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Abstract     

Global climate models (GCMs) are important 
tools for addressing climate change questions at 
a global scale. Recent research has attempted to 
combine outputs from multiple GCMs to 
quantify uncertainty in regional climate change, 
which may ultimately inform regional 
stakeholders and policy-makers. Using a case 
study, we illustrate a potential path toward 
improvement in an existing Bayesian 
formulation, which may ultimately result in more 
physically meaningful GCM combination and 
hence add value to decision-making. This area of 
research is still nascent and may benefit from 
innovations in the computational data sciences. 

1.  Introduction 

Regional climate change is considered a fundamental gap 
in climate science (Schiermeier, 2010). Although 
statistical or dynamical downscaling is the state-of-the-art 
in regional assessment, both approaches have drawbacks, 
notably including the fact that they may not resolve 
differences between multiple GCMs (Lettenmaier, in US 
EPA 2009). Thus, it may be of interest to explore regional 
climate change directly from multiple GCMs.  

Multi-GCM approaches are now being used more often in 
attempts to capture a more complete scope of possible 
future regional climate. Equally-weighted Multimodel 
Ensemble (MME) averaging has been oft-considered a 
best practice in global and regional climate reports (IPCC, 
2007; Karl et al., 2009) and studies (Pierce et al., 2009; 
Santer et al., 2009). In addition, researchers in several 
disciplines including data mining and machine learning 
(Seni and Elder, 2010) have suggested that model 
combinations often lead to better prediction across 
different applications. However, a consideration of recent 
work by Knutti, (2010), Knutti et al., (2010), and Perkins 
et al., (2009) may suggest that, in many cases, GCM 
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inclusion/weighting within model ensembles should be 
based on their ability to simulate key physical processes. 

Another recent line of work attempts to find optimal 
weights of GCMs, although there may be pitfalls in doing 
so (Weigel et al., 2010). The latest (current generation) 
approach of this type can be found in Smith et al., (2009), 
an aspect of which will be the focus of this work. In 
addition, Monteleoni et al. (2010) developed a tracking 
approach which updates GCM weights continuously; this 
appears to outperform equally-weighted MMEs and 
handle non-stationarity with short lead times well. 
However, it is unclear whether this approach in its current 
form can handle long lead times. The simultaneous 
handling of long lead times and non-stationarity could be 
a significant advance in the climate community; thus, the 
line of research deserves further attention. 

GCM combinations may be useful for informing concise 
decision-making tools and in turn motivates the present 
study of Bayesian GCM combination (specifically, the 
latest generation exemplified in Smith et al., (2009)). We 
focus on regional climate assessments and pick one 
direction as an example where improvements may be 
possible. Specifically, we suggest that process-based 
weighting may improve the climate-science relevance and 
hence the ability of the current approach to generalize.  

2.  Approach 

2.1   Bayesian GCM Combination: Latest Generation 

2.1.1  DESCRIPTION OF THE STATISTICAL MODEL 

Bayesian combinations of GCMs attempt to synthesize 
multiple GCM-forecasts to produce probabilistic 
projections of future regional climate. The latest 
generation in this line of work (the univariate statistical 
model in Smith et al. 2009, which we use here) is a 
formalization of the Reliability Ensemble Average (REA) 
concept proposed by Giorgi and Mearns, (2002). The 
REA sought to weight GCMs based on bias, or the 
difference between past observed and modeled 
temperature, and convergence, or the distance of a given 
GCM from the future average of all GCMs. These two 
components together formed the weight, λi (or reliability) 
of model i. 
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Unknown parameters of interest in the univariate model 
include µ (current mean temperature), υ (future mean 
temperature), λi (model i weight or precision (inverse 
variance)), β (correlation between model i hindcast and 
model j forecast), and θ (a scaling parameter to allow for 
a difference in past and future GCM weight). All of the 
above unknowns are updated via a Gibbs sampler. Xi and 
Yi are known data and represent past and future simulated 
spatio-temporal mean temperatures, respectively, from 
GCM i. X0 represents past observed mean temperature, 
and λ0

 is a measure of variability in past observed 
temperature; in this work, we set λ0

-1 to the sample 
variance of 30 annually- and spatially-averaged (1970-
1999) temperature values. 

