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Abstract

We introduce Probabilistic Matrix Addition
(PMA) for modeling real-valued data matri-
ces by simultaneously capturing covariance
structure among rows and among columns.
PMA additively combines two latent matri-
ces drawn from two Gaussian Processes re-
spectively over rows and columns. The re-
sulting joint distribution over the observed
matrix does not factorize over entries, rows,
or columns, and can thus capture intricate
dependencies in the matrix. Exact inference
in PMA is possible, but involves inversion
of large matrices, and can be computation-
ally prohibitive. Efficient approximate infer-
ence is possible due to the sparse dependency
structure among latent variables. We pro-
pose two families of approximate inference al-
gorithms for PMA based on Gibbs sampling
and MAP inference. We demonstrate the ef-
fectiveness of PMA for missing value predic-
tion and multi-label classification problems.

1. Introduction

We introduce a novel approach for modeling data ma-
trices which can simultaneously capture (nonlinear)
covariance structures among rows as well as columns.
For a n × m matrix X, existing approaches which
consider both covariance structures can be broadly
divided into two categories: Gaussian Process ap-
proaches which suitably modify a given kernel to incor-
porate relational information and subsequently draw
outputs (rows) i.i.d. from a single GP (Silva et al.,
2007; Xu et al., 2009; Higdon, 2002); and Linear Mod-
els of Corregionalization (LMC) (Wackernagel, 2003;
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Gelfand & Banerjee, 2010), a widely used family of
models from Geostatistics, which effectively flattens
out the data matrix into a long vector, and uses suit-
able covariance structures over the vectorized form. As
a result, the entries, rows, or columns of the matrix
are not independent as covariances between all entries
are modeled. However, the lack of (conditional) inde-
pendence can lead to serious scalability problems for
inference in LMCs.

In this paper, we introduce the Probabilistic Matrix
Addition (PMA) model which simultaneously consid-
ers two (nonlinear) kernels K1 and K2 corresponding
to the rows and the columns of the matrix respec-
tively. The kernels are utilized in two Gaussian Pro-
cesses (GPs), from which we draw two latent matrices
with independence along rows and along columns re-
spectively. The latent matrices from the two GPs are
added to obtain the final matrix, yielding a nonpara-
metric generative model for real-valued data matrices
of any size. As GPs define priors over functions f(x),
PMA can be viewed as a simple but non-trivial way
to define priors over functions f(x, y) which when in-
stantiated lead to finite sized matrices.

Similar to LMCs, the joint distribution of PMA over
the matrix entries does not factorize over entries, rows,
or columns, and thus can capture intricate dependen-
cies among the entries. Unlike LMC, PMA does not
assume stationarity. It exhibits a conditional indepen-
dence structure over the latent variables, which allows
for fast approximate inference algorithms. We present
two methods for approximate inference in PMA, re-
spectively based on Gibbs sampling and MAP infer-
ence. The Gibbs sampler is efficient since it takes full
advantage of the conditional independence structure,
and precision matrices over the conditioning variables
can be computed using a suitable application of the
Sherman-Morrison formula. The MAP inference is ob-
tained by solving a Sylvester equation (Golub et al.,
1979; Wachspress, 1988) where both row and column
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covariances play a role in determining a latent vari-
able matrix. For parameter estimation and missing
values prediction, the inference methods are used in a
suitable alternating update framework.

We illustrate the effectiveness of PMA on two tasks:
matrix missing value prediction, where the goal is to
infer multiple missing values in a given data matrix;
and multi-label classification, where the goal is to pre-
dict an entire new row given a matrix which may also
have missing values. For matrix missing value predic-
tion, we compare PMA to a single GP capturing co-
variances either across rows or columns, Probabilistic
Matrix Factorization (PMF) (Salakhutdinov & Mnih,
2007) and LMC (Gelfand & Banerjee, 2010). PMA
clearly outperforms a single GP, and is competitive
or better than PMF and LMC. For multi-label classi-
fication, we compare PMA to three baselines includ-
ing state-of-the art approaches designed specifically for
multi-label classification. Across all evaluation mea-
sures and datasets, PMA consistently outperforms the
other methods.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce PMA, discuss its properties, and
contrast it with LMCs. We consider the missing value
prediction problem in Section 3, propose two inference
approaches for PMA, and present empirical evalua-
tion of the ideas. In Section 4, we discuss how new
rows (or columns) can be predicted using PMA, and
present empirical evaluation on the multi-label pre-
diction problem. We briefly discuss related work in
Section 5 and conclude in Section 6.

