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Abstract. We develop a method for tracing out the shape of a cloud of
sample observations, in arbitrary dimensions, called the data cloud wrap-
per (DCW). The DCW have strong theoretical properties, have algorith-
mic scalability and parallel computational features. We further use the
DCW to develop a new fast, robust and accurate classification method
in high dimensions, called the geometric learning algorithm (GLA).
Two of the main features of the proposed algorithm are that there are
no assumptions made about the geometric properties of the underlying
data generating distribution, and that there are no parametric or other
restrictive assumptions made either for the data or the algorithm. The
proposed methods are typically faster and more robust than established
classification techniques, while being comparably accurate in most cases.

1 Introduction

We propose a new method for classification, that respects the inherent geometry
of the data cloud for each labeled group of observations, and this method is not
subject to curse of dimensionality. Our method is based onmultivariate quantiles,
which generalize the notion of quantiles for observations in dimensions greater
than one. Arising naturally from the concept of multivariate quantiles is the
notion of data depth, which is a relative measure of proximity of a given point
in space to a collection of observations. For any new or unlabeled observation in
the feature space, we estimate the label by computing its depth from the data
clouds corresponding to a training data.

There are two important properties of the classification technique presented
below. First, we do not make assumptions about the geometrical features of the
multidimensional data (for which we use the term data cloud) corresponding to
the various labels in the training sample. Thus, the proposed method respects
the geometric properties of the data, and does not impose shape restrictions on
it, hence we call it geometric learning algorithm (GLA hereafter). Second, our
method is scalable and parallelizable with respect to dimensions and sample size,
and does not suffer from the curse of dimensionality, and hence is extremely fast
in implementation. It can be seen from the development below that our proposed
method extends readily to several other supervised learning problems.

The strengths of the proposed geometric learning method arises from the fact
that it is based on multivariate quantiles. In Sect. 2 we discuss these quantiles in
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details. Based on projection quantiles, which are a form of multivariate quantiles,
we develop a Data Cloud Wrap (DCW) procedure that provides a very accurate
description of the geometry of any sized data set in any dimension. As an illus-
tration, consider Fig. 1, which contains two bivariate scatter plots, the left panel
being that of observations from a Gaussian distribution and the right panel is
where observations are from a mixture of two Gaussian distributions. The red
curves are obtained by the DCW procedure, and it can be seen that these curves
quite accurately capture the geometry of the layout of the observations in either
panel. The blue curves in either panel correspond to a projection quantile (PQ),
which reasonably trace the shapes of the data clouds, but not as accurately
as the DCW curves. The black curves are obtained by presuming a Gaussian
distribution for the data, with only mean and functions as unknowns. Notice
that while this is adequate for capturing the shape of the data cloud when the
Gaussian assumption holds, it is a severe misfit when the assumption is violated.
The regions enclosed by the different curves in either panel are not expected to
have identical probabilistic coverage, owing to different mathematical properties.

Note that in high dimensions, it is essentially impossible to graphically or
otherwise elicit how and where assumptions like Gaussian shape of the data
geometry are violated. Even if such elicitation were feasible, it is unclear how
to use that information for supervised learning, or other data-related tasks. The
geometric learning algorithm we present here is a clear alternative, that does not
rely on such encumbering assumptions.

(a) (b)

Fig. 1. Comparison of usual projection quantiles (blue) with weighted projection quan-
tiles (red), along with a Gaussian confidence ellipsoid (black) for a Gaussian scatter in
(a) and mixture of Gaussians in (b). Areas under the different curves are not expected
to be equal (Color figure online).

We discuss below how the sets of Fig. 1, and their enclosing boundary curves,
may be indexed by vectors of the unit sphere in the feature space. Curves and
enclosed sets as in Fig. 1 are fast and accurate visualization tools that are easily
available from the proposed procedure. These graphical techniques are naturally
best suited for two and three dimensional projections of the data, however, the
construction of such sets in any dimension is simple and quick in our proposed
methodology. We can take full advantage of distributed and parallel computing
tools for this purpose, since the constructions of sets like the ones depicted in
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Fig. 1 is linear in both dimension (p) of the feature space, and the number of
observations (n), and parallelizable in both dimensions and sample size. Since
the DCW is central to the geometric learning procedure, we present theoretical
properties of it in Sect. 3.

