Stat 3701 Lecture Notes: Data
 Charles J. Geyer
 April 11, 2017

The combination of some data and an aching desire for an answer does not ensure that a reasonable answer can be extracted from a given body of data.

- John W. Tukey (the first of six "basics" against statistician's hubrises) in "Sunset Salvo", American Statistician, 40, 72-76 (1986).
quoted by the fortunes package

Figure 1: xkcd:1781 Artifacts

1 License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (http: //creativecommons.org/licenses/by-sa/4.0/).

2 R

- The version of R used to make this document is 3.3.3.
- The version of the rmarkdown package used to make this document is 1.4.
- The version of the MASS package used to make this document is 7.3.45.
- The version of the quantreg package used to make this document is 5.29
- The version of the XML package used to make this document is 3.98.1.5.
- The version of the jsonlite package used to make this document is 1.3.
- The version of the RSQLite package used to make this document is 1.1.2.
- The version of the DBI package used to make this document is 0.6.

3 Data

3.1 Data Frames

Statistics or "data science" starts with data. Data can come in many forms but it often comes in a data frame - or at least something R can turn into a data frame. As we saw at the end of the handout about matrices, arrays, and data frames, the two R functions most commonly used to input data into data frames are read.table and read.csv. We will see some more later.

3.2 Data Artifacts, Errors, Problems

3.2.1 Introduction

Anything which uses science as part of its name isn't: political science, creation science, computer science.

- Hal Abelson

Presumably he would have added "data science" if the term had existed when he said that. Statistics doesn't get off lightly either because of the journal Statistical Science.

It is the dirty little secret of science, business, statistics, and "data science" is that there are a lot of errors in almost all data when they get to a data analyst, whatever his or her job title may be.

Hence, the most important skill of a data analyst (whatever his or her job title may be) is IMHO knowing how to find errors in data. If you can't do that, anything else you may be able to do has no point. GIGO.

But this is a secret because businesses don't like to admit they make errors, and neither do scientists or anyone else who generates data. So the data clean up always takes place behind the scenes. Any publicly available data set has already been cleaned up.

Thus we look at a made-up data set (I took an old data set, the R dataset growth in the CRAN package fda and introduced errors of the kind I have seen in real data sets).

As we shall see. There are no R functions or packages that help with data errors. You just have to think hard and use logic (both logic in your thinking and R logical operators).

3.2.2 Overview

```
growth <- read.csv("http://www.stat.umn.edu/geyer/3701/data/growth.csv",
    stringsAsFactors = FALSE)
class(growth)
```

\#\# [1] "data.frame"
names (growth)

\#\#	[1]	"HT1"	"HT1.25"	"HT1.5"	"HT1.75"	"HT2"	"HT3"	"HT4"
\#\#	[8]	"HT5"	"HT6"	"HT7"	"HT8"	"HT8.5"	"HT9"	"HT9.5"
\#\#	[15]	"HT10"	"HT10.5"	"HT11"	"HT11.5"	"HT12"	"HT12.5"	"HT13"
\#\#	[22]	"HT13.5"	"HT14"	"HT14.5"	"HT15"	"HT15.5"	"HT16"	"HT16.5"
\#\#	[29]	"HT17"	"HT17.5"	"HT18"	"SITE"	"SEX"		

```
sapply(growth, class)
```

\#\#	HT1	HT1.25	HT1.5	HT1.75	HT2	HT3
\#\#	"numeric"	"numeric"	"numeric"	"numeric"	"numeric"	"numeric"
\#\#	HT4	HT5	HT6	HT7	HT8	HT8.5
\#\#	"numeric"	"numeric"	"numeric"	"numeric"	"numeric"	"numeric"
\#\#	HT9	HT9.5	HT10	HT10.5	HT11	HT11.5
\#\#	"numeric"	"numeric"	"numeric"	"numeric"	"numeric"	"numeric"
\#\#	HT12	HT12.5	HT13	HT13.5	HT14	HT14.5
\#\#	"numeric"	"numeric"	"numeric"	"numeric"	"numeric"	"numeric"
\#\#	HT15	HT15.5	HT16	HT16.5	HT17	HT17.5
\#\#	"numeric"	"numeric"	"numeric"	"numeric"	"numeric"	"numeric"
\#\#	HT18	SITE	SEX			
\#\#	"numeric" "character"	"integer"				

The variables whose names start with HT are heights at the indicated age in years. SITE and SEX are

```
sort(unique(growth$SITE))
## [1] "A" "B" "C" "D"
sort(unique(growth$SEX))
## [1] 1 2
```

both categorical despite the latter being coded with integers. We will have to figure all that out.

