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Abstract

Time series data are common in a variety of fields ranging

from economics to medicine and manufacturing. As a result,

time series analysis and modeling has become an active

research area in statistics and data mining. In this paper,

we focus on a type of change we call contextual time series

change (CTC) and propose a novel two-stage algorithm

to address it. In contrast to traditional change detection

methods, which consider each time series separately, CTC

is defined as a change relative to the behavior of a group

of related time series. As a result, our proposed method is

able to identify novel types of changes not found by other

algorithms. We demonstrate the unique capabilities of our

approach with several case studies on real-world datasets

from the financial and Earth science domains.

1 Introduction

Time series data is ubiquitous in a wide range of
applications from financial markets to manufacturing,
from health care to the Earth sciences, and many
others. As a result, time series analysis and modeling
has become an active area of research in statistics
and data mining [1, 11, 14]. Of particular interest
within this realm are the problems of change detection
[3, 6, 8, 9]. In this paper, we focus on a type of
change we call contextual time series change (CTC)
and present a novel approach for addressing the CTC
detection problem. Below we give some background on
change detection along with an intuitive description of
a contextual change using a simple illustrative example;
a formal definition of the problem follows in Section 2.

Traditional time series change detection is defined
with respect to values in some portion of the same
time series. By contrast, contextual change refers to
a deviation in behavior of an object (the target time
series) with respect to its context. The context consists
of a collection of time series that exhibit similar behavior
to the target time series for some period of time.

Simply put then, a contextual change can be de-
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scribed as a target time series behaving similarly to the
related series for some period of time but then diverging
from them. Fig. 1 and Fig. 2 illustrate several examples
of contextually changed and unchanged time series. In
both of the figures, the black line indicates the target
time series and gray lines show the related time series.
Fig. 1 shows three types of contextually changed time
series. In Type 1, the target series changes abruptly
around time step t = 100 while the context remains
relatively stable; in Type 2, the context exhibits a col-
lective change whereas the target series remains stable;
and in Type 3, although both the target time series and
its context keep changing during the whole period, after
t = 100, their behaviors are no longer similar – that is,
they begin to diverge. The last two types of changes
are uniquely addressed by CTC detection and cannot be
found by traditional time series change detection algo-
rithms. For comparison, Fig. 2 shows two types of con-
textually unchanged time series. In the top panel, both
the target time series and its context are stable while in
the bottom panel, both of them change similarly during
the whole period. Since the target time series does not
diverge from its context in ether of these scenarios, they
are considered to be contextually unchanged.

CTC detection is useful in many real-world settings.
For example, consider a collection of sensors that mea-
sure the temperature in a factory. It is very likely that
the sensors exhibit a diurnal pattern, with temperatures
increasing during the morning hours and cooling in the
evenings. Thus, a change in the sensor readings does
not necessarily constitute an event. However, if a single
sensor does not change similarly to the others, it may
indicate a sensor failure or an unusual condition in the
sensor environment. Similar situations arise in a wide
range of application settings.

The key contributions of this paper can be sum-
marized as follows:

1. We provide a formal definition of the problem we
call contextual time series change (CTC) detec-
tion, which is distinct from traditional time series
change detection and is not properly addressed by
existing approaches.

2. We propose a new similarity function called kth
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Figure 1: Illustration of di↵erent types of contextual
changes in time series. In general, the target time series
(black) behaves di↵erently from the context after t = 100 in
all the scenarios. Type 2 and Type 3 are uniquely addressed
by CTC change detection algorithms.

order statistic distance. We also provide a
method to estimate the best k assuming that the
probability of a time step is an outlier can be
estimated from domain knowledge.

3. We derive a new metric called time series area

depth to measure the deviation of the target series
from the context group members. Time series area
depth–which is anti-correlated to the probability
that the target object belongs to a group–is a good
indicator of contextual change.

4. We perform qualitative and quantitative evalua-

tion of the proposed method with datasets from
two di↵erent real-world domains.

The remainder of this paper is organized as follows.
In Section 2, we formally define the CTC detection prob-
lem. Section 3 presents the related work. Section 4
describes the technical approach, followed by an exper-
imental evaluation in Section 5. Section 6 closes with
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Figure 2: Illustration of contextually unchanged time
series. In both of the scenarios, the target time series
(black) behaves similarly to their context (grey) during the
entire period. Note that the target time series in the lower
panel may be considered as changed by traditional change
detection schemes.

concluding remarks and directions for future work. See
[7] for an extended version of this paper that contains
additional details not covered here due to space limita-
tion.

