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Abstract. Earth science data consists of a strong seasonality component as indicated by the
cycles of repeated patterns in climate variables such as air pressure, temperature and precipitation.
The seasonality forms the strongest signals in this data and in order to find other patterns, the
seasonality is removed by subtracting the monthly mean values of the raw data for each month.
However since the raw data like air temperature, pressure, etc. are constantly being generated
with the help of satellite observations, the climate scientists usually use a moving reference base
interval of some years of raw data to calculate the mean in order to generate the anomaly time
series and study the changes with respect to that.

In this paper, we evaluate di↵erent measures for base computation and show how an arbitrary
choice of base can skew the results and lead to a favorable outcome which might not necessarily be
true. We perform a detailed study of di↵erent base selection criterion and base periods to highlight
that the outcome of data mining can be sensitive to choice of the base. We present a case study
of the dipole in the Sahel region to highlight the bias creeping into the results due to the choice of
the base. Finally, we propose a generalized model for base selection which uses Monte-Carlo based
methods to minimize the expected variance in the anomaly time-series of the underlying datasets.
Our research can be instructive for climate scientists and researchers in temporal domain to enable
them to choose the right base which would not bias the outcome of the results.

1. Introduction

An important component of Earth Science data is the seasonal variation in the time series. Seasons
occur due to the revolution of the Earth around the Sun and the tilt of the Earth’s axis. The change
in seasons brings about annual changes in the climate of the Earth such as increase in temperature
in the summer season and decrease in temperature in the winter season. The seasonality component
is the most dominant component in the Earth science data. For example, consider the time series
of monthly values of air temperature at Minneapolis from 1948-1968 as shown in Figure 1. From
the figure, we see that there is a very strong annual cycle in the data. The peaks and valleys in the
data correspond to the summer and winter season respectively and occur every year. The seasonal
patterns even though important are generally known and hence uninteresting to study. Mostly,
scientists are interested in finding non-seasonal patterns and long term variations in the data. As a
result of the e↵ect of seasonal patterns, other signals in the data like long term decadal oscillations,
trends, etc. are suppressed and hence it is necessary to remove them. Climate scientists usually aim
at studying deviations beyond the normal in the data.

In order to remove seasonality from the raw data, climate scientists generally remove the monthly
mean value from the raw data. For example, although more than 100 years of data are available
for the temperature anomaly time series at the National Climatic Data Center, only the 100 years
1901-2000 are used to calculate the annual cycle [3]. Often, climate scientists only take 30 years
as a reference interval and construct anomalies with respect to that interval. There are several
important results and implications derived from the anomalies constructed using a short reference
base. In general, climate data has complex structures due to spatial and temporal autocorrelation.
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Figure 1. The figure shows the monthly mean air temperature at Minneapolis for
a 20 year period. From the figure we can see that there is a very high annual cycle
and the temperatures go up and down with the change of seasons.

The choice of the base significantly impacts the patterns that can be discovered from it and some
really important climate phenomenons are computed using a fixed base. For example, teleconnections
or long distance connections between two regions on the globe are represented by time series called
climate indices. Climate indices are time series that summarize the behavior of the selected regions
and are used to characterize the factors impacting the global climate. These climate indices are
computed by the Climate Prediction Center [1] using a moving 30-year base period and currently
they use a base period of 1981-2010. Another important set of results computed using a fixed base
are incorporated in the International Panel on Climate Change (IPCC) Fourth Assessment Report
on understanding climate change[13].

In this paper, we show how an arbitrary choice of base can skew the results and lead to favorable
outcome which might not necessarily be true. We examine four simple criterions for base selection
and empirically evaluate the di↵erences in them. Our empirical evaluation of the di↵erent measures
reveals that the z-score measure is quite di↵erent from the other measures like mean, median and
jackknife. We further study the impact of using di↵erent base period to highlight that the outcome
of further analysis can be sensitive to the choice of the base. We present a case study of the Sahel
region to show that the dipole in precipitation in the region moves around and even disappears
with the choice of a di↵erent base. Finally, we propose a generalized model for base selection which
uses Monte-Carlo based sampling methods to minimize the expected variance of the underlying
datasets. Our research can be especially instructive to climate scientists in helping them construct
a generalized anomaly that does not create a bias in their analysis. Further, other researchers in
temporal domain can also benefit from our work and it will enable them to choose a bias-free base.
The main contributions of our paper are as follows:

• We present a systematic evaluation of four di↵erent measures of computing the base to con-
struct the anomalies. Our evaluation shows that using the mean for anomaly computation
might not be the right thing to do.

