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1.1 Introduction

Recent change in the planet’s climate conditions are a matter of great concern,
owing to its potential devastating effects for all life forms. A thorough study
of climate variables should inform us about possible patterns of the climate
of this planet, which further goes on to inform and guide policy decisions
relating to adaptation and mitigation strategies to counter climate change,
better management of resources, risk management, and for better quality of
life for all. Many of these aspects relate to extremes as well as typical values
of climate variables. Consequently, it is of interest to obtain the joint dis-
tribution of the several climate variables. Owing to the complex dependence
patterns possible in such joint distributions, a Bayesian modeling of the data
is needed. Moreover, using Bayesian methodologies in climate field also al-
lows for systematic, coherent and simple treatment of Physics-driven known
relations and constraints, combining multiple sources of data of varying size,
dimensions and precision.

However, attempting to understand the patterns in data on climate vari-
ables presents unique challenges for Bayesian modeling. Note that many of
the software tools that are available to the practitioner of Bayesian analy-
sis are tailor-made to handle data supported on two-dimensional space, or
for the analysis of a univariate variable of interest, or allow for very limited
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forms of spatial or temporal dependencies. As examples of such tools, consider
several of the contributed packages in the statistical computing platform R,
which have been developed primarily for epidemiological, forestry mapping
and other application domains.

Unlike typical datasets from these domains, climate data is typically avail-
able over three dimensional space and time, on multiple variables, and gener-
ally form a non-stationary random field. In this paper, we present an analysis
of such multivariate, multiple-indexed (by three dimensional space as well
as time) climate data using the example of Arctic Ocean seawater data. We
consider the dataset on global seawater ([26]), accessible from the repository
(http://data.giss.nasa.gov) of the Godard Institute of Space Studies, which
will be the focus for the rest of this paper. We discuss details of the dataset
later.

In this paper, we demonstrate how to capture the spatial variability of the
response variables, allowing for smooth change over space without using spe-
cific fixed spatial relational function. For this we employ a technique similar
to the distributed lag model in economics or normal dynamic linear models in
clinical trails. In these comparable models, the lag would be considered that
of time. Here, we generalize this framework to use the geographical space, and
consider a spatial version of a dynamic model. We require additional modifi-
cations to account for the circular nature of earth surface and for the resulting
cyclic dependence in the data. By adding constraints on the effect parameters
we are able to achieve this and retain the model in DAG () framework.

We consider several climate variables together as the response. These re-
sponse variables are known to have interdependence in this case. While one
option would be to use known explicit functional form for this, note that these
are only approximate relations, and not necessarily shared or common between
for geographic locations and depths of the sea. Thus we would rather like to
keep possibilities to explore such relationship open and study it a-posteriori.
We modeled the response variables are jointly as multivariate normal ran-
dom vector where the parameters depend of the three dimensional geographic
co-ordinates.

As a component of climate related research, analysis of oceanographic data
is less commonly observed compared to that of atmospheric variables. Mention
must be made of the GLODAP project ([16]) and research that it generated.
A concern for the planet’s climate springs from possible acidification of the
oceans, see [21], [24], [25] and others. Other studies include [12], [10], and vari-
ous others. However, we have not come across a comprehensive Bayesian anal-
ysis of multiple variables relating to climatic properties of the Earth’s oceans.
It is challenging to analyze multiple response data indexed by multiple state
variables and potentially having complex non-linear and non-stationary pat-
terns, and in the context of climate data such cases may form a , as presented
in [4]. In view of this, this paper potentially contributes in two ways. First, we
present a framework that allows for the posterior to “talk” outside the stric-
tures of stylized parametric dependency structures (simple examples of which



Arctic Ocean Bayesian analysis 3

are temporal autoregression or spatial conditional autoregression) which may
be useful for analyzing M -open problems. Second, we demonstrate an applied
Bayesian analysis exercise in the context of that uses such a framework.

1.2 A description of the data set

We obtain the data from the repository http://data.giss.nasa.gov. This
dataset includes measurements of temperature, salinity, deuterium, the ra-
tio of the O-18 and O-16 isotopes of oxygen; co-variable information about
the depth of the sea, the latitude and longitude, and the month and year at
which the data was collected; along with references and notes. It is a compi-
lation of data gathered by various teams of researchers at different points of
time and location. Calibrations are carried out to correct for the difference
in standards, techniques and instruments used by these teams, and such cor-
rections are flagged. Missing values are present. Information on the time at
which the data is collected is available in terms of month and years. Further
technical minutiae relating to the dataset is available in the aforementioned
website. Exploratory analysis of an earlier edition of this dataset have been
carried case of [5]. A small-area type predictive analysis of this dataset has
been presented in [23].

