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Empirical best linear unbiased prediction (EBLUP) method uses a linear
mixed model in combining information from different sources of informa-
tion. This method is particularly useful in small area problems. The variabil-
ity of an EBLUP is traditionally measured by the mean squared prediction
error (MSPE), and interval estimates are generally constructed using esti-
mates of the MSPE. Such methods have shortcomings like under-coverage
or over-coverage, excessive length and lack of interpretability. We propose
a parametric bootstrap approach to estimate the entire distribution of a suit-
ably centered and scaled EBLUP. The bootstrap histogram is highly accurate,
and differs from the true EBLUP distribution by only O(d3n−3/2), where d

is the number of parameters and n the number of observations. This result is
used to obtain highly accurate prediction intervals. Simulation results demon-
strate the superiority of this method over existing techniques of constructing
prediction intervals in linear mixed models.

1. Introduction. Large scale sample surveys are usually designed to produce
reliable estimates of various characteristics of interest for large geographic areas.
However, for effective planning of health, social and other services, and for appor-
tioning government funds, there is a growing demand to produce similar estimates
for smaller geographic areas and for other sub-populations. To meet this demand,
it is necessary to supplement the survey data with other relevant information that
is often obtained from different administrative and census records. In many small
area applications, mixed linear models are now routinely used in combining in-
formation from various sources and explaining different sources of errors. These
models incorporate area specific random effects which explain the “between small
area variations,” not otherwise explained by the fixed effects part of the model.

For a good review on small area and linear mixed model research, the readers are
referred to the book by Rao (2003), and two recent review papers by Rao (2005)
and Jiang and Lahiri (2006). Several other applications of linear mixed models
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may be found in McCulloch and Searle (2001). Point prediction using the empiri-
cal best linear unbiased predictor (EBLUP) and the associated mean square predic-
tion error (MSPE) estimation have been studied extensively. See Jiang, Lahiri and
Wan (2002), Rao (2005) and Jiang and Lahiri (2006) for a review on the subject,
especially on the latest development on resampling methods for MSPE estimation.
However, little progress has been made outside the basic study of the first two mo-
ments, for example, on the properties of quantiles (central or tail) of predictors, or
on the effect of high dimensionality of the parameters.

For example, research on interval estimates in small area studies is typically
limited to some special cases of the Fay–Herriot model (described in detail in
Section 2), where the traditional estimates are of the form EBLUP ± zα/2

√
mspe.

Here mspe is an estimate of the true MSPE of the EBLUP, and zα/2 is the upper
100(1 − α/2)% point of the standard normal distribution. The coverage probabili-
ties of such intervals may converge to the nominal level 1 −α; but the intervals are
not efficient, in the sense they have either under-coverage or over-coverage prob-
lem, depending on the particular choice of the MSPE estimator. More precisely,
the coverage error of such interval is of the order O(n−1) or higher, which is not
accurate enough for most applications of small area studies, many of which involve
small sample size n.

In this paper we address the problem of approximating the distribution of a pre-
dictor, and applying it to obtain prediction intervals, in a very general framework
of linear mixed models. We consider the following model from Das, Jiang and
Rao (2004):

Yn = Xβ + Zvq + en,(1.1)

where Yn ∈ Rn is a vector of observed responses, Xn×p and Zn×q are known
matrices and vq and en are independent random variables with dispersion matrices
Dq(ψ) and Rn(ψ), respectively. Here β ∈ Rp and ψ ∈ Rk are fixed parameters.

The mixed ANOVA model, and the longitudinal models including the Fay–
Herriot model and the nested error regression model are special cases of (1.1).
We can consider both balanced and unbalanced lay-outs in the above framework.
In addition, we develop our theory and methodology allowing for the parameter di-
mension d = p + k to grow with sample size n. Dimension dependent asymptotics
are extremely important in the current context, since many small areas may have
sample sizes comparable to dimensions of the regression and variance components
parameters; see, for example, Jiang (1996) for their use and importance in linear
mixed models.

Our approach toward approximating the distribution of a predictor is to em-
ploy parametric bootstrap. We concentrate on the empirical best linear predictor
(EBLUP), owing to its wide popularity and use. We establish in Theorem 3.1 that
the bootstrap histogram incurs an error of O(d3n−3/2) in approximating the distri-
bution of a centered and scaled EBLUP. For estimating the distribution of centered
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and scaled estimators, under standard regularity conditions and fixed d , the normal
approximation based on the central limit theorem has an error of O(n−1/2), but the
bootstrap can achieve higher-order accuracy, with typical approximation error of
O(n−1). Theorem 3.1 may be seen as an extension of this higher-order accuracy
phenomenon, in the context of prediction. Although our motivation and terminol-
ogy comes from small area context, our bootstrap methodology and theoretical
results are directly applicable to other usages of mixed linear models.

There are several potential applications of a highly accurate approximation of
the entire distribution of the EBLUP. For example, it may be used to obtain (a)
bagging predictors, (b) computing mean squared errors or other risks, (c) hypoth-
esis testing, (d) calibration of traditional estimators, and (e) prediction interval
construction. In this paper, we concentrate on the last application, since prediction
intervals combine features of both point prediction and hypothesis testing nicely,
and have not been extensively explored in small area or other mixed linear model
contexts.

Prediction intervals are useful in small area studies in several ways. For exam-
ple, prediction intervals may help establish if different counties have similar re-
sources and needs, or if different ethnic or other subpopulation groups are equally
exposed to a particular disease. Our simultaneous concentration on dimension as-
ymptotics is also relevant. It has long been recognized that health, economic ac-
tivity and other measures of human well-being depend on a number of exogenous
and endogenous factors, many of which must be measured at the individual level
and incorporated in the model. In statistical terms, this translates to high dimen-
sionality of β and ψ .

In Section 2, we review some of the existing techniques for predictor distrib-
ution approximation and interval estimate construction. We pay special attention
to the usage of resampling in such approximations/constructions. For prediction
intervals, available literature is heavily concentrated on special cases of the Fay–
Herriot model. Since traditional intervals perform poorly in terms of coverage or
length or both, many attempts have been made to fine tune and calibrate them,
often using resampling. To the best of our knowledge, approximation of the entire
distribution of a predictor has not been attempted in general small area problems,
and we briefly review the related research for independent data.

In Section 3, we present our bootstrap algorithm for the Das, Jiang and Rao
model (1.1). Our main result is that the sup-norm distance between the distribution
of EBLUP and its bootstrap approximation is O(d3n−3/2). A direct corollary is
that the bootstrap prediction interval has coverage accuracy of O(d3n−3/2). Note
that our proposed prediction interval is a bootstrap interval, which is different
from the traditional approaches of obtaining asymptotic intervals first and then
calibrating it. Our interval can be calibrated one or more times to achieve coverage
accuracy of O(d5n−5/2) or higher, if needed.

We performed several simulation experiments in order to study how our per-
centile bootstrap interval estimate compares with existing techniques. A sample of
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these studies are reported in Section 4. The main message from the simulations
is that the prediction intervals resulting from the proposed parametric bootstrap
perform considerably better than the traditional techniques, which is a reflection
of the high order accuracy theoretically established in Section 3.