3.2.3 Missing Data

The first tool we use is grep. This command has a weird name inherited from unix. It (and its relatives documented on the same help page) is the R command for matching text strings (and for doing search and replace).

```
is.ht <- grep("HT", names(growth))
foo <- growth[is.ht]
foo <- as.matrix(foo)
apply(foo, 2, range)
```

\#\# HT1 HT1.25 HT1.5 HT1. 75 HT2 HT3 HT4 HT5 HT6 HT7 HT8 HT8. 5 HT9
\#\# [1,] NA NA 0.0 NA 0.0 NA NA NA $N A$
\#\# [2,] NA NA 95.4 NA 97.3 NA NA NA NA NA 313.8 NA NA
\#\# HT9.5 HT10 HT10.5 HT11 HT11.5 HT12 HT12.5 HT13 HT13.5 HT14 HT14.5
\#\# [1,] 103.3 126.8 NA NA 0.0 NA 9 NA9.0 NA NA NA NA
\#\# [2,] 318.6 611.5 NA NA 519.7 NA 512.5 NA NA NA NA
\#\# HT15 HT15.5 HT16 HT16.5 HT17 HT17.5 HT18
\#\# [1,] NA NA NA 152.6 NA 107.0 NA
\#\# [2,] NA NA NA 255.6 NA 617.8 NA

Try again.

```
apply(foo, 2, range, na.rm = TRUE)
## HT1 HT1.25 HT1.5 HT1.75 HT2 HT3 HT4 HT5 HT6 HT7 HT8
## [1,] -999.0 -999.0 0.0 9.4 0.0 39.6 -999.0 0 -999 -999.0 110.9
## [2,] 84.1 [190.4 95.4 95.0 97.3 201.3 120.6 210 134 218.8 313.8
## HT8.5 HT9 HT9.5 HT10 HT10.5 HT11 HT11.5 HT12 HT12.5 HT13 HT13.5
## [1,] 119.2 121.4 103.3 126.8 -999.0 -999.0 0.0 -999 -999.0 139.5 -999.0
## [2,] 236.6 312.8 318.6 611.5 166.1 410.5 519.7 176 512.5 257.0 714.9
## HT14 HT14.5 HT15 HT15.5 HT16 HT16.5 HT17 HT17.5 HT18
## [1,] 145.0 -999.0 150.8 152.1 -999.0 152.6 0.0 107.0 0
## [2,] 268.8 614.9 285.6 192.2 
```

Clearly -999 and 0 are not valid heights. What's going on?
Many statistical computing systems - I don't want to say "languages" because many competitors to R are not real computer languages - do not have a built-in way to handle missing data, like R's predecessor S has had since its beginning. So users pick an impossible value to indicate missing data. But why some NA, some -999 , and some 0 ?

```
hasNA <- apply(foo, 1, anyNA)
has999 <- apply(foo == (-999), 1, any)
has0 <- apply(foo == 0, 1, any)
sort(unique(growth$SITE[hasNA]))
## [1] "C" "D"
sort(unique(growth$SITE[has999]))
## [1] "A"
sort(unique(growth$SITE[has0]))
## [1] "B"
```

So clearly the different "sites" coded missing data differently. Now that we understand that we can

- fix the different missing data codes, and
- be on the lookout for what else the different "sites" may have done differently.

Fix.

```
foo[foo == -999] <- NA
foo [foo == 0] <- NA
\(\min (f \circ o\), na.rm \(=\) TRUE)
```

\#\# [1] 9.4

3.2.4 Impossible Data

3.2.4.1 Finding the Problems

Clearly, people don't decrease in height as they age (at least when they are young). So that is another sanity check.

```
bar <- apply(foo, 1, diff)
sum(bar < 0)
## [1] NA
```

Hmmmmm. Didn't work because of the missing data. Try again.

```
bar <- apply(foo, 1, function(x) {
    x <- x[! is.na(x)]
    diff(x)
})
class(bar)
## [1] "list"
```

according to the documentation to apply it returns a list when the function returns vectors of different lengths for different "margins" (here rows).

```
any(sapply(bar, function(x) any(x < 0)))
```

\#\# [1] TRUE

So we do have some impossible data. Is it just slightly impossible or very impossible?

```
baz <- sort(unlist(lapply(bar, function(x) x[x < 0])))
length(baz)
## [1] 186
```

```
range(baz)
## [1] -539.4 -0.1
```

The - 0.1 may be a negligible error, but the -539.4 is highly impossible. We've got work to do on this issue.

3.2.4.2 Fixing the Problems

At this point anyone (even me) would be tempted to just give up using R or any other computer language to work on this issue. It is just too messy. Suck the data into a spreadsheet or other error, fix it by hand, and be done with it.

But this is not reproducible and not scalable. There is no way anyone (even the person doing the data editing) can reproduce exactly what they did or explain what they did. So why should we trust that? We shouldn't. Moreover, for "big data" it is a nonstarter. A human can fix a little bit of the data, but we need an automatic process if we are going to fix all the data. Hence we keep plugging away with R.

Any negative increment between heights may be because of either of the heights being subtracted being wrong. And just looking at those two numbers, we cannot tell which is wrong. So let us also look at he two numbers to either side (if there are such).