We access the data records from this source that correspond to Latitude
values 60 degree North and higher. We further limit that data to be from 1975
or more recent times. The region from which the data has been gathered is
depicted in Figure 1.1. This map has been produced by the afore-mentioned
website.

1.3 A description of the methodology

We consider the variables temperature, salinity, and the ratio of Oxygen-16 and
Oxygen-18 isotopes, called Oxygen-18 in the sequel. We might have considered
modeling for the hydrogen and deuterium isotope ratio, but only 8 records
out of a total of 11800 contained values for these, the rest were missing.
Consequently deuterium isotope ratio was not considered as a variable in
this study. There were some missing values in each of the other variables as
well, but not as overwhelming.

We consider observations from 60 North and above latitudes, which largely
correspond to the Arctic Ocean region. The data is gathered at various depths,
at different longitudes, over different months of the year, from 1975 onwards.
Since data collection is sparse and uneven outside the summer months, we
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restrict our attention to data from July-September only. We consider spatial
blocks of data, in order to model spatial smoothness and coherence. In the
analysis presented below, we consider four bands of latitude values (60-70,
70-75, 75-80 and 80-90 North), ten levels for longitude values produced by the
following break points (-160, -80, -40, -5, 0, 20, 40, 90, 130, 180), and eleven
levels of depths (bins separated at depth values of 0, 5, 15, 30, 50, 100, 150,
300, 500, 1000, 10000). These choices were made keeping data availability in
mind. Note that the latitude, longitude and depth bands of values have a nat-
ural ordering each. Thus, spatial dependence may be modeled by considering
neighboring bands. In view of the circular nature of longitudes, an additional
constraint is imposed.

A generic notation for a data point may be Y (`1, `2, d, t, j), where `1 spec-
ifies the latitude level, `2 the longitude level, d the depth level, t the time, and
j an oceanic feature (temperature, salinity, O-18 ratio). We might further col-
lapse the first four indices (latitude, longitude, depth and time), and consider
a generic observation yi ∈ R3 as a feature vector indexed by space-time.

For each observed sample point i = 1, . . . , n (n = 6795 number of samples)
and N(= 3) number of response variables, we assume the following model:

[yi|ηi,Θi] ∼ N3 (ηi,Θi) ,

where ηi is the mean vector ∈ RN , and Θi is the corresponding precision
matrix. Notice that these vary with the observed sample points.

We assume that the mean function ηi are affected by the spatial inter-
dependence between the response variables, and not the variance-covariance
structures.

In the above the the precision matrices Θi are allowed to be different
for different observations, with identical distributions for different levels of
longitude and depth. Suppose

τ1 ∼Wishart(IN , N),

is a N × N random matrix. Here IN is the identity matrix of dimension N .
The degrees of freedom parameter is set at N as this corresponds to the least
informative proper prior. For observations at a given level of longitude and
depth values, we use the prior that the precision matrices Θi are distribu-
tionally identical copies of the corresponding τ1 matrices. Thus, geographic
locations were assumed to have exchangeable prior distributions which in this
case expressed for the precision matrices as Wishart distributions with pre-
fixed hyper-parameters.

We use a spatially smoothed dynamic linear model for the mean vectors.
The response variables are assumed to have individual overall means with
variation around it depending upon geographical location given by the triplet
latitude, longitude and depth. Initial data exploration suggested that the be-
havior of the response variables at various depths is possibly non-smooth. Thus
smoothness on the remaining 2-dimensional surface were explored and the fol-



Arctic Ocean Bayesian analysis 5

lowing model describes possibilities of using lags in both (latitude, longitude)
and (longitude).

The additive model for the mean vectors are given by, for i = 1, . . . , n and
j = 1, 2, 3(= N),

ηi,j = µ0j + µlati,longi,depthi,j .

Here the overall effect vector is modeled with multivariate normal distribution
as follows:

µ0 ∼ NN (03×1, IN ) .