2. A review of predictor distribution approximation and interval construc-
tion.

2.1. Approximating distributions of predictors. Considerable theoretical re-
search has been carried out in the prediction of a random variable that is inde-
pendent of Yn, and has density ξ(·|β,ψ). In terms of expected Kullback–Leibler
divergence, the naive plug-in predictor density ξ(·|β̂, ψ̂) performs poorly com-
pared to Bayesian predictors

∫
ξ(·|β,ψ)π(β,ψ |Yn), see for example, Aitchison

(1975), Murray (1977), Ng (1980), Komaki (1996, 2001, 2006) and George, Liang
and Xu (2006). Harris (1989) showed that the bootstrap predictor

ξ∗(·) =
∫

ξ(·|s, t) dL∗(s, t)(2.1)

also performs better than the naive plug-in predictor. Recently, Fushiki, Komaki
and Aihara (2004) have shown that the bootstrap predictor (2.1) is asymptoti-
cally equivalent to a Bayesian predictor with Hartigan’s M-prior. The M-prior
has certain optimality properties which may be found in Hartigan (1964, 1998). In
a related work, Fushiki, Komaki, Aihara (2005) show that the Harris predictor is
related to bagging of Breiman (1996).

In small area or other mixed linear model contexts, the random variable of in-
terest depends on Yn, unlike the framework described above. Also, performance
measures other than expected Kullback–Leibler divergence may be of interest, for
example, length and coverage of prediction intervals.

2.2. A review of interval estimation techniques. For a general mixed linear
model, Jeske and Harville (1988) proposed a prediction interval for a mixed effect,
but did not include the effect of estimated unknown variance components on the
accuracy of their proposed interval.

Jiang and Zhang (2002) used a distribution-free method for constructing predic-
tion intervals for a future observation under a non-Gaussian linear mixed model,
based on the theory developed by Jiang (1998). This technique does not employ
any area specific information and can be useful in constructing intervals when
there is no survey data on the response variable. Jiang and Zhang (2002) proposed
another method which can be applied to the situation when the sample size is large
within each area. This is a technique of first obtaining the EBLUP for the random
effects and the residuals. Then, under conditions sufficient to imply that the num-
ber of times each random effect is repeated (i.e., number of observations in each
small area) tends to infinity, the empirical distribution of random effects as well
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as the residuals converge appropriately. This technique fails when we do not have
large samples for each small area, a situation that is common in many small area
applications.

Recently, Hall and Maiti (2006b) have studied parametric bootstrap for general
mixed models in several aspects, including interval estimation. A review of their
approach toward interval estimation may be found in Rao (2005). In Section 3, we
discuss in detail how their model, results and asymptotics differ from ours.

Other than the above three papers, research on small area prediction intervals is
largely concentrated on special cases of the Fay–Herriot model, described below:

1. Conditional on θ = (θ1, . . . , θn)
T , Yn = (Y1, . . . , Yn)

T follows a n-variate nor-
mal distribution with mean θ and dispersion matrix D with known diagonal
entries Di > 0 and off-diagonal entries 0. Here (and in the sequel) all vectors
are taken to be column vectors, for any vector (matrix) a (A), the notation aT

(AT ) denotes its transpose.
2. The variable θ follows a n-variate normal distribution with mean Xβ for a

known n × p matrix X and unknown but fixed vector β ∈ Rp . The dispersion
matrix is AIn, where the matrix In is the n dimensional identity matrix and A
is an unknown constant.

There are several options for constructing interval estimates for θi = xT
i β + vi .

One may use only the Level 1 model for the observed data, or only the Level 2
model for the borrowed strength component, or a combination of both. The interval
for θi based only on the Level 1 model is given by ID

i (α) :Yi ± zα/2D
1/2
i , where

zα/2 is the (1 − α/2)th standard normal quantile. Obviously, for this interval, the
coverage probability is 1 − α. However, it is not efficient, since its average length
is too large to make any reasonable conclusion. This is due to the high variability
of the point predictor Yi .

An interval based only on Level 2 ignores the crucial area specific data that is
modeled in Level 1, and hence falls short on two counts: it fails to be relevant
to the specific small area under consideration, and it fails to achieve sufficient
coverage accuracy. A small example given later in this section demonstrates this
latter property.

Thus, interval estimation techniques that combine both levels of the Fay–Herriot
model are required. A popular approach is to employ empirical Bayes methodol-
ogy. Cox (1975) proposed the following empirical Bayes interval:

IC
i (α) : (1 − B̂i)Yi + B̂ixT

i β̂ ± zα/2D
1/2
i (1 − B̂i)

1/2,

where B̂i and β̂ are estimators of Bi = Di/(A+Di) and β , respectively, and xT
i is

the ith row of X. Under standard regularity conditions, P(θi ∈ IC
i (α)) = 1 − α +

O(n−1), where P denotes a probability measure induced by the joint distribution
of Level 1 and Level 2. Thus, this prediction interval attains the desired coverage
probability asymptotically, but the coverage error is of order O(n−1), which is
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not accurate enough for many small area applications. This lack of accuracy may
partially be due to the additional variability resulting from estimation of β and
A. Currently, MSPE estimators are available in several mixed linear models, see
for example, Jiang Lahiri and Wan (2002), Datta, Rao and Smith (2005), Hall and
Maiti (2006a). Naive empirical Bayes intervals constructed using EBLUP, MSPE
estimators and standard normal quantiles typically have an error of O(n−1) or
higher.

For a special case of the Fay–Herriot model with common mean and equal sam-
pling variances Di = D, Morris (1983a) incorporated the additional uncertainty
due to the estimation of the hyperparameters. However, Basu, Ghosh and Muker-
jee (2003) showed that the resulting empirical Bayes interval proposed by Morris
(1983a) still has coverage error of O(n−1). They used analytical calibration of
the Morris’ interval to reduce the coverage error to o(n−1). They also showed
that with suitable analytical approximations in place, an interval due to Carlin and
Louis (1996), page 98, and a new interval, have coverage error of the order o(n−1).
Datta et al. (2002) used similar analytical calibration in a more general Fay–Herriot
model, and obtained a prediction interval with coverage error of O(n−3/2). Morris
(1983b) considered a variation of his (1983a) work with the use of a hierarchical
Bayes type point estimator. Hill (1990) suggested a general framework which, in
the Fay-Herriot setting matches with an exact hierarchical Bayes confidence inter-
val. Datta et al. (2002) followed up Hill’s idea to obtain an interval with coverage
error of O(n−1).

Apart from the analytical approaches, calibration using different bootstrap tech-
niques has been popular. The methods differ in the generation of the bootstrap
samples and the type of correction made. For a special case of the Fay–Herriot
model where Y1, . . . , Yn are independent and identically distributed, Laird and
Louis (1987) proposed three different resampling strategies: (a) usual nonparamet-
ric bootstrap by sampling with replacement from the data, (b) a semi-parametric
method, assuming density at the first level of their two level model is known but
that at the second level is unknown, and (c) the parametric bootstrap. In mixed lin-
ear models, the nonparametric and semi-parametric bootstrap approximation of the
distribution of the EBLUP are generally not consistent. Once the bootstrap sample
(nonparametric, semi-parametric or parametric) is generated, the next challenge
is to find a method that corrects the empirical Bayes confidence intervals IC

i (α)
to achieve better coverage. Laird and Louis (1987) considered an imitation of the
hierarchical Bayes approach.

Carlin and Gelfand (1990, 1991) point out that the hierarchical Bayesian meth-
ods like those of Laird and Louis (1987) lead to a lengthening of the empirical
Bayes interval, which is not the same as a correction. They discuss an example
where increasing the length further exacerbates the coverage bias. They suggest
parametric bootstrap to calibrate the empirical Bayes interval.

