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ABSTRACT 

 
Discovery of dependence structure between precipitation 
extremes and other climate variables (covariates) within a 
smaller spatial and temporal neighborhood is an important 
step in better understanding the drivers of this complex 
phenomenon as well as short-term prediction of extremes 
occurrence. Apart from the inherent spatio-temporal 
variability of the dependence, it is further complicated by 
the availability of the covariates at different vertical levels. 
The above problem can be split into three different sub-
problems. Firstly, a spatio-temporal neighborhood of 
influence has to be discovered, which can be different for 
different locations. Secondly, the dependence structure 
between the precipitation extremes and the covariates has to 
be discovered within this neighborhood and thirdly, it has to 
be investigated whether this dependence structure can be 
exploited for any predictive power. Climate scientists have 
already discovered some physics-based relations between 
some of the covariates (e.g. temperature, relative humidity, 
precipitable water etc.) and precipitation extremes. We are 
exploring data-dependent alternatives for these problems 
and any possibility of incorporating the physics-based 
relations into the resulting data model. In particular, we used 
elastic net-based sparse optimization technique which solves 
all three problems of neighborhood discovery, covariate 
dependence discovery and predictive modeling and at the 
same time maintains the interpretability of the resulting 
model. Preliminary results look promising and show 
potential for some interesting knowledge discovery. We are 
currently exploring non-linear correlations and the 
alternatives to combine the physics-based relationships into 
the data model. 
 

Index Terms— One, two, three, four, five 
 

1. INTRODUCTION 

 
Large-scale climate models solve a system of partial 

differential equations (PDEs) based on first principles, but 
also contain parameterizations for processes that are not so 
well understood. Unfortunately, processes pertaining to 
precipitation are among the least well understood and 

precipitation is not a state variable in the PDEs. In addition, 
precipitation is known to be extremely variable in space and 
time and the underlying processes are subject to thresholds 
and intermittences. However, as pointed out in the literature 
[1,2,3,10,11,12], precipitation extremes tend to have a 
dependence on atmospheric variables ranging from 
temperature, humidity and precipitable water, to updraft 
velocity and horizontal wind components. These 
atmospheric variables, which can be thought of as potential 
covariates for precipitation extremes, are often better 
predicted than precipitation itself. Thus, there have been 
(somewhat counter-intuitive) suggestions that precipitation 
extremes may be more predictable than precipitation mean 
processes, simply because the extremes may relate more 
directly to covariates that are better predicted from models. 
The prediction problem in the context of precipitation 
extremes therefore translates to extraction of information 
context from these covariates and translating them to 
predictive insights.  

Dynamical downscaling based on regional climate 
models (RCM), while higher-resolution and physics-based, 
suffers from complex parameterizations and difficult 
boundary conditions. Statistical downscaling, which have 
used models ranging from simple linear regression to 
artificial neural networks, suffers from lack of 
interpretability.  
One promising recent approach has been the development of 
physically-based approaches which attempt to relate the 
atmospheric covariates with precipitation extremes through 
what could be viewed as hypothesis-guided approaches. The 
physics operates at different scales or accounts for different 
processes than are handled within the large-scale 
computational models of climate, hence their added value 
[1,3,10]. While these approaches have demonstrated 
significant promise, they may not be able to leverage the full 
information content in atmospheric covariates and translate 
these to predictive insights, primarily because they have to 
rely on known physics-based hypotheses. The best approach 
would need to leverage the information content in the 
covariates through both the physics-based hypotheses and 
the data, while keeping the functional mappings between the 
covariates and the precipitation extremes interpretable and 



without losing the ability to generalize to non-stationary 
conditions. 
 

