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Abstract. Exponential family statistical distributions, in-
cluding the well-known normal, binomial, Poisson, and ex-
ponential distributions, are overwhelmingly used in data
analysis. In the presence of covariates, an exponential family
distributional assumption for the response random variables
results in a generalized linear model. However, it is rarely en-
sured that the parameters of the assumed distributions are sta-
ble through the entire duration of the data collection process.
A failure of stability leads to nonsmoothness and nonlinearity
in the physical processes that result in the data. In this paper,
we propose testing for stability of parameters of exponential
family distributions and generalized linear models. A rejec-
tion of the hypothesis of stable parameters leads to change
detection. We derive the related likelihood ratio test statistic.
We compare the performance of this test statistic to the pop-
ular normal distributional assumption dependent cumulative
sum (Gaussian CUSUM) statistic in change detection prob-
lems. We study Atlantic tropical storms using the techniques
developed here, so to understand whether the nature of these
tropical storms has remained stable over the last few decades.

1 Introduction

One important way in which nonlinear structures may be
present in data related to many physical and natural phenom-
ena is by structural breaks and changes. Generally, elicitation
of the time and nature of such breaks with statistical guaran-
tees involves change detection techniques like the cumulative
sum (CUSUM) or the exponentially weighted moving aver-
age (EWMA).

The standard framework for applying such change detec-
tion techniques requires assuming that the order in which the
sampled observations arrive is known, with the question of
interest being whether the data generating process has re-
mained stable over time. The observations are assumed to
follow a known Gaussian distribution, and are monitored for
a potential change to a different, but still known, Gaussian
distribution. Statistical guarantees are typically expressed in
terms of expected run length, i.e., how long it takes on av-
erage for a true change to be detected, when there is a con-
trol for the expected length of time before false signaling oc-
curs. These normality-based sequential monitoring and sta-
bility detection techniques originated from industrial process
control (Page, 1954), although they have far ranging appli-
cations at the present time. Examples of such applications
are in health care monitoring (Steiner et al., 1999), detection
of genetic mutation (Krawczak et al., 1999), credit card and
financial fraud detection (Bolton and Hand, 2002), insider
trading in stock markets (Meulbroek, 1992), and detection of
jamming attacks in wireless networks (Chen et al., 2007).
Note that in many modern applications, the assumption of

normality is not tenable. In this paper, we discuss change
detection in a general exponential family, and in regres-
sion models including generalized linear models like lo-
gistic regression and log-linear regression. We present sev-
eral mathematical results concerning the different kinds of
CUSUM statistics that may result, depending on the prob-
abilistic structure under consideration, and whether certain
parameters are estimated or assumed to be known. A nat-
ural question here is on the performance of the normality-
based CUSUM statistic, when the probability models do not
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satisfy the Gaussian assumptions. We study this issue, and
present mathematical results, simulation studies, and discus-
sions about when and how the Gaussian CUSUM may yield
high quality results. Finally, we discuss properties of Atlantic
tropical storms, and use the techniques developed in the rest
of this paper to study structural changes in the fundamental
physical properties for which we have data records for such
storms.
In order to generalize the scope of statistical change detec-

tion tools, in this paper we propose a variant of the sequential
industrial monitoring framework, by considering the stability
of the data generation process as a problem of detecting the
time of the distributional change; in other words, we conduct
a hypothesis test, and under the null hypothesis, the data gen-
eration process remains stable through the entire sampling
time t = 1, . . .,n. Under the alternative hypothesis, the distri-
bution of the individual observations remains stable up to an
unknown point of time ⌧  n and then it changes to another
distribution. With this hypothesis testing framework, we are
in a position to (a) consider models with none, one, or more
change points in the same statistical framework, (b) quantify
uncertainty associated with any potential result using stan-
dard concepts of hypothesis tests like size, power, level of
significance, or properties of the run length, and (c) extend
the scope of the study beyond the traditional frameworks
where the data either arrives sequentially, or there are suf-
ficient observations before and after each change point. We
may consider problems where some parameters are known
for some duration of the process, while others are estimated.
The sequential process monitoring statistics like CUSUM are
obtained as a special case, so there is no loss of generality
in using the hypothesis testing approach proposed here. Two
of these generalizations, that of extension to any partition-
ing of the data and that of using multiple change times, can
be easily visualized in this hypothesis testing framework, but
we do not pursue them here for brevity. However, we briefly
comment on these generalizations in Sect. 3 below. Also, our
framework allows for cases where parameter values are un-
known and estimated from data, but we present first our re-
sults for the known-parameter case for clarity, and restrict the
discussion of the estimated parameter case in Sect. 3.3 be-
low. We call the proposed testing procedure the exponential
family CUSUM (or EF CUSUM in short), while the statis-
tic obtained under the Gaussian framework is called normal
CUSUM or Gaussian CUSUM.
Simulation studies show that in most situations the EF

