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Abstract—We introduce a novel one-step model selection
technique for general regression estimators, and implement
it in a linear mixed model setup to identify important pre-
dictors affecting Indian Monsoon precipitation. Under very
general assumptions, this technique correctly identifies the
set of non-zero values in the true coefficient (of length p) by
comparing only p + 1 models. Here we use wild bootstrap
to estimate the selection criterion. Mixed models built on
predictors selected by our procedure are more stable and
accurate than full models across testing years in predicting
median daily rainfall at a station.

I. MOTIVATION

Obtaining a meaningful statistical model of Indian
summer monsoon precipitation is challenging from both
physical and statistical perspective due to its erratic
nature. This is an extremely important problem because
monsoon precipitation is the major source of water for
the mostly seasonal agricultural practice in the subcon-
tinent. Dietz and Chatterjee show in [1] and [2] that
in addition to several covariates and climate variables
(found in references cited therein) there is a need to
include random effects in modeling to quantify different
source of uncertainties, e.g. variation across years and
weather stations.

Selecting important covariates is a challenging task
in this problem since unlike traditional approaches like
linear regression, our problem involves both fixed and
random effects, and potentially heteroskedastic error
structure. Also, linearity or other regression assumptions
are not guaranteed to hold and are hard to verify within
the current context. Consequently, traditional likelihood-
based methods may suffer from lack of robustness,
while ad hoc techniques like randomization imply strong
hidden assumptions which are unlikely to hold with
current data. Here we tackle all these issues by selecting
covariates utilizing a general model selection criterion
that depends on the behavior of coefficient estimates
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in the parameter space, and demonstrate efficacy of the
resulting model in out-of-sample forecasts.

II. METHODS
A. Data depth-based model selection

The depth of a point x € RP, is any scalar measure of
its centrality with respect to a data cloud X (or equiva-
lently the underlying distribution F' [3], and is denoted
by D(x,X) (or D(x,F')). Consider now a regression
setup where estimates of a coefficient vector 3, based on
a sample of size n, follow sampling distributions that can
be asymptotically approximated by elliptic distributions
F,, centered at 3 that approach unit mass at 3 as n — oc.
In this context, we define a model selection criterion for
any candidate model, specified by «, the set of indices
where 3 takes non-zero values:

Cu(@) =E [D (Ba: Fn)] (M
Here Ba is the estimate of (3, obtained from data
concatenated with O at indices not in «, and D is any
depth function. When « does not contain all non-zero
indices in the true model, we have C,(a) — 0 as
n — oo [4]. Otherwise for any n, the criterion maximizes
at the smallest correct model, say «ag, and decreases
monotonically as zero indices are added to o one-by-
one. In a sample setup, the unknown distribution F;, and
the expectation in 1 are estimated by bootstrap.

For large enough n, we can obtain the most parsi-
monious correct model from true C,, values of only
p + 1 models where p is the dimension of 3. We use
the following scheme:

1) Calculate C,, for full model,

2) Drop a predictor, calculate C,, for the reduced
model;

3) Repeat for all p predictors;

4) Collect predictors dropping which causes C,, to
decrease. These are the predictors in the smallest
correct model.



MAJUMDAR, DIETZ, CHATTERJEE

5th International Workshop on Climate Informatics
September 24-25, 2015

£7 2\
()

2015

Hosted by the National Center for Atmospheric Research in Boulder, CO

25 year rolling prediction of next year's median rainfall

Year 2012

A Positive resid

@ + — Fullmodel 3
- - Reduced model .

density

® negative resid

— Truth
— Fullmodel pred
— Reduced model pred

year 10g(PRCP+1)

(a) (b)

©)

Fig. 1: (a) Comparison of MSE for full and reduced model predictions across years, (b) Density plot for actual log rainfall and predictions
in year 2012, (c) Station-wise reduced model residuals for 2012

B. Linear Mixed Models

Linear mixed models add an extra layer of complexity
above the standard linear model setup by assuming latent
unobservable random effects. We define this model as:

Y=XB+Zv+e (2)

where Y, is the vector of responses, X, is the ma-
trix of predictors and :3px1 is the vector of coefficients,
which are referred as fixed effects here. The latent layer
comes in the form of the random effect vector ~.
(k < n), and the random effects design matrix Z, «.
We assume that v ~ Ny (0,3); Sgxk positive definite,
and the random errors €,x1 ~ N(0,c?).

III. DATA AND IMPLEMENTATION

We use data from 36 weather stations across India for
1978-2012 to model daily median rainfall at a station
within a year. In addition to station-specific variables
of latitude, longitude, and elevation, we use yearly
medians of local variables including maximum and min-
imum temperature, tropospheric temperature difference
(ATT), u- and v- winds at 200, 600 and 850 mb, Niflo
3.4 anomaly and Indian Dipole Mode Index (DMI), as
well as of global variables that have known connec-
tions with the Indian monsoon pattern. These include
10 indices of the Madden-Julian Oscillation (MJO), 9
northern hemisphere teleconnection indices, solar flux
levels, and land-ocean Temperature Anomaly (TA).

We implement the model in 2 taking all the variables
mentioned above as fixed effects, and year as a single
random effect (i.e. £k = 1). We use separate wild
bootstraps [5] on estimated random effects and residuals
to obtain resampled observations. Among 35 predictors

considered, 21 are selected by our procedure- all of
which have been proposed in literature. TA seems to have
a large influence. We also note several MJO indices are
selected when starting from a full model with everything
but TA, but are dropped in favor of TA when it is
included in the full model.

We use a 25 year rolling validation scheme to compare
prediction performances of full and reduced models. For
each of the years 2003-2012, we use the past 25 year’s
data as training data. Figure 1 summarizes some of the
results. Predictions from the reduced model are generally
more stable across testing years (less MSE in panel (a))
than those from full model. Also, as demonstrated by
panels (b) and (c) for year 2012, the reduced model
provides a less biased estimate of the true values. We
observe this reduction in bias for all 10 testing years.

Future work includes investigating spatio-temporal
dependencies, detailed studies into algorithmic efficiency
issues and further development of theoretical properties
of the proposed model selection tool.
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