• We show that using a short base reference introduces a bias in the variance and show an
alternative approach to take care of the bias.
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• We present a case study of Sahel region to highlight that outcome of further analysis like
dipole detection can be sensitive to the selection of the base.

• We propose an algorithm based on Monte Carlo sampling for automatic selection of the ap-
propriate base which minimizes the variance across the time series. The algorithm suggests
using weighted base of 55 year time period rather than 30 years for our data spanning 62
years.

The paper is organized as follows: In Section 2, we define the related work examining the issues
with base construction. In Section 3, we describe the dataset used for our study. In Section 4, we
examine the di↵erent measures and di↵erent time periods that can be used for anomaly construction.
In Section 5, we describe our experiments evaluating the di↵erent measures and time periods. We
also present a case study of the Sahel region to show the impact of the di↵erent base period in dipole
analysis. In Section 6, we present a generalized approach for anomaly construction that computes a
weighted anomaly using Monte Carlo sampling and also present our results based on the approach.
Section 7 includes the discussions and the future road map for our work.

2. Related Work

Anomaly computation is a fundamental problem in climate science as most of the analysis of
climate data relies upon computation of the anomalies as the first step. There have been some
studies in the climate domain analyzing anomalies. Climate scientists mostly use a 30 year period to
construct the anomalies and remove the annual cycle. Other ways to remove the annual cycle are 1)
computing second moment statistics over each individual season by removing the first two harmonics
of the respective time series; and 2) averaging the second moment statistics over all years. More
techniques to remove the annual cycle include removing the first two or three harmonics (periods of
365.25, 182.625, and 121.75 days) e.g., [8] and [4]. Some of the less common practices involve looking
at more sophisticated techniques like removing the cyclostationary empirical orthogonal function [11]
or bandpass filtering, e.g. using a low-pass filter with 0.5 cycle/year [15]. More general methods are
described in Wei et al. [19].

However, these procedures fail to take into account the natural interannual variability that should
remain visible in the data. Therefore the procedures result in biased estimates of certain statistics
[17]. In particular, lag-autocorrelations are systematically negatively biased, which indicates that
uncertainty is added to climate data. Trenberth [17] shows for first order autoregressive time series
that the autocorrelations computed after the annual cycle is removed become negative after just
a few days lag. Consequently, the stochastic character of meteorological time series can result in
less statistically significant analysis. Kumar et al. [12] state that the analysis of observed climate
data often lacks separation of the total seasonal atmospheric variance into its external and internal
components, with external components being the influence of atmospheric initial conditions, the
coupled air-sea interactions, and boundary conditions other than sea surface temperatures, whereas
internal components are described by the atmospheric variability over time. Removing the annual
cycle should provide insight into the internal variability while leaving the external forcing intact.

Tingley et al. [16] discuss the impact of using a short reference interval in anomaly construction.
They show that using a short reference period, the variance of the records at the time interval is
reduced and inflated elsewhere. They show that the choice of the reference interval has a significant
impact on the second spatial moment of the time series in the temperature data set whereas the first
moment of the time-series is largely una↵ected . They further use two factor ANOVA model within
a Bayesian inference framework.

Despite the importance of anomalies in the further impact on the results, there is no firm consensus
on how to deal with the systematic construction of anomalies and their impact on the various results.
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Apart from this, the authors are not aware of any systematic study comparing the di↵erent aspects
of anomaly construction in the climate data.

3. Dataset

We use the data from the NCEP/NCAR Reanalysis project provided by the NOAA / OAR/ ESRL
PSD, Boulder, Colorado, USA [9]. The goal of the NCEP project is to produce a comprehensive
atmospheric analysis using historical data (1948 onwards) from observations as well as other analysis
like projection. As a result of these analysis, there is a complete data assimilation for every grid
point on the Earth.

The NCEP/NCAR Reanalysis project has data assimilated from 1948 – present and is available
for public download at [2]. We use the monthly time resolution of data and it has a grid resolution
of 2.5� longitude x 2.5� latitude on the globe. We use the precipitation, air temperature and sea
level pressure data for our analysis as they represent the most important climate variables. In all, we
have 62 years of data (corresponding to 744 monthly values) for 10512 grid locations on the globe.