Calibration of intervals has been one of the major uses of bootstrap for some
time, and can lead to considerable improvement of coverage accuracy. Coupled



BOOTSTRAP FOR LINEAR MIXED MODELS 1227

with use of bias correction, use of pivotal or nearly pivotal statistics, and Edge-
worth corrections, improvements from calibration can sometimes be dramatic. See
Abramovitch and Singh (1985), Beran (1990a, 1990b), the book by Efron and Tib-
shirani (1993) and references therein for further details on these issues. On the
other hand, calibration is both time and computational effort intensive, often re-
quiring iterative searches; it typically increases variability; the results often lack
straightforward interpretability; and successive calibrating steps typically have di-
minishing returns in terms of improvement of coverage. It is not always clear what
property of an interval, that is, length, coverage, end points or some other char-
acteristic, ought to be calibrated, see for example, DiCiccio and Efron (1996) and
the discussions of it by Hall and Martin (1996), Lee and Young (1996); and the in-
teresting example in the rejoinder. Some calibrating options do not exist for mul-
tivariate confidence or prediction regions. Asymptotic results suggest calibrated
intervals have better coverage accuracy, but do not consider the variability induced
by the calibration, do not represent performance in finite samples; or reflect the
degree in which the finite sample results depend on unknown parameters and their
estimators. Nevertheless, calibration is an excellent tool to improve coverage of
intervals; though it seems sensible to use a more accurate interval and little or
no calibration; rather than a less accurate interval with intensive calibration. The
bootstrap interval we obtain in Section 3 is one such highly accurate interval, and
requires the same amount of computational effort as one round of bootstrap based
calibration of Carlin and Gelfand (1990, 1991).

Hall (2006) suggested an application of the nonparametric bootstrap confidence
interval based on the generated θ'

i ’s only. In the small area context, this may be
applicable when the differences between the small areas are minor, or carried only
in the fixed effects. In surveys, robustness is always an important issue, and the
practitioners are always interested in efficient nonparametric methods. However,
due to scarce data at the small area level, nonparametric estimators tend to under-
perform, often severely. This is because the nonparametric models typically permit
the generation of bootstrap histograms based on a synthetic model or the regression
model, but do not permit approximation of the conditional distribution of θi given
the data Yn. As a result, the nonparametric bootstrap prediction interval for θi is
likely to underweight the area specific data. Accurate weighting of the area specific
data is important for achieving good coverage properties, as the example below
shows. Hall (2006) also pointed out the importance of parametric bootstrap in
small area estimation and other related problems.

EXAMPLE. Consider the following special case of the Fay–Herriot model
where σi ≡ 1, and xT

i β ≡ µ. Thus, at Level 1, Yi’s given the θi’s are inde-
pendently distributed as N(θi ,1) random variables; and at Level 2, the θi ’s are
independent, identically distributed as N(µ, τ 2) random variables. The estima-
tors of µ and τ 2 are given, respectively, by µ̂ = Ȳ , τ̂ 2 = max(0, s2 − 1), where
s2 = ∑

(yi − ȳ)2/(n − 1). Assume τ̂ 2 > 0, a condition that is satisfied in many
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problems. The bootstrap procedure would require us to generate θ∗
i

iid∼ N [µ̂, τ̂ 2]
and Y ∗

i |θ∗
i

ind∼ N [θ∗
i ,1]. Then we have µ̂∗ = Ȳ ∗, τ̂ 2∗ = max(0, s∗2 − 1) where

s∗2 = ∑
(y∗

i − ȳ∗)2/(n − 1). An obvious Level 2 based bootstrap prediction in-
terval for θi that is not area specific, is given by

(
µ̂ − t1

√
τ̂ 2, µ̂ + t2

√
τ̂ 2

)
,(2.2)

where (t1, t2) are cutoff points satisfying P(µ̂∗ − t1
√

τ̂ 2∗ ≤ θ∗ ≤ µ̂∗ + t2
√

τ̂ 2∗
) =

1 − α.
It can be shown that interval (2.2) has coverage of 1 − α + O(n−1/2) which

makes it consistent, but hardly accurate enough. The lack of accuracy is due to the
use of the Level 2 distribution only, so that the Level 1 data Yi plays no special
role in the interval construction.

In Bayesian terminology, the Level 2 of the Fay–Herriot model essentially cor-
responds to a prior on θi , while the Level 1 model yields the likelihood. Using
only the “prior knowledge” (Level 2 distribution) does not even yield consistency
in general. However, in some instances using the Level 2 distribution in conjunc-
tion with bootstrap can have a calibration effect that obtains O(n−1/2) consistency,
as shown above.

3. Parametric bootstrap prediction interval for a general linear mixed
model. We consider the model:

Yn = Xβ + Zvq + en,(3.1)

where X is a known (n × p) matrix, Z is a known (n × q) matrix, Yn ∈ Rn is the
vector of observed data, β ∈ Rp is a fixed but unknown parameter vector, and vq ∈
Rq and en ∈ Rn are random variables following the normal distributions Nq(0,Dq)
and Nn(0,Rn), respectively. The integer q may depend on n, thus q ≡ qn. Assume
the sequence {vq} and {en} are independent. The first term Xβ represents the fixed
effects, and the second term Zvq the random effects. Thus Xβ + Zvq constitute
the signal component of the observed data, while en is the noise. The properties
of the signal are of interest, which depend on the unknown parameters β , Dq and
Rn.

Assume that the (q × q) matrix Dq and the (n × n) matrix Rn are known up to
a (k × 1) vector of unknown parameters, thus Dq = Dq(ψ) and Rn = Rn(ψ) for
a fixed but unknown ψ = (ψ1, . . . ,ψk)

T ∈ Rk . Note that the dispersion matrix of
the observed data Yn is given by

*n = *n(ψ) = Rn(ψ) + ZDq(ψ)ZT .

We henceforth drop the n from Yn, en, Rn and *n, and q from vq and Dq to
simplify notation. We take d = p + k, the dimension of the parameter space. Let
θ = (β,ψ) denote the unknown parameters.
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Das, Jiang and Rao (2004) show that several linear mixed models, includ-
ing analysis of variance (ANOVA) models and longitudinal models of both bal-
anced and unbalanced nature are special cases of the model (3.1). Unbalanced
ANOVA models arise, for example, when R = σ 2

0 In; and D = diag(σ 2
1 Ir1, . . . ,

σ 2
k−1Irk−1) where Ir is the r × r identity matrix. Here ψ is the vector of variance

components ψ = (σ 2
0 , . . . ,σ 2

k−1). Unbalanced longitudinal models arise when *

has a block diagonal structure.
Let T = cT (Xβ + Zv), where c is a fixed and known (n × 1) vector. The case

where c is a n × m matrix obtains multidimensional predictive quantities, and
their treatment is similar to the univariate case described below, with some minor
algebraic variations. We concentrate on univariate T for easier exposition. The
conditional distribution of T given Y is N(µT ,σ 2

T ), where

µT = cT Xβ + cT ZDZT *−1(Y − Xβ)
(3.2)

= cT R*−1Xβ + cT ZDZT *−1Y

and

σ 2
T = cT Z(D − DZT *−1ZD)ZT c.(3.3)

Generally, β and ψ (and hence D and R) are estimated from the data Y by using
the marginal distribution of Y, given by Nn(Xβ,*). The resulting estimates µ̂T

and σ̂T of the mean and variance of T are expressions similar to (3.2) and (3.3),
with β̂ and ψ̂ in place of β and ψ .