This job is so messy I think we need loops.

```
qux <- NULL
for (i in 1:nrow(foo))
        for (j in seq(1, ncol(foo) - 1))
            if (foo[i, j + 1] < foo[i, j]) {
                below <- if (j - 1 >= 1) foo[i, j - 1] else NA
                above <- if (j + 2 <= ncol(foo)) foo[i, j + 2] else NA
                qux <- rbind(qux, c(below, foo[i, j], foo[i, j + 1], above))
        }
## Error in if (foo[i, j + 1] < foo[i, j]) {: missing value where TRUE/FALSE needed
qux
## HT1 HT1.25 HT1.5 HT1.75
## [1,] 73.8 78.7 38 85.8
```

That didn't work. Forgot about the NA's. Try again.

```
qux <- NULL
for (i in 1:nrow(foo)) {
    x <- foo[i, ]
    x <- x[! is.na(x)]
    d <- diff(x)
    jj <- which(d < 0)
    for (j in jj) {
            below <- if (j - 1 >= 1) x[j - 1] else NA
            above <- if (j + 2 <= length(x)) x[j + 2] else NA
            qux <- rbind(qux, c(below, x[j], x[j + 1], above))
    }
}
qux
```

```
## HT1 HT1.25 HT1.5 HT1.75
## [1,] 73.8 78.7 38.0 85.8
## [2,] 171.1 185.2 180.8 182.2
## [3,] 104.1 121.5 119.0 128.0
## [4,] 136.6 149.5 141.9 144.8
## [5,] 152.3 156.3 116.2 165.9
## [6,] 177.3 177.6 177.3 177.0
## [7,] 177.6 177.3 177.0 177.0
## [8,] 131.4 144.3 136.8 139.7
## [9,] 154.0 518.0 162.1 166.5
## [10,] 153.3 157.7 152.3 166.1
## [11,] 171.1 
## [12,] 165.5 196.7 173.1 175.6
## [13,] 179.3 189.8 180.3 180.7
## [14,] 134.1 137.1 104.2 413.0
## [15,] 104.2 413.0 145.7 148.5
## [16,] 158.4 161.2 155.2 166.0
## [17,] 119.4 221.9 124.2 126.3
## [18,] 140.5 243.6 146.8 149.0
## [19,] 164.2 164.6 163.9 165.0
## [20,] 137.1 139.5 132.9 145.0
## [21,] 161.8 262.8 163.5 164.0
## [22,] 161.4 262.4 163.4 154.0
## [23,] 262.4 163.4 154.0 164.3
## [24,] 142.7 146.1 140.9 254.1
## [25,] 140.9 254.1 158.8 160.4
## [26,] 163.0 163.1 163.0 163.1
## [27,] 163.7 163.8 163.7 NA
## [28,] 78.3 
## [29,] 170.4 171.3 127.0 162.7
## [30,] 129.8 312.8 125.2 137.6
## [31,] 75.9 [
## [32,] 115.3 124.0 103.6 137.6
## [33,] 144.8 248.0 151.8 155.3
## [34,] 175.8 176.1 176.0 NA
## [35,] 143.0 164.7 150.5 153.7
## [36,] 218.8 313.8 136.9 139.9
## [37,] 172.2 172.3 171.2 172.5
## [38,] 110.0 1116.1 110.9 123.6
## [39,] 150.3 161.0 151.4 151.7
## [40,] 86.2 
## [41,] 125.2 
## [42,] 173.8 175.0 174.7 176.1
## [43,] 176.5 616.9 177.2 177.5
## [44,] 168.1 168.4 158.9 169.4
## [45,] 116.2 134.0 131.1 136.8
## [46,] 148.1 161.3 154.8 158.5
## [47,] 158.4 171.7 164.2 165.6
## [48,] 179.6 189.2 181.6 NA
## [49,] 149.6 162.2 155.3 159.2
## [50,] 176.1 178.3 177.9 178.2
## [51,] 81.3 
## [52,] 130.9 143.1 137.8 139.3
## [53,] 151.7 155.0 148.9 163.3
```

```
## [54,] 91.4 201.3 108.0 121.5
## [55,] 163.6 166.6 160.9 175.0
## [56,] 78.0 80.6 48.4 90.2
## [57,] 175.5 176.0 166.4 NA
## [58,] 165.9 166.1 166.0 176.0
## [59,] 81.8 
## [60,] 161.8 161.8 161.7 161.9
## [61,] 161.9 161.9 161.7 161.9
## [62,] 106.7 123.3 118.4 124.2
## [63,] 164.4 165.8 164.9 NA
## [64,] 154.2 257.0 159.0 160.5
## [65,] 163.0 163.4 163.1 163.0
## [66,] 163.4 163.1 163.0 NA
## [67,] 153.6 154.1 145.4 154.6
## [68,] 135.8 318.6 141.4 144.2
## [69,] 167.8 168.6 159.2 169.8
## [70,] 169.8 169.8 107.0 170.3
## [71,] 141.8 154.8 150.5 155.2
## [72,] 168.6 617.8 169.2 NA
## [73,] 85.1 
## [74,] 142.0 415.0 148.2 152.0
## [75,] 167.6 268.8 169.5 169.9
## [76,] 86.4 89.7 69.6 105.0
## [77,] 105.0 112.3 110.6 124.7
## [78,] 133.6 145.8 138.8 141.2
## [79,] 167.3 167.3 167.2 NA
## [80,] 137.4 410.5 134.3 145.9
## [81,] 