We also use the DCW algorithm to compute the data-depth of any point
in the feature space, with respect to any probability distribution function, or
data cloud. A data-depth is a relative measure of how close is the given point in
space to the center of a data cloud or a median of a (multivariate) probability
distribution function. We discuss technical results of data-depths in the current
context in Sect. 4 below. The crucial component of obtaining the depth of a given
point with respect to a cloud of observations is to project the observations in
a single direction, which is extremely fast and easy, apart from being an simple
parallel procedure.

One immediate application of the DCW and the related data-depth algorithm
is in supervised learning, presented in Sect. 5. Owing to the speed and efficiency
of the DCW and data-depth algorithms, such classification of observations can be
carried out extremely quickly, and the proposed geometric learning procedure
may be used for online supervised learning. Thus, this can be adapted for a real-
time analytics tool for classification in big data. Moreover, since we do not make
assumptions about the geometry of the description of the data cloud Xk for any
k, the proposed procedure is robust against failures of statistical assumption.
Note that most statistical assumptions are essentially unverifiable declarations
in high-dimensional data, hence such robustness properties are essential.

Apart from being fast and robust, the geometric learning procedure is sur-
prisingly versatile and efficient. In the different datasets we have analysed, some
of which are presented below, it seems that the proposed procedure is competi-
tive, if not better, than standard supervised learning methods that are in popular
usage. Note however, our goal here is to obtain (i) the shape of the data cloud,
and (ii) fast classification without encumbering assumptions, and we do not
claim to have an algorithm that will be “most accurate always”. It nevertheless
turns out that the proposed methodology that is typically hundreds or thou-
sands of times faster than, say, random forest or support vector machine-based
algorithm, we generally have a comparably high classification accuracy.

Results are presented in Sect. 7 for some simulated data examples, and in
Sect. 8 for several real data examples. We conclude this paper with Sect. 9,
where we present some caveats about using geometric learning, and some future
research directions.

2 The Projection Quantile

We denote the open unit ball in p-dimensional Euclidean plane as Bp = {x ∈
Rp : ||x|| < 1}. The notation ||a|| stands for the Euclidean norm of a vector
a, while ⟨a,b⟩ stands for the Euclidean inner product between two vectors. For
convenience, we reserve the notation 0 for a vector of zeroes, and 1 for a vector
of ones, in appropriate dimensions that will be specified in the right contexts.
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Also, we reserve the notation u to denote a typical element in this open unit
ball. We further reserve the notation eu for the unit vector in the direction of
u ∈ Bp. Thus, eu = u

||u|| when u ̸= 0 ∈ Rp and 0 otherwise. For any vector
x ∈ Rp, we define xu = ⟨x, eu⟩. The projection of x in the direction of u is,
xueu = ||u||−2⟨x,u⟩u.

Let X ∈ Rp be a random variable in p-dimensional Euclidean space. For the
moment, assume that the center of the distribution of X is the origin. Let, qu

be the (1 + ||u||)/2-th quantile of Xu, that is, P[Xu ≤ qu] = (1 + ||u||)/2. The
u-th projection quantile (PQ) is defined in [9] as

Qproj(u) = qu
u

||u|| = queu. (1)

Fig. 2. A graphical depiction of the quantile function in one and two dimensions

The PQ (projection quantile) has several interesting properties, which makes
it attractive from both theoretical and algorithmic points of view. It is linearly
dependent on the number of dimensions p in calculation of Xu. The sample
PQ computation is linear in n also. Additionally, it can be easily seen that the
computation of projection quantiles in different directions are unrelated to each
other, and can be trivially distributed over a network of computing cores.