4. Different aspects of Anomaly Construction

We examine two aspects of anomaly construction: 1) the measure for anomaly construction and
2) the period used for anomaly construction in the following subsections.

4.1. Di↵erent measures for Anomaly Construction. The central idea behind anomaly con-
struction is to split the data into two parts: (a) data with expected behavior, and (b) anomaly
data that shows the variability from the expected, which is generally used for understanding climate
change phenomenon. For a given location i, its anomaly times series f 0

i

is constructed from the raw
time series f

i

by removing a base vector b
i

from it as follows:

(1) f 0
i

= f
i

� b
i

A simple measure of computing the base b
i

is by taking the mean of all data (f
i

) present for location
i. However the sample mean would not be a good measure as the Earth science data is associated
with a large amount of seasonality. In order to account for this the base b

i

is computed by taking
a monthly mean for each month separately. It is not yet clear whether the mean is the right way
to compute the base or if there is a better measure to compute the base. We examine four simple
measures of base computations as follows:

• Mean: In this measure, the monthly mean values of the raw data are considered as the base
and subtracted from the data to get the anomaly series.

• Z-score: Another possible way to construct the anomalies is to remove the monthly z-
score values from the raw data. The z-score also accounts for the standard deviation in the
monthly values.

• Median: This is constructed by removing the monthly median values instead of the monthly
means as median can be a more robust measure when the data is skewed.

• Jackknife: This approach involves considering all points apart from the point itself in the
computation of the mean and variance measures and it produces an unbiased estimation of
variance just like Maximum aposterior Estimate (MAP).

We elaborate these measures and how they are computed in the following sub-sections.
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4.1.1. Mean. Monthly mean computation is the most widely used method to extract the anomalies
from the raw data. The mean subtraction makes the anomaly time series to have a zero mean. More
formally,

(2) f 0
i

(t,m) = f
i

(t,m)� µ
m

, 8t 2 {total � start, . . . , total � end}, 8m 2 month

where total-start and total-end values represent the actual size of the data. In general it is known
that taking mean would minimize the variance of the resulting series but it can also lead to over
fitting and conclusions that might not be true. Further, instead of using the entire data for base
computation, a short reference interval can be chosen. For example, if the data begins from 1900
to 2010, the base start and end years could be chosen as 1960-1990. We further discuss the issue of
choosing a short base in Section.4.2.

4.1.2. Z-score. The z-score normalization ensures that the resulting anomaly series has mean = 0
and standard deviation = 1. As a result, z-score can be considered to be more robust than the
mean but at the same time z-score based standardization can eliminate variations across di↵erent
locations on Earth which might not be desirable. The z-score measure is computed as follows:

(3) f 0
i

(t,m) =
f
i

(t,m)� µ
m

�
m

, 8t 2 {total � start, . . . , total � end}, 8m 2 month

4.1.3. Median. In scenarios where data is skewed, mean can be sensitive to outliers. In such settings,
median is typically considered to be more robust to outliers. As a result, we consider median as a
method for base computation:

(4) f 0
i

(t,m) = f
i

(t,m)�median
m

, 8t 2 {total � start, . . . , total � end}, 8m 2 month

4.1.4. Jackknife estimate. The Quenouille Tukey jackknife approach [20] is a useful nonparametric
estimate of mean and variance. The basic idea behind the jackknife estimator is to systematically
compute the mean estimate by leaving out one observation at a time from the sample set. Let
f1, f2, . . . , fn be the n points in the time series of a location x. The jackknife mean estimate is
computed at point f

i

by taking the mean of all points except f
i

as follows:

(5) Mean(f
i

) =
f1 + . . .+ f

i�1 + f
i+1 + . . .+ f

n

n� 1

Thus the anomalies are constructed by excluding the value at each point f i

x

. We however still use
all the monthly values only to compute the jackknife estimate at each point. The variance measure
using the jackknife approach turns out to be:

(6) V ariance =

✓
n

n� 1

◆2

⇥ V ariance(f1, . . . , fn)

In order to see this consider f1, . . . , fn to be variable during a given month. Then we have to
following:

V ariance =
1

n

X

i

(f
i

�Mean(f
i

))2

=
1

n

X

i

(f
i

� n

n� 1
⇥Mean+

1

n� 1
⇥ f

i

)2

=
1

n

X

i

n2

(n� 1)2
⇥ (f

i

�Mean)2

=

✓
n

n� 1

◆2

⇥ V ariance(f1, . . . , fn)
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The variance essentially turns out to be an unbiased estimate and is similar to the maximum
aposterior probability (MAP) estimate of the model. MAP is similar maximum likelihood estimate
(MLE) but also incorporates a prior distribution over the quantity one wants to estimate. MAP
estimation can therefore be seen as a more robust form of MLE estimation. However the main
problem with an approach based on jackknife is that it requires a lot of computation.