2. The Model

The Probabilistic Matrix Addition (PMA) model de-
fines distributions over real valued matrices. Let X
be a n × m matrix. We start by outlining a gener-
ative model for any such matrix for arbitrary n and
m. Consider two Gaussian processes G1 ≡ GP (0,K1)
with covariance function K1 corresponding to rows and
G2 ≡ GP (0,K2) with covariance function K2 corre-
sponding to columns. For n rows, we get the following
distribution over any column f ∈ Rn from G1:

p(f |G1) =
1

(2π)n/2|K1|1/2
exp

(

−
1

2
fTK−1

1 f

)

. (1)

Since the matrix will have m columns, we sample
f1, . . . , fm ∈ Rn independently following the above
distribution. The samples form the following n × m
matrix F :

F =
[

f1 · · · fm
]

=

⎡

⎢

⎣

f1(1) · · · fm(1)
...

. . .
...

f1(n) · · · fm(n)

⎤

⎥

⎦

. (2)
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Figure 1. Graphical model for PMA: X is generated as the
sum of F , sampled by column, and G, and sampled by row.

For m columns, we get the following distribution over
any row g ∈ Rm from G2:

p(g|G2) =
1

(2π)m/2|K2|1/2
exp

(

−
1

2
gTK−1

2 g

)

. (3)

Since the matrix will have n rows, we sample
g1, . . . , gn ∈ Rm independently following the above
distribution. The samples form the following n × m
matrix G:

G =

⎡

⎢

⎣

gT1
...
gTn

⎤

⎥

⎦

=

⎡

⎢

⎣

g1(1) · · · g1(m)
...

. . .
...

gn(1) · · · gn(m)

⎤

⎥

⎦

. (4)

Given the two random matrices F and G, we generate
the n×m random matrix X as

X = F +G . (5)

In particular, each entry of X is (Figure 1)

xij = fj(i) + gi(j) . (6)

While the generative process for X is simple, it leads
to intricate dependencies between its entries, in partic-
ular capturing (nonlinear) covariance structures along
rows as well as columns.

2.1. Joint and Conditional Distributions

Joint Distribution: First, we consider the joint
distribution of the components of the entire matrix
X = [xij ] ∈ Rm×n. Since fj(i) ∼ N(0,K1,(i,i)) and
gi(j) ∼ N(0,K2,(j,j)), the marginal distribution of
xij is a univariate Gaussian: xij ∼ N(0,K1,(i,i) +
K2,(j,j)). To compute the joint covariance, first note
that E[fj(i)fj(ℓ)] = K1(i, ℓ), E[fj(i)fk(ℓ)] = 0,
E[gi(j)gi(k)] = K2(j, k), and E[gi(j)gℓ(k)] = 0. As
a result, E[x2

ij ] = K1(i, i) + K2(j, j), E[xijxik] =
K2(j, k), E[xijxℓj ] = K1(i, ℓ), and E[xijxℓk] =
0. Putting everything together, if vec(X)T =
[XT

(:,1), . . . , X
T
(:,m)] denotes the vectorized version of X,

then the joint distribution of vec(X) ∈ Rmn is a mul-
tivariate Gaussian, i.e., vec(X) ∼ N(0,Σvec(X)) where

Σvec(X) = (Im ⊗K1) + (K2 ⊗ In) = K1 ⊕K2. (7)
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where ⊕ denotes the Kronecker sum (Laub, 2005).

