

This is because the likelihood only depends on the AR coefficient raised to even powers. This

poses a problem even for our every third day data, because additional missing observations create

patterns of data collected only every sixth day. Such multi-modal likelihoods for AR models are

described in Wallin and Isaksson (2002) (also see Broersen et al., 2004). Even worse, remember

this example presumes that the model is known is exactly.

In our data set, there is important information in the counties with completely observed data

that can be used to help choose models for the predictor time series and estimate parameters.

Figure 3 demonstrates such model fits with an AR(4) model applied to a detrended version of

the log of the PM2.5 process. This plot is informative because when the data are available only

once every third day, it is not possible to estimate the autocorrelation function using data only

from that county. However, it also illustrates that the population distribution of autoregressive

parameters appears to be well defined by the counties with mostly observed data. Figure 4 shows

the estimated residual standard deviations from these model fits; suggesting that these are well

estimated even if the autoregressive parameters are not. The data suggest that an AR(1) process

is perhaps sufficient, though we continue to focus on AR(4) models to highlight salient points

regarding imputation.

4 Model and notation

In this section we present notation and modeling assumptions. A summary of the most important

parameters and hyperparameters is given in Appendix B.1. Let Yct for county c = 0, . . . , C−1 and

day t = 0, . . . , T − 1 , denote a response time series of counts, such as the daily incident counts

of COPD. Let Rct denote the number of persons in county c at risk for disease on day t. We

assume that both of these processes are completely observed. Let λct = E[Yct | Rct, Xct,θc,βc]

be the daily mean, Xct denote PM2.5 and Zctj for j = 0, . . . , J−1 be other covariates of interest,

which we assume are completely observed.
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We assume that the response process follows a Poisson law with means satisfying:

log(λct/Rct) =
d∑

u=0

θcuXc,t−u +
J−1∑
j=0

Zctjβcj. (1)

For the hospital admissions data, we consider d = 6. That is, the model relates the prior week’s

air pollution to the current day’s mean disease rate.

The sum of the lagged air pollution parameters, labeled the distributed lag “total” or “cumu-

lative” effect,
∑d

u=0 θcu,, is a parameter of primary interest. The total efffect is the change in the

log mean response rate given a 1 unit across-the-board increase in the PM2.5 over the current

and prior d days.

To mitigate the variance inflation incurred by including many obviously co-linear lagged co-

variates, sometimes a functional form is placed on the θcu, especially if d is large (see Zanobetti

et al., 2000). A particularly effective approach is to assume that θcu = Auθ
∗
c where Au is column

u from a smoothing design matrix, say A, on the time points 0, . . . , d. When d = 6, choosing

A to be a bin smoother with bins for the current day, days lag 1 to 2, and days lag 3 to 6, has

been shown to be a useful approach in the air pollution time series literature (Bell et al., 2004).

Such a smoother requires three parameters, θ∗c = (θ∗c1, θ
∗
c2, θ

∗
c3), so that the model becomes

log(λctr/Rctr) = θ∗c1xct + θ∗c2

2∑
u=1

Xc,t−u + θ∗c3

6∑
u=3

Xc,t−u +
k∑
j=0

zctjβcjr.

This restriction on the distibuted lag parameters is equivalent to a convenient form for the

rate model that considers the seven day average air pollution and its deviation from the three-day

average and current day:

log(λctr/Rctr) = θ†c1x̄
(6)
ct + θ†c2(x̄

(2)
ct − x̄

(6)
ct ) + θ†c3(xct − x̄

(2)
ct ) +

k∑
j=0

zctjβcjr. (2)

Here x̄
(k)
ct is the average of the current day and k previous days’ PM2.5 values. These parameters

are related to the θ∗i via the equalities:

θ∗c1 =
1

7
θ†c1 +

4

21
θ†c2 +

6

7
θ†c3,

θ∗c2 =
1

7
θ†c1 +

4

21
θ†c2 −

1

7
θ†c3,

θ∗c3 =
1

7
θ†c1 −

1

7
θ†c2 −

1

7
θ†c3.
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In this constrained model the total effect is θ†c1 = θ∗c1 + 2θ∗c2 + 4θ∗c3. We use the constrained and

reparameterized specification from Equation (2) for analysis. For convenience, have dropped the

superscript ∗ or † from θ when generically discussing the likelihood or MCMC sampler.

