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Abstract—As spatio-temporal data have become ubiquitous,
an increasing challenge facing computer scientists is that of identi-
fying discrete patterns in continuous spatio-temporal fields. In this
paper, we introduce a parameter-free pattern mining application
that is able to identify dynamic anomalies in ocean data, known
as ocean eddies. Despite ocean eddy monitoring being an active
field of research, we provide one of the first quantitative analyses
of the performance of the most used monitoring algorithms.
We present an incomplete information validation technique, that
uses the performance of two methods to construct an imperfect
ground truth to test the significance of patterns discovered as
well as the relative performance of pattern mining algorithms.
These methods, in addition to the validation schemes discussed
provide researchers direction in analyzing large unlabeled climate
datasets.

I. INTRODUCTION

The World Ocean covers more than 70% of the globes’s
surface and is the site of intense physical, chemical, and
biological activity that impact virtually every other aspect of
our planet. A plethora of phenomena occur globally and there
are significant scientific questions to be answered by effec-
tively monitoring such phenomena. Given that most climate
phenomena are dynamic, a typical workflow is to identify such
phenomena, track their evolution, and report global statistics.
The focus of this paper is on enabling the aforementioned
workflow for monitoring mesoscale ocean eddies in large
climate data.

Mesoscale ocean eddies (hereafter eddies) are coherent
rotating structures of ocean spanning tens to hundreds of
kilometers and lasting a few days to several months (see Figure
1). Eddies are critical phenomena as they dominate the ocean’s
kinetic energy and are responsible for the transport of heat, salt,
nutrients, and energy across the ocean [12]. Eddies also have
had significant impacts on marine and terrestrial ecosystems.
For instance, one study found that 7000-year-old coral reefs
were asphyxiated due to massive phytoplankton blooms, which
were enhanced by a large eddy [24]. Similarly, some of the
recent devastating landfalling hurricanes, including Hurricane
Katrina, gained intensity in the Gulf of Mexico when passing
over a warm-core eddy [18]. As a result, hurricane intensity
forecasts now account for eddy activity when making projec-
tions [25]. Subsequently, in order to understand how these
mesoscale features impact other phenomena it is imperative
that we understand their properties on a global scale.

Fig. 1. A mesoscale ocean eddy off the coast of Japan (near bottom right
corner). These large whirlpools are a source of intense physical and biological
activity. We are able to see the eddy, which is submerged under the surface
because of the enhanced phytoplankton activity (reflected in the bright blue
color). Image courtesy of the NASA Earth Observatory. Best seen in color.

A. Ocean eddies: A brief overview

Ocean eddies are three dimensional features that extend
up to tens of meters deep under the ocean’s surface (think
of a submerged cyclone). Therefore, eddies would be easy to
identify given global three dimensional measurements of key
ocean variables such as salinity and turbulence. Unfortunately,
most of the global data available do no provide subsurface
information and thus we must resort to surface data to monitor
eddies globally. The ocean’s surface is influenced by a variety
of oceanographic and atmospheric phenomena and since eddies
cannot be observed directly we must rely on the impact eddies
have on the sea surface as a proxy for inferring the presence
of an eddy.

Traditionally, the automatic detection and tracking of ocean
eddies were achieved using sea surface temperature or ocean
color satellite data [23, 10, 6]. Although eddies do impact
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Fig. 2. Global unfiltered SSH anomalies for one week in 2005. Large-scale variability makes global pattern mining challenging.

Fig. 3. Top: A schematic cross section of an anti-cyclonic eddy (in the
Northern Hemisphere) density surfaces are depressed within the eddy causing
an increase in SSH. The elevation of subsurface density surfaces replenishes
the upper part of the ocean with nutrients needed for primary production.
Bottom: A cyclonic eddy causes an decrease in SSH. Bottom image by Robert
Simmons of NASA. Best seen in color.

surface temperature and near-surface color, other phenomena
do so as well. This made identifying eddies in such datasets
prone to false positives. The advent of sea surface height (SSH)
observations from satellite radar altimeters became a better
alternative to these datasets. This is because eddy dynamics
are intimately linked to SSH. Eddies are classified by their
rotational direction. Cyclonic eddies rotate counter-clockwise

(in the Northern Hemisphere), while anti-cyclonic eddies rotate
clockwise. Cyclonic eddies, like the one in Figure 3 (bottom
panel), cause a decrease in SSH and elevations in subsurface
density surfaces. Anti-cyclonic eddies, such as the one depicted
in Figure 3 (top panel), cause an increase in SSH and de-
pressions in subsurface density surfaces. These characteristics
allow us to identify ocean eddies in SSH satellite data as close
contours of positive (anti-cyclonic) and negative (cyclonic)
anomalies.