Conditional Distributions: We now consider the
conditional distribution of each fij , gij , and xij given
the rest of the latent matrices, i.e., F(−i,−j) and
G(−i,−j). Given F(−i,−j), fj(i) only depends on
fj(−i), the other elements of fj . Further, fj(i) is con-
ditionally independent of G(−i,−j) given F(−i,−j). To
see this, note that in the PMA graphical model there
are two types of paths connecting fj(i) to elements
in G(−i,−j): paths going through the collider xij and
paths going through elements in fj(−i). The condi-
tional d-separation between fj(i) and G(−i,−j) given
F(−i,−j) stems from the fact that there is no condition-
ing on the collider xij for paths of the first type and
conditioning on the non-colliders (elements of fj(−i))
for paths of the second type. By a similar argument,
gi(j) depends only on gi(−j), the other elements of
gi, and is conditionally independent of F(−i,−j) given
G(−i,−j). As a result, we have

fj(i)|(F(−i,−j), G(−i,−j)) ∼ N(mf
j (i), s

f
j (i)) ,

gi(j)|(F(−i,−j), G(−i,−j)) ∼ N(mg
i (j), s

g
i (j)) ,

(8)

where

mf
j (i) = K1,(i,−i)K

−1
1,(−i,−i)fj(−i) ,

sfj (i) = K1,(i,i) −K1,(i,−i)K
−1
1,(−i,−i)K1,(−i,i) ,

mg
i (j) = K2,(j,−j)K

−1
2,(−j,−j)gi(−j) ,

sgi (j) = K2,(j,j) −K2,(j,−j)K
−1
2,(−j,−j)K2,(−j,j) .

(9)

Since xij = fj(i) + gi(j), we have

xij |(F(−i,−j), G(−i,−j)) ∼ N(mij , sij) , (10)

where

mij = mf
j (i) +mg

i (j) , sij = sfj (i) + sgi (j) . (11)

2.2. Relationship with LMCs

Linear Models of Corregionalization (LMCs) are a
broad family of related models widely studied in Geo-
statistics (Wackernagel, 2003; Gelfand & Banerjee,
2010). We compare and contrast the proposed
PMA with LMCs. The simplest form of LMC, also
known as the separable model or intrinsic specifi-
cation (Mardia & Goodall, 1993; Gelfand & Banerjee,
2010), works with vectors X(sj) ∈ Rm at locations
sj , j = 1, . . . , n. The objective is to capture as-
sociations within a given location and across loca-
tions. Following common notation from Geostatis-
tics (Gelfand & Banerjee, 2010), let X(s) = Aw(s),
be a process where A ∈ Rm×m is a full rank matrix

and wj(s) ∼ N(0, 1) are i.i.d. processes with station-
ary correlation function ρ(s−s′) = corr(wj(s), wj(s′))
not depending on j. Let T = AAT ∈ Rm×m de-
note the local covariance matrix. The cross covariance
ΣX(s),X(s′) can then be expressed as ΣX(s),X(s′) =
C(s − s′) = ρ(s − s′)T . Thus, by flattening out X
as vec(X) ∈ Rmn, the joint distribution of vec(X) ∼
N(0,Σvec(X)) where Σvec(X) = R⊗T , Rss′ = ρ(s−s′),
and ⊗ denotes the Kronecker product. More gen-
eral versions of LMC can be obtained by abandon-
ing the i.i.d. assumption on wj(s) or by considering
a nested covariance structure (Gelfand & Banerjee,
2010): C(s−s′) =

∑

u ρu(s−s′)T (u) . Since the compo-
nent processes are zero mean, the intrinsic formulation
of LMC (Gelfand & Banerjee, 2010) only requires the
specification of the second moment of the differences
in measurements, given by ΣX(s)−X(s′) = Ψ(s− s′) =
C(0)− C(s− s′) = T − ρ(s− s′)T = γ(s− s′)T . The
function γ(s−s′) = ρ(0)−ρ(s−s′), where ρ(0) = 1, is
referred to as a variogram. Learning and inference in
LMCs are typically performed by assuming a paramet-
ric form for the variogram (Zhang, 2007; Wackernagel,
2003). Several recent publications in machine learn-
ing (Bonilla et al., 2008; Teh & Seeger, 2005) can be
seen as special cases of LMCs.