We present a brief motivation of the above PQ here, by using the illustrative
example of univariate and bivariate Gaussian random variables. Note that for
a real random variable X, the quantile function is defined on the interval [0, 1]
of probabilities and has as its range as the support of the random variable, and
is traditionally defined as Q(a) = inf{q : P[X ≤ q] ≥ a} for any a ∈ [0, 1]. For
the standard Gaussian distribution, this is illustrated in the left panel of Fig. 2.
Note, however, the following is also true [3,4]:

Theorem 1. The ath quantile is the smallest minimizer of the function E
[|X − q|+ (2a − 1)(X − q)].

Existence and uniqueness of Q(a) is not an issue, owing to convexity of the crite-
rion function, and hereafter we assume adequate conditions to ensure that in the
population, the above convex criterion function has a unique minimizer. Assum-
ing that the random variable X is absolutely continuous is sufficient for this
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purpose, and hereafter we assume all feature vectors are absolutely continuous
random variables.

In view of the above, we may alternatively define the quantile function as
being indexed by u = 2a − 1 ∈ [−1, 1], and Q(u) as the (unique) minimizer of
the convex function E [|X − q|+ u(X − q)], as illustrated by the middle panel in
Fig. 2. This definition of a quantile function was extended by [3] for p-dimensional
random variables as being indexed by vectors u ∈ Bp = {x ∈ Rp : ||x|| < 1}, and
defined as minimizers Q(u) of E [||X − q||+ < u,X − q >], as illustrated in the
right panel of Fig. 2. This is a generalization of one of the earliest attempts at
defining multivariate median by [7]. Note that Chaudhuri’s multivariate quan-
tiles cannot be computed for p > n using the algorithm given in [3], and requires
iterative methods for even p ≤ n. Additionally, it was seem that (a) this defin-
ition of multivariate quantiles does not capture the data geometry adequately,
and (b) Q(u) and u were nearly parallel in several simulated data examples.
These observations motivate the projection quantile, where instead of using the
full Euclidean norm of X − q, we only use that part of X − q that is parallel
to u. Some amount of algebra reduces this procedure to the description of PQ
provided above, and Fig. 1 shows its efficacy.

3 The Data Cloud Wrapper

The PQ described above does not fully capture the shape of the data geometry,
mainly because of two issues. First, the spread of the data in different directions
eu from the center is different, and PQ does not accomodate for that. Second,
all information related to any feature vector Xi in the directions orthogonal to
eu is discarded. The data cloud wrapper (DCW) algorithm attempts to correct
these two discrepancies in the PQ, by introducing two weight functions. First, we
adjust the direction specific scaling using wu defined below. Then, we incorporate
the information from the ith observation in the directions orthogonal to eu using
another weight factor w2i, also detailed below.

Recall that in accordance with the notation developed earlier, Xuieu is the
projection of Xi along eu. After centering (at the co-ordinatewise median)
and scaling (using the median absolute deviation) the data, we first compute
Qproj(u), the projection quantile along u. We then compute global weights for
the direction vector u by k-mean distance. Define di is the Euclidean distance of
Xi fromQproj(u), and d(1) < . . . < d(n) are the ordered distances. We then define
the k-mean distance as d̄k = 1

n

∑n
i=1 diI{di<d(k)}. Here, k is a tuning parameter

that we choose depending on the application. We then define wu = exp(−ad̄k)
as a scaling factor to be used in the direction eu. Our next step is to compute
the norms of the vectors ||Xu⊥i|| = ||Xi − Xuieu||, which we use in the weight
function w2i = exp

[
−b ||Xu⊥i||

||Xi||

]
I{||Xu⊥i||≤ϵ}. Here, b and ϵ are tuning parame-

ters. Suppose {j1, . . . , jnu} are the indices for which w2i is non-zero. We now
define X̃ujk = wuw2jkXujk , for k = 1, . . . , nu. The DCW in the direction eu is
obtained by selecting the α = (1 + ||u||)/2-th quantile of X̃uj1 , . . . , X̃ujnu

. Let
it be q̃u. The DCW is the direction eu is defined as Q̃proj(u) = q̃ueu.
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In order to state the theoretical properties of the DCW, first define X̃ui =
wuw2jkXui, for i = 1, . . . , n. Also, consider the following two functions

Ψu(X, q) = I{||Xu⊥i||≤ϵ}

[
|X̃ui − q|+ ||u||(X̃ui − q)

]
,

gu(X, q) = I{||Xu⊥i||≤ϵ}

[(
2I{X̃ui≤q} − 1

)
− ||u||

]
.