172.4 182.5 172.5 127.5
## [82,] 182.5 172.5 127.5 NA
## [83,] 79.1 
## [84,] 121.9 217.8 129.8 132.4
## [85,] 172.6 273.2 173.8 NA
## [86,] 76.0 70.4 28.0 84.2
## [87,] 171.1 271.8 127.6 NA
## [88,] 153.6 156.8 150.5 164.6
## [89,] 184.2 285.6 186.6 187.1
## [90,] 187.4 287.8 188.2 188.4
## [91,] 83.7 86.3 79.8
## [92,] 145.6 148.7 142.3 157.0
## [93,] 162.0
## [94,] 184.7 715.5 176.1 176.4
## [95,] 122.7 129.9 123.1 136.2
## [96,] 178.3 191.0 183.1 184.6
## [97,] 78.3 82.3 68.0 89.1
## [98,] 179.8 189.4 180.8 180.9
## [99,] 180.8 180.9 180.8 181.3
## [100,] 155.9 611.5 166.2 169.6
## [101,] 174.2 174.2 174.1 NA
## [102,] 76.2 
## [103,] 134.2 139.6 132.0 138.5
## [104,] 132.0 138.5 131.6 144.9
## [105,] 163.6 165.3 164.5 164.4
## [106,] 165.3 164.5 164.4 164.3
## [107,] 164.5 164.4 164.3 164.1
```

```
## [108,] 164.4 164.3 164.1 164.0
## [109,] 164.3 164.1 164.0 163.8
## [110,] 164.1 164.0 163.8 NA
## [111,] 84.4 87.1 49.6 103.4
## [112,] 128.1 230.4 133.2 135.8
## [113,] 145.2 184.5 151.3 154.6
## [114,] 81.3 95.0 87.6 94.6
## [115,] 122.7 139.4 132.4 135.6
## [116,] 159.4 159.7 150.9 160.2
## [117,] 160.4 160.4 160.3 160.3
## [118,] 77.0 87.5 19.1 94.0
## [119,] 169.3 196.6 169.8 170.1
## [120,] 170.3 180.5 170.6 170.8
## [121,] 133.2 236.6 139.8 142.7
## [122,] 171.5 171.5 171.4 171.2
## [123,] 171.5 171.4 171.2 NA
## [124,] NA 74.9 67.8 81.2
## [125,] 163.6 163.7 153.8 NA
## [126,] 132.6 236.1 139.4 142.4
## [127,] 162.1 166.0 160.3 174.3
## [128,] 180.4 180.4 180.2 180.5
## [129,] 163.8 614.9 175.8 166.8
## [130,] 614.9 175.8 166.8 168.9
## [131,] 166.8 168.9 168.2 168.2
## [132,] 168.2 168.2 168.1 NA
## [133,] 142.4 154.0 148.1 151.8
## [134,] 155.5 185.3 160.1 161.3
## [135,] 162.3 173.0 163.3 163.6
## [136,] 163.3 163.6 153.8 164.2
## [137,] 152.9 153.2 143.6 154.1
## [138,] 154.4 154.6 154.5 NA
## [139,] 84.2 
## [140,] 121.9 126.8 119.3 121.9
## [141,] 163.6 163.9 154.3 164.2
## [142,] 154.3 164.2 164.0 NA
## [143,] 161.0 161.5 161.0 161.8
## [144,] 161.0 161.8 161.6 NA
## [145,] 125.5 128.0 103.3 132.5
## [146,] 142.1 244.2 146.4 148.9
## [147,] 144.4 158.4 152.5 156.6
## [148,] 156.6 611.5 166.1 170.2
## [149,] 182.6 182.8 182.7 183.2
## [150,] 172.6 172.9 137.1 173.3
## [151,] 78.2 84.2 78.0 88.4
## [152,] 168.7 169.1 160.5 169.9
## [153,] 170.1 179.3 170.3 170.6
## [154,] 100.2 180.0 114.9 121.2
## [155,] 131.3 143.9 136.7 140.1
## [156,] 156.9 157.0 156.9 NA
## [157,] 152.2 163.6 154.9 155.9
## [158,] 157.5 175.7 158.0 518.4
## [159,] 155.1 255.6 156.0 157.1
## [160,] 156.0 157.1 156.5 NA
## [161,] 133.1 136.0 128.8 142.9
```

```
## [162,] 156.2 519.7 163.8 168.8
## [163,] 162.3 177.7 171.5 174.3
## [164,] 174.3 176.1 167.4 NA
## [165,] NA 84.1 78.4 82.6
## [166,] 123.2 129.9 123.0 136.0
## [167,] 154.5 157.7 152.2 167.4
## [168,] 85.0 86.4 77.1 96.2
## [169,] 117.3 214.1 130.0 133.6
## [170,] 148.7 252.3 154.3 158.1
## [171,] 167.5 181.5 175.1 178.0
## [172,] 95.6 120.1 109.2 117.5
## [173,] 173.0 276.3 178.5 180.0
## [174,] 180.0 181.0 171.8 182.2
## [175,] 95.6 120.6 109.7 126.8
## [176,] 109.7 126.8 121.7 127.2
## [177,] 178.0 179.1 108.2 181.0
## [178,] 118.6 133.7 126.4 129.1
## [179,] 102.0 207.5 114.0 119.4
## [180,] 131.6 143.0 136.5 138.8
## [181,] 104.2 210.0 116.0 123.8
## [182,] 150.1 512.5 155.1 158.4
## [183,] 83.3 87.0 9.4 93.1
## [184,] 153.4 156.1 149.3 163.7
## [185,] 189.6 199.7 191.3 191.7
## [186,] 136.8 239.8 142.6 145.1
```