CUSUM method performs better than Gaussian CUSUM.
The EF CUSUM has a shorter average run length, smaller
variation of run length and shorter maximum run length com-
pared with Gaussian CUSUM. Moreover, smaller shifts can
be detected more quickly by EF CUSUM than by Gaussian
CUSUM, which is a big advantage of using EF CUSUM. Un-
der some circumstances the Gaussian CUSUM approximates
the EF CUSUM well, we discuss this issue below. It is also
important to note that whether the change point ⌧ is at the be-

ginning, in the middle, or at the end, the EF CUSUM gener-
ally outperforms the Gaussian CUSUM, so the unknown pa-
rameter ⌧ plays little role in our analysis. Finally, in the case
of a large parameter shift, the EF CUSUM and the Gaussian
CUSUM perform similarly. This is not unusual, and even vi-
sual and ad hoc techniques suffice for many cases of large
changes.
We also extend our study to that of parameter change in

the generalized linear model. In this context, Brown et al.
(1975) and Jandhyala andMacNeill (1991) discussed general
linear model, Lee et al. (2004), Chihwa and Ross (1995), and
Ploberger et al. (1989) focused on detecting the linear model
with different types of error terms. In this paper we propose
methodology for detecting change in regression coefficients
in the generalized linear model setting and the EF CUSUM
scheme associated with it.
Our case study for illustrating our instability and change

detection techniques is based on Atlantic tropical storm data.
There are several studies in recent times on whether, and
how, the properties of these storms have changed with cli-
mate change; see for example Robbins et al. (2011). Such
storms can do immense harm to life and property, conse-
quently a change in their patterns is of interest. Apart from
being of current interest, the presence of some amount of ev-
idence for change in the literature is helpful for evaluating
whether our proposed methods can detect known instabili-
ties. We study the yearly number of such storms, as well as
the joint relationship between pressure and wind speed. We
detect changes compatible with known facts. Interestingly,
we find that although wind speeds and central pressure values
of Atlantic tropical storms have changed, they have changed
in sync, that is, their mutual relationship has remained stable
over time. This lends credence to the idea that our method-
ology might be able to detect true changes and discard false
signals well, since large-scale energy balance relationships
(such as that between pressure and wind speed) are not ex-
pected to change.
Section 2 contains a brief literature review. Section 3 deals

with EF CUSUM statistic derivation. Multivariate Gaussian
CUSUM is discussed as well, with covariance matrix either
singular or positive definite. A few examples are given as
to how to derive CUSUM statistic, and Tables 1 and 2 are
provided for the convenience of readers. Section 3.2 talks
about change detection in the generalized linear model set-
ting. Section 4 contains simulation studies. The data analysis
for Atlantic tropical storms is provided in Sect. 5, followed
by conclusions and discussion in Sect. 6.

2 Literature review

In this section we provide a partial list of techniques for
change detection. As mentioned earlier, some of these origi-
nated in industrial quality context, and related methods in-
clude Shewhart charts (Shewhart, 1931), EWMA control
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Table 1. Exponential family CUSUM: binomial, exponential, gamma and multivariate normal distributions.

Type of distribution Density function EF CUSUM based on

Binomial(n,p):
�n
k

�

px(1� p)n�x x log(p+�
p ) + (N � x) log( 1�p��

1�p
)

p ! p + �

Poisson(�): �xe��

�! x log �+�
� � �

� ! � + �

Gamma(↵,�): 1
�↵0(↵)

x↵�1e� x
� �2

�(�+�2)
x + �1 log x

�+�2
� ↵ log �+�2

� � log 0(↵+�1)
0(↵)

↵ ! ↵ + �1,� ! � + �2

Multivariate normal: 1
(2⇡)

p
2 |6| 12

exp{� 1
2 (x � µ)06�1(x � µ)} (x � µ � 1

2 �)
06�1�

Np(µ,6) ! Np(µ + �,6)

6 is positive definite

Table 2. CUSUM statistic for normal distribution: the first row is more general with both mean and variance change. The remaining three
rows are special cases of the first one.

Distribution CUSUM statistic

N(µ,� 21 ) ! N(µ + �1,�
2
2 ) log�1+ 1

2�
�2
1 (xi � µ)2� log�2� 1

2�
�2
2 (xi � µ � �1)2

N(µ,� 2) ! N(µ + �,� 2) ��2(xi � µ � 1
2 �1)�1 / (xi � µ � 1

2 �1)�1

N(µ,� 21 ) ! N(µ,� 22 ) log(��1
2 �1) + 1

2�
�2
1 ��2

2 (� 22 � � 21 )(xi � µ)2

N(✓,✓2) ! N(✓ + �1, (✓ + �1)2) log((✓ + �1)�1✓) + 1
2 ✓

�2(xi � ✓)2� 1
2 (✓ + �1)�2(xi � ✓ � �1)2

charts (Roberts, 1966), and CUSUM (Page, 1954). In the
context of the CUSUM statistic, which originated from Page
(1954, 1955), various optimality results are available in Lor-
den (1971), Khan (1979), Moustakides (1986), Ritov (1990),
Pollak (1987), and Atienza et al. (2000) showing the versa-
tility of this procedure.
The CUSUM technique has been extended to better suit

practical needs, including Shu, Yeung and Jiang (2010) on
adaptive CUSUM, Hawkins (1992) on robust average run
length with Winsorization, Liu et al. (2006) on transforma-
tion of exponential data, and Yashchin (1993) on transform-
ing serially correlated observations. In other directions, Lu-
cas and Saccucci (1990) compared the average run length
properties of EWMA with CUSUM, MacEachern, et al.
(2007) developed robust CUSUM by modifying the likeli-
hood function, Albers and Kallenberg (2009) proposed cum-
mulative minimum (CUMIN) charts for grouped data and
compared CUMIN with CUSUM and Shewhart charts, Chat-
terjee and Qiu (2009) proposed CUSUM control charts with
control limits estimated using bootstrapping when the dis-
tribution was unknown, Steiner et al. (1999) used simul-
taneous CUSUM control charts to monitor correlated bi-
variate outcomes in the field of medical research, Crosier
(1988) proposed vector CUSUM and Hotelling T 2-based
CUSUM when dealing with multivariate case and compared

them to a Shewhart scheme, Lucas (1982) proposed She-
whart–CUSUM scheme to draw advantages of both methods
for quick detection of mean change in the normal distribu-
tion setting, and Morais and Pacheco (2006) extended the
approach to binomial data.
Some researchers have treated special cases in the EF