2 Problem Formulation & Definitions

In this section we formally define the problem of con-
textual time series change (CTC) detection, which can
be used on datasets with the following properties:

1. The input data is real-valued, i.e., we do not
consider binary or symbolic data.

2. All objects are observed at the same time steps.
The time steps do not need to be regularly spaced.

3. Although the data volume may be large, we assume
that new data is arriving at a rate such that it
can be stored o↵-line for subsequent processing,
i.e., the one-pass streaming data setting is not
considered in the current problem formulation. In
particular, it is explicitly assumed that all objects
and observations seen until the current time step
are readily accessible.

We define the following notation: O = {o1, o2, · · · }
is a target time series; X = {x1, x2, · · · } is any time se-
ries in the dataset except O; T = {t

i1 , ti2 , · · · } indicates
a time interval; and O

T

and X
T

are subsequences of O
and X during time period T , respectively.

Generally speaking, an object changes contextually
if its behavior changes in a di↵erent way compared with
its context. The behavior here is characterized by a
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(univariate or multivariate) time series, which records
the evolution of some property of the object over time.
The context is defined by other “similar” time series
in CTC detection. We consider both time series O and
group G as stochastic, and T

c

and T
s

as parameters.
We call G the dynamic peer group of O, T

c

the context

construction period, and T
s

the scoring period. In
definition 1 below we make a statement about the joint
measure induced by O and G under di↵erent parametric
conditions. This is essentially a way of defining the
dynamic grouping, where in the context construction
period O stays in G almost surely, but may not stay
within G in the scoring period. Formally,

Definition 1. (Contextual Change) A time series O
changes contextually at time t if and only if the following

two conditions are met.

1. There exists a group of time series (G) and a time

interval T
c

= {t�k1, t�k1+1, . . . , t�1} for which

p(O
Tc 2 G

Tc) = 1

2. In the time interval T
s

= {t+ 1, t+ 2, · · · , t+ k2}

p(O
Ts 2 G

Ts) < ✏

where,p(O
Tc 2 G

Tc) and p(O
Ts 2 G

Ts) are the probabil-

ity of O belonging to G in T
c

and T
s

, respectively. ✏ is

a user-defined threshold.

To simplify the problem, we define G in such a way
that p(O 2 G)

Tc ⇡ 1. Since for kNN-based methods it
is hard to control the quality of the group members, a
threshold-based definition is used.

Definition 2. (Dynamic Peer Group) The group of

time series {X1, · · · , Xm} constitutes a dynamic peer

group G for a time series O in a time interval T
c

if and

only if for all j 2 (1,m)

dist(Xj

Tc
, O

Tc) < ✏
g

dist(Xj

Tc
, O

Tc) is an arbitrary distance metric that mea-

sures the di↵erence between Xj

Tc
and O

Tc . ✏
g

is a user-

defined threshold.

3 Related Work

The concept of analyzing the behavior of a target time
series in the context of a group of related series has been
explored in prior researches [5, 10, 16], particularly for
the problems of fraud detection and temporal outlier
detection.

Peer Group Analysis (PGA) is an unsupervised
fraud detection method proposed by Bolton and Hand

[5]. The basic idea behind PGA is to check whether or
not a time step in a time series departs from an expected
pattern. The expected pattern is defined by values of
the peer group time series at that time step. Peer group
of a time series is defined as the k nearest neighbors of
the time series using the first n time steps (n � 1).
Since the goal of PGA is primarily fraud detection,
these methods focus on scoring a single time step in
the detection period1 [5, 16]. There are two major
di↵erences between our approach and PGA. First, in
PGA the peer group of a time series is unchangeable
throughout the analysis. Whereas in our scheme, peer
group is constructed dynamically at each time step,
which allows our scheme to handle cases where the
peer group of a time series changes with time. Second,
because PGA methods focus on scoring a single time
step in the detection period, they are not as e↵ective
for detecting changes that are more reliably observed
over multiple consecutive time steps, especially in noisy
data.

