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ABSTRACT
Dipoles represent long distance connections between the pres-
sure anomalies of two distant regions that are negatively
correlated with each other. Such dipoles have proven im-
portant for understanding and explaining the variability in
climate in many regions of the world, e.g., the El Niño cli-
mate phenomenon is known to be responsible for precipi-
tation and temperature anomalies worldwide. Systematic
approaches for dipole detection generate a large number of
candidate dipoles, but there exists no method to evaluate
the significance of the candidate teleconnections. In this
paper, we present a novel method for testing the statistical
significance of the class of spatio-temporal patterns called
teleconnections or dipoles. One of the most important chal-
lenges in addressing significance testing in a spatio-temporal
context is how to address the spatial and temporal depen-
dencies that show up as high autocorrelation. We present a
novel approach that uses the wild bootstrap to capture the
spatio-temporal dependencies, in the special use case of tele-
connections in climate data. Our approach to find the sta-
tistical significance takes into account the autocorrelation,
the seasonality and the trend in the time series over a period
of time. This framework is applicable to other problems in
spatio-temporal data mining to assess the significance of the
patterns.

1. INTRODUCTION
Pressure dipoles are important long distance climate phe-

nomena (teleconnection) characterized by anomalies1 of op-
posite polarity appearing at two di↵erent locations at the
same time. Dipoles are of great importance in understand-
ing climate variability and are known to impact precipitation
and temperature anomalies throughout the globe. Fig. 1
shows the pressure anomaly time series at Tahiti and Dar-

1Anomalies are computed from raw data by subtracting the
long term monthly means from it and are widely used in
climate data to take care of the seasonality in the data.
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Figure 1: Pressure anomaly time series at the two
ends of the Southern Oscillation.

win representing one of the most symbolic dipoles - the El
Niño Southern Oscillation which is known to drive precipita-
tion and temperature anomalies worldwide. From the figure,
we see that the anomaly time series of the two regions are
in the opposite direction representing an oscillation.

Historically, these dipoles have been discovered by direct
observation of some climate phenomenon on land and have
been defined using single point locations [1]. Later on, pat-
tern analysis techniques such as the EOF [2] have been used
to identify individual dipoles over a limited region, such as
Arctic Oscillation (AO). However, there are several limita-
tions associated with EOF and other types of eigenvector
analysis; namely, it only finds a few of the strongest signals
and the physical interpretation of such signals can be dif-
ficult due to the orthogonality of EOFs, whereas signals in
climate are not necessarily orthogonal to each other. Sys-
tematic approaches for dipole discovery have been proposed
in [3, 4, 5]. Kawale et al. [3, 4] present a graph based ap-
proach to find dipoles in the climate data and are able to
match the existing dipole indices used by climate scientists
with a very high precision and are able to provide region
based definitions for dipoles defined earlier using EOF anal-
ysis. An important utility of the dynamic dipoles defined
using this approach is that they have a much higher correla-
tion with temperature anomalies as compared to the static
indices used by the climate scientists [3, 4], for e.g., the ones
available at the Climate Prediction Centre (CPC) [6]. Fur-
ther, they have been proven important in understanding the
structure of the various General Circulation Models (GCMs)
which are used to understand global climate change [3]. It



Figure 2: Dipole edges with correlation < �0.2 in
the NCEP sea level pressure data taken from [3].

is imperative to have a significance testing to rule out spuri-
ously connected regions, correlated by random chance. This
can help in discovering a new dipole phenomenon, previously
not known to climate scientists. Given the importance of
the teleconnections in driving extreme weather events like
tropical cyclones, droughts, hurricanes, etc., a previously
unknown connection provides a critical missing link to the
climate scientists.

Systematic approaches for dipole discovery generate a large
number of candidate dipoles, i.e. two regions that are con-
nected by negative correlation in their anomalies, that might
possibly represent a physical phenomenon. Fig. 2 shows the
dipoles generated by the algorithm given in [3]. The edges
represents a connection between the two opposing ends of
the dipoles. The figure captures all the dipoles known to cli-
mate scientists, however, it surfaces a large number of edges
that do not correspond to any known dipole phenomenon.
Some of these might represent phenomenon unknown to cli-
mate scientists but it is likely that most of them are spurious
patterns. To di↵erentiate interesting dipoles (some of which
may be unknown) from spurious dipoles, a method is needed
to evaluate their statistical significance. But, there are no
approaches available to evaluate the statistical significance
of the extracted dipoles and assess their goodness.