2. METHODOLOGY 

 
We propose sparse and spatially-penalized extremes 
regression as a way to fill this gap. Model parsimony is 
embedded into our formulations through sparse 
regularization and spatial penalties to reduce spurious or 
overly specific relations that may not generalize. As 
mentioned earlier, the entire problem can be divided into 
few sub-problems, First, the neighborhood of influence may 
depend on the selected location and prevailing climate and 
wind conditions. Here we select the neighborhood based on 
data rather than enforcing a specific shape or size apriori. 
Second, within that neighborhood, we need to find out a set 
of variables that contain information about target variable 
(precipitation extremes here) out of a larger pool of 
variables. As a first step, we consider linear dependence 
structures and leave nonlinear dependence analyses to future 
research. Dependence in climate data may often be 
reasonably well captured through linear or quasi-linear 
structures. However, in our proposed method we have 
combined both these problems into a single sparse 
regression learning problem with a spatial penalty. Third, in 
the context of precipitation extremes, percentile-based [1-2] 
and extreme value theoretic definitions [13,14] have been 
used. A fundamental issue is that extremes cannot be 
expected to follow the distribution of the original 
precipitation time-series since they represent distributional 
tails. Thus, transformations need to be constructed based on 
the statistical properties of the extreme values to make these 
values amenable to predictive modeling.  
Here is a description of the problem from data-mining 
perspective. Let us denote the vector of precipitation 
extremes at a grid indexed by (i,j) on a certain geographical 
region of interest by yij. Also, let us denote all candidate 
variables at (i,j)-th grid by Xij = {X1

ij, X2
ij…XM

ij} and 

variables at all grids by ! = {$%&	∀(*, ,) 	∈ /} where S 
is the set of all grid-points within the region under 
consideration. We can combine variable and neighborhood 
selection into a single problem described as: For each 
variable yij, we are required to find a set of variables/nodes 

NEij = {$1:	$1 ∈ !} so that yij is linearly dependent only 
on NEij and nothing else. We will use yij and y to refer the 
same variable. One way of dropping uninformative 
regressors is to use a penalized regression. Let RSS(β) = 

∑ 456 − !689:
;<

6=>  be sum of squared residuals from a 

regression of 56 on all available features, !6  (D is number 
of data points). The solution to  
 

min9 RSS(9) + λ||9||;;                     (1) 

 

For 0 <  < 1 is the well-known ridge estimator that shrinks 
the least squares estimates of βij towards zero. Note that, 

||9||;; = 	∑ GH;I
H=> , where L is length of vector X, is the 

squared L2 norm of 9. By the nature of the L2 penalty, the 
ridge estimates will almost never be zero exactly. In 
consequence, uninformative predictors can still inflate 
prediction error variance. 

Now, by replacing the L2 penalty by an L1 penalty ||9||>> =
	∑ |GJ |I
J=>  we get a LASSO estimator [7]. An important 

feature of the L1 penalty is that some coefficient estimates 
can be exactly zero. As shown in [8], LASSO enjoys a 
`sparsity property'. However, if we simply replace the L2 
penalty by L1 penalty, there are two problems. First, if L > 
D, LASSO can select at most D variables. Second, if there is 
a group of variables with high pair-wise correlation 
coefficients, LASSO tends to select only one variable from 
the group and does not care which one. But, these problems 
can be overcome if we use a convex combination of both L1 

and L2 penalties. The resulting regression is called Elastic 
Net [6] and has the following objective function.  
 

minK RSS(9) + L>||9||>> + L;||9||;;                 (2) 
 
In equation (2) we have a formulation of the problem of 
finding a spatio-temporal dependence structure between 
precipitation extremes and regional covariates at a particular 
grid-point in terms of coefficients β. But in its current form 
it is missing important domain knowledge. Here, equal 
importance is given to covariates belonging to all neighbors 
as a potential feature irrespective of its distance from the 
grid-point for which the dependence structure is being 
estimated. We address this problem by letting the 
multipliers λ1 and λ2 depend directly on the normalized 
geodesic distance of the associated grid-point from which 
the corresponding feature belongs. The formulation is given 
by 

9MNO = argmin
K

∑ STUVW − !XNO
Y9NOZ

;
+ ∑ L>J[GJVW[I

J=>
\(V,W)
U=>   

																																					+ ∑ L;J|GJVW|;I
J=>                         (3)  

where L>J = L>]. (_J/_J%ab)  

and L;J = L;]. (_J/_J%ab) 
Now, a variable belonging from a far away grid-point will 
have a larger penalty parameter than a variable belonging 
from a nearby grid-point and therefore will have a smaller 

probability of being assigned a non-zero G  coefficient. Note 
that, this type of differential penalty can be used to 
incorporate a range of other domain knowledges into our 
data model. 