Eddies are commonly identified in the SSH field by as-
signing binary values to the SSH data based on whether or
not a varying threshold was exceeded, and subsequently saving
the eddy-like connected component features that remain after
thresholding. The identified features are further pruned based
on expert-defined criteria that characterize eddies [5, 7]. Such
threshold-based algorithms have two distinguishing character-
istics: first, they are designed by experts who have extensive,
yet incomplete, knowledge of the application at hand. Second,
such expert knowledge is generally encapsulated in many
necessary, yet arbitrary, parameters. While parameter-laden
algorithms are sometimes needed to control for the chaos
and noise in the system, they quickly become a double-edge
sword: at what point do we stop finding novel features due to
constraining parameters that are based on incomplete current
knowledge?

In addition to potentially jeopardizing knowledge discov-
ery, expert parameterization has other notable drawbacks as
noted by [19]: first, it makes it hard to compare across
studies since it is difficult to control for the effect of different
parameterizations. Second, if the parameters were estimated
using the full dataset, the method becomes subject to overfit-
ting and might not generalize to unseen data. Finally, strong
paramterization may lead to overestimating the significance of
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spurious patterns.

The above observations are especially true when it comes
to climate data as they tend to also be highly variable.
Sources of variability include: (i) natural variability, where
wide-range fluctuations within a single field exist between
different locations on the globe, as well as at the same location
across time (see Figure 2); (ii) variability from measurement
errors; (iii) variability from model parameterization, initial
conditions, and post-processing; and (iv) variability from our
limited understanding of how the world functions (i.e. model
representation). Even if one accounts for such variability,
it is not clear if these biases are additive and there are
limited approaches to de-convolute such biases a posteriori.
Additionally, ocean eddies and their related properties (size,
propagation speed, etc.) vary by latitude [12].

To address these issues, we introduce a parameter-free
ocean eddy monitoring application and novel evaluation meth-
ods that assess the quality of unsupervised learning algorithms
using the spatio-temporal consistency of features as a measure
of accuracy. The majority of eddy monitoring applications take
the information-rich four-dimensional ocean data and reduce
it to 2 or 3 dimensions and introduce unnecessary uncertainty
in the process. We propose that by monitoring the spatio-
temporal consistency of features we are better able to identify
features compared to using space or time information alone.
Furthermore, we introduce several experiments to evaluate the
performance of our unsupervised learning method without any
“ground truth” data readily available.

The methods introduced in this work illustrate new methods
for identifying closed contour features in a continuous spatio-
temporal field. Other examples of computer science research
include the works of Mesrobian et al. [21] and Stolorz et al.
[27] who tracked cyclones as local minima within a closed
contour sea level pressure (SLP) field, as well as Bain et al.
[1] and Henke et al. [13] who identified and tracked the
InterTropical Convergence Zone (ITCZ), a prominent climate
phenomena over the east Pacific.

II. PREVIOUS WORK

Traditionally, the automatic detection and tracking of ocean
eddies were achieved using sea surface temperature or ocean
color satellite data [23, 11, 10, 6]. The advent of SSH ob-
servations from satellite radar altimeters provided researchers
with an unprecedented opportunity to study eddy dynamics
on a global scale. The earliest automated eddy detection
methods in SSH data relied on a measure of rotation and
deformation in fluid flow known as the Okubo-Weiss (W)
parameter [15]. In such studies, eddies were defined as features
where the W-parameter was below an expert-specified negative
threshold. The majority of these studies applied region-specific
parameters to study eddy activity in the Mediterranean Sea
[15, 16, 17] as well as major currents [22]. Another regional
study identifying eddies as closed streamlines with a total
360◦ angle between adjacent streamlines [3]. Chelton et al. [4]
performed the first W-parameter-based global eddy monitoring
study.