CUSUM family, including Hawkins and Olwell (1997)
on detecting known location and shape change in inverse
gamma distribution, Hawkins and Zamba (2005) on change
point detection in unknown mean and variance for normal
distribution, Watkins et al. (2008) used negative binomial
CUSUM to study outbreaks of Ross River virus disease and
compared it to Early Aberration Reporting System CUSUM
algorithms, Wu et al. (2008) studied large shifts in fraction
non-conforming, and Lucas (1985) improved the Poisson
CUSUM with fast initial response (FIR) and introduced the
two-in-a-row rule to robust CUSUM. Healy (1987) discussed
shift in mean and covariance for multivariate normal distri-
bution using CUSUM, Alwan (2000) proposed transforma-
tion to normality to deal with EF CUSUM chart, Severo and
Gama (2010) discussed using Kalman filter and CUSUM to
detect residual mean and variance in the regression model,
and Qiu and Hawkins (2001) used a rank-based CUSUM
procedure to deal with multivariate measurements without
normality assumption.
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3 Distributional stability in exponential families

3.1 Known parameter case

Let the data be the random sample {X1, . . .,Xn}, where we
know X1 is observed first, then X2 is observed, and so on.
We assume thatX1, . . .,X⌧ are identically and independently
distributed following an exponential family (EF) distribution
with probability density or mass function given by

p(x;✓,�) = exp
n

a(�)�1 (x✓ � b(✓)) + c(x,�)
o

.

Here the parameters are ✓ , which is of the same dimension-
ality as each of the data points, and �.
We assume that X⌧+1, . . . are identically and indepen-

dently distributed from another EF distribution, with prob-
ability density function given by

p(x;✓ + �1,� + �2) = exp
n

a(� + �2)
�1 (x(✓ + �1)

�b(✓ + �1)) + c(x,� + �2)} .
Here ⌧ is a fixed but unknown parameter denoting the time

of change from one distribution to another, and 0< ⌧ < 1.
In the testing for distributional stability (TDS) framework we
adopt in this paper, our interest is in testing the null hypoth-
esis H0 : ⌧ � n against the alternative hypothesis H1 : ⌧ < n.
In keeping with the traditional process monitoring literature,
we consider all parameter values, other than ⌧ as known con-
stants for now. Then in Sect. 3.3, we extend a selection of our
results to the case where the parameters are estimated from
the available data. Assuming some, or all, of these parame-
ters as unknown requires additional technical conditions and
assumptions.
Note that the time ordering of the observations is not

an integral part to our methodology. Also, multiple change
points may be allowed. For the former, we would assume
that there is some permutation of the data, say X�1 , . . .,X�n

such that X�1 , . . .,X�⌧ are independent and identically dis-
tributed with some EF distribution with parameters ✓ and �,
while X�⌧+1 , . . . independent and identically distributed with
the same distribution with a different set of parameter val-
ues. Also, multiple change points ⌧1, . . .,⌧k can be easily ac-
commodated in the above framework, and both the null and
alternative hypothesis made more complex. In other words,
we can extend our study to the case where, for some per-
mutation of the indices, the data may be partitioned into k0
segments under the null and k1 segments under the alterna-
tive. Here, each segment of data is a set of independent, iden-
tically distributed exponential family random variables with
its own distinct set of parameters. Our current problem may
be thought of as the special case where �i = i for i = 1, . . .,n,
k0 = 1 and k1 = 2. Extensions like those described above
may lead to new approaches for solving several problems in
applied statistics. However, in the interest of clarity of pre-
sentation, and to keep this paper at a reasonable length, we

do not pursue such extensions here. Our method has a natural
extension to time series and other dependent data with po-
tential (unknown) change points, for which a likelihood can
be written and computed, and an equivalent CUSUM testing
framework can be established.
In our first result below, we obtain the test statistic for the

hypothesis test described above. We adopt the convention
that

Pb
i=aYi = 0 whenever a > b, for any sequence of

(possibly random) reals {Yi}.

Theorem 3.1.
Let

Yi = a(� + �2)
�1 (Xi(✓ + �1) � b(✓ + �1))

+c(Xi,� + �2) � a(�)�1 (Xi✓ � b(✓)) � c(Xi,�),

for i = 1, . . .,n, and further define Sk = Pk
i=1Yi , adopting

the convention that S0 = 0.
The likelihood ratio test statistic for testing the null hy-

pothesis H0 : ⌧ � n against the alternative hypothesis H1 :
⌧ < n is given by Tn = Sn �min0k<nSk , and the null hy-
pothesis is rejected if Tn � L for a critical value L.
We omit the proof of this and several other theorems in the

interest of brevity.
In general, the distribution of the test statistic Tn is in-

tractable under both null and alternative hypothesis, conse-
quently p value, power, and critical value L are difficult to
find. Numeric methods are typically used to obtain these, and
a parametric bootstrap is used when the distributional param-
eters are unknown and estimated. We discuss this issue in
greater detail in Sect. 3.3.
The critical value L may be chosen by standard hypothe-