We denote the Poisson log-likelihood for county c by `c(θc,βc), where a bold notation rep-

resent a vector of the relevant parameters, such as θc = (θc1, . . . , θcd)
t. Our approach uses

Bayesian methodology to explore the joint likelihood by smoothing parameters across counties.

However, the number of nuisance parameters makes implementation and prior specification un-

wieldy. Therefore, we replace the county-specific log-likelihoods with the associated profile log-

likelihoods:

˜̀
c(θc) = `c{θc, β̂c(θc)} where β̂c(θc) = argmaxβc

`c(θc,βc). (3)

This step greatly reduces the complexity of the MCMC fitting algorithm. However, it does so at

the cost of theoretical unity, as the profile likelihood used for Bayesian inference is not a proper

likelihood (Monahan and Boos, 1992), as well as computing time. We stipulate that this choice

may impact the validity of the sampler and inference. Currently, we assess validity by comparing

results with ML results for counties with complete data.

The model for the air pollution time series contains trend variables and AR(p) distributed

errors. We assume that

log(Xct) = Wctψc + εct, (4)

where the εct are a stationary autoregressive process of order p with conditional means and

variances

E[εct|εc,t−1, . . . , εc,t−p] =

p∑
j=1

αcjεc,t−j Var(εct|εc,t−1, . . . , εc,t−p) = σ2
c .

Here the trend term, Wctψc, represents the slowly varying correlation between air pollution and

seasonality. Specifically, we set Wct to be a natural cublic spline with 24 degrees of freedom per

year. Throughout, we set p = 4.

4.1 Prior and hierarchical model specification

We place a N(µ,Σθ) prior on the distributed lag parameters, and a diffuse normal prior for µ

and an inverted Wishart prior with an identity matrix scale on Σθ with 4 degrees of freedom.
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Here, µ is a parameter of central interest, estimating the between-county mean distributed lag

parameters.

We do not place a prior on the missing data trend term ψc, instead fixing it from the onset at

the least squares estimated value. For the autoregressive parameters, αcj, we place the prior on

the lagged partial autocorrelations (Barnett et al., 1996; Monahan, 1983). We refer the reader

to Diggle (1990) for a definition of partial autocorrelations and Huerta and West (2004) for a

different perspective for placing priors on autoregressive parameters.

We use a recursive formula of Durbin (1960), to transform the autoregressive parameters to

and from the partial autocorrelations. Let α̃cj represent the p partial autocorrelations for county

c; we specify that

.5 log{(1 + α̃c)/(1− α̃c)} ∼ N(ζ,Σα),

where the Fisher’s Z transformation, log{(1+a)/(1−a)}, is assumed to operate componentwise

on vectors. Here, taking the Fisher’s Z transformation is useful as the partial correlations are

bounded by 1 in absolute value for stationary series.

We use a diffuse normal prior for ζ and an inverse Wishart distribution centered at an identity

matrix with 10 degrees of freedom. The prior on σ−2
c is Gamma with a mean set at the county

specific method of moments estimates and a coefficient of variation of 10. Note that we chose

not to shrink variance estimates across counties, as they appear to be well estimated from the

data.

5 Bayesian imputation

5.1 Sampler

Here we overview the Bayesian imputation algorithm. Let brackets generically denote a density

and let Xc,obs and Xc,miss be the collection of Xtc observed and missing components for county

c respectively, Yc be the collection of Ytc, Pc = {ψc, α1c, . . . , αpc, σc}, P be the collection of
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between-county parameters and H denote hyperparameters. Then, the full join posterior is

[X0,miss, . . . ,XC−1,miss,θ0, . . . ,θC−1,P0, . . . ,PC−1,P | Y0, . . . ,YC−1,X0,obs,XC−1,obs,H]

∝

{∏
c

[Yc | Xc,miss,Xc,obs,θc][Xc,miss,Xc,obs | Pc][Pc | P,H]

}
[P | H].