We have a more complex modeling structure for the space-dependent mean
structure, as follows:

µ (k, `,m) =


0, if ` = 1, for all k, m,
∼ NN (µ (k, l − 1,m, 1 : N) , τN×N )

if k = 1, ` = 2, . . . , 10 and all m
∼ N3 (0.5µ(k − 1, `,m) + 0.5µ(k, l − 1,m), τN×N )

for allm, k = 2, . . . , 4 and ` = 2, . . . , 10.

The hyper-parameter τ appearing above is given a Wishart distribution in
this hierarchical structure.

τ ∼Wishart (IN×N , N) .

In the above framework, the spatial dependence within a given block of
(latitude, longitude, depth)-level is captured by common parameters, while
between block dependencies are captured by shared hyper-parameters. Tem-
poral dependencies are captured by the built-in dependence structure for each
longitude and depth block in the precision matrices Θi’s, and in the shared
dependencies in the ηi’s. Note that it is guaranteed that we have a proper pos-
terior distribution, since all the priors were chosen to be probability density
measures. This model can be enhanced with more complex features. However,
our analysis showed that adding more complexity either by more complex
mean and dispersion structures, or with additional spatial or temporal depen-
dency measurements, does not enhance the quality of the statistical model.
This is at least partially because of the nature of the data, and in keeping
with the results of earlier, non-Bayesian attempts at analyzing this data, see
[5, 23]. In addition, this feature of additional complexity not leading to model
improvement strongly suggest that this problem is M -open. A Bayesian anal-
ysis problem is considered M -open if the data generating mechanism is not
within the collection of models used for analysis, and there is no prior belief on
how the data related to the “true model”. One of the most important reason
for analyzing climate data is for predicting future climate patterns, especially
in a climate-change regime. It may be noted that prediction presents unique
challenges in M -open problems, see [6, 7, 8] for detailed discussion on such
issues.
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1.4 Results

We run a Markov Chain Monte Carlo procedure according to the model spec-
ified above, to generate an approximate posterior distribution of the param-
eters of interest. We used 2 parallel chains, and a burn-in of 10,000 for each
chain, followed by a further sequence of 50,000 iterations, which we thinned
by a factor of 10. This allowed us to generate posteriors summaries based on
(2 x 50000 / 10 =) 10000 samples, which are presented below.

In Figure 1.2, we show how the three response variables, (temperature,
salinity and O-18 isotope ratio) varies with depth and longitude. Figure 1.3
show how the elements of the precision matrix, denoting the joint variability
of the three responses, vary across depth and longitude. The figures for the
corresponding posterior variance matrix over these three responses is given in
Figure 1.4. In Figure 1.5, Figure 1.6 and Figure 1.7, we present the posterior
distributions of these three responses as various latitude values.

Our major conclusion from this quite extensive analysis is that ocean
variables are co-dependent, their mean and covariance structures seem to be
strongly related to the spatial and temporal frames from which the observa-
tions have been gathered. There are naturally some differences between the
variables, and some scope of bringing in Physics-guided knowledge among
the response variables we studied. The patterns we found in the data suggest
that no simple relationship would possibly suffice to explain the nature of
any one of the response variables over space and time, or for the nature of
co-dependence among the variables themselves. The figures we have presented
show that the lack of a simple relationship should not be confused with a lack
of a relationship; there is very strong suggestion of a pattern, see Figure 1.2
for example. One common theme that emerges from these graphics is that
the posterior is nether simple, nor smooth over space, and standard summary
measures like posterior location or scale parameters may be misleading.

We now present some evidence about the performance of the Markov
Chain Monte Carlo procedure we adopted. In Figure 1.8 we show the pos-
terior histogram of the µ-parameters for the three responses. The precision
τ -parameters have posterior histograms as shown in Figure 1.9. Various di-
agnostic results, for example convergence graphs, posterior deviance results,
auto-correlation plots are presented in Figure 1.10.

These results strongly suggest that the extracted samples from the MCMC
runs may resemble a sample from the true posterior distribution of the various
parameters under consideration. We have performed some robustness studies,
whereby our conclusions do not seem to be altered by a choice of hyper-
parameter values.
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1.5 Discussion

The existing literature on climate modeling is essentially one of modeling na-
ture using knowledge from a variety of scientific disciplines. From a Physics-
based perspective, it is typical to consider the variable under study as a de-
terministic, but extremely complex, function of other physical variables. This
kind of modeling retains a high degree of fidelity to the true process by which
the data is generated. However, it is inevitable that not all features of a system
as complex as climate will be measured or retained in various forms of data
records. Also, our present state of knowledge about how different physical,
atmospheric, geophysical and other variables interplay is limited, as is natural
in any scientific discipline. A very partial and incomplete review of natural
scientific modeling of climate may be obtained from [14], [22], [9], [11] and
several references therein. A Bayesian framework where such Physics-based
approach may be considered may be obtained from [17].