The proposed PMA is related to LMCs as is evident
from the structure of the joint covariance matrices.
However, there are important differences between the
two models, including modeling assumptions as well
as efficiency of inference algorithms. We briefly dis-
cuss these aspects below. First, LMCs are station-
ary models where the covariance depends on (s − s′),
whereas PMA does not make such an assumption.
Further, generally LMCs do not have an explicit la-
tent variable based generative model in their specifi-
cation. In particular, the statistical dependency struc-
ture of the elements of X tends to be complete. As
a result, inference in LMCs typically involve one or
both of the following possible issues: (i) Inverting
large covariance matrices, say R(mn−p)×(mn−p) ma-
trices for p missing entries, which is computationally
prohibitive, (ii) Assuming a parametric form of the
variogram which greatly restricts modeling flexibil-
ity (Gelfand & Banerjee, 2010). In contrast, PMA has
a latent variable based model specification and the sta-
tistical dependency structure in PMA is significantly
sparse. The sparsity can be exploited to develop effi-
cient approximate inference algorithms (see Section 3).
Since the joint distribution is Gaussian, exact inference
can be done in PMA but has the same computational
issues as in LMCs.
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3. Predicting Missing Values

For missing value prediction, we are given a partially
observed data matrix X. The goal is to infer the miss-
ing values based on the structure of the known obser-
vations. In this section we outline two approaches for
missing value prediction, respectively based on Gibbs
sampling and MAP inference. We conclude the section
with an experimental evaluation of PMA for missing
value prediction.

3.1. Gibbs Sampling

Let X̃ be a full matrix, where the missing values have
been initialized to random values. For given gram ma-
trices (K1,K2), the sampler updates the latent matri-
ces and the missing entries in X̃. Since X = F +G, it
is sufficient to sample only F or only G—we choose to
sample G. If K1 and/or K2 is unknown, we alternate
between sampling (G,X) and estimating K1 and/or
K2.

Sampling G: Given K1,K2, and a full data matrix X̃,
using Bayes rule we have

p(gi(j)|G(−i,−j), X̃,K1,K2) ∝

p(gi(j)|G(−i,−j), X̃(−i,−j),K1,K2)p(x̃ij |G, X̃(−i,−j),K1,K2)

= p(gi(j)|G(−i,−j),K2)p(x̃ij − gi(j)|F(−i,−j),K1) ,

due to conditional independence and the fact that
F(−i,−j) = X̃(−i,−j) − G(−i,−j). Note that the indi-
vidual distributions are univariate Gaussians as in (8)
and (9). Since the product of two Gaussians is also a
Gaussian, we have

p(gi(j)|G−i,−j , X,K1,K2) ∝ N(gi(j)|µij ,σ
2
ij) (12)

where

µij =
mg

i (j)s
f
j (i) +mf

j (i)s
g
i (j)

sfj (i) + sgi (j)
, σ2

ij =
sfj (i)s

g
i (j)

sfj (i) + sgi (j)
,

(13)

with mg,mf , sg, sf are from (9).

The sampler involves several matrix inverses, viz
K−1

1,(−i,−i) and K−1
2,(−j,−j), but these can be computed

efficiently from K−1
1 and K−1

2 . For computations in-
volving K1, instead of computing n inverses of (n −
1) × (n − 1) sub-matrices of K1 (see (9)), we can ob-
tain each such inverse from rank-2 modifications to
K1. Assuming that K−1

1 has been computed, consider
the problem of computing K−1

1,(−1,−1) = K−1
1,(2:n,2:n).

According to the Sherman-Morrison formula, we have
(K1 + uvt)−1 = K−1

1 − (K−1
1 uvtK−1

1 )/(1 + vtK−1
1 u),

where 1 + vtK−1
1 u ̸= 0 and u, v ∈ Rn. We con-

struct rank-2 updates to zero out entries K1,(2:n,1) and

K1,(1,2:n). This can be accomplished in two steps, first
we obtain A = K1 + u1vT1 where u1(1) = 0, u1(2:n) =
−K1(2:n,1), v1(1) = 1, v1(2:n) = 0. Then we ob-
tain B = A + u2vT2 where u2(1) = 1, u2(2:n) =
0, v2(1) = 0, v2(2:n) = −K1(1,2:n). Applying the
Sherman-Morrison formula twice we compute B−1 =
(K1 + u1vT1 + u2vT2 )

−1. From basic properties of
block matrices it follows: K−1

1,(−1,−1) = K−1
1,(2 : n,2: n) =

B−1
(2:n,2:n). We follow a similar computation for all the

n submatrices K1,(−i,−i). Similarly, we can efficiently
compute the m inverses of (m − 1) × (m − 1) sub-
matrices K2,(−j,−j) of K2.