Here, recall, [Yc | Xc,miss,Xc,obs,θc] uses the profile likelihood, rather than the actual likelihood.

Our sampler proceeds as follows (where EE is “everything else”)

[X0,miss | EE] ∝ [Y0 | X0,miss,X0,obs,θ0][X0,miss,X0,obs | P0]

[X1,miss | EE] ∝ [Y1 | X0,miss,X0,obs,θ1][X0,miss,X0,obs | P1]

...

[XC−1,miss | EE] ∝ [YC | XC−1,miss,XC−1,obs,θC−1][XC−1,miss,XC−1,obs | PC−1]

[P0 | EE] ∝ [Y0 | Xc,miss,Xc,obs,θ0][X0,miss,X0,obs | P0]

[P1 | EE] ∝ [Y1 | Xc,miss,Xc,obs,θ1][X1,miss,X1,obs | P1]

...

[PC−1 | EE] ∝ [YC−1 | XC−1,miss,XC−1,obs,θC ][XC−1,miss,XC−1,obs | PC−1]

[P | EE] ∝ [Pc | P,H][P | H].

Because of the Gibbs-friendly priors µ and ζ have multivariate normal full conditionals.

Moreover, Σθ and Σα have inverse Wishart full conditionals, while the {σ2
c} has an inverted

gamma. The county-specific distributed lag parameters and AR parameters, {θc} and αc, re-

quire a Metropolis step. We use a variable-at-a-time, random-walk update. Further details on

the full conditionals are given in Appendix B.2.

The update of the missing data deserves special attention. We use a variable-at-a time

Metropolis step to impute εtc for each missing day conditional on the remaining. Consider

p = 4 and let εc5 be a missing day to be imputed. We use the autoregressive prior for the

day under consideration given all of the remaining days as the proposal. For example, the

distribution of εc5 given {εc1, . . . , εc4, ε6, . . . , ε9} is used to generate the proposal for εc5, i.e.

the four neighboring days before and after the day under consideration. Because of the AR(4)

assumption, this is equivalent to the distribution of ε5 given all of the days. After imputation,

Xc5 = exp(Wc5ψc + εc5), is calculated. By simulating from the prior distribution of the current
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missing day given the remainder, only the contribution of Xc5 to the profile likelihood remains

in the Metropolis ratio. To summarize, the distribution of the current day given the remainder,

disregarding the profile likelihood, is used to generate proposals; the profile likelihood is then used

in a Metropolis correction. Of course, since PM2.5 has a relatively weak relationship with the

response, the acceptance rate is high.

5.2 A parallel imputation algorithm

Given the large number of days that need to be imputed for the counties with missing data,

and the difficult calculation of the county-specific profile likelihoods, the time for running such a

sampler is quite long. In this section we propose a parallel computing approach that can greatly

speed up computations.

Notice, the conditional-independence structure from Section 5 illustrates that all of the county-

specific full conditionals are conditionally independent. Thus, the imputation of the missing

predictor data, the simulation of the county-specific parameters, and the calculation of the profile

likelihoods can be performed simultaneously. Hence, it represents an ideal instance where we can

increase the efficiency of the simulation of a single Markov chain with parallel computation.

To elaborate, let f be the time required to update [P | EE], g0, g1, . . . , gC−1 be the time

required to transfer the relevant information to and from the separate nodes for parallel processing

and h0, h1, . . . , hC−1 be the time required to perform the processing, as depicted in figure 5.