4.2. Di↵erent Time Periods for Anomaly Construction. As mentioned earlier, an anomaly
series is constructed from the raw time series by removing a base value from it. The base value
is generally considered to be the mean of the data. Since the true theoretical mean is not known,
the base value is created by taking the sample mean of the data. However, most of the times a
short reference interval is chosen to compute the base and changes with respect to that are studied.
There is no absolute truth or guidelines available to choose the reference interval. Climate scientists
generally choose the base as a moving 30 year period and study the changes with respect to that.
However a moving short reference interval is problematic and can result in spurious results and
conclusions. In order to highlight the problems associated with picking an arbitrary short base, we
consider an example of teleconnections looking into the drought of the Sahel region in Africa in the
Section 5.3.

5. Experiments and Results

5.1. Comparison of Di↵erent Measures of Anomaly Construction. Our first task is to em-
pirically evaluate the di↵erences in the four di↵erent measures described in Section 4.1. We use the
precipitation data for our analysis. Using all the 62 years of data from the NCEP/NCAR website,
we first construct an anomaly series for each location on the Earth using the four di↵erent measures.
Further, we also construct complex networks by taking pairwise correlation between all locations on
the Earth as used by several researchers like [14], [10], [5], [18] to find patterns in climate data. The
nodes in the graph represent all the locations on the Earth and the edges represent pairwise correla-
tion between the anomaly time series of all the nodes on the Earth. Our goal is to evaluate whether
there are statistically significant di↵erences between di↵erent measures to compute anomalies. In
order to measure the statistically significant di↵erence, we consider the following three criterion:

• Mean based di↵erence: We compute the mean of anomaly time series using di↵erent measures
and then compute the di↵erence in mean for each pair of measure. The mean di↵erence would
be statistically significant if we can say with 95% confidence that the mean of di↵erence is
non-zero.

• Correlation based di↵erence: Here we compute the correlation of every point with respect
to other points on the globe using the four measures and check if the correlation values are
impacted by using di↵erent measures for anomaly construction.

• Monthly variance based di↵erence: Here we check if the monthly variance of the anomaly
time series at each location is di↵erent for pairs of anomaly computation measure or not.

We use t-test to test if the di↵erence between two measures follows a Gaussian distribution with
mean = 0 and unknown variance. Thereby, our null hypothesis, H0 is that two measures lead to
the same result and alternate hypothesis, Ha is that the two measures are di↵erent.

Tables 1, 2 and 3 show the number of locations where two measures lead to significant di↵erences
in the anomaly time series. Here we make an observation that z-score and median lead to significant
di↵erences from each other as well as the mean and the jackknife. Z-score based base computation
yields the most significant di↵erence as it leads to statistically significant changes in correlations
and monthly variances at more than 9000 grid locations on the Earth. The z-score measure also
stands out if we look at the monthly variance of each point. On the other hand, mean and jackknife
seem to be similar. Median di↵ers from the two over the mean di↵erence based comparison. This
is perhaps expected as the median and the mean values are not the same and all the other bases
have zero monthly mean. Overall this result indicates that di↵erent measures used to compute base
can lead to drastically di↵erent results. This result makes it intuitively clear that z-score might not
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be the best way to compute the base. In order to compare the mean and the median, we examine
the skew in the anomaly time series after using the mean to construct the anomalies. To determine
the skew, we check the kurtosis of the anomaly series at each location on the Earth. The kurtosis
falls within the range of 2.6-3.5 for more than half of the locations on the Earth which is acceptable
for a normal distribution. However, some locations have a very high skew and the kurtosis value is
as high as 10. Fig 2 shows the histogram of kurtosis for all the locations and also shows the skew
in the time series at a random location on the Earth. This suggests that the mean might not a
good measure to compute the anomalies and median might be a better choice. However, further
investigations are still needed to understand the right measure for anomaly computation.