Sampling X̃: Missing values in X are sampled by ex-
tending the sampler and treating the missing x̃ij as
latent variables. In particular, we sample x̃ij condi-
tioned on X̃(−i,−j) and one of F and G. Conditioning
on F , we have

p(x̃ij |X̃(−i,−j), F,K1,K2) = N(xij |x̄ij , ζij) (14)

where

x̄ij = fj(i) +K2,(i,−i)K
−1
2,(−i,−i)(x̃−i,j − fj(−i)) ,

ζij = K2,(i,i) −K2,(i,−i)K
−1
2,(−i,−i)K2,(−i,i) . (15)

Parameter Estimation: If K1 and K2 are unknown,
we initialize K̂1 ≻ 0, K̂2 ≻ 0, and alternate between
sampling (G, X̃) and estimating (K̂1, K̂2). We have
already outlined how to sample G and X̃. Let F =
X̃ −G. Then, we have K̂1 = 1

m

∑m
i=1 fjf

T
j and K̂2 =

1
n

∑n
i=1 gig

T
i .

3.2. MAP Inference

As before, we start with a full matrix X̃, where the
missing values have been filled at random. For given
gram matrices (K1,K2), we alternate between estimat-
ing F (or G) and X̃.

Estimating F : Given X̃,K1, and K2 the joint log-
likelihood over (X,F ) is:

log p(X̃, F |K1,K2) = log p(F |K1) +
n
∑

i=1

log p(x̃i:|f:(i),K2) .

For a given X̃, the MAP F can be obtained by max-
imizing the joint log-likelihood, or equivalently mini-
mizing
n
∑

i=1

(x̃i − FT eni )
TK−1

2 (x̃i − FT eni ) +
m
∑

j=1

emj
TFTK−1

1 Femj ,

where eni ∈ Rn, emj ∈ Rm are vectors of all zeros with

the ith and jth position set to one respectively. A
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direct calculation shows that the solution has to satisfy
the following Sylvester equation

FK2 +K1F = K1X̃ . (16)

A solution to the Sylvester equation exists if and only
if no eigenvalue of K1 is equal to the negative of an
eigenvalue of K2 (Golub et al., 1979). Since both K1

and K2 are positive definite, the condition is satisfied,
and the solution can be obtained by standard meth-
ods (Golub et al., 1979; Wachspress, 1988).

Estimating X̃: We iteratively update the originally
missing entries x̃ij based on the mode of the distribu-
tion p(x̃ij |F, X̃(−i,−j),K1,K2), given by

x̃new
ij = fj(i)+K2,(j,−j)K

−1
2,(−j,−j)(x̃−i,j−fj(−i)) . (17)

Note that the expression is similar to (15), where we
sample from the corresponding distribution.

Parameter Estimation: We initialize K̂1 ≻ 0, K̂2 ≻ 0,
and the missing values of X randomly. Then, we al-
ternate between updating (X̃, F ), and estimating K̂1,
K̂2. We have already discussed updates for (X̃, F ).
Let G = X̃ − F . Then K̂1 = 1

m

∑m
j=1 fjf

T
j and

K̂2 = 1
n

∑n
i=1 gig

T
i .

3.3. Experimental Evaluation

We report results from two sets of experiments for
missing value prediction. In the first set, we compare
PMA to Gaussian Process regression (GPR) on simu-
lated datasets. In the second set, we compare PMA to
other algorithms, including GPR, Probabilistic Matrix
Factorization (PMF) (Salakhutdinov & Mnih, 2007),
and intrinsic LMC (I-LMC) on benchmark datasets.