1.1 Challenges in Significance Testing
Statistical significance testing determines whether a given

result is statistically significant or unlikely to occur by ran-
dom chance and thus implies whether a result is impor-
tant and whether a result will generalize to other contexts.
Historically, significance testing has been widely studied in
statistics and there are several classical analytical hypothesis
testing methods available. Analytical methods of hypothesis
testing such as the t-test generally involve computing a test
statistic from the observed data and computing a probabil-
ity value to test if the observed data was derived from a null

hypothesis. The null hypothesis is rejected in favor of the al-
ternate one if the probability value is below the significance

level. However, a main drawback of these approaches is that
they impose a distribution structure on the data. Techni-
cally, t-tests are valid only for i.i.d. normally distributed
data and are very sensitive to outliers.

An alternate method of significance testing widely used
in data mining is empirical testing using randomization to
determine the null model. Randomization tests proceed by

following the sequence of steps: (i) rearrange or shu✏e the
observed value in each sample, (ii) compute the statistics
for the randomized data, (iii) repeat it k times (e.g. 1000),
and (iv) compare the test statistic generated from the orig-
inal data and the random distribution to rule out patterns
generated by random chance. The intuition behind generat-
ing a large sample of the datasets is to create a null model
from the data. If the computed test statistics di↵er widely
from the measurements on random datasets then we can
reject the null hypothesis and declare the result to be signif-
icant. Randomization tests have been successfully used in
many contexts in data mining to find interesting patterns in
graphs, association rule mining, motif mining, etc [7]. Ran-
domization techniques have been widely studied in graphs
to explain the graph statistics [8]. Determining the statis-
tical significance of time series motifs has been discussed
in [9] using a Markov chain model to capture the dependen-
cies in a time series. Other approaches for time series motif
mining have been discussed in [10, 11].Other randomization
techniques include preserving the cluster structure in 0-1
dataset. Randomization of binary matrices swap randomiza-
tion when the row and column margins are to be maintained
is discussed in [12]. The authors use a Markov chain using
local swaps to respect the marginal distributions. In ecology,
significance testing has been used to study the analysis of
species nestedness patterns [13] and to study the di↵usion of
a spatial phenomenon [14] and spatial gradients [15]. Monte
Carlo tests to test the significance of spatial patterns has
been discussed in [16]. However, there are many challenges
in using randomization tests for spatio-temporal patterns,
some of which are listed below:

1.1.1 Data independence
One of the underlying assumption in randomization test-

ing is i.i.d. data. However, in the spatio-temporal context,
generally there is a high spatial and temporal autocorrela-
tion and homogeneity, thus violating the assumption of data
independence.

1.1.2 Heteroscedasticity
Heteroscedasticity refers to the problem of di↵erent vari-

ances in a sub-population and the tests of randomization are
sensitive to it. Heteroscedasticity is not uncommon in Earth
science data due to the diverse nature of the globe; not only
are the sub-population variances di↵erent but they also vary
over time [17].

1.1.3 Seasonality and trends
In a spatio-temporal context, there are other influencing

factors like seasonality, trends, etc. which greatly impact
the values in a time series. This can make the tests of ran-
domization either too liberal or too conservative (Type I
vs Type II errors). A possible strategy to get rid of trends
could be to de-trend the time series. However, de-trending of
non-stationary time series data itself has several issues and
may result in removing connections or adding spurious ones,
which might require a detailed investigation [18, 19]. Results
also depend upon the nature of trends, whether unit roots
are present or not, and the nature of possible co-integrating
relations, see Engle and Granger [18, 19] for further details.
Seasonality is generally handled in climate data by creating
an anomaly time series. However, even then there is annual



cycle still left in the anomaly time series of some locations
on the Earth [20].

1.1.4 Null model
We want the data generating process for drawing random

samples to be as close as possible to the true data gener-
ating process which generated the observed values. While
randomization tests are very often better than simple meth-
ods like the t-test, it is very hard to verify the assumption
that (and is generally not true that) the multiple datasets
created by randomization come from a null model represent-
ing the true data generating process.