Our results are based on the population level properties of the functions Ψu(X, q)
and gu(X, q), that is, their behavior when we take an expectation of these
functions with respect to the measure extended by X. Such properties are not
assumed for sample level functions. An extremely easy example where population
and sample values differ may be seen in the context of a Binomial (n, θ) random
variable Z. Note that the expectation of Z/n is θ, which is a smooth function
on (0, 1). However, the sample expectation, i.e., the same functional computed
under the empirical distribution function, is just Z/n, which is supported only
on discretely many values, and is not a smooth function.

We assume that EΨu(X, q) is finite for all potential choices of q, and has a
unique minimizer, which we call q∗

u. This merely states that there is a unique pop-
ulation parameter to estimate. The sample version does not require uniqueness,
but that may be enforced, as is traditionally done, by defining the minimizer to
be the infimum over all possible values at which the minimum is reached. In this
framework, we have the following results:

Theorem 2. The sample DCW is a consistent estimator of the population
DCW, that is qu → q∗

u almost surely as sample size n → ∞.

Theorem 3. Under the additional population level conditions that
Eg2u(X, q∗

u) < ∞, and that the function EΨu(X, q) is twice continuously dif-
ferentiable at q∗

u with the second derivative H being positive definite, then as
n → ∞

n1/2(qu − q∗
u) = −n−1/2H−1Sn + oP (1),

where Sn =
∑n

i=1 gu(Xi, q∗
u). This implies, in particular, that n1/2(q∗

u − q∗
u)

is asymptotically Normal, with asymptotic variance H−1V H−1 where we have
V = Var gu(X, q∗

u).

The proofs of these results, and other theorems that follow, require considerable
mathematical details. We present a very brief sketch of the main line of argument
in the supplementary material, and the details can be made available as needed.

4 Data Depth Using the DCW

We consider the support of the feature vector, X to be a convex set in Rp. For
any given point p ∈ X \{0} the support of a feature of an absolutely continuous
random vector X with cumulative distribution function F , we define the data-
depth as D(p, F ) = exp(−αp), where u = αpp/||p||, and Q̃proj(u) = p. We
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extend this to the point p = 0 by defining D(0, F ) = 1. This essentially means
that αp ∈ (0, 1] is the norm of u, which has the same direction as p, such that
uth DCW is exactly p.

The following properties are available for the data depth function D(p, F ):

Theorem 4. 1. D(p, F ) = 1 if and only if p = 0.
2. D(tp, F ) ≤ D(p, F ) for all p ∈ X , and all t ∈ [0, 1].
3. The directional derivative of D(p, F ) with respect to p exists.
4. The depth function D(p, F ) is smooth in te second argument, in the sense

that the Gateux derivative exists.
5. D(p, F ) → 0 as ||p|| → ∞.

Note that the first two properties are the essential properties of a data-depth,
while the rest of the results are technical properties that help understand the
depth function better.

5 Geometric Classification Technique

One immediate application of the DCW and the related data-depth algorithm
is in supervised learning. Consider a feature vector X ∈ X ⊆ Rp for some
(potentially high) dimension p, associated with a label Y ∈ Y = {0, 1, . . . ,K−1}.
Assumed that the observed data is a random sample {(Xi, Yi) ∈ X × Y ⊆
Rp×{0, 1, . . . ,K−1}} of such (X,Y ) pairs. HereK, the total number of labels, is
assumed known. Without loss of generality, we assume that observations indexed
by Sk = {ik1, . . . , iknk} share the common label Yikj = k, for any k ∈ Y =
{0, . . . ,K−1}. We assume that ∪K−1

k=0 Sk = {1, . . . , n}, and Sk∩Sk̃ = ∅ whenever
k ̸= k̃. We denote the nk feature observations corresponding to Sk by Xk =
(Xik1 , . . . , Xiknk