2.1.2  THE ROLE OF BIAS AND CONVERGENCE 

One key aspect of the univariate model is the expected 
value of the weight (reliability) for any given model i: 

 

      (1) 

 

It can be observed from (1) that the expected weight of 
model i is a function of “approximate” bias, Xi-µ, and 
“approximate” convergence, Yi-(υ+β(X-µ)). Because of 
the conditional dependence present in the Markov Chain 
Monte Carlo (MCMC) simulation used, both bias and 
convergence are no longer as straightforward to interpret 
as from Giorgi and Mearns, (2002), hence the use of 
“approximate”. In particular, each simulated parameter is 
dependent on other parameters simulated previously; for 
instance, a simulated µ is dependent on the previous ∑λi 

and λ0, and the next simulated ∑λi is dependent on the 
previous µ. This dependence cycle makes it difficult to 
distinguish the true relative contributions of bias and 
convergence, and hence the contribution of observational 
and GCM quantities, in the MCMC simulation.  

2.1.3  TESTING THE APPROPRIATENESS OF BIAS AND 

CONVERGENCE CRITERIA 

Past literature (Knutti et al. 2010) has noted that heavy 
focus on GCM consensus may be unwise, particularly 
because it is cannot be assured that the center (mean, 
median) of the spread of GCMs is necessarily “more 
correct”, especially given long lead times and potential 
non-stationarity in climate.  

For these reasons, it may be of interest to at least 
empirically ascertain whether and when the univariate 
model weights information from GCMs more heavily 
than information from observations and how that may 
affect posterior distributions of regional temperature 
change. We wish to make progress toward ultimately 
testing the hypothesis that too much focus on consensus 
leads to suboptimal and potentially misleading 
consequences for estimation of uncertainty in regional 
climate change. 

There may also be a risk in focusing too heavily on skill, 
unrealistically constraining uncertainty of future climate 
with respect to a few GCMs that exhibit apparent skill in 
the past (Knutti et al. 2010). However, we hypothesize 
that the univariate model in its current form may be better 
served by integrating process-based weighting schemes 
which are less trivial than the current bias measure; a 
simple bias measure may not be adequate for assessing 
model skill anyway and thus may not inform the 
univariate model well. We begin to test these hypotheses 
in the next section. 

3.  Analysis 

3.1 Empirical Assessment of Bias versus Convergence 

3.1.1  REGIONS, DATA, AND MODEL INITIALIZATION 

To empirically assess the affect of bias and convergence 
on conditions of the weights and their implications from 
the univariate model, we examine case studies from three 
of the 21 regions defined in Giorgi and Francisco (1999): 
Greenland (GRL), the Amazon Basin (AMZ), and West 
Africa (WAF). X0 and λ0 are calculated from surrogate 
observational NCEP/NCAR-1 reanalysis data 
(http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.rea
nalysis.html, Kalnay et al. 1996). All (24) Xi’s and Yi’s are 
obtained using 20th century hindcasts and moderate fossil 
fuel-emission International Panel on Climate Change 
(IPCC) Special Report on Emissions Scenarios (SRES) 
A1B forecasts, respectively, from all 24 Coupled Model 
Intercomparison Project (CMIP3) GCMs available from 
the Program for Climate Model Diagnosis and 
Intercomparison (PCMDI, http://www-pcmdi.llnl.gov/). 
For past GCM and reanalysis climate we obtain area-
weighted spatio-temporal averages from the years 1970-
1999, and for future GCM projections, we do the same 
from 2070-2099.  

3.1.2  RESULTS 

For each region, we obtain X0, XA, YA, and YB where XA is 
the average of GCM hindcasts, YA is the average of GCM 
forecasts, YB is the bias-corrected MME temperature 
forecast YB = (1/M)∑(Y-[X-X0]) (where Y and X are 
vectors of future and past GCM projections), and X0 is as 
previously defined. The goal is to ascertain from the 
MCMC simulation the distance of simulated values υ 
from YA and YB; this should yield an initial idea of the 
importance of convergence versus bias as assigned by the 
univariate model. Thus, we also compute, for each 
MCMC iteration s in 1 to S=15,000, Bs = |υ-YB| and Cs=|υ-
YA|, and compute B = % of time (Bs<Cs) and C = % of 
time (Cs<Bs), and thus a rough estimate of whether bias 
(B) or convergence (C) is treated as more important in the 
univariate model. Results in the last two columns of Table 
1 suggest that, in general, convergence seems to be 
favored by the univariate model.  
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Table 1. Bias versus Convergence in the Univariate Model 

REGION X0 XA YA YB B C 

GRL 263.32 265.66 269.96 267.62 40.91% 59.09% 

AMZ 297.27 295.98 300.37 299.07 27.34% 72.66% 

WAF 298.36 298.24 301.13 301.25 36.84% 63.16% 

 

However, note that Table 1 does not capture properties 
and possible effects of individual models. Thus, to take 
into account the potential importance of individual 
GCMs, Figure 1 plots GCM weights as proportions 
(λi/∑λi), averaged over the 10,000 iterations, versus their 
bias and convergence ranks, for all three regions. Note 
that here (but not previously) ∑λi includes λ0, where for 
each region λ0 is an observed constant but holds different 
weight.  