In line 1 it looks like the data enterer transposed digits. These data would make sense if the 38.0 was actually 83.0. In line 2 it looks like the data enterer had an off-by-one error. These data would make sense if the 185.2 was actually 175.2. In fact, those are the two kinds of errors I put in the data. But in real life, we wouldn't all the kinds of errors in the data. There might be other kinds. Or our guess about these kinds might be wrong.
At this point and perhaps long before, we would have gone back to the data source and asked if the data are correctable at the source. Perhaps the data were entered correctly and corrupted later and we can get the original version. But the kinds of errors we think we found are apparently data entry errors. So there may be no correct data available.

In lines 26 and 27 we notice that the errors are negligible (only 0.1 in size). Perhaps those we can ignore. They might just be different rounding before data entry.

In catching these errors - it is pretty clear that there is no way we can "correct" these errors if correct data are unavailable - we don't want to be clumsy and introduce more error. We want to use the best methods we can. We're statisticians, so perhaps we should use statistics. We need to use the whole data for an individual to identify the errors for that individual.

So let's go back and find which individuals have erroneous data. And while we are at it, let's skip errors less than 0.3 in size.

```
qux <- NULL
for (i in 1:nrow(foo)) {
    x <- foo[i, ]
    x <- x[! is.na(x)]
    d <- diff(x)
    jj <- which(d <= -0.2)
    for (j in jj) {
        below <- if (j - 1 >= 1) x[j - 1] else NA
        above <- if (j + 2 <= length(x)) x[j + 2] else NA
```

```
        qux <- rbind(qux, c(i, below, x[j], x[j + 1], above))
    }
}
qux
```