Threshold-based methods have since gained popularity
with works from Fang and Morrow [9] and Chaigneau and
Pizarro [2] analyzing regional eddy activity with a single

threshold value of ±10cm and ±6cm respectively. Chelton
et al. [5] used an iterative thresholding method to monitor
eddies globally. Faghmous et al. [7] extended the iterative
thresholding method by enforcing a minimal convexity ratio
on the features to ensure the most compact features were
preserved.

While there has been a wealth of research on the subject,
identifying eddies still remains a challenge. As noted by [5],
the W-parameter algorithms are highly susceptible to the noise
in the SSH field. Furthermore, most of the studies above
use arbitrary parameter values to separate eddies from noise.
In addition to the biases introduced by parameterization the
iterative thresholding methods are unable to separate features
that are in close physical proximity as Chelton et al. [5] points
out: “The algorithm described above can yield eddies with
more than one local extremum of SSH (i.e. merges). This could
occur because of multiple eddies in close proximity that are
contained within a single outermost closed contour of SSH,
or because of irregularity of the SSH structure within a single
eddy from noise in the SSH fields. We attempted to separate,
or split, multiple eddies ... after much experimentation, the
eddy splitting procedure was abandoned.” As we will show in
the results, merged eddies have a notable impact on reported
ocean dynamics.

III. METHODS

The most widely used eddy finding algorithms employ a
top-down thresholding approach (TD) [5]. At a high level,
the algorithm extracts candidate connected components from
SSH data by iteratively thresholding the data and assigning
binary values to the SSH field based on whether or not a
varying threshold was exceeded, and subsequently identifying
mesoscale connected component features. We refer to this
approach as top-down because the algorithm attempts to find
features at their largest possible close contour. This is achieved
by repeatedly thresholding the data at regular 1cm intervals
from −100cm to +100cm. At each threshold tri, all connected
components that have an SSH anomaly of at least tri are
identified. Each connected component is then analyzed based
on 5 expert-specific criteria to determine whether a connected
component may be deemed an eddy-like feature. These are: a
pixel count ranging strictly between 9 and 1000 pixels, at least
1cm amplitude, each feature must have at least one extrema,
every pixel within the feature’s contour must be within a
predefined maximum distance from any other pixel within the
eddy, and every feature must meet a strict latitude-dependent
convexity criterion. If the feature meets these criteria, the
algorithm then removes from consideration all pixels belonging
to the identified “eddy-like” connected component and tri is
incremented. For identification of anticyclonic eddies, tri is
initialized at −100cm and increased in 1cm steps to +100cm.
Conversely, detection of cyclonic eddies is accomplished by
decreasing tri from +100cm to −100cm.

One of the main reasons TD suffers from the limitations
reported in section II is because it consistently over-estimates
the features’ contour, which in addition to the noise in the
SSH field and the aggressive thresholding steps results in noise
being be part of a feature, and in some cases if the noise is less
then the thresholding step, the noise between features causes
them to be merged as a single large feature.

153



x

SS
H

 a
no

m
al

y

a b c d

e f g h

Fig. 4. A two-dimensional cross section of SSH anomalies. The arrows and dashed lines represent the direction of the iterative thresholding method. The color
of the feature (red or green) represents whether each method was able to accurately recover each features boundaries. TD starts from a very high threshold and
gradually decreases and stops as soon as it finds a close contour that meets its expert-criteria. Alternatively, BU (bottom row) thresholds locally starting from
each local minima and gradually grows to reconstruct the features body and stops once a feature contains two extrema. Unlike TD, BU is able to avoid adding
noise to the features contour (panel f), does not discard features due to arbitrary parameters (panel g), and is able to separate features in close proximity (panel
h) when TD effectively merges them (panel d)

A. Bottom-up (BU) thresholding

A more intuitive approach to monitoring global ocean
eddy activity starts from the simple notion that every eddy
should have a single extrema. Therefore, we can construct a
superset of all extrema in the SSH field for any given SSH
satellite snapshot. While not every extrema may represent an
eddy’s core, starting from the extrema allows us to search for
anomalies locally as opposed to globally as in TD’s case.