Climate models are used for several purposes. Of these, some of the more
important ones are detection of climate change, attribution of climate change
to a cause, forecasting of future climate scenarios. A study of climate in the
pre-historic past, using data and proxies based on tree-rings, ice-core samples
and other geophysical and fossilized sources, forms the topic of paleoclimate,
and is useful as a reference for climate as of today and in future. Examples of
paleoclimate studies may be found in [20], [19] [1], [15], [13] and other sources.

Climate research has progressed beyond change detection and attribution.
Forecasts, and quantifying errors of forecasts relating to future climate sce-
narios, predicting possible consequences of climate change; combination of
outputs from several AOGCM models, and other important studies now form
a part of climate research. Several works using Bayesian ideas have contributed
to this research, see, for example [3], [18], [2], [27] and references therein. In
much of the above cited literature, oceanographic variables have not been con-
sidered. This is partially because the atmosphere is better understood than the
hydrosphere in Physics, partially because it was felt that modeling the atmo-
sphere was of greater importance for understanding climate change. However,
in recent times, the hydrosphere, cyrosphere, biosphere are being studied with
greater vigor.

In this context, this paper attempts to present a Bayesian analysis of a
three-dimensional response on ocean water. We illustrated the complexity of
patterns in oceanographic variables, and suggested a possible approach to-
wards understanding the statistical properties of these variables. While a more
detailed and thorough study needs to be done, our MCMC results suggest that
a Bayesian approach may provide answers to several interesting questions in
this domain.

In addition, the possibility of analyzing data from M -complete and M -
open problems using the broad framework we adopted here: namely, con-
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structing blocks of indexing variables to reduce or eliminate data sparsity,
using least informative proper priors, and assuming minimal structure other-
wise, should be explored.
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FIGURE 1.1
The spatial region from where the data has been gathered. This figure is
generated from the same website from which the data is obtained.
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FIGURE 1.2
The pattern of posterior means temperature (top), salinity (middle) and O-18
isotope ratio (bottom) at various longitudes and depths of sea in the Arctic
Ocean region.
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FIGURE 1.3
The top row figures are the (1,1) and (1,2) elements, middle row figures are
the (1,3) and (2,2) elements, and bottom row figures are the (2,3) and (3,3)
elements in the posterior precision matrix across temperature, salinity and O-
18 isotope ratio at various longitudes and depths of sea in the Arctic Ocean
region.
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FIGURE 1.4
The top row figures are the (1,1) and (1,2) elements, middle row figures are
the (1,3) and (2,2) elements, and bottom row figures are the (2,3) and (3,3)
elements in the posterior variance matrix across temperature, salinity and O-
18 isotope ratio at various longitudes and depths of sea in the Arctic Ocean
region
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FIGURE 1.5
The top row figures are the patterns in the posterior mean of temperature of
sea water, at various longitude and depth values, over Latitudes 60-70 North,
and 70-75 North. The bottom row contains corresponding figures for Latitudes
75-80 North, and 80-90 North.
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FIGURE 1.6
The top row figures are the patterns in the posterior mean of salinity of sea
water, at various longitude and depth values, over Latitudes 60-70 North, and
70-75 North. The bottom row contains corresponding figures for Latitudes
75-80 North, and 80-90 North.
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FIGURE 1.7
The top row figures are the patterns in the posterior mean of Oxygen-18
isotope ratio of sea water, at various longitude and depth values, over Latitudes
60-70 North, and 70-75 North. The bottom row contains corresponding figures
for Latitudes 75-80 North, and 80-90 North.
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FIGURE 1.8
The histograms depicting the posterior distribution of the µ parameters across
temperature, salinity and O-18 isotope ratio.
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FIGURE 1.9
The top row figures are the histograms of the (1,1) and (1,2) elements, middle
row figures are the histograms of the (1,3) and (2,2) elements, and bottom
row figures are the histograms of the (2,3) and (3,3) elements depicting the
posterior distribution of the precision matrix across temperature, salinity and
O-18 isotope ratio.
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FIGURE 1.10
Graphs denoting convergence properties, deviance, and autocorrelation struc-
tures in the MCMC runs.


