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Abstract—Spatio-temporal models add complexity, but

not necessarily value, to some climate analyses. To confirm

the presence of spatio-temporal dependence, a hypothesis

test should be conducted. The Space-Time Index is one

statistic to detect such dependence; this statistic is simple,

easily interpretable, and used in several disciplines. In an

application to Indian monsoon precipitation thresholds,

residuals from logit-normal mixed models were tested for

spatio-temporal dependence. No evidence of dependence

was detected in high thresholds.

I. SPACE-TIME INDEX (STI) METHODOLOGY

Spatio-temporal dependence in climate related data
should not be ignored in modeling efforts. Along with
graphical diagnostics, it is advantageous to have formal
hypothesis testing procedures in place to understand
the exact nature of spatio-temporal dependence, and to
evaluate whether a given statistical model is adequate
in capturing such dependencies in the data. Elegant
procedures exist for testing separability, symmetry [1],
or stationarity [2] in the data.

Another simple method still in current use ([3], [4],
[5]) is the Space-Time Index (STI) [6] which combines
Moran’s I [7] and the Durbin-Watson statistic [8]. The
STI is interpretable and is useful for conveying informa-
tion to stakeholders who may not be experts on spatio-
temporal data patterns and related statistical models. Our
goal is to evaluate the performance of STI for modeling
dependencies in climate data. Based on that, we will
propose and conduct future studies on computational
methodology-based generalizations to overcome the lim-
itations of STI as it applies to non-stationary, high-
dimensional data from climate applications.

In its current form, the STI tests the null hypothesis
of no spatio-temporal dependence in a vector autore-
gression process over the entire spatial field given by:
yt = Ayt�1 + ✏t where t 2 {1, ..., T} represents
discrete time. Let i, j 2 {1, ..., n} represent stations,
ȳ = 1

nT

PT
t=1

Pn
i=1 yi,t, and cij,t�1 = 1 if stations i

and j are neighbors during time t � 1 and cij,t�1 = 0
otherwise. Then,
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Under an asymptotic normality assumption, the sampling
distribution of STI can be used to conduct the test.

II. STI SIMULATION RESULTS

Structural assumptions are imposed to run simulations.
First, assume the neighbors of a point remain constant,
i.e. cij,t�1 = cij,t for all t. Neighbors of station i (Ni) are
weighted by scaled distances (wi) where wi satisfies:

1) w
ij

=0 if j 62 N
i

, w
ij

=
P

j2Ni

distjP
j2Ni

distj
for j 2 N

i

2)
P

n

j=1 wij

= 1 for all i.

Next, generate the ith vector with time parameter
(⇢time) and space parameter (⇢space) as:

t = 1 : y
i,1

i.i.d⇠ N (0,�2) for all i

t > 1 : y
i,t

= ⇢
time

· y
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·
TX
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X
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✏
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i.i.d⇠ N (0,�2) for all i, t

In one setting, a 100 point time series for a 3x3 grid of
spatial locations was generated independently 100 times
with different neighbor networks. Detection of spatio-
temporal dependence was defined as obtaining a p-value
< 0.05. As seen in Fig. 1, the power of the test was low,
especially as the number of spatial neighbors increased.
There was also a failure to detect some of the highest
combinations of correlations as seen in the corners of
the figures.

Fig. 1. � 1 and �3 Neighbor Detection of Space-Time Correlation
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Fig. 2. Neighbors Network for Stations within 500KM & 1250KM

III. STI APPLICATION IN INDIAN MONSOON
PRECIPITATION MODELING

We apply STI to the logit-normal model residuals
produced in [9]. Data specifications remain the same,
using daily data for monsoon seasons from 1973-2013.

Let station i 2 {1, ...,m}, day d 2 {1, ..., ni},
and year k 2 {1973, ..., 2013}. Given a precipitation
(mm·day�1) threshold ⌧ 2 {50, 75, 100, 125} and daily
precipitation event Zidk, let Tidk = I(Zidk > ⌧). Let
xijk be a vector of covariates and U and W be vectors
of random effects for station and year, respectively. Then,
the logit-normal mixed model is:

Level 1: T
idk

|U = u,W = w

ind.⇠ Bernoulli(✓
ijk

),

logit(✓
idk

) = x

T
idk

� + u
i

+ w
k

,

Level 2: U
i

ind.⇠ N (0,�2
station

),W
k

ind.⇠ N (0,�2
year

)

U
i

independent of W
k

for all (i, k).

The model explicitly accounts for time dependence but
only implicitly for spatial dependence, thus, we want to
assess the need for further structure.

We collect Pearson-like residuals (ridk) for each ob-
servation during model estimation within SAS/STAT R�

9.3. Because of the model structure, linearized pseudo-
data (p̃idk) is computed for comparison to logit(✓̂idk) for
each observation during model fitting. eBLUPs are used
as estimates for random effects u and w. Thus, the model
residuals are:

r
idk

=
p̃
idk

� (xT
idk

�̂ + bu
i

+ cw
k

)
cVar(p̃

idk

|u,w)
.

Five distance settings are employed resulting in different
neighborhoods. Networks for 500KM and 1250KM are
seen in Fig. 2.

Table I displays the higher rainfall thresholds do not
show evidence of spatio-temporal dependence in the
model residuals. Results are clearly influenced by the
choices of neighbors. However, no spatio-temporal de-
pendence was detected at any distance for higher rainfall
amounts. Taking into account the power of the test, we
conclude that if dependence exists, it is not extremely
strong and may not require additional structure.

TABLE I
P-VALUES FOR STI BASED ON MODEL RESIDUALS

# KM in which Neighbors Exist
Rain in mm·day�1 250 500 750 1000 1250

� 50 0.00 0.01 0.11 0.25 0.33
� 75 0.00 0.16 0.59 0.67 0.61
� 100 0.27 0.58 0.84 0.90 0.67
� 125 0.70 0.84 0.93 0.97 0.71

IV. FUTURE WORK

Although STI provides a useful first effort in identi-
fying spatio-temporal dependence in residuals, testing is
currently restrictive in scope. Future research includes:

1) Modification of the hypothesis to test for temporal
or spatial correlation separately.

2) Modification of the space-time process to include
AR(p), p > 1 correlations.

3) Conducting a permutation test rather than relying
on asymptotic normality

4) Investigating cancellation of correlation when spa-
tial and temporal signals have opposite signs
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