We define extrema as pixels that are strictly greater/less
than their 5 × 5 neighbors and seed our algorithm with the
extrema of the SSH field. For each extrema, we set a threshold
to its current value and we incrementally increase (decrease)
the threshold to construct a concave down (up) feature from
that extrema. Since every feature can have only a single
extrema, instead of having numerous stoping conditions, we
stop thresholding once the connected component contains more
than a single extrema. At this point, it is very likely that we
have overestimated the feature’s contour. When this occurs,
we simply set the feature’s contour as that of the step prior
to merging the two extrema. This intuitive observation – that
a feature cannot contain two local extrema – allows us to
abandon all expert parameters proposed in [5, 7], except for
the 9 pixel minimal feature size, because as Chelton et al.
[5] points out, 8 pixels is the minimal feature size that can
be resolved given the post-processing applied to the satellite
product used in this study. This method is fundamentally
different from the traditional TD approach in that it starts with
the most certain part of the feature – its extrema – and then
builds the body up. Furthermore, if we were to constrain BU

using similar expert-conditions it would cause BU to severely
underestimate a feature’s contour and, in many cases, discard
the feature. Once the feature’s contour is identified, we track
the features in space and time by attaching a feature in one
time-frame to the nearest feature in following time-step within
a predefined search space. Although this tracking method
has limitations [8], novel eddy tracking methods are beyond
the scope of this paper. The full source code, an interactive
eddy and track viewer, as well as all results from this study
are available as an open-source project for download from:
www.ucc.umn.edu/eddies

Figure 4 illustrates how each method performs under a
variety of scenarios. The top row (panels a-d), shows the
resulting features from a TD analysis, while the bottom row
(panels e-h) shows the features recovered by the BU approach.
Each feature is represented as a two-dimensional cross section
in the SSH anomaly field. TD methods select the largest close
contour possible that meet all expert-criteria. This works well if
there is no noise along the feature’s contour such as in panel a.
In practice, however, TD is susceptible to: (1) including noise
in the feature’s perimeter (panel b); (2) missing features that
slightly fail to meet any of the expert-criteria (panel c); and (3)
merge features that are in close proximity (panel d). The BU
approach, however, is able to recover all features, including
those that were discarded through parameterization since it is
parameter-free (panel g).

Using this algorithm, we monitored global eddy activity
using the Version 3 dataset of the Archiving, Validation,
and Interpretation of Satellite Oceanographic (AVISO) which
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contains 7-day averages of SSH on a 0.25◦ grid from October
1992 through January 2011 1.

IV. EVALUATION

The evaluation of pattern mining algorithms is extremely
challenging in unlabeled climate data. Given the large data size
and common parameterizations, the validity and significance
of identified features must be questioned. Once mesoscale
features have been identified, the quality of both the features
and propagation paths must be evaluated. This can be done in
three ways: by analyzing field studies and in-situ data, applying
methods to simulations and idealized models, or by analyzing
the types of biases inherent in the data and quantify each
method’s robustness to such biases.

Large unlabeled datasets are not foreign to computer sci-
ence. A similar problem faced other data mining applications
such as optical character recognition and autonomous image
labeling. The Internet’s hyper-scale, along with creative crowd-
sourcing initiatives (also known as Human Computation) such
reCAPTCHA [29], PHETCH (later renamed Google Image
Labeler) [28], and Amazon’s Mechanical Turk [26] allowed
us to make significant gains in labeling large complex datasets
that cannot be autonomously labeled. A crucial distinction
between labeling pictures and physical features is scale. While
millions of people can easily distinguish between the picture
of a cat and a dog, only a minute fraction could identify
mesoscale features in SSH data. In fact, until recently, even
experts misidentified non-linear eddies for linear Rossby waves
in satellite data [20]! In most studies, results of automated eddy
identification methods are tested anecdotally. For example,
Chaigneau et al. [3] randomly selected 10 altimeter snapshots
off the coast of Peru (out of 700+ possible snapshots) and
asked 5 expert oceanographers to manually draw the contour
of every eddy they could identify in the sample snapshots.
The features identified by the authors’ algorithm were then
compared to “the expert eddies” and false positive and negative
rates were computed based on how many features were intro-
duced or missed by the algorithms compared to the experts.