For algebraic simplicity, in the rest of this paper we assume that X is full column
rank and use the estimator β̂ = (XT X)−1XT Y. This is the ordinary least squares
estimator of β . Using other estimators like the maximum likelihood estimator or
the weighted least squares estimator, with appropriate conditions on the weights, is
another possibility. This makes little difference in the asymptotic analysis as long
as the weights are smooth functions of ψ . Estimator ψ̂ of ψ is typically obtained
by maximum likelihood or restricted maximum likelihood techniques.

Based on the fact that σ−1
T (T − µT ) is a standard normal pivot, the tradi-

tional approach to interval estimation for T , reviewed in Section 2, is to take
(µ̂T ± z

√
mspe) for some estimator mspe of MSPE and the appropriate Normal

quantile z. Unfortunately, σ̂−1
T (T − µ̂T ) is not a pivot, and the traditional approach

produces too short or too long intervals. Let the distribution of σ̂−1
T (T − µ̂T ) be

Ln. Recognizing that Ln is not the standard normal distribution, we propose to
estimate it using parametric bootstrap.

Define

Y∗ = Xβ̂ + Zv∗ + e∗

where v∗ ∼ Nq(0,D(ψ̂)) and e∗ ∼ Nn(0,R(ψ̂)) are independent of each other.
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From Y∗, obtain β̂∗ and ψ̂∗ using the same techniques used to obtain β̂ and
ψ̂ earlier. Next, obtain µ̂∗

T and σ̂ ∗
T using β̂∗ and ψ̂∗ using (3.2) and (3.3). Define

T ∗ = cT (Xβ̂ + Zv∗). The distribution of

σ̂−1∗
T (T ∗ − µ̂∗

T ),

conditional on the data Y, is the parametric bootstrap approximation L∗
n of Ln.

Using this approximation, we then proceed to obtain the interval estimate for T
as (µ̂T + q1σ̂T , µ̂T + q2σ̂T ), where q1 and q2 are appropriate quantiles of the
bootstrap approximation L∗

n of Ln.
Our main result is that L∗

n approximates Ln up to O(d3n−3/2) terms. In order to
state the assumptions for our result, let us introduce some terminology and notation
now. For any function f (ψ) : Ra → R, f ′(ψ) denotes its first derivative written
as a a × 1 column vector; f ′′(ψ) denotes the a × a second derivative matrix.
For a symmetric matrix A, λmax and λmin, respectively, denote its maximum and
minimum eigenvalue.

The following are the assumptions for our result in this section:

1. The following relations hold:

‖XT c‖ = O(1),(3.4)

‖XT *−1ZDZT c‖ = O(1),(3.5)

cT ZDZT c = O(1),(3.6)

cT ZDZT *−1ZDZT c = O(1).(3.7)

In addition,

σ 2
T = cT Z(D − DZT *−1ZD)ZT c > M > 0,

for some constant M > 0.
2. Assume that

sup
1≤i≤n

p∑

j=1

[
n∑

a=1

Xja*
1/2
ai

]2

= O(p/n),(3.8)

λmin(n
−1XT X) > M > 0,(3.9)

for some constant M > 0.
3. The eigenvalues of the matrices D and R lie in (L−1,L) for some L > 1. The

eigenvalues of D(ψ̂) and R(ψ̂) lie in (L−1/2,2L). The eigenvalues of * lie in
a compact set on the positive half of the real line.

In the representations

D = D1(ψ)DT
1 (ψ), D̂ = D1(ψ),D(ψ̂)DT

1 (ψ),(3.10)

R = R1(ψ)RT
1 (ψ), R̂ = R1(ψ),R(ψ̂)RT

1 (ψ),(3.11)
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where ,R and ,D are diagonal matrices, the following conditions are satisfied:
All the entries of the q × q matrix ,D = diag(,D1, . . . ,,Dq) and the n×n

matrix ,R = diag(,R1, . . . ,,Rn) have three bounded continuous derivatives.
We denote by ,′

D the k × q matrix whose (j, i)th entries are given by

((,′
D))j,i(ψ) = ∂

∂ψj
,Di(ψ), j = 1, . . . , k; i = 1, . . . , q.

The (j, i)th entry of the k2 × q matrix ,′′
D is

((,′′
D))j,i(ψ) = ∂2

∂ψj1 ∂ψj2

,Di(ψ), j1 + (j2 − 1)k = j,

j1, j2 = 1, . . . , k, j = 1, . . . , k2, i = 1, . . . , q.

The (j, i)th entry of the k3 × q matrix ,
(3)
D is

((
,

(3)
D

))
j,i(ψ) = ∂3

∂ψj1 ∂ψj2 ∂ψj3

,Di(ψ),

where j1 + (j2 − 1)k + (j3 − 1)k2 = j , j1, j2, j3 = 1, . . . , k, j = 1, . . . , k3, and
i = 1, . . . , q .

We define the k × n matrix ,′
R , the k2 × n matrix ,′′

R and the k3 × n matrix
,

(3)
R along identical lines as above.
The following conditions are assumed:

λmax,
′T
D (ψ),′

D(ψ) = O(1),(3.12)

λmax,
′T
R (ψ),′

R(ψ) = O(1),(3.13)

λmax,
′′T
D (ψ),′′

D(ψ) = O(1),(3.14)

λmax,
′′T
R (ψ),′′

R(ψ) = O(1),(3.15)

λmax,
(3)T
D (ψ∗),(3)

D (ψ∗) < M = O(1),(3.16)

λmax,
(3)T
R (ψ∗),(3)

R (ψ∗) < M = O(1),(3.17)

for some constant M > 0 for all ψ∗ in a neighborhood of the true value ψ .
4. Let S = (k/n)1/2(ψ̂ −ψ). Assume that all the moments of ‖S‖ are O(1). More-

over, the following relations are also satisfied:

ESj = O
(√

k/n
)
, j = 1, . . . , k,(3.18)

ESaSb = O
(√

k/n
)
, a, b = 1, . . . , k,(3.19)

ESj (Zv + e)i = O
(√

k/n
)
, j = 1, . . . , k, i = 1, . . . , n,(3.20)

ESaSb(Zv + e)i = O
(√

k/n
)
, a, b = 1, . . . , k, i = 1, . . . , n.(3.21)
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We now state our main theorem for this section.

THEOREM 3.1. Under the Assumptions (1)–(4), if d2/n → 0, we have

sup
q∈R

|Ln(q) − L∗
n(q)| = OP (d3n−3/2).(3.22)

The proof of Theorem 3.1 is given in the Appendix. A direct application of
Theorem 3.1 is the following result on highly accurate prediction intervals.

THEOREM 3.2. Under the Assumptions (1)–(4) and d2/n → 0, for any α ∈
(0,1), if q1 and q2 are real numbers such that

L∗
n(q2) − L∗

n(q1) = 1 − α,

we have

P[µ̂T + q1σ̂T ≤ T ≤ µ̂T + q2σ̂T ] = 1 − α + O(d3n−3/2).(3.23)

Theorem 3.2 follows directly from Theorem 3.1, hence we omit its proof. Since
the Fay–Herriot model (described in Section 2) is an important example, we state
the results for it in a separate corollary below.