Temporal Outlier Detection (TOD) [10] also focuses
on detecting outliers within the context of other time
series in the dataset. Instead of constructing a peer
group for each time series (as done in our approaches),
TOD maintains a temporal neighborhood vector that
records historical similarities of the target time series to
all other time series in the dataset. The outlier score of
the target time series at time step t is then given by the
L1 distance between the temporal neighborhood vector
at time t and time t � 1. Given the di↵erence in the
way that the target time series is compared with other
time series, TOD and our method are meant for finding
entirely di↵erent types of patterns. For example, if two
sets of time series have similar behavior over time within
each group, but their behavior as a group starts to di↵er
at a specific time, TOD may flag all these time series as
outliers, whereas, our scheme will consider all of these
time series as unchanged [7].

4 The proposed approach

In this section, we present the details of our proposed
approach for contextual time series change (CTC) de-
tection. The time series to be examined is called the
target time series. The proposed method is applied ex-
haustively in every time step of every time series in the
dataset. A change score matrix is reported as the final
output. The elements in the matrix indicate how much
a specific time series has changed contextually in a given

1In some schemes [5], original time series is transformed such

that the value at each new time step is a function of several
preceding time steps. Then, each time step of this transformed
time series is scored individually, even though the score can be a
function of multiple time steps of the original time series.
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time step. A time series can be labeled as changed if
its score is larger than a threshold or its rank is smaller
than a threshold.

The proposed approach consists of two steps: con-
text construction and scoring. Context construction is
used to discover the dynamic peer group (G) for the
target time series (O) during the context construction
period (T

c

), ensuring that p(O
Tc 2 G

Tc) ⇡ 1. In partic-
ular, we build G for O in T

c

based on a range query
method which naturally follows the definition of dy-
namic peer group (see Definition 2). We propose a
function called kth order statistic distance (Section 4.1),
which will be used in the range query method. The time
series for which G is constructed successfully (satisfying
Condition 1 in Definition 1) are candidates for the sec-
ond step.

The scoring mechanism provides a probabilistic
estimate of the extent to which the target time series
follows the behavior of its contextual neighbors in the
scoring period (T

s

). A non-parametric scoring function
called time series area depth is used to measure the
deviation of O from G in T

s

(Section 4.2). This scoring
method does not assume any particular distribution of
the datasets and can be used in many di↵erent domains.

The proposed method assumes that only a small
number of time series in the dynamic peer group changes
similarly as the target time series (O). For situations
where this assumption cannot be met, we provide a
heuristic algorithm (Multimode Remover) to remove the
contextual neighbors that have similar behavior as O
(Section 4.3).

4.1 Context Construction The purpose of context
construction is to discover a dynamic peer group G
for a target time series O which can satisfy Definition
2. Therefore, instead of attempting to obtain all the
contextual neighbors of O, we aim to find enough time
series to adequately describe the context and ensure
that p(O

Tc 2 G
Tc) ⇡ 1. Although KNN-based methods

easily find members in G, it is di�cult to control the
quality of the dynamic peer group and thus to meet the
condition that p(O

Tc 2 G
Tc) ⇡ 1. In this paper, we

choose a range query method, which is an intuitive way
to find G. The distance metric is the key component.
We use Minkowski distances in this paper to ensure all
members in G are similar to O in Euclidean space.

The existence of outliers is a major challenge when
using Minkowski distances. For example, L1 (used
by Li et al. [10]) measures the largest distance of all
the time steps during T and is thus highly sensitive to
outliers. Therefore, many members will incorrectly be
removed from G. Although the impact of outliers is not
as large as L1, outliers a↵ect the L1 and L2 distance

as well.
Most standard smoothing methods, such as moving

average and Savitzky-Golay filter, cannot address this
problem. Instead of ignoring the incorrect information,
smoothing methods average the value of outliers into
several time steps. When the distance is calculated, a
fraction of the incorrect information is still used. In
order to overcome this problem, we propose a distance
function as described below.

Definition 3. (kth order statistic distance) The kth

order statistic distance between two subsequences O
T

and X
T

(O
k

(O
T

, X
T

)) can be calculated by the following

steps.

1. Compute point-wise distance between O
T

and X
T

for each of time steps.

2. Rank all the time steps of O
T

and X
T

in the de-

creasing order according to the point-wise distance.

3. Remove the first k � 1 time steps in O
T

and X
T

.

4. O
k

(O
T

, X
T

) is given by the predefined Minkowski

distance using the remaining time steps.