Ideally, one would use “ground truth” data where the eddy
tracks are known in advance and test how well each method
recovers such tracks under varying conditions. One way to
generate such data would be through a numerical simulation
(i.e. ocean model) with idealized eddies as ground truth and
then gradually add noise. However, such simulations are com-
putationally expensive and require sophisticated physics-based
models to simulate eddies and their trajectories. Furthermore,
developing unbiased methods to introduce noise into the data
is challenging. An alternative would be to use field studies
data, where floats are dropped in the ocean and subsequently
tracked. Eddies are identified when the float rotates while
translating, which occurs when the float is trapped within the
eddy interior and moving along its translating path. However,
such data make up a small sample size (in both space and time)
and are not sufficient to significantly differentiate between the
two methods.

Given that no ground truth is available, we instead leverage
the fact that both TD and BU methods perform reasonably well

1Available at http://www.aviso.oceanobs.com/es/data/products/
sea-surface-height-products/

and we can leverage the performance of both algorithms to
identify a set of features that are more certain than any feature
discovered by either methods alone. To do so, we construct
three datasets: first, features that are identified by both TD
and BU. These are the features in TB and BU that overlap by
at least a single pixel. Second, we identify the features that
are identified by TD but not BU. Finally, we find the features
that are identified by BU but not TD. This allows us to frame
our problem from an unsupervised learning problem into a
classification task, where the training set may have mislabeled
observations (i.e. imperfect ground truth). Assume that the jth

algorithm has probabilities of false positives αj , j = 1, 2 and
those of false negatives βj , j = 1, 2. Suppose there are m
observations in the dataset, for which the labels are obtained
by running the first algorithm on a given dataset. If m1 of these
m observations are classified as positives, we may expect that
m1α1 of these are mislabeled, while (m − m1)β1 of those
that are labeled negative and misclassified. Using the second
algorithm on the same dataset partitions it into eight sets,
whose probabilities are obtained by using standard multinomial
probability-based algebra.

For each set of features, we record characteristics that are
important to understanding ocean dynamics, these are: (1) eddy
amplitude, which is the difference in SSH between the eddy’s
extrema and its mean perimeter [5]. Eddy amplitude informs
of the strength of the feature’s rotation; (2) Rotational speed:
the rotation of the feature is the single most distinguishing
characteristic between an eddy and other ocean phenomena.
The rotational speed is approximated by calculating the mean
gradient in both x and y directions for each pixel in the
feature; (3) Pixel count: we measure the area of each feature
by counting the number of pixels within its contour, these
can be further transformed to m2 by measuring pixel area
based on the latitude of the pixel; (4) Feature lifetime: once a
feature is identified we are interested in tracking its trajectory
over time. Due to the noise in the SSH field, Chelton et al.
[5] considered significant only features that persist 4 weeks
or more. We follow the same convention in our analysis; (5)
Position in lifetime: In addition the total length of a feature’s
lifetime, we are interested in knowing which stage it is in. We
can quantify a feature’s relative lifetime by dividing its current
position from its total lifetime (e.g. if a feature survives for 10
weeks and it is in week 5, it has reached 50% of its lifetime).

V. RESULTS

Although we analyzed global eddy activity between 1992-
2011, for simplicity, we will focus our results on a single
year of data 2005. A full year gives us the full range of
seasonal variability while remaining manageable for analysis
and discussion.