sis testing protocol, by setting an upper bound ↵ (significance
level) to the probability of falsely rejecting the null hypothe-
sis, i.e., type 1 error. However, in the framework of sequential
process monitoring, the expected number of tests that may be
performed before a false rejection is traditionally used as a
control in place of the probability of a single test turning out
to be a false rejection, and may be more meaningful in some
applications. The former is called average run length (ARL)
under the null hypothesis, denoted by ARL0, and is related
to the probability of type 1 error. A deeper discussion on this
relation may be found in Li et al. (2013). Formally, the run
length is R = inf{n : Sn �min0k<nSk = Tn � L}. The value
of L is obtained by fixing the value of ER(= ARL) assum-
ing ⌧ = 1, at a pre-determined value ARL0. In this paper we
adopt the statistical process control-based approach of spec-
ifying control over false rejections using ARL0. We set the
value ARL0 = 200 for our examples and data analysis below.
This implies a significance level of ↵ = 0.005 for a sequence
of independent tests. More importantly, in our data sets of
a few dozen observations, this implies that we are very un-
likely to make a false rejection of the null hypothesis, since
a hypothesis test for change at every single data point would
still need an average of 200 observations for type 1 error to
occur.
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Note that the test statistic Tn may be written recursively
as Tn =max{0,Tn�1+ Yn}, with T0 = 0. This form is
reminiscent of the the celebrated CUSUM statistic. In view
of this, we call Tn the EF CUSUM statistic. We obtain the
classical CUSUM statistic as a special case as a corollary
to Corollary 3.1 below. Note that Tn � 0 almost surely,
hence a non-trivial test is obtained only when L is strictly
positive. Our next result shows that this relation is fairly easy
to ensure in practice.

Theorem 3.2. E⌧=1R (= ARL0) � 1 if and only if
the critical value L is positive.

PROOF OF THEOREM 3.2
The necessity part: if L  0, since R = inf{n : Sn �

min0k<nSk � L}, we have S0�min0k<0Sk = 0� L almost
surely. Hence, we have R = 0 almost surely, and therefore
E⌧=1(R) = 0, which is contradictory to ARL0 � 1.
The sufficiency part: If L > 0, then R cannot be zero be-

cause S0�min0k<0Sk = 0< L almost surely; hence, R is
at least 1 almost surely. Therefore ARL0 � 1.

⇤

We now state some special cases of Theorem 3.1, which are
of interest. Our first such result deals with the case where the
observations are normally distributed. We use the notation
i.i.d.= for independent and identically distributed.

Corollary 3.1. Suppose X1, . . .,X⌧
i.i.d.= N(µ,� 21 )

and X⌧+1, . . .,Xn
i.i.d.= N(µ + �1,�

2
2 ). For testing the

null hypothesis H0 : ⌧ � n against the alternative
H1 : 0 ⌧ < n, the likelihood ratio statistic is given
by Cn = Sn �min0k<nSk , where Sk = Pk

i=1Yi and Yi =
log(�1/�2)+ 1

2�
�2
1 (Xi�µ)2�log(�2)� 1

2�
�2
2 (Xi�µ��1)2.

In the very special case where �1 = �2 = 1,µ = 0, we ob-
tain Yi = (Xi � �/2), and hence obtain Sn �min0k<nSk =
Cn =max{0,Cn�1+Xi ��/2}, with C0 = 0. This expression
is that of the classical Gaussian CUSUM, where the factor
�/2 is often called the allowance constant.
The statistic Cn defined as Cn =max{0,Cn�1+Xi ��/2}

(with C0 = 0) is often used as a default statistic for change
detection. Our result above shows that this statistic may
also be obtained in a non-sequential framework; however,
the assumption of normal distribution seems unavoidable.
Since Cn is also used for change detection in non-normal
data, it is of interest to know under what circumstance it
may obtain reasonable accuracy and precision with change
detection. Our next theorem describes the conditions under
which using Cn as a statistic may be a reasonable procedure.

Theorem 3.3. Consider the framework of Theorem 3.1.
Additionally, assume that the third derivative of b(·) at ✓0 is
zero, i.e., b000(✓0) = 0, that �1 is small and �2 = 0.

Under these assumptions, the difference between the
normality-based CUSUM Cn and the EF CUSUM Tn is as
follows: |Cn � Tn| = op(n�1).
Example 3.1.1
Binomial change detection: in the case of bi-

nomial distribution with parameter p, the natu-
ral parameter is ✓ = log((1� p)�1p), and b(✓) =
n log(1+ exp{✓}), � is taken as a constant. Also
b000(✓) = (1+ exp{✓})�4{nexp{✓}(1+ exp{✓})(1� exp{✓})},
b000(✓0) = 0 if and only if ✓0 = 0. In that case, p = 1

2 . To
conclude, when p = 1

2 , a change from p ! p + �1 using
Gaussian CUSUM ey and EF CUSUM y yield similar
performance.

Corollary 3.2. For the same detection problem as above,
under the condition of b000(✓0) = b0000(✓0) = 0, �1 is small and
�2 = 0, we get an even stronger result |Cn � Tn| = op(n�21).

Example 3.1.2
Change from Np(µ,61) to Np(µ + �,62).
The CUSUM for multivariate normal distribution is some-

what more complicated and therefore we divide this prob-
lem into the following cases based on the nature of the vari-
ance–covariance matrix. In all the cases listed below, the test
statistic is Cn = Sn �min0k<nSk , where Sk = Pk

i=1Yi and
Yi depends from one case to another. This result is a corollary
of Theorem 3.1, but is of independent interest owing to the
multitude of applications involving the normal distribution.

1. 61 = 62 = 6, where 6 is positive definite. Based
on the following density function: f (x|µ,6) =
(2⇡)�

p
2 |6|� 1

2 exp{� 1
2 (x � µ)06�1(x � µ)} it is

straightforward to derive the CUSUM statistic based on
Yi = (xi � µ � 1

2�)
06�1�. If we let p = 1, we are back

to the univariate normal situation.