1.2 Our Contribution
To the best of our knowledge, there are no existing ap-

proaches to systematically model the spatio-temporal data
and handle various aspects like auto-correlation, trends, etc.
In this paper, we provide a systematic approach to test the
significance of the spatio-temporal teleconnection patterns
that overcomes the challenges mentioned above. Our ap-
proach uses the general framework provided by the wild
bootstrap procedure [21, 22] which is traditionally applied
for heteroscedastic problems to present a technique that
takes into account the various aspects of climate data like
auto-correlation, trends, etc. One novel aspect of our ap-
proach is that we translate the space time problem to one
where the errors can be modeled as independent but het-
eroscedastic. We capture the spatial dependence of each
region of a dipole via a unified function and capture the
temporal dependencies through a first order Markovian dis-
tribution. We show the utility of our approach by using it
to test the significance of dipoles generated in the NCEP sea
level pressure dataset. While we mainly use our algorithm to
test the significance of teleconnection patterns, our approach
can be instructive to other pattern mining algorithms in the
spatio-temporal context to test the significance.

2. PROPOSED APPROACH
As we saw in the previous section, a significance testing

based on swapping random time series would not be ap-
propriate for climate data. Instead, it would be more de-
sirable to compute the significance amongst those random
series that preserve the same properties as the underlying
climate data time series. Our approach for randomization
is inspired from the wild bootstrap procedure [21, 22]. The
wild bootstrap is a technique where random weights are mul-
tiplied to the residuals from the data after fitting a statis-
tical model, then artificial datasets are created using these
randomly weighted residuals, and inference is based on re-
peating the statistical model fitting exercise on these artifi-
cial datasets. The wild bootstrap has been mathematically
proven to be consistent, and successfully applied a variety of
problems where the data may be heteroscedastic in nature,
and the parameter dimension may be large compared to the
sample size.

We present a novel approach that uses the wild bootstrap
and capture the spatio-temporal dependencies, in the special
use case of teleconnections in climate data. First, we develop
a small area or state-space type decomposition of the spatio-
temporal data to extract the underlying time series that
governs teleconnection patterns, against the background of
local noise variations. Our approach implicitly takes into
account the space dependence of the data as we require each

end of the dipole (consisting of many single point locations)
to share the same global component. We account for the
time dependencies by incorporating an auto-regressive term
assuming a first order Markovian dependency in our time
series decomposition. Once we extract out the properties
(or dominant signals), we test the significance by examining
the residual correlation at both the ends of the dipole and
thus it helps us in identifying that the negative correlation
between the two regions at the two ends is indeed coming
from an underlying phenomenon or is just an artifact of the
dominant properties. We assign a degree of confidence to our
conclusions using a test of randomization. Further details of
our approach are mentioned in the following subsections:

2.1 Notation
Let A and B represent the two ends of the dipole and let

nA and nB represent the number of points at the two ends.
Let Xit t = 1, . . . , T , i = 1, . . . , nA represent the time series
for T time steps at the nA points of region A. Similarly, let
Yit t = 1, . . . , T , i = 1, . . . , nB represent the time series for T
time steps at the nB points of region B.

2.2 Step 1: Time Series Decomposition
The first step in the significance testing of dipoles is a

temporal decomposition that captures the spatial as well as
the temporal bindings of the two ends of the dipoles. We
begin by noting two key properties of the dipole anomaly
time series.

1. Trend: Many locations on Earth experience a general
linear trend in their anomalies over time. For some lo-
cations, the trend increases and for some it decreases
over time and this pattern can vary with di↵erent mag-
nitude at di↵erent locations.

2. Seasonality: Typically, Earth science data has sea-
sonality in it. Apart from the annual seasonality which
is accounted for by constructing the anomaly time se-
ries, the data typically has sinusoidal patterns of var-
ious periodicities and of varying strengths across re-
gions. If we examine the periodicities of the anomaly
time series using the power spectrum, we see that quite
of few of them have a period of 12 months [20].

In order to model these two key characteristics of dipole
locations, we propose a temporal function f(t), defined as
follows:

f(t) = ↵+ �t+ � sin

✓
2⇡(t+ �)

12

◆
(1)

The function f(t) captures the trend through the �t com-
ponent and the seasonality through the � sin(·) component.
The ↵ component ensures that the constant e↵ect due to al-
titude, latitude and other unknown phenomena is also cap-
tured. f(·) only captures the temporal fluctuations at a
given location independent of any spatial or temporal bind-
ings.