Subsequently, Figure 1 plots the values of Xi-X0 and Yi-YA. 
From Figure 1, we can visualize whether models with 
smaller biases or models closer to YA seem to be favored 
in the formation of weights (and ultimately the 
distribution of υ). The relationship between weights and 
bias and convergence rankings is, in general, fairly strong 
as calculated by Kendall’s τ, a rank correlation measure. 
Model weights seem to increase with higher ranks in both 
bias and convergence, but it is not clear from Figure 1 
which criterion is favored by the statistical model; this 
may depend on the input data and hence the region of 
study. Additionally, there may be some region-dependent 
degree of redundant information used when applying both 
criteria in the univariate model, as Kendall’s τ measures 
between the bias and convergence are 0.30 (GRL), 0.51 
(WAF) and 0.15 (AMZ).   

From Table 1 and Figure 1, it appears that the posterior 
distribution of temperature change may be more 
influenced by the convergence criterion, although bias 
seems to play an important role as well.  

3.1.3   ADEQUACY OF THE CURRENT UNIVARIATE MODEL 

Figure 2 displays a posterior distribution of temperature 
change in GRL, with individual GCM estimates plotted 
on the x-axis. Several GCMs project higher changes in 
temperature than most – ipslcm4 (France), ukmohadgem 
(United Kingdom), mirocmed (Japan), mirochi (Japan) – 
and several project lower changes than most – ncarccsm3, 
gisseh, gisser, and gissaom (United States). 

The univariate model has effectively assigned an 
approximate zero probability to the eight models 
mentioned. However, recent literature suggests that some 
of these same GCMs (mirocmedres, ukmohadgem, 
ncarccsm3) may capture important aspects of GRL 
climate well (Walsh et al., 2008; Stoner et al. 2009). If it 
is assumed that GCMs with past skill will continue to be 
skillful in the future, which is a debated but oft-assumed 

notion (Knutti et al. 2010), then GCM weighting may be 
informed by measures of past skill.   

Assuming (despite the debate) that using past skill in this 
case is justifiable, note that, for example from Figure 1, 
mirocmed is ranked poorly as per bias and convergence, 
and hence in Figure 2 is assigned virtually 0 probability. 
However, Walsh et al. (2008) notes that after a bias 
correction, mirocmed may be the most skillful GCM in 
simulating GRL temperature. This may suggest that, if we 
intend to capture skill well in the statistical model and let 
it guide the posterior distribution of temperature, bias 
alone is not sufficient measure for GCM weighting. We 
emphasize however, that this is just one example and that, 
even in this case, this notion should be tested more 
rigorously.  

The appropriateness of convergence may be more 
difficult to test and is outside of the scope of this work. 
However, we note that others have pointed out that 
consensus may serve to unrealistically constrain 
uncertainty (e.g. Knutti et al. 2010).  

4.  Discussion and Conclusion 

Questions around the appropriateness of observation-
based skills to generalize in the future, especially for long 
lead times, nonlinear processes and non-stationary 
conditions, may motivate the integration of more rigorous 
and physically meaningful process-based evaluation of 
GCMs into statistical models. Convergence seems to be 
treated with higher importance by the current statistical 
model, although this appears to vary per region. We posit 
that creative hypothesis-driven studies can be designed to 
test the value of model convergence as a metric. 

The improvement in the formation and treatment of skill, 
process-evaluation and convergence is just one example 
of potential improvement to this particular univariate 
model. Further development in statistical (Smith et al. 
2009) or machine learning (Monteleoni et al. 2010) 
approaches may offer pathways toward the eventual 
integration of process-based GCM weighting, as well as 
enhanced handling of non-stationarity and long lead 
times, which would be a significant advance in climate 
science. These areas deserve attention from the climate, 
statistical, and machine learning communities. 
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Figure 2. Posterior distribution of temperature change, υ-µ, for 

GRL. IC1 indicates that a particular set of initial condition 

GCM runs were used to generate this distribution. Results were 

found to be insensitive to different sets of initial conditions 

(not shown).  

Figure 1. For each region, GCM rankings of the two criteria, bias 
and convergence, are plotted against average GCM weights as 
obtained from the Bayesian statistical model. In general, the two 
criteria seem to be related, perhaps non-linearly, to weights.    


