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Relevant and Irrelevant Simulation

Statisticians love simulations that show their methods work great
(at least on some toy problems).

IMHO, this is nonsense. Those simulations prove nothing. Those
toy problems may be chosen (consciously or unconsciously) to
make the methods look good.

And those toy problems are very different from statistical models
you use for real data. So what could the simulation study possibly
tell you that is relevant?

Relevant simulation — what everybody else calls the bootstrap —
says that for each and every model you fit you do a simulation for
that model not some irrelevant toy problem.

http://catb.org/jargon/html/I/IMHO.html


The Empirical Distribution

The empirical distribution is the probability distribution that puts
equal probability at a set of data values if they are distinct.
Otherwise puts probability proportional to the multiplicity of the
data points.

A class of theorems called Glivenko–Cantelli theorems says the
empirical distribution converges to the true unknown distribution
of the data as the sample size goes to infinity for independent and
identically distributed data.

This justifies using the empirical distribution as an estimator of the
true unknown distribution.

https://en.wikipedia.org/wiki/Glivenko%E2%80%93Cantelli_theorem


The Bootstrap Metaphor

Real World Bootstrap World

true distribution P P̂n

data X1, . . . ,Xn IID P X ∗1 , . . . ,X
∗
n IID P̂n

true parameter θ = f (P) θ̂n = f (P̂n)

point estimate θ̂n = g(X1, . . . ,Xn) θ∗n = g(X ∗1 , . . . ,X
∗
n )

standard error ŝn = h(X1, . . . ,Xn) s∗n = h(X ∗1 , . . . ,X
∗
n )

pivotal quantity (θ̂n − θ)/ŝn (θ∗n − θ̂n)/s∗n

P̂n empirical distribution for X1, . . . , Xn.

IID independent and identically distributed (non-IID later)

pivotal quantity means sampling distribution does not depend on
unknown parameters (exactly or approximately).



The Fundamental Principle of Statistics

Estimates are not the parameters they estimate. θ̂n is not θ.

Statistics tells us how to deal with this. It does not make
uncertainty go away.

The bootstrap is just this taken up another level of abstraction. P̂n

is not P.

Instead of a scalar parameter θ, what is unknown is the whole true
distribution P of the data.



The Bootstrap Metaphor (cont.)

Because P̂n is not P, the bootstrap does the Wrong Thing.

But it is the best (nonparametric) thing to do (we should simulate
from P but don’t know P, so have to use P̂n).

Hence — contrary to what many people seem to think — the
bootstrap is not an exact small sample procedure like a t test.

It has only large sample (large n) validity (like many other
statistical procedures). And n may need to be larger for the
bootstrap than for many other large n procedures because P is
more complicated to estimate than θ.

Moreover, the metaphor is not always good. There are many
counterexamples where the bootstrap does not get close to the
right answer for exceedingly large n (some fixes mentioned later).

http://www.catb.org/jargon/html/W/Wrong-Thing.html


Resampling

When you treat X1, . . . , Xn as a finite population to sample from,
and take an IID sample of size n, this is also called

sampling with replacement from X1, . . . , Xn or

resampling.

But focus on these misses the point.

The point is we are using IID samples from an estimate of the true
unknown distribution.

If we use some estimate other than P̂n (Efron’s original proposal),
and there is a lot of literature on various alternatives, then both of
the bullet points above no longer describe it.



Pivotal Quantities

If X1, . . . , Xn are (exactly) IID normal, and

Xn =
1

n

n∑
i=1

Xi

ŝ2n =
1

n − 1

n∑
i=1

(Xi − Xn)2

then

Tn =
Xn − µ
ŝn/
√
n

has (exactly) a t distribution with n − 1 degrees of freedom.

We can use this to do (exact) hypothesis tests and confidence
intervals (see intro stats).

There are no unknown parameters of this t distribution, so this is
an (exact) pivotal quantity. And that is why this works!



Pivotal Quantities (cont.)

Pivotal quantities (exact or approximate) are what makes
(frequentist) statistics work.

Without them you don’t know the reference distribution for the
procedure.

So even when we bootstrap, we need to bootstrap (approximate,
at least) pivotal quantities. That is why we simulate the
distribution of

T ∗n =
θ∗n − θ̂n

s∗n

if we can assume the mean and variance of this (conditional on the
original sample) don’t depend (much) on unknown parameters,
then we will have a good procedure. Otherwise not.



Bootstrap T

Simulate the sampling distribution of

T ∗n =
θ∗n − θ̂n

s∗n

(formula repeated from preceding slide). For 95% confidence
interval, look up 0.025 and 0.975 quantiles of this (bootstrap)
simulated distribution. Call them c1 and c2.

Ignore Monte Carlo error (due to finite bootstrap sample size:
number of simulations) and statistical error (P̂n is not P), so we
pretend (the bootstrap metaphor) that above has the same
distribution as

Tn =
θ̂n − θ
ŝn



Bootstrap T (cont.)

Hence
θ̂n − c2ŝn < θ < θ̂n − c1ŝn

is a 95% confidence interval for the true unknown θ.

Only approximate, not exact, but . . . .



Bootstrap T (cont.)

Suppose the t distribution had never been invented but the
bootstrap had.

Then the bootstrap t procedure would invent the t distribution,
because that would be the distribution of T ∗n that the bootstrap
simulates.

Moreover the bootstrap does this for any population distribution
(we do not need to assume normal data). So the bootstrap is
better than theory.



Second-Order Correct

Call the difference between the actual coverage probability and the
nominal coverage probability (0.95 for example) the coverage error.