\#\# HT1 HT1.25 HT1.5 HT1.75
\#\# [1,] $1 \begin{array}{llllll}1 & 73.8 & 78.7 & 38.0 & 85.8\end{array}$
\#\# [2,] $1 \begin{array}{llllll}{[171.1} & 185.2 & 180.8 & 182.2\end{array}$
\#\# [3,] $\quad 2 \begin{array}{llllll}{[104.1} & 121.5 & 119.0 & 128.0\end{array}$
\#\# [4,] $\quad 2 \begin{array}{llllll}136.6 & 149.5 & 141.9 & 144.8\end{array}$
\#\# [5,] $\quad 2 \begin{array}{lllllll} & 152.3 & 156.3 & 116.2 & 165.9\end{array}$
\#\# [6,] $2 \begin{array}{llllll}{[777.3} & 177.6 & 177.3 & 177.0\end{array}$
\#\# [7,] $2 \begin{array}{lllllll} & 177.6 & 177.3 & 177.0 & 177.0\end{array}$
\#\# [8,] $3 \begin{array}{llllll} & 131.4 & 144.3 & 136.8 & 139.7\end{array}$
\#\# [9,] $3154.0 \quad 518.0 \quad 162.1 \quad 166.5$
\#\# [10,] $4 \begin{array}{llllll}4 & 153.3 & 157.7 & 152.3 & 166.1\end{array}$
\#\# [11,] $\begin{array}{lllllll}6 & 171.1 & 714.9 & 177.9 & 180.1\end{array}$
\#\# [12,] $7 \quad 165.5 \quad 196.7 \quad 173.1 \quad 175.6$
\#\# [13,] $7 \begin{array}{llllll}7 & 179.3 & 189.8 & 180.3 & 180.7\end{array}$
\#\# [14,] $8134.1 \quad 137.1104 .2 \quad 413.0$
\#\# [15,] $8 \quad 104.2 \quad 413.0 \quad 145.7 \quad 148.5$
\#\# [16,] $8158.4 \quad 161.2155 .2 \quad 166.0$
\#\# [17,] $9 \quad 119.4 \quad 221.9 \quad 124.2 \quad 126.3$
\#\# [18,] $9140.5 \quad 243.6146 .8 \quad 149.0$
\#\# [19,] $10164.2 \quad 164.6163 .9 \quad 165.0$
\#\# [20,] $11 \begin{array}{llllll}137.1 & 139.5 & 132.9 & 145.0\end{array}$
\#\# [21,] $11 \quad 161.8 \quad 262.8163 .5 \quad 164.0$
\#\# [22,] $12 \begin{array}{llllll}161.4 & 262.4 & 163.4 & 154.0\end{array}$
\#\# [23,] $12 \begin{array}{llllll}{[262.4} & 163.4 & 154.0 & 164.3\end{array}$
\#\# [24,] $13 \begin{array}{llllll}142.7 & 146.1 & 140.9 & 254.1\end{array}$
\#\# [25,] $13140.9 \quad 254.1158 .8 \quad 160.4$
\#\# [26,] $14 \quad 78.3 \quad 92.4 \quad 87.2 \quad 91.4$
\#\# [27,] $14 \begin{array}{llllll}170.4 & 171.3 & 127.0 & 162.7\end{array}$
\#\# [28,] $16 \begin{array}{llllll}129.8 & 312.8 & 125.2 & 137.6\end{array}$
\#\# [29,] $17 \begin{array}{llllll}{[29.9} & 79.4 & 72.1 & 85.7\end{array}$
\#\# [30,] $17 \begin{array}{llllll}115.3 & 124.0 & 103.6 & 137.6\end{array}$
\#\# [31,] $17 \begin{array}{llllll}144.8 & 248.0 & 151.8 & 155.3\end{array}$
\#\# [32,] 18 143.0 $164.7 \quad 150.5 \quad 153.7$
\#\# [33,] $19 \begin{array}{llllll} & 218.8 & 313.8 & 136.9 & 139.9\end{array}$
\#\# [34,] $19 \begin{array}{llllll}172.2 & 172.3 & 171.2 & 172.5\end{array}$
\#\# [35,] $20110.0 \quad 116.1110 .9 \quad 123.6$
\#\# [36,] $20 \quad 150.3 \quad 161.0 \quad 151.4 \quad 151.7$
\#\# [37,] $21 \quad 86.2 \quad 96.5 \quad 14.1 \quad 110.8$
\#\# [38,] $21 \quad 125.2 \quad 310.9 \quad 133.4 \quad 135.9$
\#\# [39,] $21 \quad 173.8 \quad 175.0 \quad 174.7 \quad 176.1$
\#\# [40,] $21 \quad 176.5 \quad 616.9177 .2 \quad 177.5$
\#\# [41,] 22 168.1 $168.4158 .9 \quad 169.4$
\#\# [42,] $23116.2 \quad 134.0131 .1 \quad 136.8$
\#\# [43,] $23148.1 \quad 161.3154 .8 \quad 158.5$
\#\# [44,] $24158.4 \quad 171.7 \quad 164.2 \quad 165.6$
\#\# [45,] $26179.6 \quad 189.2181 .6$ NA
\#\# [46,] $27 \quad 149.6 \quad 162.2155 .3 \quad 159.2$
\#\# [47,] $28 \quad 176.1 \quad 178.3177 .9 \quad 178.2$