A. Difference in features and tracks between TD and BU

For 2005, both methods found 93,603 overlapping features.
BU identified 36,120 unique features that TD did not find.
Finally, TD found 3,572 unique features that BU did not
identify. We then performed a multivariate distribution analysis
on the quantities measured (rotational speed, amplitude, etc.)
to determine whether the TD-only and BU-only features were
more similar to the more certain overlapping features.
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(a) TD only features (b) Common TD and 
BU features

(c) BU only features (d) Random

Fig. 5. Scatter plots and density estimates for rotational speed (top row), amplitude (middle row), and pixel count (bottom row) in TD only features (panel a),
shared features between TD and BU (panel b), BU only features (panel c), and random SSH regions (panel d)

In addition to considering data from the cases where
features were detected by both TD and BU methods, or by one
but not both, we also selected a random sample of 1000 points
where neither method detected an eddy. For each randomly
selected non-eddy pixel, we further randomly select a k × k
neighborhood of pixels to form the body of this random
feature. k ranged between 3 and 9 pixels for a random feature
size of 9 to 81 pixels. In this random case, feature lifetime
and current position are not defined since these are not real
features. Our first analysis consisted of determining whether
both TD and BU did reasonably well versus random noise to
support our assumption that we could use the features they
both identify as imperfect ground truth.

The data for rotational speed, amplitude, and pixel count
are all positive-valued for any identified eddy. However, the
amplitude for random formations may be negative. In our
random selection of 1000 non-eddy pixels, 527 had negative
amplitudes. We removed these cases from the comparison, so
that the feature space for the random formations and potential
eddies are the same. A preliminary analysis then suggested that
rotational speed and amplitudes may be modeled as log-normal
variables, hence a logarithmic transformation was implemented
on these features to achieve approximate Gaussianity.

Figure 5 shows the scatter plots and density estimates for
these variables in the three datasets we used. The diagonal
shows the probability density estimates for rotational speed
(top row), amplitude (middle row), and feature pixel count
(bottom row). The remaining panels show the scatter plots of
the log-transformed dimensions between each row and column.
For instance the scatter plot in the second box in the top row
of panel (a) shows the TD-only features’ rotational speeds and
associated amplitudes.

By observing the TD only features, one may notice that
that estimated amplitude density is truncated at 1, due to
the 1cm constraint imposed by TD. Furthermore, many of its
scatter plots are unable to recover the full range of the sample
population captured by the TD and BU common features.
For example, the TD-only density severely underestimated the
number of features with low pixel count and high amplitude
(the rightmost middle scatter plot in panel (a)). Small feature
size along with high amplitude are signs of high energy com-
pact features, which are important to ocean dynamics. Such

features would be missed by TD. Such a lack of representation
is a clear example of how highly parametrized methods fail to
generalize to unseen data.

Hotelling’s T-squared [14] is a method of comparing
multivariate observations. We use it to verify whether TD
is closer to the random data compared to the BU method.
The T-squared distances between random data and TD/BU are
32571.48 and 39436.91 respectively, although both of these
methods are significantly distant from the random data. Note
that these numbers reflect the units in which the features
are measured, and should be used only for comparison (they
carry no meaning on an absolute scale). This result gives us
confidence that both methods significantly outperform random
chance and we can use the features detected by both as an
imperfect ground truth.

We used several linear discriminant discriminant analyses
on the logarithmically-transformed data to estimate the sensi-
tivity and specificity of the TD and BU methods. In order to
study sensitivity, we consider the percentage of cases where
these methods detect, or fail to detect, a true eddy from a
random formation in the ocean. When the transformations were
used on rotational speed, amplitude, and area in pixels, both
methods classified every eddy and random formation correctly,
even when the training sample size was as low as 10%
of the data size. Without the transformations, each methods
misclassified about 5% of the cases, which is not unexpected
since the standard assumptions of linear discriminant analysis
fail to hold.

While both methods may be good at discriminating random
noise and eddy features, the next question of interest is
the relative performance of these methods. That is, are both
methods equally able to detecting eddies, or does one of them
tend to miss a few more than the other? This is a question of
specificity. Note that for a potential eddy identified by either
method, we have additional information in feature lifetime and
the logit-transformed relative lifetime position. Using these
variables, TD has a misclassification error of 12%, while BU
has a misclassification error of 3.5%. This figure is obtained by
accounting for the fact that the BU method misclassifies about
4% of the potential eddies identified by TD, which in turn
correctly labels eddies about 88% of the time. Some amount
of algebra reveals that the true misclassification rate for BU is
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thus around 3.5%.