2. 61 = 62 = 6, where 6 is a singular.
Assume rank (6) = r,r < p. There exists an or-
thogonal matrix Qp⇤p, such that Q6Q0 = 3,
where 3 = diag(�1, . . .,�r ,0, . . .,0), where
�i > 0, i = 1,2, . . ., r . So Z = QX ⇠ Np(Qµ,3).
Let P = (Ir0r⇥(p�r)), and K = PZ ⇠ Nr(PQµ,e3),
where e3 == diag (�1, . . .,�r ). Thus the prob-
lem is reduced to a change of Nr(PQµ,e6)

to Nr(PQ(µ + �),e6), and we are back to
case 1. The CUSUM statistic is based on
Yi = (xi � µ � 1

2�)
0(PQ)0e6�1PQ�.

3. 61 6= 62, where 61, 62 are both positive definite.
Following previous discussion, the CUSUM statis-
tic is based on Yi = 1

2 log(|61|�1|62|) + 1
2 (xi � µ �

�)06�1
2 (xi � µ � �) � 1

2 (xi � µ)06�1
1 (xi � µ).

4. 61 6= 62, where 61,62 are both singular.
Based on discussion of case 2, our CUSUM statistic is
based on Yi = ( r2

2 � r1
2 ) log(2⇡)+ 1

2 log(|f31|�1|f32|)�
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1
2 (P1Q1(xi �µ))0f31

�1
(P1Q1(xi �µ))+ 1

2 (P2Q2(xi �
µ� �))0f32

�1
(P2Q2(xi �µ� �)). Here P1,Q1,P2,Q2

are such that P1Q161Q
0
1P

0
1 = f31, P2Q262Q

0
2P

0
2 =

f32, and rank (f31) = rank (61), rank( f32 ) = rank (62),
f31,f32 are r1⇥ r1 and r2⇥ r2 diagonal matrix.

5. 61 6= 62, where 61 is positive definite,
62 is singular. In this case we have Yi =
r2�p
2 log(2⇡) + 1

2 log(|f31|�1|f32|) + 1
2 (P2Q2(xi � µ�

�))0f32
�1

(P2Q2(xi �µ� �))� 1
2 (xi �µ)6�1

1 (xi �µ),
where P2Q262Q

0
2P

0
2 = f32, rank( f32 ) = rank ( 62),

f32 is r2⇥ r2 diagonal matrix.

3.2 Generalized linear model and CUSUM

In this section, we consider data of the form (y1,x1), . . .,
(yn,xn). Here, the yi’s are the responses, and the xi’s
are covariates that are considered to be fixed constant
vectors. We assume that yi’s come from the distribution
p(yi |✓i ) = exp{a(�)�1(yi✓i � b(✓i )) + c(yi,�)}, where
✓i = x0i� is the canonical parameter under stable distribu-
tional regime and a(�) > 0 is a dispersion parameter. Our
main result below generalizes the main result of the previous
section, and presents a change detection test statistic for
generalized linear models:

Theorem 3.4. Assume that (y1,x1), . . ., (y⌧ ,x⌧ ), the
true model is ✓i = x0i�, and for (y⌧+1,x⌧+1), . . ., (yn,xn),
the true model is ✓i = x0i (� + �), where �, � is known. For
the hypothesis testing H0 : ⌧ � n vs H1 : 0 ⌧ < n, if we
denote zi = yix0i��b(x0i (� +�))+b(x0i�) and Sk = Pk

i=1zi ,
then the test statistic is Sn �min0k<nSk .

3.3 Estimated parameter cases

We now illustrate that the results presented above extend to
the case where the parameters are unknown. For simplicity of
presentation, we omit the scaling function a(�) for the first
two results below. We begin with the single parameter frame-
work where X1, . . .,X⌧n are independent and identically dis-
tributed with density

p(x;✓0) = exp {(x✓0� b(✓0)) + c(x)} ,
and X⌧n+1, . . . are i.i.d. with density

p(x;✓1) = exp {(x✓1� b(✓1)) + c(x)} .
We assume ✓1 6= ✓0 throughout. We test the null hypothe-
sisH0 : ⌧n � n against the alternativeH1 : 0 ⌧n < n. Let us
denote the maximum likelihood estimator for ✓0 based on
X1, . . .,Xn as ✓̂00; note that this is under the null hypothesis
scenario. Also, under the alternative hypothesis scenario, the
likelihood L(✓0,✓1,⌧n) = Q⌧n

i=1p(Xi;✓0)Qn
i=⌧n+1p(Xi;✓0)

is maximized at (✓̂10, ✓̂11, ⌧̂n). We have the following result:

Theorem 3.5. In the framework described above, the like-
lihood ratio test statistic is given by

Tn1 = (✓̂10� ✓̂00)
⌧̂n
X

i=1
Xi + (✓̂11� ✓̂00)

n
X

i=⌧̂n+1
Xi

�⌧̂nb(✓̂10) � (n � ⌧̂n)b(✓̂11) + nb(✓̂00).

Further, under either ⌧n � n or ⌧n/n 2 (0,1), the parametric
bootstrap scheme may be used to estimate the distribution of
Tn1, and consequently obtain a rejection region and p value
of the above hypothesis test.
It may be noted, however, that the above test statistic

can suffer from extremely low power, depending on the
values of ✓0, ✓1, and ⌧n. One reason for this performance
deficiency is that ✓00 is not a consistent estimator for ✓0
under the alternative hypothesis. In order to address this
issue and improve the performance capabilities of our testing
procedure, we propose a modification of the usual likelihood
ratio test, whereby we use ✓̂10 as the estimator for ✓0, even
under the null hypothesis. We have the following result:

Theorem 3.6. In the framework of Theorem 3.5, the
profile likelihood ratio test statistic is

Tn2 = (✓̂11� ✓̂00)
n

X

i=⌧̂n+1
Xi � (n � ⌧̂n)(b(✓̂11) � b(✓̂00)).