Recall that a dipole consists of two regions, A and B, with
opposite climate phenomenon. All the locations in a given
region have a highly positive correlation in their anomalies
and they are driven by the same underlying phenomenon.
Let that underlying phenomenon for a specific end of dipole
(say A) be indicated by U , where size of U is T ⇥ 1. This
results in the following linear heteroscedastic decomposition:

8i2A Xi = U + ri (2)



where ri is the error term representing the local phenomenon
at a location i 2 A. Moreover, depending on how far a
location i lies from the dipole center, its anomaly time se-
ries would be influenced accordingly. Let w(i) indicate the
weight or influence of U on Xi. The goal in this case is to
reduce the residue of a given region.

SEr = Tr

h
(X � U1)T W (X � U1)

i
(3)

where X is a T⇥N matrix with column i indicating anomaly
time series of location i 2 A, 1 is a matrix of size 1⇥N with
all elements = 1, W is a diagonal matrix with Wii = w(i).

Equation 2 allows us to capture the spatial bindings of
a dipole region and provides a unified anomaly time series
U . It does not capture the temporal correlations of U . In
order to do this, we consider the following auto-regressive
formulation:

Ut = f(t) + �[Ut�1 � f(t� 1)] + ✏t (4)

Similar to equation 3, we aim to reduce the residue ✏, such
that the decomposition captures all the spatial and temporal
properties of the dipole. We define the squared error of ✏ as

SE✏ =
X

t

(Vt � �Vt�1)
2 (5)

where Vt = Ut � f(t). The mathematical properties of the
dipole detection algorithm is primarily governed by the bi-
variate time series

Vt =

✓
VAt

VBt

◆
, t = 1, 2, . . . T.

This is a non-stationary time series, since the innovations
for this time series are given by the independent bivariate
random variables

✏t =

✓
✏At

✏Bt

◆
ind⇠ N2

✓✓
0
0

◆
,

✓
�

2
At ⇢AB�At�Bt

⇢AB�At�Bt �

2
Bt

◆◆
.

A variation of the Kolmogorov consistency theorem is used
to establish the existence of the second order stochastic pro-
cess {Vt}. The properties of the dipole are dictated by the
innovation correlation coe�cient ⇢AB , which takes a high
negative value for true dipoles.

We model Vt = �Vt�1 + ✏t where we assume � is a
diagonal matrix with diagonal entries �A and �B . The
deterministic trend functions {fA(·)} and {fB(·)} and the
local noise perturbation terms {rAi(·), i = 1, . . . , nA} and
{rBi(·), i = 1, . . . , nB} do not contribute towards the proper-
ties of a dipole, but are important nuisance factors in study-
ing dipoles. Needless to say, we could adopt a more compli-
cated model for the time series properties of Vt, the deter-
ministic trends or the local noise, and include co-integration
and other complex features. However, in the context of the
present application, such additional complexity seems un-
necessary.

Our aim is to reduce the squared error SEr and SE✏ and
we do it by minimizing them in turn. The residue term
✏t represents error that is independent and heteroscedastic.
Thus we are able to e↵ectively translate the space time prob-
lem into one where we are able to model the errors as inde-
pendent but heteroscedastic. We use a simplistic approach
to obtain an approximate solution that minimizes Equation
3 and 5. The idea is to minimize SEr independent of Ut’s
auto-regressive property and obtain estimates of ↵,�, � for a

fixed choice of �. After that, using Ut’s auto-regressive prop-
erties estimate � and compute ✏. The attractive property of
this approach is that it leads to a closed form solution for
the parameters. We get,

X

t

gk(t) · f(t) =
P

i,t gk(t) · w(i) ·Xit

Tr(W )
, k = 1, 2, 3 (6)

where g1(t) = 1, g2(t) = t, g3(t) = sin( 2⇡(t+�)
12 ). The

three equations can be easily solved for a fixed � using linear
regression. Additionally, we get a closed form for � as,

� =

PT
t=2 Vt · Vt�1PT

t=2 V
2
t�1

(7)

In order to estimate the optimal �, we begin with an estimate
by varying it from 1, . . . , 12 and pick the one that minimizes
E[✏t].

2.3 Step 2: Residual correlation
After finding the residue at each end of the dipole, our

next goal is to examine the residual correlation at the two
ends of the dipole to check if the regions involved form a
true dipole. The residue at the two ends represents the time
series signal after extracting trend and the seasonality. We
compute the pairwise correlation ⇢ij between all the nodes
in ✏it and ✏

0
jt. We can use the raw correlation values to

test the significance of the dipoles. However, we use a more
stable transformation provided by Fisher to transform the
correlation into Zij as described in the following subsection.