Suppose that C nodes are available for computation. Then, conceptually, the run-time per

parallel MCMC iteration is f+maxc(gc+hc). In contrast, the single processor run-time would be

f+
∑

c(hc). Clearly, if the transfer times, {gc} are small relative to the county-specific processing

times, {hc} , then substantial savings can be gained by parallelizing the process, with the gains

scaling proportional to the number of conditionally independent full conditionals. This is exactly

the setting of the Medicare Claims Data, where the profile likelihood and imputation county-

specific calculations are very time consuming. Of course, this simple schematic is extremely

optimistic in not accounting for several factors, such as variability in the number of available

nodes, node-specific run-times and the added time for the software to manage the parallelization,

etcetera. However, it does suggest that substantial gains can be made with parallelization.
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While we know of few implementations of parallel MCMC of this scope, this approach to

parallelizing Markov chains and its generalizations has been discussed previously (Rosenthal,

2000; Kontoghiorghes, 2006; Winkler, 2003). Moreover, other approaches could be used for

parallelizing Markov chains. When applicable, perfect sampling (Fill, 1997; Fill et al., 2000; Propp

and Wilson, 1998) could be easily parallelized. Specifically, each perfect sample is an iid draw

from the stationary distribution and hence can be generated independently. Also regeneration

times (Mykland et al., 1995; Hobert et al., 2002; Jones et al., 2006) create independent tours

of the chain from other regeneration times. Therefore, given a starting value at a regeneration

time, the tours could be generated in parallel. These two techniques have the drawback that a

substantial amount of mathematics needs to be addressed to simply implement the sampler prior

to any discussion of parallel implementation. A less theoretically justified, yet computationally

simple, approach parallelizes and combines multiple independent chains (see Geyer, 1992; Gelman

and Rubin, 1992, and the discussions).

Most work on statistical parallel computing algorithms depends on existing network-based par-

allel computing algorithms, such as Parallel Virtual Machines (Beguelin et al., 1995) or Message

Passing Interface (Snir et al., 1995), such as implemented in the R package SNOW (Rossini et al.,

2007). These programs are not optimized for particular statistical problems or computational in-

frastructures and furthermore require direct computer-to-computer communication. While such

parallel computing architectures are used, large computing clusters that employ queuing manage-

ment software often cannot take advantage of these approaches.

In contrast, our approach uses a disk-based shared memory blackboard system which required

building the parallelization software. Specifically in our approach, a collection of tokens, one

for each county are used to represent which counties currently need processing. A collection of

identical programs, which we refer to as spiders, randomly select a token from the bin and move

it to a bin of tokens representing counties currently being operated on. We have adopted several

strategies to avoid race conditions, where two spiders simultaneously attempt to grab the same

token, including: using file system locks and creating small random delays before the spider grabs

the token. The spider then performs the county-specific update and moves its token to another

bin of counties with finished calculations. The spider then goes back to the original bin and

repeats the process. If there are no tokens remaining, the first spider to discover this fact then
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performs the national update while the remaining sit idle. It then moves the tokens back to the

original bin to restart the process. Disk-based shared memory is used for all of the data transfer.

The benefits of this strategy for parallel MCMC are many. Notably, nodes or spiders can be

dynamically added or subtracted. Moreover, load balancing can be accomplished easily. In addi-

tion, the system allowed us to use a storage area network (SAN) as the shared memory resource

(blackboard). While having much slower data transfer than direct computer-to-computer based

solutions, this approach allowed us to implement a parallel programming in spite of scheduling

software that precludes more direct parallelization. As an added benefit, using the SAN for data

transfer builds in automatic checkpointing for the algorithm. We’ve also found that this approach

facilitates good MCMC practice, such as using the ending value from initial runs as the starting

value for final runs. Of course, an overwhelming negative property of this approach is the need

to create the custom, setting-specific, parallelization software.

6 Analysis of the Medicare data

We analyzed the Medicare data using our parallel MCMC algorithm. We used 30 processors,

resulting in a run-time of 5 to 10 seconds per MCMC iteration. In contrast, the run-time for

a single processor was over two minutes. That is, there is a 90% decrease in run-time due to

parallelization.

The sampler was run for 13, 000 iterations. This number was used as simply the largest

feasible in the time given. Final values from testing-iterations were used as starting values. Trace

plots were investigated to evaluate the behavior of the chains, and were also used to change the

step size of the random-walk samplers.

Figure 6 displays an example imputation for 1, 000 monitoring days for a county. The black

lines connects observed days while the gray line depicts the estimated trend. The points depict

the imputed data set. Figure 7 depicts a few days for a county where pollution data is observed

every three days; the separate lines are iterations of the MCMC process. These figures illustrate

the reasonableness of the imputed data. A possible concern is that the imputed data are slightly

less variable than the actual data. Moreover, the data is more regular, without extremely high air

pollution days. However, this produces conservatively wider credible intervals for the distributed
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lag estimates.