Note that in the above analysis, we assumed that the
data has standard independence and exchangeability properties
that are required for the statistical analysis. We ensured that
random sampling assumptions are valid for our study by not
only comparing detected eddies with a sample of random
features, but also by using randomized training samples for
our discriminant analyses. In the absence of ground truth, we
had to use the three sets of data on eddies detected by both
methods, or by only one of the two methods. Our results
indicate that eddies and random formations are very well
separated in a log-transformed space.
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Fig. 6. Number of overlapping features versus track lengths, color-coded
based on the number shorter distinct TD tracks associated with a single BU
track.

B. Impact of parameters on reported track lengths

The majority of parameters used in previous studies can
be strict and arbitrary. To investigate the gains of introducing
a parameter-free method, we identified all tracks that have a
feature that violates one of the criteria used in the pervious
methods. Due to space limitations we will only discuss the
impact of removing the 1cm amplitude criterion. In this
analysis, we find all tracks that have at least one BU feature
with an amplitude less than 1cm. We then look at every BU
feature in the track and see if it overlaps with a TD feature.
Figure 6 shows a scatter plot of overlapping features versus
track lengths, where each point in the plot is colored based
on how many distinct tracks the TD approach broke the track
up into due to its harsh 1cm amplitude restriction. That is,
for every track that contains at least a single feature with an
amplitude less than 1cm, how many TD tracks are associated
with it? This plot reveals the different effects a harsh criterion
can have on resulting tracks. Take the bright red point in
the upper right corner for example, it represents a single 45
week BU track which has 40 corresponding TD features, yet
TD identified five distinct tracks along the single 45-week
BU track. These disjoint tracks are due to the five feature
discrepancy (45 − 40) between TD and BU. At least one of
the missed TD features were due to the amplitude criterion.

Fig. 7. An image of five distinct eddies that were merged together by the
TD approach, but broken up by the BU approach. Left panel shows the SSH
anomaly. It can be easily seen that there are at least five well-defined features
in the frame. Right panel: the features as identified by TD (light blue) and BU
(maroon). Although this is an extreme case, artificial merges have significant
implications on a variety of eddy dynamics.

Fig. 8. A density map showing the regions with high concentration of features
with more than a single extrema (merges).

It is important to also note the points that are along the
diagonal. These are tracks that have the same exact number
of TD and BU features (i.e. matches), yet we know that at
least a single BU feature in every track violates the 1cm
amplitude condition. A closer examination of these tracks
reveals that even though BU identified a feature with a less
than 1cm amplitude, TD either merged or had a larger contour
which resulted in the same feature passing the 1cm amplitude
criterion.

Imposing a 1cm amplitude is an example of how one can
overestimate the significance of patterns identified using a
parameter-laden approach. This is because if one was to report
a high number of short lived eddies in a certain region, these
“patterns” would be incorrect because these tracks would not
be short-lived, rather tracks would be prematurely terminated
because a single feature along its path temporarily fell below
the 1cm amplitude threshold.

C. Impact of merged features

As previously mentioned, merging eddies is a significant
issue with threshold-based methods. Figure 7 shows the SSH
anomalies of five cyclonic features. As it can be seen, the TD
method merged the five features into a single large feature
(light blue feature, right panel) while BU (maroon feature) did
not. To identify merges within TD features, we analyzed all
TD features that contained more than a single BU feature. Of
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the 91,177 features identified, 5,875 were identified as merges.
The large prevalence of merged features (see Figure 8) alters
the results reported in terms of feature properties, such as
surface area, amplitude, and position of centroid, as well as
their tracks.
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Fig. 9. Rotational speeds of the merged TD features, and their corresponding
un-merged BU counterparts. BU is able to un-merge a large number of large
TD features while maintaining high rotational speeds, which are characteristics
of non-linear eddies.

1) Impact on rotational speed: Figure 9 shows the mean
rotational speed of the large TD merged feature and the max-
imum of the n un-merged or corrected features from BU. We
select the maximum speed to show a one-to-one comparison.
The red diagonal line denotes the features where both the
merged and un-merged features have the same rotational speed.
The points that are above the red line represent the features
that have a faster rotational speed after un-merging. In most
cases, the corrected features have a larger rotational speed
than the merged feature. A closer inspection of the area near
the (0, 0) origin, shows that many large features that have
weak rotational speed tend to also have equally low un-merged
rotational speeds. These are the cases where a true merge
occurred and two weakening eddies might merge or split and
dissipate (terminate).