Method Mean Median z-score Jackknife
Mean - 692 0 0

Median - - 1281 674
z-score - - - 0

Jackknife - - - -
Table 1. Number of locations that rejected the null hypothesis at 95% confidence
interval in the two sample t-test examining the anomalies at the di↵erent locations
for precipitation.

Method Mean Median z-score Jackknife
Mean - 0 5303 0

Median - - 5152 0
z-score - - - 5303

Jackknife - - - -
Table 2. Number of locations that rejected the null hypothesis at 95% confidence
interval in the two sample t-test examining the correlation of each location with
the di↵erent locations for precipitation.

Method Mean Median z-score Jackknife
Mean - 0 9152 0

Median - - 9152 0
z-score - - - 8998

Jackknife - - - -
Table 3. Number of locations that rejected the null hypothesis at 95% confidence
interval in the two sample t-test examining the monthly variance at the di↵erent
locations for precipitation.

5.2. Comparison of di↵erent time periods for anomaly construction. The previous results
show that for a fixed base period there exists di↵erent ways to compute the base which can lead to
drastic di↵erences in the anomaly time series. Here we try to see if we can fix a measure (say mean)
then check if varying the base period a↵ects the anomaly time series. In order to do this, we examine
three base periods: a) first 20 years b) entire 62 years and c) last 20 years. We also experiment
with base period length of 30 years but that leads to similar results so for the sake of presenting the
extremes, we present results choosing 20 years as a base.

We construct the anomaly series for each location corresponding to the given base periods. We
selected mean as the measure of computing the base. In order to compare the time series, we used
KL-divergence criteria to see if di↵erent base periods have di↵erent e↵ects on anomaly time series.
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Figure 2. a) Kurtosis histogram b) The mean subtracted anomaly shows a skew
in the data.

The KL-divergence is defined as follows:

(7) DKL(PkQ) =
X

i

P (i) log
P (i)

Q(i)

KL-divergence of 0 means that the two series are exactly the same. A KL-divergence value
indicates that the series are quite di↵erent. We plot the divergence value for each location on the
globe in Figure 3. The white region shows that these locations are severely a↵ected by our choice
of base. In general last 20 years vs 62 years (second figure) has a light shade of gray indicating that
all the locations on earth would be a↵ected (in their anomaly series) if we make a choice between
last 20 years vs all 62 years.

Figure 3. KL-divergence of the anomaly series the di↵erent bases a) first 20 years
vs entire 62 years b) last 20 years vs entire 62 years and c) first 20 years vs last 20
years. The white shaded regions represent regions of maximum divergence.

Also the variance in the anomaly time series changes when we move the 20 year base period across
the entire length of the time-series. Fig. 4 shows the change in variance at two random locations by
picking up di↵erent 20 year base periods by varying the starting times from 1948-1988. From the
figure, we see that average variance in the anomalies at di↵erent points varies using di↵erent start
times for the base periods. This makes the problem complex as di↵erent regions show minimum
variance in di↵erent windows of the time period.
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Figure 4. Change in variance of two random locations on the Earth choosing a 20
year reference period and moving the starting year from 1948-1988.

Figure 5. a) Mean correlation of 100 random points with all the points in the
globe for precipitation using the entire 62 years as the base and only the first 20
years as the base. b) Mean correlation of 100 random points with all the points in
the globe for precipitation using the entire 62 years as the base and only the first
20 years as the base. The di↵erence in correlation (red and blue) is much more
pronounced in Sahel as compared to the random locations.

In order to further analyze the impact of the choice of short reference base on the correlation
of anomaly time-series, we consider two anomaly construction scenarios using the base as: a) first
20 years from 1948-1967 and b) using the entire 62 year time period from 1948-2009. We examine
the changes in the mean correlations of locations with respect to every other location on the Earth
using the two base period. Figure 5 shows the change in mean correlation of 100 random locations
and the locations in Sahel using the two base periods to compute the anomalies. From the figures,
we see that the locations in Sahel are much more impacted by the change in the base period as
compared to the 100 random locations. We also find similar trends in other variables like pressure
and temperature in Sahel but do not report it due to lack of space. These results underline the fact
that a reference interval is crucial in the computation of the anomalies. In the next section, we show
a case study on teleconnections where the actual analysis results and implications are impacted by
the choice of the reference base.
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5.3. Case study of the Sahel dipole. Teleconnections are long distance connections connecting
the climate of two places on the Earth. One such class of teleconnections are the dipoles which consist
of two regions having anomalies in the opposite direction and thus having negative correlation. The
climate in Sahara and Sahel region of Africa has undergone some radical shift in the past century.
The region received heavy rainfall till about 1969 until when it went into a period of severe drought
for about 30 years which brought a regime shift in the region. The drought in the region and its
environmental causes and consequences have been well studied in the past [6].