The only parameter k a↵ects the performance of the
proposed context construction method in two di↵erent
ways: Many time series are incorrectly included in G
when k is too large, while many real members in G are
excluded when k is too small. In other words, when k
is smaller, the false positive rate of G (FPR

G

) is lower
but the true positive rate of G (TPR

G

) is larger. Thus,
the performance of the proposed method is dependent
on the choice of k.

In this paper, we provide a method to estimate the
best k assuming that the probability of a time step is an
outlier can be estimated (in the extended version [7], we
propose a supervised method based on cluster sampling
theory to estimate this probability). Specifically, we
propose a method to choose k which can minimize the
FPR

G

given the condition that TPR
G

should be larger
than a user-defined threshold.

Assume that the observed time series X and O can
be modeled as

x
i

= x̂
i

+ b
x

· ol
x

+ er

o
i

= ô
i

+ b
o

· ol
o

+ er

where x̂
i

and ô
i

are the true values of x
i

and o
i

. er is
weak white noise. ol

x

and ol
o

are the values of outliers.
b
x

and b
o

are random variables indicating whether or
not a time step is an outlier (1 indicates an outlier, 0
otherwise); they follow Bernoulli(p

x

) and Bernoulli(p
o

),
respectively.

506 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

9/
17

 to
 7

3.
24

2.
12

7.
91

. R
ed

ist
rib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls/
oj

sa
.p

hp



Lemma 1. Estimation of TPR is given by

k�1X

n=1

✓
N
n

◆
qN�n(1� q)n

where N is the number of time steps in T and q =
(1� p

x

)(1� p
o

). Proof is available in [7].

Therefore, k is given by the smallest k which
satisfies

k�1X

n=1

✓
N
n

◆
qN�n(1� q)n > th

p

4.2 Scoring Mechanism Change scoring is the sec-
ond major step in our CTC detection framework. In this
section, we introduce a new robust scoring mechanism,
Time Series Area Depth (TAD), to measure the devia-
tion of a target object (O) from its dynamic peer group
(G). Fundamentally, TAD is a scoring mechanism de-
rived from statistical depth [17]. Next we briefly intro-
duce the concept of statistical depth and then describe
TAD in detail.

Statistical depth measures the position of a given
point relative to a data cloud, and evaluates how close
the given point is to the center of the data cloud.
We prefer a statistical depth function in the pro-
posed method for three reasons. First, they are non-
parametric methods. Thus, we do not need to change
the method for applications in di↵erent domains. Sec-
ond, they can be used in multivariate analysis. Al-
though in the work presented in this paper we are
focused on univariate analysis, the ability to extend
the approach to multivariate analysis is under consid-
eration. Third, the property of a�ne invariance en-
sures robustness of our methodology with respect to the
scale, rotation and location parameters of the underly-
ing probability distribution. In particular, it helps ad-
dress the issue of unequal variance of the observations
at di↵erent time steps.

Definition 4. (Time Series Area Depth) The Time

Series Area Depth of a time series O given its dynamic

peer group G in T
s

= {t
i1 , · · · , tiN } is defined as

TAD(T
s

) =
iNX

i=i1

min(|o
i

� ct
i

|, |o
i

� cb
i

|)p
|ct

i

� cb
i

|

where ct
i

(cb
i

) is the value of the top (bottom) mth

percentile contour of G at t
i

.

m is the parameter to be chosen when using TAD.
Here, we choose m = 68 in general because it corre-
sponds to one standard deviation if the dataset follows
normal distribution.

Lemma 2. When G is given, TAD(T
s

) is inversely re-

lated to p(O
Ts 2 G

Ts) under the following assumptions:

1. If a time series O belongs to G, for any i 2
{i1, i2, ...}

o
i

= f
i

(G) + �
i

where f
i

(G) is an arbitrary function of all the time

series in G and � = {�1, �2, · · · } is a pure random

process.

2. The probability for a given time series O still

belongs to the dynamic peer group G at time t
i

2 T
s

is

exp

 
1� min(|o

i

� ct
i

|, |o
i

� cb
i

|)p
|ct

i

� cb
i

|

!

where all the notations are same as Definition 4.

Proof is available in [7].

Next, we will show that the two assumptions are
generally true. First, the temporal trend of O is similar
to the major trend of G that is constructed by the
proposed method. Since f

i

(G) is defined as a function
that represents the major trend of G at time step t

i

,
f
i

(G) can also be used as the trend of O. Considering
that the temporal trend is often responsible for most of
the temporal correlation in the time series, all the time
steps in � are nearly independent to each other (which
is the first assumption). The probability given in the
second assumption is actually a variant of the Simplical
Volume Depth (SVD). The properties of a statistical
data-depth function are easily checked for this variant.