COROLLARY 3.1. In the Fay–Herriot model, assume that the matrix X is full
column rank, the diagonal entries hii of the projection matrix on the columns of
X satisfy supi hii = O(p/n), the Level 1 variances {Di} lie in a compact subset
of (0,∞), and the estimator Â of A is positive. Then, for any i ∈ {1, . . . , n}, if
θ̂EB
i = (1 − B̂i)Yi + B̂ixT

i β̂ , θ̂EB∗
i = (1 − B̂∗

i )Y ∗
i + B̂∗

i xT
i β̂∗, we have

P
[
θi ∈ (

θ̂EB
i + qi1D

1/2
i (1 − B̂i)

1/2, θ̂EB
i + qi2D

1/2
i (1 − B̂i)

1/2)]

(3.24)
= 1 − α + O(p3n−3/2);

where B̂i = Di/(Â + Di), and (qi1, qi2) satisfy

P∗[
θ∗
i ∈ (

θ̂EB∗
i + qi1D

1/2
i (1 − B̂∗

i )1/2, θ̂EB∗
i + qi2D

1/2
i (1 − B̂∗

i )1/2)]

= 1 − α + OP (p3n−3/2).

The notation used in Corollary 3.1 are standard ones, that is, P∗ is the prob-
ability on the resampling scheme conditional on the data, B̂∗

i = Di/(Â
∗ + Di),

where β̂∗ and Â∗ are the estimators computed on the bootstrap data Y∗. Here
conditional on the data, θ∗

i ∼ N(xT
i β̂, Â), and Y ∗

i |θ∗
i ∼ N(θ∗

i ,Di) independently.
Corollary 3.1 is easily derived from Theorem 3.2, and we omit the details of its
proof. A slightly different approach to the same result may be found in the unpub-
lished manuscript Chatterjee and Lahiri (2002). We now discuss the assumptions
leading to our main result Theorem 3.1, and some additional features of our result.
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REMARK 1 (On the dimension of the random effect vector). Note that the
dimension q of the random effect v is arbitrary which may or may not depend on
n. Owing to this generalization, our analysis is for T = cT (Xβ + Zv), rather than
the more traditional T̃ = cT

1 β + cT
2 v. Since X is full column rank, the fixed effects

in T and T̃ are equivalent.

REMARK 2 (On the technical assumptions). In the development of all the as-
sumptions above, we have preferred simplicity over generality. The requirement
d2n−1 → 0 is standard in dimension asymptotics. Assumption 1 is in order to en-
sure T as a nontrivial quantity, that is, it ensures that both the fixed component
and the variance of the random component of µT are O(1), and the variance σ 2

T is
bounded away from zero and infinity. By suitably scaling the norm of the vector c
this assumption is satisfied.

Assumption 2 is a standard assumption on the behavior X. It ensures that the
norm of each fixed effects covariate is of suitable order, and the fixed effects design
is not singular. This assumption can be modified to suit cases where X is not full
column rank, but such generalizations are routine.

Assumption 3 is on standard differentiability and eigenvalue conditions. Here
again, we have tried to adopt simple conditions rather than the most general ones.
Note that the existence of the representations (3.10) and (3.11) are not part of the
assumptions, and these representations will be established in the proof of Theo-
rem 3.1.

Also note that the eigenvalues of D(ψ̂) and R(ψ̂) are estimates of the variance
components in typical applications. Note that we do not allow these to be zero,
since these must always lie in (L−1/2,2L). However, L may be arbitrarily large,
consequently this assumption does not limit the applicability of our results.

In Assumption 4 we take all moments of S to exist in order to achieve simplicity.
Our result involves computation of several terms involving S, and having all the
moments of S available simplifies the algebra. In most applications, both ψ and ψ̂
lie in a compact set, hence this is not a strong condition. The other moment con-
ditions on S given by (3.18)–(3.19) are routine. These hold when ψ̂ is obtained
using either maximum likelihood or restricted maximum likelihood formulation,
see Jiang (1998) for related developments.

Conditions (3.20)–(3.21) are interesting, since they effectively set a limit to the
amount of dependency structure we can have in *. In order to visualize this, sup-
pose ψ̂ (−i) is the estimator of ψ obtained by using only those observations that
are independent of Yi ; and let S(−i) = (k/n)1/2(ψ̂ (−i) − ψ). Then, a sufficient
condition for ESj (Zv + e)i = O((k/n)1/2) is that S − S(−i) = OP ((k/n)1/2).

This is routinely achieved, and in particular, if Yi is independent of all but a
finite number of observations, we have S − S(−i) = OP ((k/n)1/2). This is the
typical situation is almost all applications of small area studies. Thus, the effect of
Assumption 4 is to restrict the complexity of the matrices D and R.
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REMARK 3 (On the nature of prediction intervals). A prominent application
of the highly accurate approximation of Ln(·) by L∗

n(·) is stated in Theorem 3.2,
that is, in the construction of prediction intervals. Note that these are bootstrap
intervals, as opposed to the traditional intervals described in Section 2, some of
which are improved with bootstrap corrections.

However, Theorem 3.2 does not describe the nature of the bootstrap prediction
intervals, since the choice of q1 and q2 can be quite arbitrary. These may be cho-
sen to ensure either an equal tail property of the interval; whereby L∗

n(q1) = α/2
and L∗

n(q1) = 1 − α/2; or we may chose these according to a minimum length
of interval property, that is, we minimize the length σ̂T (q2 − q1). The simula-
tion experiments reported in Section 4 show that both equal tailed and minimum
length bootstrap prediction intervals typically achieve the desired coverage accu-
racy without the use of elaborate calibrations; and the minimum length interval is
always slightly shorter than the equal tailed one.

REMARK 4 (On multivariate prediction). Note that in place of the real valued
T studied above, we could have a vector valued T with little change in methodol-
ogy. The algorithmic and algebraic details are similar, and the main result of high
order accuracy of distributional approximation (3.22) holds. The major difference
between univariate and multivariate prediction is in the construction of prediction
regions. Instead of the two points q1 and q2, we need to obtain probability con-
centration regions from the bootstrap distribution. Such regions can be obtained
using various data depth notions and shape features, for example, as in Yeh and
Singh (1997). This is a separate issue from the one addressed in this paper, and
will be handled in a different paper. Note that multidimensional probability con-
centration regions can be quite hard to calibrate in practice. Some techniques, such
as calibration of the end points of an interval, are not available in this case.

REMARK 5 (Asymptotics on total sample size n). One important feature of
Theorem 3.1 is that the asymptotic limits are obtained with total sample size n
tending to infinity. The total sample size n is the sum total of all observations
made, counting each repeated measurement on each individual unit in each small
area as a distinct observation. This allows Theorem 3.1 to be used with consider-
able flexibility, for example, when number of individual units in small areas are
large, or when number of small areas are large, or both. However, requirements
of asymptotic negligibility, as in (3.20)–(3.21), must still be met. Our assumptions
are designed for the more realistic applications where number of small areas are
large.

In general, for mixed linear models asymptotic limits are obtained either when
the number of observations in each small area tends to infinity, or when the number
of small areas tend to infinity; see McCulloch and Searle (2001) and Rao (2003)
for details. Theorem 3.1 is a breakthrough, owing to the greater flexibility it allows
in asymptotics.



BOOTSTRAP FOR LINEAR MIXED MODELS 1235

REMARK 6 (On area specific properties). The area-specific signal for each
small area is of Ti = xT

i β+ZT
i v, conditional on the observed ith small area data Yi .

Distributions of predictors for such area specific signals are effectively captured by
our bootstrap predictive distribution approximation. Consequently, our bootstrap
prediction intervals for Ti are also area specific. Extensions to compare two or
more small areas can be obtained by similar techniques, see comment on multidi-
mensional prediction above.