Figure 8 shows the estimated posterior medians for the exponential of the cumulative effect

for a 10 unit increase in air pollution along with 95% credible intervals. The estimates range

from 0.746 to 1.423. The cumulative effect is interpreted as the relative increase or decrease in

the rate of COPD corresponding to an across-the board 10 unit increase in PM2.5 over the prior

six days. Therefore, for example, 1.007 (the national average) represents a 0.7 percent increase

in the rate of COPD per one micro-gram per ten cubic meter increase in fine particulate matter

over six days.

The national estimate, µ1, represents the variance-weighted average of the county-specific

cumulative effects. The 95% equi-tail credible interval ranges from an estimated 2.6% decrease

to a 4.0% increase in the rate of COPD. The posterior median was a 0.7% increase. In contrast,

a meta analysis model using the ML fits and variances for only those counties with adequate data

for fitting the distributed lag model results in a confidence interval for the national cumulative

effect ranging from a 5.1% decrease to a 7.5% increase, while the mean is a 1.0% increase. That

is, adding the data from the counties with systematic missing data does not appear to introduce

a bias, but does reduce the greatly reduce the width of the interval.

The shape of the distributed lag function is of interest to environmental health researchers,

as different diseases can have very different profiles, such as rates of hospitalization, recurrence

and complications. Examining the shape of the distributed lag function can shed light on the

potential relationship of air-pollution and the disease. For example, a decline over time could

be evidence of the “harvesting” hypothesis, whereby a large air pollution effect for early lags

would deplete the risk set of its frailest members, through hospitalization or mortality. Hence the

latter days would have lower effects. Figure 9 shows the exponent of 10 times the distributed lag

parameters’ posterior medians: θ∗c1 (top plot), θ∗c2 (middle plot) and θ∗c3 (bottom plot) by county.

Here θ∗c1 is the current day estimate, while θ∗c2 and θ∗c3 are cumulative effect for days lag 1 to

2 and 3 to 6, respectively. The current-day effect tends to be much larger, and more variable,

by county. The comparatively smaller values for the later lags are supportive of the harvesting

hypothesis, though we emphasize that other mechanisms could be in place. Further, this model

is not ideal for studying such phenomena, as the bin smoothing of the distributed lag parameters

may be too crude to explore the distributed lag function’s shape.
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Figure 10 shows 95% credible intervals for the AR parameters across counties. The counties

are organized so that the rightmost 97 counties have the systematic missing data. Notice that, in

these counties, their estimate for the AR1 parameter is attenuated towards zero over the counties

with complete data. The estimated posterior median of ζ is (0.370,−0.010,−0.011,−0.025)t.

The primary AR1 parameter is slightly below the 0.5, because of the contribution of those counties

with missing data. Regardless, we note that this shrinkage estimation greatly improves on county-

specific estimate (see Figure 3) for those cites with incomplete data.

7 Summary

In this chapter, we propose an MCMC algorithm for fitting distributed lag models for time series

with systematically missing predictor data. We emphasize that our analysis only scratches the

surface for the analysis of the Medicare Claims data. One practical issue is the effect of varying

degrees of confounder adjustment; both in the terms of the degrees of freedom employed in non-

linear fits and the confounders included. Moreover, a more thorough analysis would consider other

health outcomes and different numbers of lags included. Also, commonly air pollution effects are

interacted with age or age categories, because of the plausibility of different physical responses

to air pollution with aging. In addition, the PM measurements are aggregates of several chemical

pollutants. Determining the effects of individual component parts may help explain some of the

countyal variation in the effect of air pollution on health.

The bin smoother on the distributed lag parameters allows for an simpler algorithm and

interpretation. However, more reasonable smoothers, such as setting A to the design matrix for

a regression-spline model, should be considered. This would allow much more accurate exploration

of the shape of the distributed lag model, as well as variations in its shape by counties.