For the asymptotics covered in most statistics courses and used by
software that does not bootstrap, this error obeys square root law

coverage error ≤ C/
√
n

where C is a constant.

The t distribution is exact (coverage error zero).

The bootstrap t distribution is second-order correct

coverage error ≤ C/n

Not quite as good as exact, but way better than asymptotic theory.



Second-Order Correct (cont.)

Bootstrap t is not the only second-order correct procedure. Dozens
in literature.

Find out about them and use them.



Bootstrap Percentile

The bootstrap percentile method is simpler than bootstrap t the
endpoints of its 95% confidence intervals are the 0.025 and 0.975
quantiles of (the bootstrap sampling distribution of) θ∗n.

These intervals are not second-order correct and not recommended
by many experts.



Bootstrap Percentile (cont.)

When the sampling distribution of θ̂n is heavily skewed or biased
— say θ̂n is usually below θ — then

θ is usually above θ̂n so the confidence interval should extend
farther above θ̂n than below. Bootstrap t and other
second-order correct do this.

Bootstrap percentile does not. Extends farther below θ̂n than
above. Goes the wrong way!



Disclaimer: Hypothesis Tests

The (nonparametric) bootstrap does not naturally do hypothesis
tests.

Reason: it samples (approximately, for large n) from the true
unknown distribution of the data.

But hypothesis tests use the distribution assuming the null
hypothesis is correct and often we are using the test to give
evidence that is false.

So bootstrap hypothesis tests, naively done, have no power. They
say P ≈ 0.5 regardless of how far the data are from data from the
null hypothesis.



Disclaimer: Hypothesis Tests (cont.)

Of course. one can always invert a bootstrap confidence interval to
do a valid hypothesis test (which will have good power).

https://www.stat.umn.edu/geyer/5601/examp/tests.html#pv


Disclaimer: Regression

The (nonparametric) bootstrap does not naturally do regression
analysis.

Reason: it samples (approximately, for large n) from the true
unknown joint distribution of the response and predictors.

But in the rest of statistics regression analysis is about the
conditional distribution of the response given the predictors.

And that the (naive) nonparametric bootstrap cannot do.



Bootstrapping Cases versus Bootstrapping Residuals

Bootstrapping cases means you sample IID from the original data
considering both response and predictors as random. This
samples from the approximate joint distribution of response and
predictors, which is usually not what is wanted.

When you have a regression model

yi = xTi β + ei

with estimated coefficients β̂ and residuals

êi = yi − xTi β̂

then bootstrapping residuals means you sample IID from the
residuals obtaining bootstrap residuals e∗i , and then the bootstrap
data are

y∗i = xTi β̂ + e∗i

https://www.stat.umn.edu/geyer/5601/examp/reg.html#cases
https://www.stat.umn.edu/geyer/5601/examp/reg.html#resid


Bootstrapping Cases versus Bootstrapping Residuals
(cont.)

Bootstrapping residuals does sample from (approximately) the true
unknown conditional distribution of response given predictors but
is no longer fully nonparametric because it depends on the
(parametric) regression model being correct.

One can use internally or externally standardized residuals to
bootstrap sample from, but this doesn’t change what was said
above.



When the Bootstrap Does Not Work

Efron’s original nonparametric bootstrap obviously does the wrong
thing with dependent data (it mimics IID not dependence). So it
does not work for time series, spatial statistics, network models,
statistical genetics, and so forth.

It also does not work (for obscure technical reasons) when the
square root law and asymptotic normality do not hold, that is when

√
n(θ̂n − θ)

does not converge to a normal distribution.

One fix solves both.



Subsampling Bootstrap

What I call the subsampling bootstrap and its original authors call
just subsampling is a different idea.

Suppose
nα(θ̂n − θ)

ŝn

D−→ Y , as n→∞,

for any rate α > 0 and any distribution of Y . Trivially,

bα(θ̂b − θ)

ŝb

D−→ Y , as b →∞,

And we can use this to bootstrap at a different sample size b from
the actual sample size n.

We only have to know or estimate the rate α.

https://www.amazon.com/Subsampling-Springer-Statistics-Dimitris-Politis/dp/0387988548/


Subsampling Bootstrap (cont.)

The subsampling bootstrap does not sample IID from the data
considered as a population (like Efron’s original nonparametric
bootstrap).

Rather it samples without replacement from IID data and samples
blocks of length b from time series data or analogous blocks from
other dependent data.

This makes the subsampling data X ∗ have the true unknown
distribution (for sample size b).



Subsampling Bootstrap (cont.)

Efron original nonparametric bootstrap

samples from the wrong distribution P̂n

at the right sample size n.

The subsampling bootstrap

samples from the right distribution P

at the wrong sample size b.



Subsampling Bootstrap (cont.)

Now we are really relying on the asymptotics

nα(θ̂n − θ)

ŝn

D−→ Y , as n→∞,

even if we have no idea what the distribution of Y is (the
subsampling bootstrap estimates that). Look up 0.025 and 0.975
quantiles of this (subsampling bootstrap) simulated distribution.
Call them c1 and c2.

Now our 95% confidence interval for the true unknown θ is

θ̂n −
(
b
n

)α
c2ŝn < θ < θ̂n −

(
b
n

)α
c1ŝn

so we do have to know that the asymptotics exists and the rate α
(or we can estimate α by subsampling at different sample sizes
following Chapter 8 of the subsampling book or these notes.

https://www.amazon.com/Subsampling-Springer-Statistics-Dimitris-Politis/dp/0387988548/
https://www.stat.umn.edu/geyer/5601/examp/subtoot.html#rate
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