In the prediction interval described in Theorem 3.2, we have considered uncon-
ditional coverage, where probabilities are computed over the joint distribution of Y
and v. This establishes the performance of the area-specific interval that depends
on v conditional on Y, as well as variability due to observations Y.

Alternatively, one might compute the area-specific (random) coverage, which
is defined as P[Ti ∈ IP i |Yi], where IP i is the prediction interval. The interval
proposed in Theorem 3.2 achieves OP (d2/n) order of area-specific coverage ac-
curacy, since some smoothing effects arising from the distribution of Y are absent.
This is no worse (and in some cases, better) than the area-specific coverage ob-
tained by other techniques in special cases of the general linear model (3.1).

REMARK 7 (On calibration). Both the unconditional as well as the area-
specific coverage can be improved by calibration. The use of calibration coupled
with resampling is an active topic of research, and some discussion on this has been
presented in Section 2. The coverage accuracy of the prediction interval of Theo-
rem 3.2 can be improved to O(d5n−5/2) with one round of calibration, and further
still with more calibration. Such calibration may be done either on the probabili-
ties corresponding to the two end points as in DiCiccio and Efron (1996), or on the
true coverage of the interval. Some of our simulations, not reported in this paper,
suggest that it is not always beneficial to attempt boosting the theoretical coverage
probability, disregarding other properties of the interval. For example, variability
of calibrated intervals are greater than uncalibrated ones, minimum length property
is almost never preserved, and the results are quite dependent on the parameters
and fixed constants of the problem. Hence, it seems reasonable to work with a good
predictive distribution as in Theorem 3.1, instead of starting with a naive interval
and embarking on intense iterative calibration.

REMARK 8 [The parallel work of Hall and Maiti (2006b)]. Recently, Hall
and Maiti (2006b) studied parametric bootstrap methods for general small area
models, and considering the overlap of the topics studied in their paper and this
one, deserve special mention. For this comment, we use some notation from Hall
and Maiti (2006b) whenever they are not in conflict with the notations in the rest
of this paper, but use our notation otherwise.

For a suitable function fi(β) involving co-variates Xi = (Xi1, . . . ,Xini ) and
parameter β , they consider random effect .i ∼ Q(·;fi(β), ξ), and conditional
on .i , the data Yij are independent observations from R(·;ψ(.i ),ηi), for j =
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1, . . . , ni , i = 1, . . . ,m. Here ψ(·) is a known link function, ξ and ηi’s are either
parameters or known constants, and Q(·) and R(·) are known probability distri-
bution functions. They go on to study calibration of the mean squared prediction
error (MSPE) and interval estimation with parametric bootstrap.

Their model is broad enough to handle nonlinear mixed effects, which our
model (1.1) cannot do. However, their assumption of Yij ’s being independent
means that they do not consider longitudinal models, or other models with tem-
poral or spatial dependence. This is essentially the case R being a multiple of the
identity matrix in our set-up. Our model is broader than Hall and Maiti’s in includ-
ing several varieties of dependence structure.

The interval estimate from their Section 2.8 is

Îα = xT
i β̂ ± zα/2Â

1/2(3.25)

for the Fay–Herriot model. Rao (2005) noted that this interval does not make use
of the area-specific direct estimator, unlike the prediction interval proposed by
Chatterjee and Lahiri (2002). Hall and Maiti (2006b) calibrate this interval for
better coverage accuracy, improving from their result

P[.i ∈ Îα] = 1 − α + O(m−1).(3.26)

The result (3.26) hold when the probability statement is on the marginal distribu-
tion of random effect .i , and estimators β̂ and Â are independent of ith area data
Yi1, . . . , Yini .

Our probability statements in Theorems 3.1 and 3.2 are, however, on the joint
variability of the random effects and data (.i , Yi1, . . . , Yini ). Also note that The-
orem 3.2 is obtained as n = ∑m

i=1 ni → ∞, while (3.26) is obtained as m → ∞.
Since some of the ni ’s can be large, the speed of convergence toward the asymp-
totic limits are different; and m = o(n) if any ni → ∞.

Hall and Maiti (2006b) obtain that if Îα is calibrated once (twice), the cover-
age accuracy improves to O(m−2) [O(m−3)]. If the interval in (3.23) or (3.24) is
calibrated once (twice), the coverage accuracy improves to O(n−5/2) [O(n−7/2)]
when parameter dimension is fixed.

In summary, Hall and Maiti (2006b) cover a wide ranging independent data
framework, with careful MSPE estimation and marginal coverage of prediction in-
tervals as number of small areas increases; while we consider deeper linear mixed
framework allowing for longitudinal dependence, and establish results as total data
size increases on the joint variability of random effects and data, thus also obtain-
ing area specificity.

4. A simulation example. In this section we compare the performance of our
proposed parametric bootstrap with that of the traditional approaches, using a sim-
ulation study. We have carried out more extensive simulations which reflect the
general pattern of performance reported here; the details are available from the
authors.
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TABLE 1
Average coverage and average length of different intervals (nominal coverage = 0.95) in simulation

pattern (a)

Group Cox FH PR PB–ET PB–SL

G1 83.1 (3.12) 90.4 (3.57) 92.4 (3.82) 96.1 (4.50) 95.7 (4.42)
G2 85.4 (2.14) 93.7 (2.50) 98.0 (3.19) 96.2 (2.83) 95.9 (2.79)
G3 85.8 (2.02) 93.9 (2.36) 98.0 (3.08) 96.0 (2.65) 95.6 (2.61)
G4 86.1 (1.89) 94.3 (2.19) 98.2 (2.93) 96.1 (2.43) 95.7 (2.39)
G5 89.7 (1.12) 95.2 (1.23) 97.3 (1.87) 95.7 (1.28) 95.3 (1.26)

For the sake of comparability with existing studies, we adopt part of the simu-
lation framework of Datta, Rao and Smith (2005) for our study. We consider the
Fay–Herriot model with m = 15 and xT

i β = 0, and consider five groups of small
areas with three areas in each group. Within each group, the Di ’s remain the same.
There are two different patterns for the Di ’s: (a) 0.2, 0.4, 0.5, 0.6, 4.0 [this is pat-
tern (c) of Datta, Rao and Smith (2005)] and (b) 0.4, 0.8, 1.0, 1.2, 8.0. For pattern
(a), we took A = 1 in order to make the results comparable to Datta, Rao and Smith
(2005). For pattern (b), we took A = 2 in order to make the variances twice that of
pattern (a), but preserve the Bi = Di/(A + Di) ratios.