Figure 6. Sahel and the Gulf of Guinea in Africa.

Figure 7. Raw precipitation time-series at Sahel and the Gulf of Guinea.

The precipitation in the region has recovered slightly but not enough to come back to the same
levels as that before 1969. The severe loss of precipitation at Sahel was accompanied with a heavy
increase in precipitation at the same time in the Gulf of Guinea around Africa, thus forming a dipole
in precipitation [7]. The two regions Sahel and the Gulf of Guinea are marked in the Fig.6. The
raw precipitation time series of the two locations in Sahel (7.5E, 20N) and the Gulf of Guinea (2.5E,
2.5S) are shown in the Fig. 7.
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Figure 8. Correlation of precipitation time series for di↵erent places on the Earth
with respect to a single point in Africa using the two base a)1948-1967 and b)1987-
2008 for the 1st network (1948-1967). The figure shows the presence of a dipole
(positive and negative correlations as shown by red and blue regions) in the right
picture and not the left one.

Figure 9. Correlation of precipitation time series for di↵erent places on the Earth
with respect to a single point in Africa using the two base a)1948-1967 and b)1987-
2008 for the 2nd network (1968-1987).

Figure 10. Correlation of precipitation time series for di↵erent places on the Earth
with respect to a single point in Africa using the two base a)1948-1967 and b)1987-
2008 for the 3rd network (1987-2007). The figure shows the presence of a dipole
(positive and negative correlations as shown by red and blue regions) in the left
picture and not the right one.
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Figure 11. Di↵erent regions and di↵erent time periods are identified as dipoles
in precipitation using the first 20 years as the base and the last 20 years as the
base. (The red and blue regions represent two ends of the dipole and have negative
correlation in their anomalies.)

From the figure, we can see the dramatic decrease in precipitation in Sahel and an increase in
precipitation in the Gulf of Guinea around the 1970s. Now using the 62 years of NCEP precipitation
data, we choose two base years, the first 20 years (1948-1967) and the last 20 years(1988-2007). We
further construct three networks by taking pairwise correlation between the anomaly time series of
all locations on the Earth for a 20 year time period each (1948-1967, 1968-1987 and 1988-2007).
Consider the point A(7.5E, 20N) in Sahel. Let us examine the correlations of this point with all
the regions on the Earth. Fig. 8, 9 and 10 show the correlation of all the points on the Earth with
respect to a single point in Sahel for the three time periods 1948-1967,1968-1987 and 1988-2007
respectively. From the figures, we see that the if we choose the base period to be the first 20 years,
the Sahel dipole is clearly visible (positive and negative correlations as shown by red and blue regions
in the figures) in the period 1988-2007, however if we choose the last 20 years as the base period
the dipole is seen in the interval 1948-1967. Further we use the dipole detection algorithm on the
complete network as given in [10]. The algorithm begins by picking up the most negative edge on
the Earth and grows the two ends of the negative edge into two regions such that they are negatively
correlated with each other and positively correlated within each other. Using the algorithm, we see
that the Sahel dipole appears in di↵erent time periods and also in di↵erent regions as also shown
in the Fig.11. Thus the choice of a base period severely impacts the results and subsequently the
interpretations that can be drawn from the results. Hence extra caution needs to be exercised while
constructing anomalies in order to avoid spurious conclusions to be drawn from the results.

6. A Generalized Approach for Anomaly Construction

In the previous section, we saw that there is a bias introduced in the results upon considering
di↵erent measures of the base and di↵erent durations. So the primary question arises, What is the
right base to choose for anomaly construction?. In this section, we discuss our approach to handle
the problem of the anomaly construction. The intuition behind our approach is to have a weighted
mean to construct the anomalies and use an objective criteria to pick up the right set of weights
using Monte Carlo sampling. The weighted base for anomaly construction for a location i is created
as follows:

(8) b
i

(t, w) =
t0+kX

t=t0

w
t

⇤ f
i

(t) subject to

t0+kX

t=t0

w
t

= 1

where t0 represents the starting time period, k represents the length of the time period. We further
assume that the weights w

t

are the same for each year and do not depend upon the month in the
year. Further, the anomalies are constructed by removing the weighted base for each month as
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Algorithm 1: A Generalized approach for Anomaly construction.