).
We elicit the label of any new or unlabeled feature vector x ∈ X by computing

its depths with respect to the K different data clouds of observations Xk =
(Xik1 , . . . , Xiknk

). We may then choose the label that corresponds to the highest
depth value, or construct labels using more complex usage of the K depth values
obtained for x. For example, one alternative to simply choosing the highest-depth
label would be to not classify an unlabeled observation if the maximum depth is
below a threshold, thus paving the way for potentially extending this algorithm
to unsupervised and semi-supervised classification problems, which we do not
pursue here.

Notice that the geometric learning-based separating boundary between two
labeled classes in the feature space is essentially the locus of the points where the
data-depths are equal from both the classes. Thus, the separating curves between
labeled classes are essentially isodepth curves. This notion can be extended to
multiple labeled classes easily, and is of independent interest.

Nevertheless, note that in order to classify a new or unlabeled observation, it
is not necessary to obtain the entire isodepth curves. The only computation that
needs to be performed is to obtain the data-depth in the direction of the unla-
beled observation relative to each labeled class, which is trivially a parallelizable
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procedure requiring at most n one-dimensional projections and few other simple
computations. This leads to the geometric learning algorithm being very much
amenable to active learning as well as online learning of class labels.

It may be noted that existing techniques for supervised learning either impose
shape restrictions explicitly or tacitly, or suffer from curse of dimensionality, or
are slow, sequential procedures requiring multiple passes through the data. Many
methods of supervised learning suffer from multiple of these issues. For example,
methods like logistic regression for two or more class labels, as well as linear or
quadratic discriminant analysis explicitly make parametric statistical assump-
tions, which imply strong restrictions on the shape of the allowed data layout.
The classical version of these algorithms are inapplicable for data in high dimen-
sions, and require additional assumptions, typically of sparsity of some functional
of the feature vector distributions, for usability in big data. Some of these addi-
tional assumptions are unverifiable in data. Nearest neighbor rules implicitly
make similar assumptions with a choice of metric and tuning parameters, while
support vector machines make an implicit choice of allowable geometry using
the kernel function. Methods like (multivariate) density estimation and subse-
quent learning procedures suffer from the curse of dimensionality. Decision trees
and ensemble-based methods like classification and regression trees, bagging,
random decision forests, boosting require iterative and often sequential compu-
tation, and may impose shape restrictions on the data and may suffer from curse
of dimensionality depending on the algorithmic details.

6 Data Geometric Feature Selection

The key benefit of the weighted projection quantile (WPQ) and geometric learn-
ing algorithm (GLA)-based classification is in high dimensional data. However,
the application of the algorithm also provides us high accuracy of classifica-
tion when applied in conjunction with a suitable feature selection algorithm. To
retain the speed benefits of the GLA algorithm, it is important that the feature
selection can also be done using a quick and fast method. We have used a very
simple and quick algorithm for feature selection which we describe in details
below.

A very simple feature selection can be done using how well individual features
are correlated with the classes. Using a Spearman’s correlation can provide us
with a very basic and quick feature ranking. However, the problem with this
method is that non-monotonic relations of features with the response.

Another method could be constructed based on a measure of distance of
distributions of a feature in each class. If a feature is informative, then the dis-
tribution of the feature between the classes will have some separation or distance.
On the other hand, if a feature is not informative at all, then the distributions
would not be substantially separated. We can use the Kolmogorov-Smirnov test
statistic Dx = sup∥F1(x) − F0(x)∥ for feature x for a two class (1, 0) response.
The Spearman’s correlation and the Kolmogorov-Smirnov test statistic would
be significantly correlated. However, Kolmogorov-Smirnov statistic D would be
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more sensitive to non-monotonic relations than the Spearman’s correlation. This
can be illustrated by Fig. 3 comprising of a the graph of a highly informative
feature and a relatively non-informative feature from the Dexter dataset from
the UCI repository, discussed in details later.