Further, under either ⌧n � n or ⌧n/n 2 (0,1), the paramet-
ric bootstrap scheme may be used to estimate the distribu-
tion of Tn1, and consequently obtain a rejection region and
p value of the above hypothesis test. Further, the power
of this test tends to one when ⌧n/n 2 (0,1). In addition,
(✓̂10, ✓̂11, ⌧̂n) converge in probability to (✓0,✓1,⌧n) under
standard conditions.
The above test statistic can be obtained from the profile

likelihood (for null and alternative), when ✓0 is replaced
with ✓̂10. Another useful variant is the case where both ✓0
and ✓1 may be estimated from the full data, perhaps under
some restrictions on the model. An example is where the
the null distribution is N(✓0,� 2), and after ⌧n it changes to
N(✓0+c�,� 2) for some known constant c. This formulation
is particularly useful for applications, where it may be of im-
portance to detect only practically significant lack of stability
of distributions, and not just statistically significant ones. In
our simulation examples and the real data analysis below, we
consider the above specification where we test for a change in
mean in terms of c standard deviation units. We study results
with c = 1,1/2,1/4 as potential cases of relatively easy, not
easy, and hard change-detection scenarios. This framework
is adopted in this paper since it makes sense to describe the
distance between the null and alternative scenarios in terms
of units of standard deviation. Also, in samples of finite sizes,
the only scenario where we get reasonable power in hypoth-
esis tests is when the two hypotheses are sufficiently apart.
Additionally, for practical purposes, even if there is a change
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but the change is minute and negligible, the hypotheses test
may be redundant. Based on all these considerations, it is ad-
visable to test hypotheses that are a reasonable number of
standard deviation units away from each other.
There can be several other results relating to stability

detection with estimated parameters, under various as-
sumptions and technical conditions, which we will address
in future work. We conclude this section with a result
on stability detection when parameters are estimated in a
generalized linear model.

Theorem 3.7. Assume that for (y1,x1), . . ., (y⌧n ,x⌧n), the
true model is ✓i0 = x0i�0, and for (y⌧n+1,x⌧n+1), . . ., (yn,xn),
the true model is ✓i1 = x0i�1. For the hypothesis testing
H0 : ⌧n � n vs. H1 : 0 ⌧n < n, the test statistic is Tn3 =
Pn

i=1⌧̂n+1a�1(�̂)
n

yix
0
i (�̂1� �̂0) � b(x0i�1) + b(x0i�0)

o

.
We present below a sketch of the proof of the above result.
SKETCH OF PROOF OF THEOREM 3.7
The likelihood function under the alternative hypothesis is

L1(�0,�1,⌧n,�)

=
⌧n
Y

i=1
exp{a(�)�1(yix0i�0� b(x0i�0)) + c(yi,�)}

⇥
n
Y

i=⌧n+1
exp{a(�)�1(yix0i�1� b(xi0�1)) + c(yi,�)}.

Suppose this function is maximized at (�̂0, �̂1, ⌧̂n, �̂). We
evaluate the likelihood under the null hypothesis at �̂0, �̂, and
obtain the profile likelihood ratio as

3(⌧ ) = L1(�̂0, �̂1, ⌧̂n, �̂)

L0(�̂0, �̂)

= exp

2

4

n
X

i=1⌧̂n+1
a�1(�̂)

n

yix
0
i (�̂1� �̂0)

2

4

n
X

i=⌧̂n+1
a�1(�̂)

��b(x0i�1) + b(x0i�0)
 

3

5 .

⇤

Furthermore, in the generalized linear model case, the
parametric bootstrap is a viable way of approximating the
distribution of Tn3, and thus eliciting the properties of the
test for stability.

4 Simulation study

In this section, we discuss a simulation study on the change
of parameter(s) for binomial, exponential, gamma, and Pois-
son distributions, and compare the EF CUSUM statistic with
the Gaussian CUSUM statistic, under the constraint that the
mean and the standard deviation of both distributions are
equal. Based on the exponential family density f (x;✓,�) =

exp{a(�)�1(x✓ � b(✓)) + c(x,�)}, it is easy to calculate
E(X) = b0(✓), and var (X) = b00(✓)a(�). When there is
change in parameter from ✓ to ✓+�1 and from � to �+�2, we
have E(X) = b0(✓ + �1) and var(X) = b00(✓ + �1)a(� + �2).
So the corresponding Gaussian assumption-based setting is
a change from N(b0(✓),b00(✓)a(�)) to N(b0(✓ + �1),b00(✓ +
�1)a(� + �2)).
The simulation procedure can be described as follows:

First, we control false alarms by carefully choosing L under
the null distribution by fixing ARL0 = 200. Second, we com-
pute E((R�⌧ )+) under the alternative distribution. Let ⌧ be
the time of change. We simulate x1, . . ., x⌧

i.i.d.= f (x|✓) and
x⌧+1, . . ., xT

i.i.d.= f (x|✓ + �) for 2500 replications, where �

is known. For each ⌧ = 0,1, . . ., 100, use the L from the first
step and computeR for the 2500 replications to get the mean,
median, standard deviation, and maximum of (R(⌧ )). We si-
multaneously carry out the same procedure for the Gaussian
CUSUM case for comparison with the EF CUSUM.
From the simulation results in Fig. 1, one key finding is

that in most cases, EF CUSUM statistic performs better than
Gaussian CUSUM statistic except for one occasion when the
underlying distribution is exponential distribution. Also note
that for a small shift in parameter, exponential CUSUM has
a considerable advantage over the Gaussian CUSUM, while
for a large shift in parameter, EF CUSUM still works better
than Gaussian CUSUM, but not significantly different.
We also discover that E1(R(⌧ )) does not vary a lot with

⌧ changing from 0 to 100 for a particular distribution in the
exponential family. Particularly, for ⌧ close to 0 or close to
100, E1(R(⌧ )) is still quite stable. In addition, the median,
standard deviation, and maximum of average run length tell
the same story as the mean.