Datasets and Evaluation: For the first set, we use
PMA to generate artificial datasets, of size 50 × 20
and 50 × 50. Evaluation is done using mean square
error of the predicted values. For the second set, we
use two multi-label classification datasets—Emotions
(Trohidis et al., 2008) and Scene (Boutell et al., 2004).
In multi-label classification, for n points andm classes,
class memberships are represented as n × m binary
matrix B. We consider a truncated log-odds matrix
X, with xij = c if bij = 1, and xij = −c if bij = 0. For
the experiments, certain entries xij are assumed to be
missing. Evaluation is done using class membership
prediction accuracy based on sign(x̂ij).

Methodology: All experiments were conducted using
five-fold cross validation. For the first set, both K1

andK2 are assumed to be unknown, and are estimated
from data. For the second set, K1 is instantiated using
the RBF kernel function K1 based on feature vectors
of the data objects, and K2 is estimated from data.

Algorithms: For the first set, we compare PMA
to GPR. GPR-D1 treats rows as data points, while
GPR-D2 treats columns as data points. We utilize
one implementation of PMA based on MAP infer-
ece (PMA-MAP) and one based on Gibbs sampling
(PMA-GIBBS). For the second set, we compare five
different algorithms: GPR, PMA-MAP, PMA-GIBBS,
PMA-EXACT, PMF, and I-LMC. PMA-EXACT per-
forms exact prediction by flattening out the matrix X
into a vector, assuming a covariance matrix of the form
K1 ⊕ K2. I-LMC corresponds to intrinsic LMC in the
prediction step, whereby we utilize a covariance matrix
of the form K1 ⊗ K2. For both PMA-EXACT and I-
LMC we use a provided kernel K1 and K2 is estimated
from data. The purpose of comparing the latter two
algorithms is to see whether PMA suffers by assuming
a sparser dependency structure.

Performance: The results for the first set involving
simulated data is in Figure 2. PMA performs bet-
ter than both GPR-D1 and GPR-D2, suggesting that
there is a clear benefit in modeling both K1 and K2.
While not all matrices will necessarily have relevant
correlation structure across both dimensions, when
this is the case, PMA appears to do better. PMA-
GIBBS and PMA-MAP perform similarly, with PMA-
GIBBS appearing slightly better.

The results for the second set involving benchmark
datasets is in Table 1. We make the following obser-
vations: (i) PMA clearly outperforms a GPR, illus-
trating the value in modeling correlations across both
rows and columns; (ii) The differences in performance
between PMA-GIBBS, PMA-EXACT and I-LMC are
negligible. The results indicate that PMA does not
suffer by assuming a sparser dependency structure.
Further, PMA-GIBBS is fairly accurate when com-
pared to PMA-EXACT, which can be computation-
ally prohibitive for large datasets; (iii) PMA-GIBBS
appears to perform slightly but consistently better
than PMA-MAP; (iv) PMA is competitive compared
to PMF. On Emotions, PMF appears slightly better.
On Scene, PMA is significantly better, suggesting a
clear advantage for certain datasets.

4. Predicting New Rows

We consider the problem of predicting a new row in
the data matrix X assuming that K1 is a known ker-
nel function. The motivation comes from multi-label
classification, where a new row translates to all labels
for a data point not encountered before. The methods
developed can also be applied to predict new columns
assuming K2 is a known kernel function. As before, we
outline two inference approaches based on Gibbs sam-
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Table 1. Error rates for recovering missing labels obtained using five-fold cross validation on the Emotions and Scene data
sets. Performance of GPR, PMA-MAP, PMA-GIBBS, PMA-EXACT, I-LMC and PMF is evaluated while an increasing
percentage of labels are missing in the training data. Missing Labels are randomly selected. The error rates reflect the
percentage of missing labels incorrectly recovered.

10% 15% 20% 25% 30%
Emotions

GPR 32.3± 5.9 33.1± 4.7 32.6± 5.0 34.6± 2.3 35.3± 2.3
PMA-MAP 23.9± 6.5 25.3± 3.8 26.9± 4.4 29.7± 4.8 30.8± 4.7
PMA-GIBBS 23.3± 5.3 24.8± 3.2 25.1± 3.8 27.2± 3.9 28.0± 4.0
PMA-EXACT 19.7± 4.9 23.6± 6.9 25.8± 4.0 27.3± 5.4 27.9± 4.1