Fig. 3. Plot of two features from the Dexter dataset. The left panel (a) represents
a highly informative feature, while the right panel (b) represents a low information
feature. Our feature selection protocol quantifies this.

The third scheme of feature ranking can be a constructed using a combina-
tion of the two. We used a product of the Kolmogorov-Smirnov distance ∈ (0, 1)
with the Spearman’s correlation coefficient ∈ (0, 1). We ranked the features in
decreasing order based on the product of the Spearman’s correlation coefficient
and the Kolmogorov-Smirnov test statistic D. Usually a combination of the top
few features provide the best predictive ability. So at the second stage we chose
a p fraction of features. If there are k features we chose pk features and the
response, and constructed a precision matrix, or inverse covariance matrix, of
these pk+1 variables together using generalized lasso. Based on the strength of
relationship with the response, we re-ranked the features based on the general-
ized lasso.

Based on the final feature ranking we started with first feature and computed
the predictive accuracy on the validation set. Then we progressively included
features and kept the feature in the final feature set or deselected a feature
based on the increased in prediction accuracy on the validation set. If inclusion
of a feature increased the predictive accuracy on the validation set then we kept
that feature in the list of selected feature or else we deselected the feature. We
continued to do this until the increase in prediction accuracy by inclusion of
further features did not benefit the classification.

7 Geometric Learning Example: Simulated Data

In this section we use two simulated datasets to demonstrate the key character-
istics of the proposed geometry learning algorithm, and compare its performance
with state-of-the-art alternatives.
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Fig. 4. Isodepth separation curves for a binary classification problem in two datasets

The simulated data contains two classes, and is depicted in Figure 4 with
black and red points. We present the two simulated datasets in this figure, in
the two panels. In both panels, the black points are clustered in the apple shaped
figure, while the red points are in the top leaf cluster. The dotted lines in green
and black are the DCW curves corresponding to the black and red observations
respectively, corresponding to ||u|| = 0.9. The solid blue curve indicates the iso-
depth curve for this dataset, which acts as the curve of separation for the two
groups of data. In order to evaluate the classification accuracy and speed of our
algorithm, we randomly selected 80% of the observations from each group for
training, and evaluated the geometric learning algorithm on the rest 20% test
data from each group. For comparison purposes, we also used several standard
classification algorithms on identical training and testing datasets. This process
was repeated 1000 times to ensure sufficient randomization. All results from this
section and the next section are based on 1000 randomization runs as described
above.

As can be seen from Table 1, the geometric learning algorithm is comparable
or better in terms of classification accuracy and speed compared to the state-
of-the-art methods. In fact, it is considerably fast in comparison to the other
algorithms which achieve similar levels of accuracy in different datasets, of which
we have chosen two illustrative examples. In particular, the geometric learning
technique is considerably faster than random forest and support vector machines
(SVM). In general, parametric methods like linear or quadratic discriminant
analysis (LDA, QDA), and logistic regression, or procedures like neural networks
do not achieve a good class separator, especially in dataset (b) where the classes
are not as distinct as in case of dataset (a).

We used the standard packages and routines in the open source software
R, namely glm, lda (MASS), qda (MASS), randomForest, svm (e1071),
nnet, knn (class) for the existing supervised learning methods reported here.
In the random forest procedure, the number of trees for each run was kept at
500, sampling was done with replacement, and the rest of the parameters were
run with default setting. Radial basis kernel (= exp(−γ|u − v|2)) was used for
the SVM fit of type C-Classification using a scaling of 1 and a class weight
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equal to the proportion of observation in each class in the train set. For neural
nets, the size of the hidden layer was set at 2, case-wise sample weights were
set at 1, and entropy fit was used. Note that the random forest algorithm has
an inbuilt feature selection capability. Hence, without feature selection random
forest tends to perform much better than other comparable algorithms. More
details on the classification techniques used for our analysis, and detailed graph-
ical results from this simulation study may found in the supplementary material.
Algorithmic and statistical details of these learning techniques can be found in
[8]. The standard error of classification accuracy results under any method may
be estimated using the relation s.e. =

√
a(1 − a)/1000 where is the proportion of

accurate classifications, since the results are based on 1000 randomization runs.