5 Tropical storm data analysis

We now discuss a case study of Atlantic tropical storms, for
which we use HURDAT (hurricane database) data from the
US National Hurricane Center. For each storm, the following
information is recorded: date and time, tropical storm iden-
tity, tropical storm name, position in latitude and longitude,
maximum sustained winds in knots, and central pressure in
millibars.
We present our results from three studies on Atlantic trop-

ical storms here. Each of these studies are carried out on two
data sets: a longer series from 1851 to 2008 and a shorter
series from 1951 to 2008. The expectation–maximization al-
gorithm was used for missing data segments in the longer se-
ries when required, this problem does not arise in the shorter
series.
First, we consider the problem of TDS for the yearly

number of tropical storms between 1851 and 2008. This
yearly data is modeled as Poisson(µ̂), and a potential change
to Poisson(µ̂ + �) is studied. We assume that any potential
change point occurred after 1900, and use the data previ-
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Figure 1. Performance comparison: EF CUSUM with Gaussian
CUSUM. Dot-dash, dashed, and solid line stand for mean, median,
and standard deviation. The top panel describes run length com-
parison from Binomial(15,0.95) to Binomial(15,0.90), the middle
panel describes run length comparison from Poisson(3) to Pois-
son(3.1), the bottom panel describes run length comparison from
Gamma(1,2) to Gamma(1.5,1.5). Due to length limitation of the
graphs, we do not include the MAX line here.

ous to it for estimating parameters. We estimate µ̂ = 7.54,
and fix � = c�̂ , where c is predetermined as 1

4 ,
1
2 , and 1,

and �̂ = 2.75 is the estimated standard deviation. Note that
� ⇡ µ

1
2 because for the Poisson distribution, the mean equals

the variance. Then we create the Poisson CUSUM statistic
as given in Table 1. We get L based on E0(R) = 200, and
search for the first n that makes Sn �min0k<nSk � L with
the tropical storm data.
In view of the fact that the data from the nineteenth century

and the first half of the twentieth century may not be entirely
reliable, we repeated the above analysis on detecting change
for the Atlantic tropical storms from year 1951 to 2008. We
assume that the potential change could only occur after 1970.
For detecting potential change Poisson(µ̂) to Poisson(µ̂+�),
we now have µ̂ = 9.8, and � = c�̂ , where c is predetermined
as 14 ,

1
2 , and 1, and �̂ = 2.97. Note that in both analyses, the

Figure 2. The observed data and a Poisson fit for the number of
tropical storms between 1951 and 2008.

sample standard deviation is close to the sample mean, again
verifying the Poisson model assumption.
In both of these analyses, our results are not particularly

sensitive to the choice of the initial segment when no change
is assumed to occur (i.e., until 1900 and 1970, respectively, in
the first and second analysis described above). We also veri-
fied that the assumption that the number of tropical storms in
a given year follows a Poisson distribution is reasonable. For
example, a goodness-of-fit p value for testing Poisson distri-
bution fit is 0.8, thus strongly rejecting that Poisson is a bad
fit. Note Fig. 2 also has an observed and expected plot for
the data between 1951 and 2008. We also explored the pos-
sibility that there may be a temporal pattern in the number
of tropical storms over the years, but that was ruled out from
autocorrelation and partial autocorrelation computations on
both the original and logarithmic scales.
The second study has two parts. For the data from 1851

to 2008, we model the maximum sustained winds and max-
imum central pressure as N2 (µ̂, 6̂), and study potential
change to N2 (µ̂ + �,6̂). We estimate the mean µ̂ and
variance–covariance matrix 6̂ based on the first 50 obser-
vations. Here µ̂ =

✓

104.8
982.99

◆

, and 6̂ =
✓ ˆ�11 ˆ�12

ˆ�21 ˆ�22

◆

=
✓

199.96 �20.66
�20.66 367.56

◆

. Let � =
✓

c ˆ�11
c ˆ�22

◆

, where c is prede-

termined as 14 ,
1
2 , and 1.

In a variation of the second study, we consider maxi-
mum sustained wind speed and minimum central pressure as
N2(µ̂, 6̂) and study potential change to N2(µ̂ + �, 6̂). Here

µ̂ =
✓

129.5
937.6

◆

, and

6̂ =
✓ ˆ�11 ˆ�12

ˆ�21 ˆ�22

◆

=
✓

376.05 �220.47
�220.47 237.41

◆

. Let � =
✓

c ˆ�11
c ˆ�22

◆

, where c is predetermined as 14 ,
1
2 , and 1.
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Table 3. Atlantic tropical storm data from 1851 to 2008 are used to
detect any mean change in tropical storm characteristics. Here c is
the magnitude representing the number of standard deviation from
the mean. The result shows that the number of tropical storm had a
significant increase around 1933–1936, and strength of the tropical
storm increased around 1923–1924.

Distribution c = 1
4 c = 1

2 c = 1

Poisson 1936 1933 1933
Bivariate normal 1924 1923 1924

Table 4. Atlantic tropical storm data from 1951 to 2008 are used to
detect any mean change in tropical storm characteristics. Here c is
the magnitude representing the number of standard deviation from
the mean. The result shows that the number of tropical storm had
a significant increase around the year of 2000, and strength of the
tropical storm has not changed.