In summary, the advantages to use TAD include:

1. TAD is inversely related to p(O
Ts 2 G

Ts) under
certain assumptions (See Lemma 2).

2. TAD, although used in univariate analysis in this
paper, can be easily expanded to multivariate
datasets.

3. Experiments suggest the TAD is parsimonious, in
the sense that it performs quite well even if the
number of contextual neighbors available is not
larger than the dimension of the data (i.e., the
number of time steps in the scoring period).

4.3 Dealing with Multiple Modes In some cases,
contextual neighbors may change similarly to the target
time series. Thus, the dynamic peer group may exhibit
multimodal behavior after the time of change. In this
situation, scores given by TAD will tend to underesti-
mate the separation. Figure 3a shows an example of
this problem wherein 5 out 20 time series (gray) in the
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(a) Without Multimode Re-
mover algorithm.
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(b) With Multimode Remover
algorithm.

Figure 3: A target time series (black) together with its
dynamic peer group G (gray). The blue lines are the 68th

percentile contour of G after t = 100 found without (a) and
with (b) Multimode Remover algorithm.

dynamic peer group change similarly as the target time
series (black) at t = 100. Thus, the 68th percentile con-
tour (the upper and lower bounds of the contour are
shown as blues lines) is misleading.

One potential method to address this problem is to
find the major mode (we assume that the behaviors of
the majority time series in G are similar to each other
afterwards). We propose an iterative algorithm called
Multimode Remover to obtain the mth percentile con-
tour for the largest mode. Essentially, we first remove
the extreme 10% of time series based on their distance
to the center of G for each time step. This procedure
is iteratively performed until the mean value of G sta-
bilizes. The detailed method is listed in Algorithm 1.
Figure 3b shows the 68th percentile contour of the ma-
jor mode (blue lines) reported by Multimode Remover
for the same data used in Figure 3a. Comparing the two
figures, we see that the Multimode Remover algorithm
successfully identifies the major mode.

Algorithm 1 Multimode Remover

Input: G = {Xj1 · · ·Xj2} and Ts.
Output: C (mth percentile contour of the major mode in
G in Ts).

for every ti 2 Ts do
Gi contains the ith time step of all the members in G.
while 1 do

Calculate µ (the mean of Gi).
Remove 10% values in Gi whose distance are

largest.
Calculate µ’ (the mean of the “new” Gi).
if |µ0 � µ| < th then

STOP;
end if

end while
ci = m percentile contour in Gi.

end for

5 Experimental Results

In this section, we demonstrate the capabilities of the
proposed CTC detection algorithm on a variety of real-
world datasets from the financial and Earth science
domains.

5.1 Event Detection based on Historical Stock
Market Data We start with a case study using his-
torical stock market data. In particular, we consider
the weekly closing stock prices of S&P 500 companies
over the 10-year period from January 2000 through De-
cember 2009. This data is publicly available from the
Yahoo! Finance website. Since individual stock prices
di↵er in scale and exhibit significant variance, we nor-
malize the raw time series (R) such that

x
i

=
r
i

�min(R)

max(R)�min(R)

where r
i

is the stock price at time t
i

, and max(R) and
min(R) are the maximum and minimum values in R,
respectively.

In this experiment, we first show the di↵erences
between the contextual changes detected by the pro-
posed method and the traditional changes detected by
CUSUM using a case study of Pinnacle West Capital
Corporation. Then, we briefly discuss the performance
of the proposed CTC detection method on the historical
stock market data. The parameters used in this exper-
iment is as below. T

c

= 100, T
s

= 100 and k = 1.

5.1.1 Case Study of Pinnacle West Capital Cor-
poration To show the di↵erence between contextual
changes and traditional changes detected in the stock
market data, we compare the performance of our pro-
posed method with CUSUM2 using the weekly clos-
ing stock prices of Pinnacle West Capital Corporation
(Symbol: PNW).