8 Performance of the Algorithm on Standard Datasets

We show the performance of the dataset on multiclass multivariate datasets,
namely the celebrated Fisher’s iris dataset, the colon dataset from the R package
cepp, Arcene and Dexter from the UCI Machine Learning dataset library [2]
available at https://archive.ics.uci.edu/ml/datasets.html.

8.1 Fisher’s Iris Dataset

This is perhaps the best known dataset to be found in the pattern recognition,
learning and statistical classification literature. Performance on this dataset is a
litmus test for any new proposed machine learning method. The data contains
three classes of Iris plants of 50 instances each. The three classes are Iris setosa,
Iris versicolor and Iris virginica. There are four features related to the Iris plant
and flower in this dataset: sepal length, sepal width, petal length and petal width,
all in centimeters. We use the same methods and techniques as in the simulated
data analysis discussed above.

In Table 2 we present the average classification accuracy in the test data
sets from the Iris data. The running time of all the algorithms are very similar
since the dataset is small with 150 observations and 4 predictors. In terms of
performance, while all methods perform well, the proposed geometric learning
algorithm is the best.

8.2 The Colon Cancer Dataset

The colon dataset is a publicly available dataset for n = 62 individuals related
to colon cancer. This dataset was generated using Affymetrix oligonucleotide
arrays, and contains expressions levels for 40 tumor and 22 normal colon tissues.
Out of the originally measured 6500 human genes, p = 2000 with the highest
minimal intensity across the tissues are selected for classification purposes. Each
score represents a gene intensity derived in a process described in [1]. Note that
in this case dimension p is considerably higher than sample size n, and thus
represents a high dimensional supervised learning problem (Table 3).

https://archive.ics.uci.edu/ml/datasets.html
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It can be seen that the geometric learning algorithm is the most successful
among the supervised learning methodologies that were usable for this dataset,
both in terms of prediction accuracy, as well as in terms of speed. Methods
not reported here were not applicable without additional unverifiable technical
assumptions. Support vector machines perform marginally better in terms of
accuracy, but requires an 80-fold increase in computing time.

8.3 Arcene Dataset

The Arcene dataset consists of mass spectrometry data obtained with the SELDI
technique, and is accessed from the UCI repository [2]. The data contains data
from both cancer patients (ovarian or prostate) or healthy individuals. The clas-
sification task is to identify the cancer tissues. The data consists of 900 obser-
vations and 10000 attributes. Out of these 10000 attributes 7000 real attributes
and 3000 artificial random probes.

We use this data to illustrate two things: the speed of the proposed geometric
learning algorithm, as well as the efficacy of the proposed fast feature selection
procedure. First, we present in Table 4 the results for the geometric learning and
several other algorithms, when no feature selection is performed a priori. Notice
that the proposed GLA takes negligible amount of time compared to random
forest or support vector machine (SVM)-based methodology. It achieves a 82%
accuracy, which is marginally lower than SVM at 84%, and somewhat lower
than 89% achieved by random forest method which is about 4550-times slower.

We next performed the fast feature selection as discussed in Sect. 6. With
the feature selection we were able to improve the accuracy of classification to
0.92 with a balanced error rate (BER) of 0.08603 with 9 features out of 10000.
Balanced error rate (BER) is defined as the mean prediction error in all classes.
This is better performance the accuracy achieved for the NIPS feature selection
competition from which this data originated [5,6]. The mean BER obtained at
the NIPS challenge is 0.119±0.012 and the best BER obtained was 0.10. We ran
some of the standard classification algorithms, and the results are presented in
Table 5. Once a small number of features are selected, classical methods like naive
Bayes (discriminant analysis) and generalized linear model (GLM), of which
logistic regression is a special case, become viable, and are reported here. This
table shows that after feature selection, the proposed method is about three
times faster than the sate-of-the-art random forest method, and achieves greater
accuracy. None of the classical methods perform as well.