3. RESULTS 

 

We focus on NCEP-NCAR reanalysis data [9], which are 
climate reconstructions developed by assimilating multiple 
remote and in-situ sensor data into meteorological models. 
We used daily forecasts starting from 1948 until 2010



 
 

Figure 1: Graphical representation of spatial dependence of precipitation extremes on V-wind (a) without spatial 
penalty and (b) with spatial penalty for one grid-point and (c and d) temperature with spatial penalty for two 

different grid-points. The color signifies the strength of an edge. 
 

 
(a)      (b) 

 

 
(c)      (d) 

Figure 2: The distribution of edges for (a) Pressure; (b) Relative humidity; (c) Temperature and (d) V-wind. 
 

for the following variables as potential covariates: i. 
Temperature (surface level); ii. Sea-level Pressure 
(surface level); iii. Relative Humidity (surface level); iv. 
Pressure (surface level); v. Precipitable Water (Entire 
Atmosphere); vi. Horizontal Wind Speed (North-south or 
V-wind). (surface level); vii. Horizontal Wind Speed 
(East-west or U-wind). (surface level); viii. Updraft 
Velocity (Omega) (surface level) and used covariates 
from the day the extreme occurred and 2 days before 
(total 3 days). We applied our method in North-west US 
for a proof-of-concept study. Our method showed 
promising results in terms of validating the insight 
presented in [1,2] which is obtained from hypothesis-
guided physics models. However, our method shows 
more potential as it is able to discover the spatio- 
temporal variability of the existing relations, and at the 
same time discover the unknown relations. In figure 1, we 
have presented a few example graphs obtained using our 

method that shows the influence of V-wind (fig 1.b) and 
temperature (Fig 1.c and 1.d) at different neighboring 
grid-points on the precipitation extremes at a particular 
grid-point. From figures 1.c and 1.d, we can conclude that 
the dependence of precipitation extreme on temperature 
has a spatial variability. However, influence of V-wind on 
precipitation extremes can be considered as a novel 
insight. Moreover, in figure 1.a and 1.b, we show the 
benefit of using the spatial penalty in terms of achieving 
model parsimony. 
We can represent the non-zero β-values as edges 
connecting two nodes where one node represents the 
precipitation extremes in the grid-point on which the 
elastic net model is currently being trained and the other 
node is one of the potential features belonging from one 
of all the available grid-points (this includes the grid-point 
on which model is being trained). So, if there are |S| total 
grid-points in the target region, we will have a total of 
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3x8x|S| possible β-values (however, most of them will be 
zero for a sparse model) for each grid. Again, we have 
one such model for each of the |S| grid-points. So, 
altogether there can be total of possible 24|S|2 β-values or 
edges. Figure 2 shows these edge distributions, as a 
function of the distance between the grid-points they 
connect, before and after using spatial penalties. We only 
present this for the NW US owing to lack of space, but 
this kind of analysis can be done for any target region. 
The distance will be zero for a non-zero β that connects 
with a variable in the same grid-point where the model is 
being trained. The plots are separated according to the 
covariates they correspond to. We can see that adding the 
spatial penalty results in more parsimonious models 
which are more easily interpreted by the domain 
scientists, while accuracies of the models remain intact. 
Some of the interesting information available from these 
plots about NW US are as follows: (a) winds, both 
vertical and horizontal, influence the precipitation 
extremes from a large number of neighboring grid-points, 
(b) pressure from neighboring grid-points has very small 
influence on precipitation extremes, and (c) both 
temperature and precipitable water have more localized 
influence on precipitation extremes. 
 

4. FUTURE WORKS 

 

Future research needs to consider non-linear dependencies 
inherent in the climate system, include atmospheric 
covariates in the vertical layer and incorporate the 
physical relations that have been developed in climate 
science, perhaps as pre-processors to the data algorithms. 
Combining the grid-based regression models and letting 
them share information is another direction. Statistical 
properties (including uncertainty quantification) of the 
sparse regression models that focus exclusively on 
extremes need to be examined. Combining the 
spatiotemporal neighborhood-based predictions with 
teleconnections, specifically the influence of ocean-based 
oscillators, for an overall assessment of precipitation 
extremes could be a way forward. 
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