I-LMC 20.3± 4.6 25.1± 5.9 25.7± 3.7 27.6± 4.5 27.8± 3.8

PMF 21.8± 5.0 22.6± 2.4 24.6± 3.0 26.3± 1.6 26.0± 3.7

Scene

GPR 14.7± 1.7 34.5± 8.0 17.2± 2.1 17.4± 1.7 18.0± 2.1
PMA-MAP 11.9± 1.0 13.6± 2.5 13.8± 2.7 13.9± 3.2 14.8± 1.5
PMA-GIBBS 10.3± 1.4 10.9± 2.6 11.1± 1.8 11.3± 2.1 12.3± 1.2

PMA-EXACT 10.4± 1.0 11.0± 1.0 11.6± 1.8 11.9± 1.2 12.5± 2.3

I-LMC 10.4± 1.0 10.9± 1.0 11.8± 1.7 11.8± 1.2 12.9± 2.6

PMF 9.2± 2.2 13.8± 3.0 16.1± 3.4 18.5± 2.8 20.1± 3.0
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Figure 2. Five fold cross validation on two artificially cre-
ated data sets. PMA clearly benefits from modeling both
covariance structures. The GPR both across rows (GPR-
D1) and columns (GPR-D2) is weaker. Gibbs sampling
appears to do slightly better compared to MAP, when it
comes to inference in PMA.

pling and MAP inference respectively. We evaluate
PMA for new row prediction in the task of multi-label
classification.

We first focus on initializing the new row x(n+1): of X.
Since F and G do not have values for this new row, one
needs to get suitable extensions for F and G. Since F
has dependencies along columns, for each column j, we
obtain the MAP estimate fj(n+1) using GP regression
and K1 yielding the extended matrix F̃ ∈ R(n+1)×m.
Since G does not have dependencies along columns,
we sample a new row gTn+1 ∼ GP (0,K2) yielding the

extended G̃ ∈ R(n+1)×m.

For Gibbs Sampling, we obtain the initial extended
matrix as X̃ = F̃ + G̃. Then we proceed as in Sec-
tion 3.1, while treating the entire last row of X̃ as
latent, in addition to G̃ and any other missing entries
in X̃. For MAP inference, since gTn+1 is zero mean,

the (n + 1)st row of F̃ serves directly as an estimate
for the new row x(n+1): . In either setting, if K2 is
unknown, we alternate between sampling/estimating
X̃ and estimating K2.

4.1. Experimental Evaluation

We compare the performance of PMA (PMA-GIBBS)
to existing state-of-the-art methods for multi-label
classification on a number of benchmark data sets.
We use the Scene (Boutell et al., 2004) and Emotions
(Trohidis et al., 2008) datasets for evaluation. As be-
fore, we use truncated log-odds during learning, and
the sign of the predicted score for evaluation.

Algorithms and Methodology: We evaluate PMA-
GIBBS against three multi-label classification algo-
rithms. For PMA-GIBBS, we assume that K1 is
an RBF Kernel over the points, where its param-
eters are estimated using cross validation, and K2

is unknown and estimated from the data. The in-
puts into K1 are given by feature vectors of the data
points. As a baseline, we consider one-vs-rest SVM as
a multi-label classifier, which we refer to as MLSVM.
We also consider two state-of-the-art approaches for
multi-label learning: Multi Label K-nearest Neigh-
bors (MLKNN) (Zhang, 2007), a method which applies
the k-nearest neighbor idea to the multi-label setting;
and Instance Based Learning by Logistic Regression
(IBLR) (Cheng & Hüllermeier, 2009), where features
are first transformed to incorporate label information
from local neighborhoods prior to applying logistic re-
gression. In all multi-label experiments, we utilize an
RBF Kernel in PMA, where the parameter σ is chosen
by cross-validation.

We also consider the setting where the training set has
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partial labels, i.e., missing entries in X. While PMA
can utilize partial labels, the other algorithms cannot.
Hence, we construct a reduced training set discarding
points with partial labels. The corresponding mod-
els are called PMA-GIBBS-D, MLKNN-D, IBLRML-
D and MLSVM-D.