Fisher transformation
The Fisher transformation [23] is generally used in statis-
tics to test the hypothesis about the correlation coe�cient
⇢ between two variables. The transformation changes the
probability density function (pdf) of any waveform so that
the transform output has an approximately Gaussian pdf.
The transformation is defined as follows:

Zij =
1
2
log

1 + ⇢ij

1� ⇢ij
(8)

The Fisher transformation is a variance stabilizing transfor-
mation and converges to a normal distribution much faster.

2.4 Step 3: Assessing dipole statistical signifi-
cance

In testing the significance of dipoles, the null hypothesis
means that the dipole pattern is spurious or uninteresting.
Our task is to generate the p-value to specify a confidence
measure on whether the dipole is significant. Using our time
series decomposition, we devise the following method of ran-
domization inspired from the wild bootstrap algorithm [24]
in which re-samples are generated by multiplying random
noise to the residuals in order to preserve heteroscedasticity.
The details of the steps are mentioned as follows:

1. Step 1: Compute the time series decomposition and
the parameters, ↵, �, � and �. Compute the residue
✏A and ✏B at the two ends and the Fisher transformed
correlation ZAB .

2. Step 2: Generate random perturbations in the residual
data such that the variance of the residual data is still



�

2
✏ . This can be done by multiplying i.i.d. random

noise N (0, 1) to the original residue ✏A and ✏B .

E[( ✏� E[ ✏])2] = E[( ✏)2]� (E[ ]E[✏])2

= E[( ✏)2] = �

2
✏

here we have used E[ ] = 0, E[ 2] = 1, E[✏] = 0.

3. Step 3: Recompute X

0
it and Y

0
it using ↵, �, � and �.

4. Step 4: Recompute the decomposition to generate ↵
0
,

�

0
, �

0
and �

0
. Compute the residue ✏

0
A and ✏

0
B at the

two ends and the Fisher transformed correlation Z

0
AB .

5. Step 5: Repeat steps 2 to 5 N = 10, 000 times and
generate the p-value as follows:

pAB =
1
N

NX

i=1

I(ZAB�Z
0
AB)

(9)

Let ZAB = 1
2 log

1+⇢AB
1�⇢AB

and similarly define ẐAB , and

Tn = T

1/2(ẐAB � ZAB) where T is the observed length
of the time-series. From the wild-bootstrap based genera-
tion, we obtain similar estimates from each resample, and
let Ẑ⇤

AB be the equivalent of ẐAB from the resample. Define
T

⇤
n = T

1/2(Ẑ⇤
AB� ẐAB). We have the following result as the

theoretical counterpart of our algorithm:

Theorem 2.1. In the framework presented above, the fol-

lowing hold:

1. The distribution of the statistic Tn converges weakly to

the standard Normal distribution N(0, 1).

2. The distribution of the statistic T

⇤
n , conditionally on

the observed data from regions A and B, converges

weakly to the standard Normal distribution N(0, 1) al-

most surely.

The second part of the above theorem states that for all
possible data sets arising from regions A and B, the conver-
gence of the wild bootstrap-based statistic T

⇤
n to the same

distribution as that of the original statistic Tn is guaranteed
with probability one. The proof of the above theorem is
omitted here due to the lack of space.

2.5 Step 4: Multiple Hypotheses
Multiple comparisons is an important issue in dipole sig-

nificance testing as there are a set of statistical inferences
computed simultaneously. Multiplicity leads to false posi-
tives or the type I errors, i.e., the errors committed by in-
correctly rejecting the null hypothesis. In order to control
the false discovery rate (FDR), we use the standard proce-
dure by Benjamini-Hochberg-Yekutieli [25] which controls
the false discovery when the m hypothesis tests are depen-
dent, which is true in our case. The method refines the
threshold of p-values to find the largest k such that:

P(k) 
k

m · c(m)
⇤ ↵ (10)

We compute c(m) by examining the correlation between the
10000 random values generated for each end of the dipole.
As they are positively correlated, we set c(m) to 1. We
discard all the dipoles having a p-value less that P(k).