8.4 Dexter Dataset

The Dexter dataset is a text classification dataset with a bag-of-word represen-
tation, and is also available at the UCI repository [2]. This is a two class classifi-
cation problem based on corporate acquisition text collected from Reuters news
items. The dataset consists of 20000 attributes. Out of these 20000 attributes,
real attributes are 9947 and the rest of the 10053 attributes are random probes
for the NIPS feature selection and classification contest. The train set consists
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Table 1. Comparison of several supervised learning algorithms on the simulated exam-
ple, in randomly selected test sets. The classification accuracy is the average proportion
of test sets observations correctly classified.

Data (a) Data (b)

Method Accuracy Run time Accuracy Run time

Geometric learning 0.996 1.46 0.976 1.48

Logistic regression 0.981 0.28 0.901 0.31

LDA 0.969 0.22 0.881 0.20

DA 0.992 0.27 0.974 0.21

Random forest (500 trees) 0.998 23.61 0.976 31.77

Neural network 0.967 4.76 0.962 3.56

SVM 0.984 6.45 0.974 8.54

Table 2. Performance of different classification algorithms on the Fisher iris dataset

Method Accuracy

Geometric learning 0.9733

LDA 0.9600

QDA 0.9667

Random forest (500 trees) 0.9667

Neural network 0.9267

SVM 0.9533

Table 3. Classification results in the colon cancer data

Method # Mis-classified Accuracy Run time

Geometric learning 9 0.854 0.21

Random forest (500 trees) 10 0.839 226.92

LDA 15 0.758 45.12

SVM 8 0.871 17.36

Table 4. Arcene classification without feature selection

Method CPU time Accuracy

Geometric learning 3.67 0.825

Random forest 16714.20 0.895

SVM 966.86 0.842
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Table 5. Arcene classification output with feature selection

Method CPU time Accuracy

Geometric learning 0.32 0.92

Random forest 0.98 0.90

SVM 0.33 0.91

Naive bayes 0.28 0.89

GLM 0.35 0.74

Table 6. Dexter classification output

Method CPU time Accuracy

Geometric learning 0.43 0.89

Random forest 1.23 0.91

SVM 0.51 0.90

Naive bayes 0.37 0.86

GLM 0.35 0.69

of 300 observations and the validation set consists of another 300 observations.
With feature selection we achieved a best classification accuracy of 0.89 with a
BER of 0.116 which is also comparable to the NIPS performance. The best accu-
racy was achieved using top 75 features. Results from this analysis is presented
in Table 6. The results show that the proposed geometric learning algorithm is
again one of the fastest methods, which achieves nearly comparable accuracy
with the best existing techniques.

9 Conclusions and Future Directions

The geometric learning algorithm can be seen to be very versatile, and applicable
in complicated supervised learning problems, as well as in high dimensions. One
future research to pursue is on theoretical quantification of its classification error
bound. Another important consideration in this line of research is to evaluate
its performance in unsupervised learning problems.

The illustrative examples of the previous section demonstrates several things.
First, the proposed procedure captures the geometry of the data reasonably well.
Second, owing to its geometric properties, the speed of the algorithm is not par-
ticularly affected by the dimensionality of the feature space. However, there
is plenty of scope of parallelization, both in dimensions as well as in sample
size. Third, our method is robust against lack of assumptions, and seems to be
fairly functional even without feature selection in many examples. Naturally,
feature selection improves performance, but the rough and fast feature selection
procedure suggested here seems adequate, showing additional robustness. In all
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examples, the geometric learning algorithm is either the best in terms of accu-
racy, or reasonably close to the best, this showing the speed and robustness does
not drastically compromise its efficiency.

Some of the limitations of the geometric learning method arise from the
topological restrictions it imposes on the data corresponding to any labeled class.
While such restrictions are minimal, it is nevertheless unlikely to succeed in
classification problems where the data cloud for any class consists of more than
one connected component, or have genus greater than zero. We can envisage
how to extend the geometric learning algorithm to address these kind of data
features, but nevertheless additional research needs to be carried out.
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