The use of the profile likelihood instead of the actual likelihood raises numerous issues and

concerns. Foremost is the propriety of the posterior and hence the validity of the sampler and

inference. The theoretical consequences of this approach should be evaluated. Moreover, compar-

isons with other strategies, such as placing independent diffuse priors on the nuisance parameters,

are of interest.

Also of interest is to eliminate the attenuation of the estimates of the auto-regressive pa-
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rameters for the counties with missing data. To highlight this problem more clearly, suppose

that instead of 97 counties with missing data, we had 9, 700 with data recorded every other day.

Then the accurate information regarding ζ and Σα contained in the counties with complete data

would be swamped by the noisy bi-modal likelihoods from the counties with systematic missing-

ness. More elaborate hierarchies on this component of the model may allow for the counties with

observed data to have control over estimation of these parameters.

In addition, the potential informativeness of counties having missing data (see Little and Rubin,

2002) should be investigated. To elaborate, clearly the pattern of missing data is uninformative

for any given county; however, whether or not a county collected data every day or every third

day may be informative. For example, counties with air pollutions levels well below or above

standards may be less likely to collect data every day. Such missingness may impact national

estimates.

We also did not use external variables to impute the missing predictor data. Ideally, a com-

pletely observed instrumental variable that is causally associated with the predictor, yet not with

the response would be observed. Such variables could be used to impute the predictor, but would

not confound its relationship with the response. However, rarely are such variables available.

More often variables that are potentially causally associated with the predictor are also poten-

tially causally associated with response. For example, seasonality and temperature are thought to

be causally associated with PM levels and many health outcomes. Hence, using those variables

to impute the missing predictor data would immediately raise the criticism that any association

found was do to residual confounding between the response and the variables used for imputation.

These points notwithstanding, this work suggests potential for the ability to impute missing

data for distributed lag models. The Bayesian model produces a marked decrease in the width of

the inter-county estimate of the cumulative effect. Moreover, the imputed data sets are consistent

with the daily observed data, though perhaps being more regular and less variable. However, we

note the bias incurred by lower variability in the imputed air pollution is conservative, and would

attenuate the distribute lag effects.

A second accomplishment of this chapter is the parallization algorithm and software devel-

opment. The computational overhead for the parallelization software was small, and hence the

decrease in run-time was nearly linear with the number of nodes.
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Race conditions, times when multiple spiders attempted to access the same token, represent

a difficult implementation problem. For example, after the county-specific updates finish, all

spiders attempt to obtain the token representing the national update simultaneously. A colleague

implementing a similar system proposed a potential solution (personal communication with Dr.

Fernando Pineda). Specifically, he uses atomic operations on a lock file to only allow access to

the bin of tokens to one program at a time. As an analogy, this approach has a queue of programs

waiting for access to the bins to obtain a token. In contrast, our approach allows simultaneous

access to the bins, thus increasing speed, though also increasing the likelihood of race conditions.

A fundamental problem we have yet to solve is the need for truly atomic operations on networked

filesystems to prevent these race conditions. Our use of filesystem locks when moving files as the

proposed atomic operation made the system very fragile, given the complex nature and inherent

lag of an NFS mounted SAN.

Our current solutions to these problems are inelegant. First, as described earlier, random

waiting times were added. Secondly, spiders grabbed tokens in a random order. Finally, a worker

program was created that searched for and cleaned up lost tokens and ensured the appropriate

number of spiders were operational. We are currently experimenting with the use of a SQL

database, with database queries, rather than file manipulations to manage the tokens.

Acknowledgements: The authors would like to thank Dr. Fernando Pineda for helpful discussions

on parallel computing.
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Figure 1: Summary of the missing data pattern. The gray displays the proportion of the total

days in the study with observed PM2.5 data for each county with the actual number of days with

observed air pollution data displayed on the right axis. The black lines show the proportion and

count of the days with observed air pollution data where the lag-1 day is also observed.