\#\#	[48,]	29	81.3	85.1	39.6	101.9
\#\#	[49,]	29	130.9	143.1	137.8	139.3
\#\#	[50,]	29	151.7	155.0	148.9	163.3
\#\#	[51,]	30	91.4	201.3	108.0	121.5
\#\#	[52,]	30	163.6	166.6	160.9	175.0
\#\#	[53,]	31	78.0	80.6	48.4	90.2
\#\#	[54,]	32	175.5	176.0	166.4	NA
\#\#	[55,]	34	81.8	95.4	77.9	89.6
\#\#	[56,]	34	161.9	161.9	161.7	161.9
\#\#	[57,]	35	106.7	123.3	118.4	124.2
\#\#	[58,]	35	164.4	165.8	164.9	NA
\#\#	[59,]	36	154.2	257.0	159.0	160.5
\#\#	[60,]	36	163.0	163.4	163.1	163.0
\#\#	[61,]	37	153.6	154.1	145.4	154.6
\#\#	[62,]	38	135.8	318.6	141.4	144.2
\#\#	[63,]	38	167.8	168.6	159.2	169.8
\#\#	[64,]	38	169.8	169.8	107.0	170.3
\#\#	[65,]	40	141.8	154.8	150.5	155.2
\#\#	[66,]	41	168.6	617.8	169.2	NA
\#\#	[67,]	42	85.1	87.5	87.3	105.7
\#\#	[68,]	42	142.0	415.0	148.2	152.0
\#\#	[69,]	42	167.6	268.8	169.5	169.9
\#\#	[70,]	43	86.4	89	69.	105
\#\#	[71,]	43	105.0	112.	110	124.7
\#\#	[72,]	43	133.6	145.	138.	141.2
\#\#	[73,]	45	137.4	410.5	134.	145.9
\#\#	[74,]	45	172.4	182.	172.5	127.5
\#\#	[75,]	45	182.5	172.5	127	NA
\#\#	[76,]	46	79.1	91	84.4	87.4
\#\#	[77,]	46	121.9	217.8	129.8	132.4
\#\#	[78,]	46	172.6	273.2	173.8	NA
\#\#	[79,]	47	76.0	79.4	28.0	84.2
\#\#	[80,]	47	171.1	271.8	127.6	NA
\#\#	[81,]	49	153.6	156.8	150.5	164.6
\#\#	[82,]	49	184.2	285.6	186.6	187.1
\#\#	[83,]	49	187.4	287.8	188.2	188.4
\#\#	[84,]	50	83.7	86.3	79.8	92.2
\#\#	[85,]	51	145.6	148.7	142.3	157.0
\#\#	[86,]	51	162.0	176.4	169.9	172.1
\#\#	[87,]	51	184.7	715.5	176.1	176.4
\#\#	[88,]	52	122.7	129.9	123.1	136.2
\#\#	[89,]	52	178.3	191.0	183.1	184.6
\#\#	[90,]	53	78.3	82.3	68.0	89.1
\#\#	[91,]	53	179.8	189.4	180.8	180.9
\#\#	[92,]	54	155.9	611.5	166.2	169.6
\#\#	[93,]	55	76.2	90.4	83.3	85.7
\#\#	[94,]	56	134.2	139.6	132.0	138.5
\#\#	[95,]	56	132.0	138.5	131.6	144.9
\#\#	[96,]	56	163.6	165.3	164.5	164.4
\#\#	[97,]	56	164.4	164.3	164.1	164.0
\#\#	[98,]	57	84.4	87.1	49.6	103.4
\#\#	[99,]	57	128.1	230.4	133.2	135.8
\#\#	[100,]	57	145.2	184.5	151.3	154.6
\#\#	[101,]	58	81.3	95.0	87.6	94.6

```
## [102,] 58 122.7 139.4 132.4 135.6
## [103,] 58 159.4 159.7 150.9 160.2
## [104,] 59 77.0 87.5 19.1 
## [105,] 59 169.3 196.6 169.8 170.1
## [106,] 59 170.3 180.5 170.6 170.8
## [107,] 60 133.2 236.6 139.8 142.7
## [108,] 60 171.5 171.4 171.2 NA
## [109,] 61 NA 
## [110,] 61 163.6 163.7 153.8 NA
## [111,] 62 132.6 236.1 139.4 142.4
## [112,] 62 162.1 166.0 160.3 174.3
## [113,] 62 180.4 180.4 180.2 180.5
## [114,] 63 163.8 614.9 175.8 166.8
## [115,] 63 614.9 175.8 166.8 168.9
## [116,] 63 166.8 168.9 168.2 168.2
## [117,] 64 142.4 154.0 148.1 151.8
## [118,] 64 155.5 185.3 160.1 161.3
## [119,] 64 162.3 173.0 163.3 163.6
## [120,] 64 163.3 163.6 153.8 164.2
## [121,] 66 152.9 153.2 143.6 154.1
## [122,] 67 84.2 96.4 94.0 101.8
## [123,] 67 121.9 126.8 119.3 121.9
## [124,] 67 163.6 163.9 154.3 164.2
## [125,] 68 161.0 161.5 161.0 161.8
## [126,] 68 161.0 161.8 161.6 NA
## [127,] 71 125.5 128.0 103.3 132.5
## [128,] 71 142.1 244.2 146.4 148.9
## [129,] 72 144.4 158.4 152.5 156.6
## [130,] 72 156.6 611.5 166.1 170.2
## [131,] 73 172.6 172.9 137.1 173.3
## [132,] 74 78.2 
## [133,] 74 168.7 169.1 160.5 169.9
## [134,] 74 170.1 179.3 170.3 170.6
## [135,] 75 100.2 180.0 114.9 121.2
## [136,] 76 131.3 143.9 136.7 140.1
## [137,] 77 152.2 163.6 154.9 155.9
## [138,] 77 157.5 175.7 158.0 518.4
## [139,] 78 155.1 255.6 156.0 157.1
## [140,] 78 156.0 157.1 156.5 NA
## [141,] 79 133.1 136.0 128.8 142.9
## [142,] 80 156.2 519.7 163.8 168.8
## [143,] 81 162.3 177.7 171.5 174.3
## [144,] 81 174.3 176.1 167.4 NA
## [145,] 82 NA 84.1 78.4 82.6
## [146,] 82 123.2 129.9 123.0 136.0
## [147,] 82 154.5 157.7 152.2 167.4
## [148,] 83 85.0 86.4 77.1 96.2
## [149,] 83 117.3 214.1 130.0 133.6
## [150,] 84 148.7 252.3 154.3 158.1
## [151,] 84 167.5 181.5 175.1 178.0
## [152,] 85 95.6 120.1 109.2 117.5
## [153,] 85 173.0 276.3 178.5 180.0
## [154,] 85 180.0 181.0 171.8 182.2
## [155,] 86 95.6 120.6 109.7 126.8
```

```
## [156,] 86 109.7 126.8 121.7 127.2
## [157,] 87 178.0 179.1 108.2 181.0
## [158,] 88 118.6 133.7 126.4 129.1
## [159,] 89 102.0 207.5 114.0 119.4
## [160,] 89 131.6 143.0 136.5 138.8
## [161,] 90 104.2 210.0 116.0 123.8
## [162,] 90 150.1 512.5 155.1 158.4
## [163,] 91 83.3 87.0
## [164,] 91 153.4 156.1 149.3 163.7
## [165,] 91 189.6 199.7 191.3 191.7
## [166,] 93 136.8 239.8 142.6 145.1
```