Let fi(t) be the monthly values of raw time series of location i
Let, N = Length of total time period.
Let, Tbase = Shortest length of reference interval.
Let, NumSimulations = Number of simulations to run.
Initialize GlobalV ariance, OptimalWeights to 1
repeat

for k 2 Tbase, ...TN do

for t 2 T0, ...TN do

for i 2 1....NumSimulations do

Compute weight vector w1, w2, ......, wt

subject to the constraint w1 + w2 + ....+ wt = 1. using a Dirchlet prior.
Compute the weighted base as bi(t, w) =

Pt0+k
t=t0+1 wt ⇤ fi(t)

Compute the Anomalies from the weighted base as f 0
i(t, w) = fi(t)� bi(t, w)

Compute the Variance of all the anomaly time-series across the globe.
if V ariance < GlobalV araince then

Update the GlobalV ariance and OptimalWeight
GlobalMedian = Median
OptimalWeight = w1, w2, ......, wt

end if

end for

end for

end for

until convergence

follows:

(9) f 0
i

(t, w) = f
i

(t)� b
i

(t, w)

We run Monte Carlo simulations to get the right set of the weights w
t

and define the objective
function as minimizing the variance of the anomaly time series over time and space. By minimizing
the variance, we are trying to enforce uniformity over the data. There can be some other objective
functions like the median of the lowest 10% of the correlations. The intuition behind this objective
function is that for computing dipoles, we need to examine the most negative correlations. Hence
we want to find a weight and a base vector corresponding to our criterion for dipoles. However, we
consider a general objective function that is not dependent upon the problem. The further details
of the algorithm are present in Algorithm 1.

6.1. Results. We use the precipitation data and run our Monte Carlo based simulation algorithm
to get the right reference base period. Figure 12 represents the final converged weights. The other
parameters of the final convergence of the algorithm are as mentioned in Table 4. Using our new
weighted anomaly, we re-construct the correlation plots around the Sahel to get a sense of the dipole
in the Sahel. Fig 13 shows the new results using the dipole in the Sahel using the weighted anomaly.
Using a bias free base gives us confidence about the non-spuriousness of the discovered climate
pattern or climactic phenomena such as a dipole. It implies that a dipole does exist in the region
and that bases chosen which result in the dipole appear vanishing are not good bases. This objective
function thus helps us in observing phenomena which would be more prominent if favorable bases
are assumed but a bias-free base gives us a worst case scenario and more confidence in the results.

7. Discussion and Conclusions

The issue of anomaly construction is a fundamental problem in climate science as most of the
analysis and results are derived after the raw data is transformed into an anomaly series. However
there are no current guidelines available on anomaly construction and climate scientists usually
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Table 4. Final algorithm convergence details.

Parameter Value
Period 55

Starting year 1948

Figure 12. Final converged weight vector.

Figure 13. A correlation map as seen from the Sahel location A(7.5E, 20N).

rely upon computing a moving reference base for anomaly construction. In this paper, we examine
the various issues pertaining to the construction of the anomalies. We assess the four methods of
anomaly construction i.e. mean, median, z-score and jackknife. Our results show that if z-score is
used as a measure for anomaly computation then the correlation values across di↵erent locations
come out to be significantly di↵erent at 95% confidence interval. The mean, median and the jackknife
measure do not show significant di↵erences. However, due to the skewness in the data, the mean
might not be a good measure and the median might be a good measure in such a case. However,
further investigation is required to understand the right measure should be used.

We further show the bias in results introduced due to a choosing a short reference interval and
show the di↵erence in conclusions and results using a case study of the Sahel dipole. It is important
to handle the bias introduced due to a short base as subsequent conclusions derived from it get
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a↵ected. We further propose a generalized algorithm to handle the the issue of a bias-free base.
Using our algorithm, we get the optimal base period to be 55 years. The algorithm can be modified
to have di↵erent objective functions to handle di↵erent specific scenarios. As a part of our future
work, we will examine di↵erent approaches to learn the weight vector as opposed to using the Monte
Carlo simulations. We will also evaluate di↵erent objective measures and their impact on the base
construction.
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