23



−0.5 0.0 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AR(1) parameter

Li
ke

lih
oo

d
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rectly known innovation variance of 1 and coefficient of .5, for three missing data patterns:

completely observed (solid), observed only every three days (dashed) and observed only every six

days (dotted). A solid vertical line denotes the actual coefficient value of .2.
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Figure 3: Estimated AR(4) coefficients, labeled “1” to “4”, by counties ordered by decreasing

percentage of observed data from left to right. Roughly the first 100 counties have substantial

consecutively observed data to estimate the AR parameters while the remaining 100 do not.
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Figure 4: Variances from individual autoregressive time series by counties ordered by decreasing

percentage of observed data from left to right.
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Figure 5: Parallel computing diagram.
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Figure 6: Example imputation from the MCMC sampler for a specific county. The dark line

connects observed points while the gray line shows the estimated trend. The black points are

from a specific iteration of the MCMC sampler.
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Figure 7: Several example imputations for a subset of the days for a county. The lines converge

on observed days.
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Figure 8: Estimates and credible intervals for the exponential of the distributed lag cumulative

effect by county for a 10 unit increase in air pollution, 10θc1. The solid middle line are the

posterior medians; the gray area shows the estimated 95% equi-tail credible intervals. A horizontal

reference line is drawn at one. Hash marks denote counties with systematic missing data, where

the distributed lag model could not be fit without imputation.
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Figure 9: Exponent of ten times the distributed lag parameters’ posterior medians: θ∗c1 (top

plot), θ∗c2 (middle plot) and θ∗c3 (bottom plot) by county.
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Figure 10: Posterior credible intervals for the AR parameters by county.
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B Parameters

B.1 Important parameter definitions

Yct Response count for county c at time t.

Rct Size of the risk set for county c at time t.

λct County-specific expected rate for Yct.

Xct Log PM2.5 level in micro-grams per cubic meter for county c at time t.

θcu Distributed lag parameters for county. c

θ∗cu Constrained distributed lag parameters for county c.

θ†cu Constrained and reparameterized distributed lag parameters for county c.

˜̀(θc) Profile log-likelihood for θc.

Wct, ψc Slowly varying trend model on the log PM2.5 series log(Xct) = Wctψc+εct

εct Residuals from above model, where we presume ψc is known and fixed at

the estimated value. These terms are the actually imputed terms.

µ Inter-county mean of the θc

Σθ Inter-county variance/covariance matrix of the θc

αc County-specific autoregressive parameters on the εct.

ζ Inter-county mean of the αc

Σα Inter-county variance/covariance of the αc.

Table 1: Parameters and their definitions.
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B.2 Full conditionals

θc ∝ exp

(
˜̀
c(θc)−

1

2
(θc − µ)tΣθ(θc − µ)

)
µ N

{(
CΣ−1

θ +G−1
1

)−1
Σ−1
θ

C−1∑
c=0

θc,
(
CΣ−1

θ +G−1
1

)−1

}

Σ−1
θ Wishart

(
G2 +

C−1∑
c=0

(θc − µ)(θc − µ)t, df1 + C

)
αc N

{
(Et

cEc/σ
2
c + Σ−1

α )−1Et
cεc, (E

t
cEc/σ

2
c + Σ−1

α )
}

ζ N

{(
cΣ−1

α +G−1
4

)−1
Σ−1
α

C−1∑
c=0

αc,
(
cΣ−1

α +G−1
4

)−1
Σ−1
α

}

Σα Wishart

(
G5 +

C−1∑
c=0

(αc − ζ)(αc − ζ)t), df2 + C

)

σ−2
c Gamma

C/2 +G6,
C−1∑
c=0

(
εct −

p∑
u=1

εc,t−uαu

)2

+G7


Here εc = (εc1, . . . , εcTc)

t where εct are the residuals after fitting model 4. The matrix Ec

denotes the lagged values of εc. Here G1, G2, . . . denote generic hyperparameter whose values

are described in the chapter while df1 and df2 correspond to prior Wishart degrees of freedom.

That is, G1 is the prior variance on µ; G2 represents the Wishart scale matrix for Σθ; (G3, G4)

represent the prior means and variance on ζ; G5 represents the Wishart scale matrix for Σα; G6

and G7 are the gamma shape and rate on σ−2
c .
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