We obtain all the results based on 10,000 simulation runs. The Prasad–Rao
method-of-moments, and the Fay–Herriot method of estimating the variance com-
ponent A are considered. Tables 1 and 2 report the simulated coverage probabilities
and average lengths of several different prediction intervals (with nominal cover-
age 0.95) under patterns (a) and (b), respectively. We consider three prediction in-
tervals of the type EBLUP±1.96

√
mspe, where mspe is an estimator of the MSPE

of EBLUP. The Cox interval, discussed in Section 2, is obtained by using Prasad–
Rao method-of-moment estimator of A. The Prasad–Rao (PR) interval estimator
is obtained using that estimator of A along with the Prasad–Rao (1990) MSPE es-
timator. The Fay–Herriot (FH) interval estimator is obtained by using Fay–Herriot
method of moments estimator of A [see Fay and Herriot (1979)], and the MSPE

TABLE 2
Average coverage and average length of different intervals (nominal coverage = 0.95) in simulation

pattern (b)

Group Cox FH PR PB–ET PB–SL

G1 85.5 (4.87) 89.5 (5.18) 89.3 (5.35) 95.7 (6.55) 95.4 (6.47)
G2 83.6 (2.68) 86.0 (2.82) 87.3 (2.93) 95.2 (3.80) 94.9 (3.75)
G3 83.4 (2.49) 85.7 (2.60) 86.8 (2.71) 95.2 (3.53) 94.9 (3.49)
G4 82.9 (2.27) 85.0 (2.36) 86.2 (2.46) 95.0 (3.22) 94.5 (3.18)
G5 83.0 (1.21) 84.0 (1.23) 84.8 (1.29) 94.9 (1.72) 94.6 (1.70)
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estimator of EBLUP considered by Datta, Rao and Smith (2005). Along with these
three, we report two different parametric bootstrap prediction intervals. In both the
methods, we used Fay–Herriot method of estimating A, and the weighted least
squares estimator of β . The first bootstrap interval is equal-tailed (PB–ET), and
the second is the shortest length prediction interval (PB–SL). For both cases, we
considered bootstrap sample of size 1000.

The figures in Table 1 are average coverage probabilities and average lengths
for each prediction interval method for pattern (a), average being taken over all
three small areas within each group. Table 2 reports similar results for pattern
(b). It is clear that the results depend on the pattern of Di ’s. The Cox prediction
interval method consistently undercover. For pattern (a), both parametric boot-
strap prediction interval methods perform better than the Prasad–Rao and Fay–
Herriot prediction intervals in terms of coverage errors. In this case, the Fay–
Herriot method interval always under-covers, while the Prasad–Rao method inter-
val switches from undercoverage to considerable over-coverage. The Prasad–Rao
and the Fay–Herriot methods suffer from large undercoverage errors for pattern
(b). In contrast, the performances of our parametric bootstrap methods remain sta-
ble over these two different patterns and always close to the target nominal level.
Our minimum length parametric bootstrap method tends to provide shorter predic-
tion intervals compared to the equal-tailed equivalents.

These performance patterns are repeated for other sample sizes, and other pat-
terns of Di values in our simulations. It is generally seen that an increase in the
variances results in the traditional intervals performing even more poorly. Thus,
while both the Prasad–Rao and the Fay–Herriot MSPE estimators enjoy good the-
oretical properties, the resulting interval estimates suffer owing to the enforced
symmetry and normality assumption.

APPENDIX

PROOF OF THEOREM 3.1. We establish this result by obtaining an asymptotic
expansion of Ln(q). An identical expansion holds for L∗

n(q), which leads to the
result. In this proof, the letter capital C, with or without suffix, will be generic for
constants.

For the projection on the column space of X we use the notation Px, thus

Px = X(XT X)−1XT .

Let φ(·) (1(·)) be the standard Normal probability density (cumulative distrib-
ution) function. Let φ′ and φ′′ denote the first and second derivative of φ(·), thus
for x ∈ R we have φ′(x) = −xφ(x),φ′′(x) = (x2 − 1)φ(x). Define

Q(q,Y) = σ−1
T {µ̂T − µT + q(σ̂T − σT )}.
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Then for any q ∈ R, we have

Ln(q) = P
(
σ̂−1

T (T − µ̂T ) ≤ q
)

= E
[
P

(
σ−1

T (T − µT ) ≤ q + σ−1
T {µ̂T − µT + q(σ̂T − σT )}|Y)]

= E
[
1

(
q + Q(q,Y)

)]

= 1(q) + φ(q)EQ(q,Y) − 2−1qφ(q)EQ2(q,Y)

+ 2−1E
{∫ q+Q

q
(q + Q − x)2(x2 − 1)φ(x) dx

}

= 1(q) + φ(q)T1(q) − 2−1qφ(q)T2(q) + T3(q).

Notice that for x ∈ (q, q + Q), we have 0 ≤ |q + Q − x| ≤ |Q| and (x2 − 1) ×
φ(x) ≤ 2φ(

√
3), we have

E
∫ q+Q

q
(q + Q − x)2(x2 − 1)φ(x) dx

≤ E
∫ q+Q

q
|(q + Q − x)2||(x2 − 1)φ(x)|dx

≤ EQ2
∫ q+Q

q
2φ

(√
3
)
dx ≤ CE|Q|3.

From the following calculations it will follow that EQ8 = O(d8n−4), whereby
supq T3(q) = O(d3n−3/2).

We now simplify the expression for Q(q,Y). Let R̂ = R(ψ̂), D̂ = D(ψ̂), *̂ =
*(ψ̂). Note that R̂*̂−1 + ZD̂ZT *̂−1 − R*−1 − ZDZT *−1 = 0 almost surely.
Hence we have
µ̂T − µT = cT R̂*̂−1Xβ̂ + cT ZD̂ZT *̂−1Y − cT R*−1Xβ − cT ZDZT *−1Y

= cT [I − ZDZT *−1]Px(Zv + e)

+ cT (ZD̂ZT *̂−1 − ZDZT *−1)(I − Px)(Zv + e) almost surely.

In view of the above, let us write Q(q,Y) = Q1 + Q2(Y) + Q3(q,Y), where
Q1 = σ−1

T cT [I − ZDZT *−1]Px(Zv + e),

Q2(Y) = σ−1
T cT (ZD̂ZT *̂−1 − ZDZT *−1)(I − Px)(Zv + e),

Q3(q,Y) = qσ−1
T (σ̂T − σT ).

First, using the decomposition

Q1 = σ−1
T cT Px(Zv + e) − σ−1

T cT ZDZT *−1Px(Zv + e) = Q11 − Q12.

Using Assumption 1, in particular, (3.4)–(3.7), with some amount of algebra
we can conclude that EQ1 = 0, EQ2

11 = O(n−1), EQ8
11 = O(p4n−4), EQ2

12 =
O(n−1), EQ8

12 = O(p4n−4).
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We now analyze Q2(Y) and Q3(q,Y). These are considerably more compli-
cated than Q1. We initially break down these two quantities in terms of more
tractable variables W1, . . . ,W11 and remainder terms. The variables W1, . . . ,W11
depend on ZD̂ZT and *̂−1 and their population equivalents. We need to compute
the first, second, fourth, eighth and sixteenth moment of the Wi ’s and show that
the remainder terms are negligible.

Toward that goal, our next step is to expand ZD̂ZT in equation (A.1) and *̂−1

in equation (A.2) in terms of simpler matrices. Then we obtain asymptotic ex-
pansions of the matrix entries, whereby at last we have sufficient ingredients for
the moment computations of W1, . . . ,W11 and the remainder terms. We skip the
details of the moment calculation algebra, of which there are several hundreds to
compute. However, our assumptions are sufficient to establish the end result that
EQ2(Y), EQ2

2(Y), EQ3(q,Y) and EQ2
3(q,Y) are all O(d2/n). The expansion of

Q2(Y) is as follows:

Q2(Y) = σ−1
T cT (ZD̂ZT *̂−1 − ZDZT *−1)(I − Px)(Zv + e)

= σ−1
T cT [(ZD̂ZT − ZDZT )*−1

+ ZDZT (*̂−1 − *−1)

+ (ZD̂ZT − ZDZT )(*̂−1 − *−1)](I − Px)(Zv + e)

= W1 + W2 + W3.