Distribution c = 1
4 c = 1

2 c = 1

Poisson 2001 2001 2000
Bivariate normal 2008 2008 2008

The results are summarized in Tables 3 and 4. We discover
that the number of tropical storms had a significant increase
around 1933–1936, and the strength of the tropical storms
had a sharp increase around 1923–1924. This is consistent
with the historical records. In history, the 1924 tropical storm
Cuba was the earliest officially classified Category 5 Atlantic
hurricane on the Saffir–Simpson scale, and it became the
strongest hurricane on record to hit the country; furthermore,
the 1928 Okeechobee hurricane was the second recorded hur-
ricane to reach Category 5 status on the Saffir–Simpson scale
in the Atlantic basin after the 1924 Cuba hurricane. The 1933
Atlantic tropical storm season was the second most active At-
lantic tropical storm season on record with 21 storms, and the
1936 season was fairly active, with 17 tropical cyclones in-
cluding a tropical depression. From the analysis of the shorter
series, we detect that the period 2000–2001 saw an increase
in the number of tropical storms. According to National Hur-
ricane Center, the 2001 Atlantic tropical storm season pro-
duced 17 tropical storms. Notice that the results we obtain
are consistent for c = 1,1/2,and1/4 which strongly sug-
gests that the changes we see are not false discoveries. As
a further corroborative check, we present a moving estimate
of the average number of tropical storms in Fig. 3, which
strongly suggests there is a change in the average around the
fiftieth observation, i.e., in 2000 for the 1951–2008 data. Our
results are similar to those obtained by Robbins et al. (2011)
(see Sect. 5 therein), who notice changes in North Atlantic
tropical storm patterns circa 1930 and 1995.
In the third study, we consider the relationship between the

number of tropical storms Y , the maximum sustained winds

Figure 3.Amoving average estimate of the average number of trop-
ical storms between 1951 and 2008.

X1, and maximum (minimum) central pressure for data be-
tween 1851 and 2008 (1951 and 2008) X2. We model Y as
Poisson(�), where ✓ = log�, p(y,✓) = exp{y✓ �e✓ � logy!}
and use the canonical link ✓ = (1,X)0�.
For the 1851–2008 data, we take the first 50 observa-

tions, and get �̂ = (�4.99,0.01,0.006)0. We also estimate
the bivariate mean and covariance as µ̂ = (104.8,982.99)0

and 6̂ =
✓

199.96 �20.66
�20.66 367.56

◆

. Second, we select � = c�̂,

where c = 1
4 ,
1
2 ,1. Next we search for L, assuming ARL0 =

200. To implement this, we simulate the bivariate series X

using µ̂ and 6̂. Based on equation log(�̂) = (1,X)0�̂, we get
�̂, and we can simulate Y from Poisson ( �̂). Construct the
CUSUM statistic and the stopping rule Sn�min0k<nSk � L

to satisfy ARL0 = 200. Finally, we fit the stopping rule to the
real data and discover the signal. Results shows that there is
no significant change in terms of �, which means the way the
maximum sustained winds and maximum central pressure of
how a tropical storm relates to the number of tropical storms
has not changed over the past 158 years.
For the 1951–2008 data, we take the first 20 observa-

tions, and get �̂ = (3.08,0.003,�0.0016)0. We also estimate
the bivariate mean and covariance as µ̂ =

✓

129.5
937.6

◆

, and 6̂

=
✓

376.05 �220.47
�220.47 237.41

◆

. Second, we select � = c�̂, where

c = 1
4 ,
1
2 ,1. Results shows that there is no significant change

in terms of �, which means the way how the maximum sus-
tained winds and minimum central pressure of a tropical
storm relate to the number of tropical storms has not changed
over the past 58 years. Thus, the third part of our study shows
broad physical relations between wind speeds and pressures
have not changed, which is to be expected.
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6 Conclusion and future work

The EF CUSUM generally performs better than the Gaus-
sian CUSUM. In practice, in situations where the data do not
follow normal distribution, we should consider the appropri-
ate distribution for modeling the data and choose the corre-
sponding CUSUM statistic to effectively detect the change in
parameter(s) if there is any. Further details for the mathemat-
ical proofs, simulation studies, and our analysis of Atlantic
tropical storms record are available from the authors.
In general, optimality results for our proposed methods

should follow along the lines similar to those established by
Moustakides (1986) and related works, but this requires a
separate proof. There are other situations of interest in geo-
physical studies where an exponential family model may not
be appropriate. Examples include extremes, cases where the
parameter is a boundary point of the support of the random
variable, and mixtures of distributions. Our future work will
consist of stability detection for such cases.
The presence of temporal dependence is typically not

problematic; furthermore, our likelihood-based schemes gen-
eralize easily to standard time series frameworks, although
additional mathematical technicalities cannot be avoided. In
addition, cases where the observations are not temporally or-
dered, or when there are multiple break points, need suitable
generalizations and mathematical treatment. Note that there
is a relationship between the number of structural breaks in
the distribution of a data sequence, the size of such breaks,
and the probabilities of true/false inference from hypothesis
testing. Establishing the limits of our proposed methodology
along these lines is work to be realized in the future.
It should be noted that the methodology discussed here

may fail under several different scenarios. For example,
when parameters of the distributions are unknown, there will
be no reasonable way of obtaining the null or alternative dis-
tribution consistently if there are too few observations before
or after any change point. This also suggests that the pro-
posed method may not be able to adapt to situations where
there are many change points, or when one or more changes
in the parameters asymptotes to zero quickly. Although we
consider exponential family distributions here which lends
itself to several standard statistical techniques, our proposed
tests may require modifications if other distributions are in-
volved, and a parametric bootstrap is not guaranteed to pro-
duce consistent distributional approximations.
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