Figure 4 shows the time series of the stock price
together with its mean, CUSUM score, and its dy-
namic peer group constructed by our proposed method.
CUSUM detects the point around which the mean of
the time series shifts. For this specific example, the
changes detected by CUSUM are around the starting
point of the global financial crisis from 2007 to 2012.
Instead of considering whether or not the pattern of the
current subsequence di↵ers from its history, CTC detects
changes based on the behavior of other “similar” time
series. We note that, while the contextual series con-
tinue to rise throughout the latter period (the scoring

2Here, we use CUSUM algorithm prorived by Barnard [2] and
choose the target value as the mean of the time series.
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(a) The normalized time series of stock price (black) together

with its mean (the horizontal gray line).
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(b) CUSUM scores (black) and the change point detected by

CUSUM (the vertical black dash line).
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(c) The normalized time series of PNW price (black) along with
its dynamic peer group (gray) that is constructed during the
construction period (Tc) using the proposed method.

Figure 4: The performance of CUSUM and CTC detection
in historical weekly closing stock price of PNW.

period), the PNW stock levels o↵ and su↵ers some de-
cline. This contextual change happens in 2006, the year
in which the company was hit by an $8 million regu-
latory setback and the absence of $7 million in income
tax credits it recorded in 2006.

Although PNW belongs to the Electric Utilities
sector, most members in its dynamic peer group belong
to Stores sector and Processed and Package Goods
sector. In fact, none of the members in the dynamic
peer group belongs to Electric Utilities sector. In other
words, the behavior of PNW is not similar to other
stocks in its own sector. One consequence of this is that
if its peer group was constructed only based on domain
knowledge, this change might not have been detected.

5.1.2 Performance of the Proposed Method in
CTC Detection To evaluate the performance of our
proposed method in this experiment, we plot the top
50 events reported and visually examine whether or
not there is a reasonable separation between the target
time series and its dynamic peer group after the time of
change. In [7], we provide the time series of the top 10
stocks together with their context.

Generally, all the top 50 stocks reported by the
proposed method have reasonable separation compared
with their own dynamic peer group. However, the time
of change detected by the proposed method for some
stock data is not accurate. The main reason is that
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E
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(a) Drought in 2007
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(b) Fire in 2006

Figure 5: Prototypical EVI signals for drought and forest
fire events.

many stock prices change gradually – it is di�cult to
see the separation in the beginning of the change. On
the other hand, it is hard to build the dynamic peer
group once the gradual change has begun. Thus, there
is no clear separation between the target time series and
its dynamic peer group shortly after the time of change.

5.2 Forest Fire Detection from Remote Sens-
ing Data In this experiment, we compare the perfor-
mance of the proposed method and V2DELTA, a tradi-
tional change detection method, in forest fire detection.
We draw two conclusions from this experiment. First,
the contextual change is a distinguishing feature that
can be used to discover fires against droughts. Second,
our proposed method is capable of successfully detecting
contextual changes in EVI datasets. Detailed descrip-
tions of the dataset and validation data and the discus-
sion related to false positives of the proposed method
can be found in [7]. The parameters used in this exper-
iment are: T

c

= 46, T
s

= 6 and k = 5.

5.2.1 Limitation of traditional time series
change detection The Enhanced Vegetation Index
(EVI), an indicator of “greenness” reflected from the
earth’s surface, is used as the input dataset. EVI is
one of the most widely used signals for forest fire detec-
tion [12]. However, many other events, such as drought,
can also cause a decrease in EVI signals. Although many
attempts have been made to increase the accuracy of
forest fire detection using traditional change detection
methods, detecting fires in the context of drought based
on EVI signals is still an open problem faced with the
following challenges:

• There are many di↵erent land cover types in this
region. Hence, the drops due to drought are not
necessarily smaller than the drops due to fire.

• The quality of data is not always good due to ob-
struction from smoke or atmospheric interference.

• No definitive set of distinguishing features based on
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Figure 6: Precision and recall curve of the proposed
algorithm and V2DELTA in the experimental region.

EVI has been discovered to be used in fire detection
against drought.

Figure 5 shows examples of EVI signals under
drought and fire, respectively. Because drought is an
event under which many time series exhibit a change,
as shown in Figure 5a, it typically does not lead to a
CTC in the time series. However, fires generally a↵ect
limited regions and thus can be detected as a CTC in
EVI, as shown in Figure 5b.