3. EXPERIMENTS AND RESULTS

3.1 Dataset
We use the data from the NCEP/NCAR Reanalysis project

provided by the NOAA/ESRL [26]. The goal of the NCEP
project is to produce a comprehensive atmospheric analy-
sis using historical data (1948 onwards) from observations
as well as other analysis like projection. The reanalysis
datasets are created by assimilating remote and in situ sen-
sor measurements using a numerical climate model to achieve
physical consistency and interpolation to global coverage;
they are considered the best available proxy for global ob-
servations. We use the monthly resolution of data and it
has a grid resolution of 2.5� longitude x 2.5� latitude on
the globe. We use the sea level pressure (SLP) data to find
the dipoles because most of the important climate indices
are based upon pressure variability. For the analyses and
results presented here, we use the 50 year of data starting
from 1951 to 2000 years.

3.2 Results
We ran the dipole algorithm using the NCEP dataset and

the algorithm mentioned in [3] and obtained all the dipoles
at a correlation threshold of �0.25. We ran our approach
on significance testing for this data to generate the resid-
ual correlation and obtained the pvalues. Fig. 3 shows the
scatter plot of original correlation versus the residual cor-
relation amongst the dipoles found in the dataset. From
the figure, we see that a high negative original correlation
does not necessarily transform to a high negative residual
correlation. Fig. 4(a) shows an example of a dipole having
an original correlation of �0.32 but a residual correlation of
0.1359 (pvalue = 1). If we examine the time series at the
two centres of the dipole (see Fig. 4(b), we see that there is
a linear trend in the opposite direction which the model is
able to e↵ectively capture. Fig. 5 shows an example dipole
that did not have significant trends but was discarded due to
the seasonality component �. The original correlation of the
dipole is �0.24, whereas the residual correlation is 0.0219.
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Figure 3: Scatter plot showing original vs residual
correlation.

On the other hand, Fig. 6 shows an example of a dipole
that had an original correlation of �0.25 but has a higher
negative residual correlation of �0.39 (pvalue = 0). This
dipole represents one of the known connections AAO and
has a correlation of 0.8 with the AAO index defined by the
CPC [6]. We see that the approach e↵ectively eliminates



(a) Dipole having a
correlation of �0.32
but a residual correla-
tion 0.1359
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(b) Time series at the two centres

Figure 4: Dipole rejected due to linear trend.

(a) Dipole having an
original correlation of
�0.24 but a residual cor-
relation of 0.0219
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(b) Time series at the two centres

Figure 5: Dipoles discarded due to seasonality fil-
tering.

about 16 dipoles with a pvalue � 0.01. Further, it declares
all the known connections as significant. However, we see
that there are still a few dipoles (10) left which require post-
processing which is described below.

Figure 6: Dipole having an original correlation �0.25
but a residual correlation �0.39 corresponds to the
known dipole AAO.

3.3 Post Processing Using Domain Knowledge
Our model for deterministic trend accommodates a linear

function and a sinusoidal component at each end-point of a
potential dipole. A careful analysis of some of these time
series show that non-linear trends may occasionally exist.
Fig. 7(a) shows an example of a dipole that had an orig-
inal correlation of �0.39 but has high non-linear trends.
Fig. 7(b) shows the time series at the two centres of the
dipole. From the figure, we see that the trends in the two
dipole ends are not linear, thus making the post processing

(a) Dipole having a cor-
relation of �0.39
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(b) Time series at the two centres
of the dipole

Figure 7: Dipole showing non-linear trend corre-
sponding to abrupt change due to the Sahel drought

necessary. One end of the dipole corresponds to the Sa-
hel region in Africa which underwent an abrupt change a
long period of drought around 1969 [28] which is also re-
flected in the time series as shown in the Fig. 7(b). Based
on domain knowledge and prior experience, we know that
this dipole does not make physical sense. De-trending the
data before applying the dipole detection algorithm might
appear to be a solution. However, as we discussed earlier,
detrending of climate data has many challenges and can lead
to adding spurious connections especially when the trends
are non-linear. Using domain knowledge, we want to fur-
ther eliminate these trend dipoles in order to identify the
real dipole structure.

Our parametric form comes to rescue in this case as this
allows us to put bound on the value � can take. We use a
simple method to examine the � values at the two ends. If
the di↵erence in � values at the two ends of the dipole is
greater than a threshold, we discard them.