Now define W = σ−2
T (σ̂ 2

T − σ 2
T ). We will simplify Q3(q,Y) in terms of W . How-

ever, we first need to simplify W . For this, we have

W = σ−2
T (σ̂ 2

T − σ 2
T )

= σ−2
T cT [{ZD̂ZT − ZDZT }

− {ZD̂ZT *̂−1ZD̂ZT − ZDZT *−1ZDZT }]c
= σ−2

T cT [{ZD̂ZT − ZDZT } − ZDZT (*̂−1 − *−1)ZDZT

− ZDZT *−1{ZD̂ZT − ZDZT } − {ZD̂ZT − ZDZT }*−1ZDZT

− {ZD̂ZT − ZDZT }*−1{ZD̂ZT − ZDZT }
− {ZD̂ZT − ZDZT }(*̂−1 − *−1)ZDZT

− ZDZT (*̂−1 − *−1){ZD̂ZT − ZDZT }
− {ZD̂ZT − ZDZT }(*̂−1 − *−1){ZD̂ZT − ZDZT }]c

=
11∑

i=4

Wi.
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Let us now simplify Q3(q,Y):

Q3(q,Y) = qσ−1
T (σ̂T − σT ) = q(σ−1

T σ̂T − 1)

= q[W/2 − W 2/8 + rn].
At this stage, we use a result from Rao (1965), page 41, result (1c.3.10): If A

is positive definite and B nonnegative definite n × n symmetric matrices, then, we
can write A = ∑n

i=1 AiA
T
i , B = ∑n

i=1 biAiA
T
i where Ai ’s are vectors, bi ’s are

real constants. Moreover, since A is positive definite, the Ai ’s form a basis (but
not necessarily an orthogonal basis) of Rn. Another way of writing the same thing
is A = A1A

T
1 , B = A1,BAT

1 where the columns of A1 are the Ai ’s, and ,B is a
diagonal matrix with entries bi . Note that A1 is nonsingular.

We use this result twice. First, we take R as A and R̂ as B , and then we take D
as A and D̂ as B . Thus we have

R = R1(ψ)RT
1 (ψ), R̂ = R1(ψ),R(ψ̂)RT

1 (ψ),

D = D1(ψ)DT
1 (ψ), D̂ = D1(ψ),D(ψ̂)DT

1 (ψ).

Here the nonsingular matrices R1 and D1 depend on the unknown parameter ψ ,
while ,R and ,D are diagonal matrices depending on the estimator ψ̂ .

Based on the above, we have

* = R1[I + R−1
1 ZD1D

T
1 ZT R−T

1 ]RT
1 = R1[I + AAT ]RT

1 ,

where A = R−1
1 ZD1. We define B0 = [I + AAT ]−1/2, the symmetric square root.

Hence, *−1 = R−T
1 B2

0R−1
1 . We also have

*̂ = R1[,R + R−1
1 ZD1,DDT

1 ZT R−T
1 ]RT

1 = R1[,R + A,DAT ]RT
1 .

Let us write ,R = I + (k/n)1/2UR , ,D = I + (k/n)1/2UD . Our next step is to
write ZD̂ZT and *̂−1 using UR and UD . Thus

ZD̂ZT = R1A,DAT RT
1

= ZDZT + (k/n)1/2R1AUDAT RT
1 ,

(A.1)
*̂−1 = R−T

1 [,R + A,DAT ]−1R−1
1

= R−T
1 B0[I + (k/n)1/2U ]−1B0R

−1
1 ,

where U = B0(UR + AUDAT )B0. We further simplify *̂−1 by writing

[I + (k/n)1/2U ]−1

= I − (k/n)1/2U + (k/n)U2 − (k/n)3/2[I + (k/n)1/2U ]−1U3

= I − (k/n)1/2U + (k/n)U2 − (k/n)3/2UR.
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Hence,

*̂−1 = R−T
1 B0[I + (k/n)1/2U ]−1B0R

−1
1 ,

= *−1 − (k/n)1/2R−T
1 B0UB0R

−1
1 + (k/n)R−T

1 B0U
2B0R

−1
1(A.2)

− (k/n)3/2R−T
1 B0URB0R

−1
1 .

Equations (A.1) and (A.2) will be heavily used in the analysis below.
We now turn our attention to UR and UD . Recall that S = k1/2n−1/2(ψ̂ − ψ).

Suppose λDi is the ith element of either ,D . We have λDi(ψ) = 1. Thus, we have

λ̂Di = λDi(ψ̂)

= 1 + (k/n)1/2ST λ′
Di + 2−1(k/n)ST λ′′

DiS

+ 6−1(k/n)3/2
∑

j1,j2,j3

2(j1, j2, . . . , j3;λDi(ψ
∗))Sj1Sj2Sj3,

where ψ∗ is a point between ψ and ψ̂ . Hence, we have

(k/n)1/2UDi = (
λDi(ψ̂) − 1

)

= (k/n)1/2ST λ′
Di + 2−1(k/n)ST λ′′

DiS

+ 6−1(k/n)3/2
∑

j1,j2,j3

2(j1, j2, . . . , j3;λDi(ψ
∗))Sj1Sj2Sj3

= (k/n)1/2UDi1 + (k/n)UDi2 + (k/n)3/2UDi3.

A similar analysis holds for URi .
It now remains to calculate the first, second and eighth moments of W1, . . . ,

W11, and establish that EW 8
i = O(k16n−8), EW 2

i = O(k2/n), EWi = O(k/n) for
i = 1, . . . ,11. Some of these moments turn out to be of even smaller order and thus
contribute negligibly. Also, certain remainder terms have to proved negligible. The
totality of these computations involve a few hundred algebraic manipulations, and
is reasonably routine. We sketch part of the computation for one of the compo-
nents of W1 as an example of the technique used. The rest of the computations are
omitted.

Using (A.1) we obtain that

W1 = σ−1
T cT (ZD̂ZT − ZDZT )*−1(I − Px)(Zv + e)

= (k/n)1/2σ−1
T cT ZD1

× [UD1 + (k/n)1/2UD2 + (k/n)UD3]D1ZT *−1(I − Px)(Zv + e)

= W11 + W12 + W13.

Here UDj , j = 1,2,3 is the diagonal matrix whose ith diagonal entry is UDij

computed earlier. We will sketch the computations only for

W11 = (k/n)1/2σ−1
T cT ZD1UD1D1ZT *−1(I − Px)(Zv + e).
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Recall that UDi1 = ST λ′
Di . Let the j th element of the Rk dimensional vec-

tor λDi be λ′
Dij , j = 1, . . . , k, i = 1, . . . , q . Define the (k × q) matrix ,′

D

whose (a, b)th element is λ′
Dba . Also define the diagonal matrix E3 whose ith

diagonal entry is the ith element of the vector D1ZT c. Then note that W11 =
(k/n)1/2σ−1

T ST E5(Zv + e), where U ∼ Nn(0, In), S depends on U , and E5 =
,′

DE3D1ZT *−1(I − Px). The appropriate moment properties of W11 now follow
by applying (3.20), (3.21) and (3.12).

The above sketch of calculations for W11 may be repeated with variations for
the other terms as well to establish that

Ln(q) = 1(q) + k2n−1γ (q,β,ψ) + O(k3n−3/2),

for a O(1) smooth quantity γ (·, ·, ·).
A similar representation holds for L∗

n(q) with β̂ and ψ̂ in place of β and ψ .
This establishes the result. !
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