5.2.2 Comparison with V2DELTA We compare the
proposed algorithm with V2DELTA, which is designed to
detect land cover changes based on EVI [13]. V2DELTA
is a traditional change detection algorithm, meaning
that it learns a model from a portion of the input time
series while normalizing for the historical variability,
then makes a prediction for some window and measures
whether or not the observed data deviates from that
prediction. As a result, V2DELTA reports all kinds of
events, including both fires and droughts, which lead
to deviations of the observed time steps from its own
historical data.

Figure 6 (best viewed in color) shows the precision-
recall curves [15] for the proposed algorithm (red lines)
and V2DELTA (blue lines) in the experimental region.
From this result, we note that a significant improvement
in both precision and recall is achieved for the proposed
algorithm. Figure 7 and Figure 8 show two examples to
illustrate this observation.

6 Conclusions & Future Work

In this paper, we presented a framework for a class
of time series analysis problems called contextual time

series change (CTC) detection, and we proposed a
two-step algorithm to address it. The novelty of the
proposed algorithm includes robustness to common data
characteristics such as outliers (the k

th

order statistic
distance), multimodal behavior (Multimode Remover
algorithm) and a new scoring mechanism to measure
the deviation of a target time series from the others

2001 2003 2005 2007 2009 2011
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0.2

0.4

0.6

(18−Feb−2000 to 05−Mar−2012)

E
V

I

Figure 7: Examples of false positive of V2DELTA caused
by the drought in 2007 which is detected as normal objects
by the proposed algorithm. Compared with the data from
2003 to 2006, the drop in EVI in 2007 is obvious. Therefore,
V2DELTA detect an event happened in 2007 in the target
time series (the black line). However, the drop in 2007 is a
common feature of all the time series in the contextual group
(gray). Thus, the proposed algorithm gives a relatively small
score to the target time series.
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Figure 8: Examples of false negative of V2DELTA which
is detected as positive objects by the proposed algorithm.
The target time series (black) shows di↵erent behavior from
the context (gray) after the time of change (blue), which
indicates that it is a CTC. The proposed method detects
it correctly as a CTC change. However, the magnitude of
change in this time series is not large enough to be labeled
as traditional changes by V2DELTA.

(time series area depth).
We provide a theoretical proof of the optimized

performance of the k
th

order statistic distance under
certain assumptions and the derivation that TAD is
inversely correlated to changes in the probability of
a target object belonging to a certain context. This
inverse relationship of TAD ensures that it is a good
indicator of CTC. We also show other good properties of
TAD, for example, it does not depend on the dataset, it
does not require a large amount of contextual neighbors,
it is superior to näıve approaches, and it can be easily
expanded to multivariate analysis.

Two real datasets from the financial and Earth sci-
ence domains have been used to demonstrate the unique
capabilities of the proposed algorithm. From the exper-
imental results, we notice that CTC generally indicates
a new type of events compared with the results of tra-
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ditional time series change detection, such as CUSUM
and V2DELTA. In particular, two experiments were per-
formed. We first compared the proposed method with
CUSUM in the weekly closing stock prices of S&P 500
companies. The events detected as contextual changes
generally related to internal events at the a↵ected com-
panies, e.g., release of lower forecasts or changes in man-
agement. CUSUM, instead of detecting such contextual
changes, reports changes in the overall financial mar-
ket, e.g., global recessions. The second experiment used
the vegetation time series dataset (EVI). We compared
the results of CTC detection with V2DELTA, which is
designed to detect land cover changes. From this exper-
iment, we conclude that unlike EVI, which detects all
types of changes, CTC is capable of identifying sub-area
events. Both the quantitative result using precision and
recall as well as real examples have shown to support
this conclusion.

There are several open challenges that remain in
CTC detection. The hidden relationship, which de-
fines the contextual time series group, is defined in a
somewhat näıve way in this paper. As a result, many
CTC’s are not detected because of an inadequate num-
ber of contextual neighbors. The framework could be
extended to accommodate other measures such as corre-
lation and dynamic time warping distance [4]. The pro-
posed methods are also built based on non-parametric
methods, which is good when the models of data are un-
known. However, in situations where well-defined time
series models exist for the data under consideration, one
could develop an approach that incorporates the model
into the context, potentially significantly improving per-
formance. Besides, the proposed method contains sev-
eral user defined parameters. Further study related to
choosing the best parameters may help achieve better
performance. Finally, the proposed method is a brute-
force method. Thus, there are several improvements
that can increase e�ciency; specifically, when the input
time series has temporal autocorrelation, this property
can potentially be exploited to reduce the number of
similarity computations.
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