Discard dipoles if |�A � �B | � �̂ (11)

In order to compute �̂, we considered the 6 well known
dipoles and computed the absolute di↵erence in their beta
values and selected our threshold of �̂ based upon that.
Please note that even without this processing, our results
show that all the well-known dipoles are still declared sig-
nificant. However, a small number of trended dipoles mainly
starting from the Sahel region in Africa were also declared
significant. This intuitively makes sense because our para-
metric form removes trend as well as cyclic patterns from the
data but not the small local oscillations (which are captured
by ✏). There is a possibility that one end of the spurious
dipole is influenced by one end of a true dipole. In this case,
those local oscillations as captured by epsilon could be of
opposite polarity and hence significant. Hence �̂ seems like
a simple way to eliminate such cases.

3.4 Comprehensive Evaluation
Table 1 shows the summary of the number of dipoles de-

clared as significant using a significance level ↵ = 0.01 and
the post-processing that we described above. From the ta-
ble, we see that 23 dipoles are declared as significant in
the dataset having a correlation < �0.25. Figures 8 shows
the dipoles declared significant in the NCEP dataset at a
threshold of �0.25. From a quick visual inspection of the
figures, we see that the well-known dipoles like North At-
lantic Oscillation (NAO), Southern Oscillation (SO), West-
ern Pacific (WP), Pacific North America pattern (PNA) and



Antarctic Oscillation (AAO) are all identified as significant.
Fig 9 shows the dipoles declared as significant at a lower
threshold of �0.2. From the figure, we see that apart from
the well known dipoles, other weaker connections start ap-
pearing as significant, for example the Scandinavia pattern
starting around Russia and ending at the Atlantic.

NCEP -0.25 NCEP -0.2
Total 49 85

p < 0.01 p � 0.01 p < 0.01 p � 0.01
No trends 23 4 31 13
Trends 10 12 23 18

Table 1: Number of dipoles declared as significant
using our approach in the NCEP data.

Figure 8: Dipoles declared significant in the NCEP
dataset at a threshold of -0.25. Red denotes signifi-
cant dipoles and green denotes insignificant dipoles.

Figure 9: Dipoles declared significant in the NCEP
dataset at a threshold of -0.2. Red denotes signifi-
cant dipoles and green denotes insignificant dipoles.

Our next goal is to check whether our algorithm has a
bias to declare dipoles having a higher negative correlation
as significant. Fig. 10 shows the histogram of correlation
values of dipoles declared as significant and insignificant in
the NCEP data. The histogram shows that at times the
algorithm even declares dipoles with higher negative corre-
lation as insignificant. However, using our approach, we are

Figure 10: Histogram of correlation strengths for
significant and insignificant dipoles.

still able to remove about 1/2 of the dipoles from the NCEP
data having a correlation < �0.25 as insignificant. Also the
histogram of correlations of significant and insignificant cor-
relations shows that the algorithm has no particular bias.
Next, we examine closely the two reasons in our algorithm
to label the dipoles as insignificant.
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Figure 11: Beta values at the two ends of the dipoles
for the NCEP dataset.

Recall, that the � values capture the linear trend present
in the data. Spurious dipoles can be formed if the two re-
gions involved in the dipole have significant trends in the
opposite direction and the negative correlation between the
two regions is accounted for by the negative trends and not a
periodic oscillation. Fig. 11 shows a plot of � values for the
NCEP dataset. From the figure, we see that there are quite
a few dipoles with strikingly opposite trends in the NCEP
data and most of them going to the southern hemisphere.
This also conforms with the existing knowledge about the
NCEP data from the climate science [29] about the presence
of significant spurious trends in the southern hemisphere.

Table 1 shows that half of the rejected dipoles have sig-
nificant trends in the opposite direction. Apart from the
dipoles with trends, the other dipoles which are thrown out
using our algorithm are the ones with very little negative
residual correlation left in them (see Table 1). Seasonality
in the dipoles could be one possible reason. Fig. 12 shows
the gamma values of the dipoles. From the figure, we see
that quite a few of them have significant value of gamma.

3.4.1 pvalue for the known dipoles
A good measure of evaluation is to examine the pvalues

generated for the 6 of the most well known dipoles - SOI,
NAO, AO, AAO, WP, PNA. The existence and the impact
of these dipoles has been well established in literature from
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Figure 12: Gamma values at the two ends of the
dipoles for the NCEP dataset.