2) Impact on displaced centroids: Another effect of merg-
ing multiple features is that the centroids for merged features
will be in the middle of the merged features instead of at
the center of each individual feature. To quantify the centroid
accuracy of each method, we used Chelton et al. [5]’s definition
of the tightest possible contour of the feature by selecting
the contour with the highest average rotational speed. Given
that such a feature would be the most compact, its centroid is
most likely to be the feature’s “true” centroid. For each feature
identified by TD and BU, we compute its tightest contour and
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Fig. 10. The distance between the centroid of the contour with maximum
rotational speed and the TD (maroon) and BU (blue) centroids. The centroid
of the contour with maximum rotational speed is the most certain part of the
eddy. BU centroids tend to be closer than TD centroids due to more compact
bodies and by avoiding merges where centroids are severely displaced.

measure the distance between the optimal contour’s centroid
and that of the original feature. We find that in most instances
BU centroids are closest to the “true” centroids.

3) Impact on track Lengths: A final significant impact of
artificial merges is altering reported track lengths. When a
feature is propagating and is attached to a merged feature it
causes the features associated with the merge to have one
of their tracks terminated. Additionally, artificially merged
features tend to extend eddy lifetimes since the distorted
centroid would be closer to unrelated features and effectively
extend certain tracks.

To investigate both of these side effects, we analyzed the
tracks associated with features that were labeled as potential
merges. Figure 11 shows how features that were deemed in-
significant due to artificial merges may have a more significant
lifetimes than reported. While artificially merged features can
have a multitude of cascading effects on neighboring tracks, we
will focus on the impact of merges on non-persisting features.
In panel (a) of Figure 11, we notice that a large number of
tracks associated with merged features do not persist for more
than four weeks. However, it is unclear if these features are
truly spurious or whether the short lifetimes are due to the
artificial merging. We looked at all the tracks associated with
BU features that resulted from un-merging the TD features that
did not persist for more than a week (leftmost column in panel
(a)). The lifetimes of such un-merged BU features are shown
in panel (b). Although 500+ of the un-merged features do not
persist over a single week, nearly 200 persist for more than 4
weeks compared to the TD reports of such features terminating
after a single week.
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Fig. 11. Impact of merges on reported track lifetimes. Panel (a) shows the track lifetimes of features associated with TD merges. Of the features that persisted
for 1 week (far left bar in panel a), we analyzed the lifetimes of the un-merged features found by BU (panel b). We find a significant number of features that
we label as insignificant (less than 4 weeks) by TD as having persisted more than 4 weeks by BU after un-merging

VI. CONCLUSION AND FUTURE WORK

In this paper we presented a parameter-free method to iden-
tify patterns in continuous spatio-temporal data. We are able to
reproduce more significant features than the most widely used
eddy identification scheme which employes numerous expert-
defined parameters. We also presented numerous analyses that
give an in-depth look into the various challenges researchers
face when mining large unlabeled climate datasets. As the size
of climate datasets continue to grow and the need for rapid
exploratory research tools become crucial, we must pay special
attention to three aspect of the pattern mining process:

1) Object definition and identification: The first chal-
lenge is to be able to define a signal that characterizes
the feature of interest. This has usually been done
using domain expertise to define a feature’s signal on
the continuous field. Such an approach is not always
desirable since we have significant knowledge gaps in
many domains where large dataset exist. Therefore,
an exploratory feature identification process might be
preferable, especially in large datasets.

2) Performance of spatio-temporal learning algorithms:
Most of the problems at hand have no reliable
“ground truth” data and therefore rely on unsuper-
vised learning techniques. Hence, it is crucial to
develop objective performance measures and exper-
iments that allow to compare the performance of
different spatio-temporal data mining algorithms.

3) Significance testing of features: A major challenge
is the ability to distinguish a meaningful signal from
noise, that is once a signal has been discovered how
likely does a feature match a signal at random? This
is especially true in exploratory research in large
datasets where a very large number of relationships

are tested and, effectively increase the likelihood of
observing a strong statistic by random chance.
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