We evaluated multi-label classification performance
using three well known multi-label evaluation mea-
sures: one error, precision, and ranking loss
(Cheng & Hüllermeier, 2009) by running five-fold
cross-validation. Low values for one error and rank-
ing loss are preferred, while high values for precision
are desirable.

Performance: We evaluate performance on both
multi-label datasets by considering an increasing num-
ber of labeled points. As seen in Figure 3, PMA out-
performs the other three methods on both data sets
and for all three performance measures, and the im-
provements are significant. Further, all three meth-
ods designed specifically for multi-label classification
outperform MLSVMs on all datasets and evaluation
measures.

We also tested the prediction performance when miss-
ing labels are present in the training data. As seen
in Table 2, PMA-GIBBS significantly outperforms the
other models due to its ability to leverage partially la-
beled data. Among algorithms which discard points
with partial labels, PMA-GIBBS-D outperforms the
others.

Table 2. Five fold cross validation on the Scene data set
with 25% of label entries missing. PMA-GIBBS utilizes all
available data while training. PMA-GIBBS-D, MLKNN-
D,IBLRML-D and MLSVM-D discard data points with
missing label entries in the training stage.

OneError AvePrec Coverage
PMA-GIBBS 29.7± 4.2 82.3± 2.7 10.6± 2.3

PMA-GIBBS-D 51.1± 7.5 67.5± 4.8 22.4± 3.7
MLKNN-D 70.5± 2.0 46.3± 4.3 23.7± 8.1
IBLRML-D 61.9± 8.9 36.9± 3.9 54.8± 3.9
MLSVM-D 87.9± 2.0 40.9± 1.6 83.1± 1.4

5. Related Work

In this section, we briefly review related work in ex-
tending Gaussian Processes to capture correlated out-
puts, and related work in multi-label classification. A
popular approach to capture correlations among out-
puts of a GP is to utilize Convolution Processes (CPs)
(Boyle & Frean, 2005; Higdon, 2002). In CPs, each
output is represented as the convolution of a smooth-
ing kernel and a latent function, whereby the out-
puts are assumed to be drawn i.i.d. from a Gaussian

Process. PMA does not make the i.i.d. assumption.
(Chu et al., 2007) introduce a model capable of incor-
porating relational side information in the form of a
graph, resulting in correlated outputs of a GP. Unlike
PMA, this approach does not model correlations both
across rows and columns explicitly. (Silva et al., 2007)
propose a model which assumes latent functions to be
the sum of two random variables, one of which contains
relational side information. Unlike PMA, the resulting
model can be represented by a single GP with a modi-
fied kernel, from which points/rows are drawn i.i.d. In
(Xu et al., 2009) an approach is proposed that com-
bines ideas from (Chu et al., 2007) and (Silva et al.,
2007). Latent variables are assumed to be a sum of
multiple random variables which encode relational in-
formation, whereby the aggregate latent variables are
representable as outputs of a single GP (see discussion
after (11) in (Xu et al., 2009)). Further, in (Xu et al.,
2009), links are explicitly modeled.

The literature on multi-label classification has meth-
ods which attempt to capture correlation among la-
bels. In (Zhang & Zhou, 2007), label statistics from
neighborhoods are used to build a Bayesian classi-
fier. In (Cheng & Hüllermeier, 2009), features are con-
structed based on label information from neighbor-
hoods and subsequently used in logistic regression.

6. Conclusions

We have introduced a novel model for matrix data
analysis capable of capturing correlations among rows
and columns simultaneously. PMA has sparse sta-
tistical dependency structures yielding fast approxi-
mate inference algorithms. We have presented pre-
liminary experiments demonstrating the advantage of
PMA over single GPs for matrix analysis, as well as its
ability to handle missing data. The ability of PMA to
capture correlations along rows and columns simulta-
neously appears especially beneficial in domains such
as multi-label classification. Our empirical evaluation
shows that PMA can significantly outperform some of
the existing multi-label classification algorithms. Fur-
ther, PMA can readily be extended to higher order
structures such as tensors which we plan to investi-
gate in future work.
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(c) Emotions - Ranking Loss
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Figure 3. Five fold cross validation on the Emotions and Scene data sets using three evaluation measures. PMA consis-
tently outperforms the other methods on all datasets according to all evaluation measures.
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