NCEP/NCAR
pvalue Residue Corr Fisher transform

SOI 1.2897e-13 -0.1814 -10.3147
NAO 0 -0.4137 -54.2486
AO 0 -0.3092 -19.913
AAO 0 -0.39 –32.4990
WP 0 -0.1755 -9.2258
PNA 0 -0.0968 -8.4194

Table 2: pvalues for the known dipoles using the ran-
dom approximation along with residual correlation.

climate science. At first, we pick up a data driven dipole
which represents the static index the closest in correlation.
After that, we examine the pvalues generated for the data
driven dipole closely matching the static index. Table 2
shows the pvalues generated for the known dipoles using
our approach. From the table, we see that all of the 6 well
known dipoles are declared significant using our algorithm
and have a pvalue of 0 up to the order of machine precision.
Further the residual correlation at the two ends of the dipole
generated by removing f(t) from the time series at the two
ends is also very highly negative for the known dipoles. This
provides empirical evidence that our approach to estimate
the statistical significance works well in practice.

3.4.2 Correlation with Static indices
In order to further assess the quality of the extracted

dipoles, we did another experiment to understand the na-
ture of the dipoles. Most of the candidate dipoles should
be a representative of some known phenomenon. We con-
sidered 6 teleconnection patterns identified by the Climate
Prediction Centre website [6]. From the NCEP data, we
considered two sets of dipoles significant and insignificant.
There were about 25 dipoles in each subset. We computed
the correlation of each of these dipoles with the 6 known
climate indices. Fig. 13 shows the maximum correlation of
the two groups of dipoles with the known indices. From
the figure, we see that all the surrogates of the known phe-
nomenon are captured very well in the significant group as
compared to the insignificant one. PNA is not captured
with a very high correlation in both the groups as the ac-
tual phenomenon consists of three epicenters and is not a
dipole. AAO has high correlation with significant as well

Figure 13: Maximum correlation with known indices
in the two sets of dipoles.

as insignificant group. This might be due to trends in the
insignificant group.

3.4.3 A new dipole ?

Figure 14: Dipole near Australia shows up as statis-
tically significant.

A larger implication of our work on significance testing
lies in identifying potentially new teleconnection patterns
not known to climate scientists so far. A careful evaluation
of all the dipoles from Fig. 8 shows that most of them have
a very high correlation with the known climate indices and
thus are some variant of the known phenomenon. However,
there are some teleconnection patterns that are declared as
significant and that do not have a high correlation with any
known phenomenon. One such striking dipole is a dipole
near Australia as shown in the Fig. 14. It appears as signif-
icant in the NCEP data and its correlation with the known
indices is also very low (see Fig. 15). Further, it is not sup-
ported by the existing literature on teleconnections. This
might represent a new dipole phenomenon not known to cli-
mate scientists so far. Our preliminary investigations show
that this dipole also has a di↵erent impact on land tempera-
ture as compared to other known dipoles. A comprehensive
evaluation of the physical significance of the phenomenon is
a part of our future work.

4. DISCUSSION AND CONCLUSION
Significance testing in spatio-temporal data presents many

challenges due to the inherent autocorrelation dependencies
in time and space. However, significance testing of spatio-
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Figure 15: Correlation of the dipole near Australia
with known indices

temporal patterns has received little attention. In this pa-
per, we present a systematic approach to detect the signif-
icance of spatio-temporal teleconnection patterns. We ran
our algorithm on the NCEP sea level pressure data. From
our results, we see that our algorithm is able to capture the
known dipoles. We show the utility of using a simple model
to extract out the characteristics of climate data time series.
A larger implication of our work is that the algorithm can
be instructive to other researchers in the spatio-temporal
domain to test the significance of patterns. A part of the
future work involves handling non-linear trends. Another
limitation of the model is that the marginal analysis of the
periodic component distort co-periodicity properties. We
propose to address this in our future research work. In par-
ticular, we propose to simultaneously model the determin-
istic trends and periodic components at the two ends of a
dipole, along with the stochastic components of the bivari-
ate time series. Two-dimensional wavelets would be used
for this purpose, since evidence shows some erratic patterns
and discontinuities. Also, as part of our future work, we
would like to explore if some potential dipoles are governed
by co-integrating relations. We also propose to explore the
choice of resampling weights for which the wild bootstrap
inference would be second order accurate. Another future
direction is to integrate the significance testing into the al-
gorithm for dipole detection and thus not allow spuriously
connected regions to be declared as candidate dipoles.
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