So let's try a bit of statistical modeling. We know there is a problem with individual 1 , so lets work on him or her (we still don't know what the codes are for SEX).

This is always a good idea. Focus on getting one thing right before moving on. I could tell many stories about people coming to me for help with data analysis, and the only problem they had was trying to do too much at once so there was no way to tell what was wrong with what they were doing. At the end, you need to have processed all of the data and done it automatically. But you don't have to start that way.

So individual 1 data.

```
age <- as.numeric(sub("HT", "", colnames(foo)))
age
\begin{tabular}{lrrrrrrrrrrrr} 
\#\# [1] & 1.00 & 1.25 & 1.50 & 1.75 & 2.00 & 3.00 & 4.00 & 5.00 & 6.00 & 7.00 & 8.00 \\
\#\# [12] & 8.50 & 9.00 & 9.50 & 10.00 & 10.50 & 11.00 & 11.50 & 12.00 & 12.50 & 13.00 & 13.50 \\
\#\# [23] & 14.00 & 14.50 & 15.00 & 15.50 & 16.00 & 16.50 & 17.00 & 17.50 & 18.00 & &
\end{tabular}
```

plot(age, foo[1,], ylab = "height")

It is pretty clear looking at the picture which points are the gross errors. But can we get statistics to tell us that?

The one thing we know we don't want to use is the usual sort of linear models (those fit by lm) because the "errors" are not normal. We want what is called "robust" or "resistant" regression.

The R command ??robust turns up the commands lqs and rlm in the MASS (a "recommended" package that comes with every R installation) package and the command line in the stats package (a core package that comes with every R installation). The line function is not going to be helpful because clearly the growth curves curve. So we want to use either lqs or rlm. Both are complicated. Let us just try lqs because it comes first in alphabetical order.

```
plot(age, foo[1, ], ylab = "height")
library(MASS)
lout <- lqs(foo[1, ] ~ poly(age, degree = 6))
curve(predict(lout, newdata = data.frame(age = x)), add = TRUE)
```


Humph! Doesn't seem to fit these data well. Try rlm.

```
plot(age, foo[1, ], ylab = "height")
rout <- rlm(foo[1, ] ~ poly(age, degree = 6))
curve(predict(lout, newdata = data.frame(age = x)), add = TRUE)
```


Neither of these work because polynomials don't asymptote. Polynomial regression is a horrible tool for curves that asymptote.

Some googling suggested the function smooth in the stats package. On reading the documentation for that, it is much more primitive and harder to use. But it may work, so let's try it.

```
plot(age, foo[1, ], ylab = "height")
y <- foo[1, ]
x <- age[! is.na(y)]
y <- y[! is.na(y)]
sout <- smooth(y)
sally <- splinefun(x, sout)
curve(sally, add = TRUE)
```


Not robust enough.
More googling discovers the CRAN Task View for Robust Statistical Methods in which the only mention of splines is the CRAN package quantreg. So we try that.

```
plot(age, foo[1, ], ylab = "height")
library(quantreg)
## Loading required package: SparseM
##
## Attaching package: 'SparseM'
```

```
## The following object is masked from 'package:base':
##
## backsolve
y <- foo[1, ]
x <- age[! is.na(y)]
y <- y[! is.na(y)]
lambda <- 0.5 # don't repeat yourself (DRY rule)
qout <- rqss(y ~ qss(x, constraint = "I", lambda = lambda))
curve(predict(qout, newdata = data.frame(x = x)),
    from = min(x), to = max(x), add = TRUE)
```


The model fitting function rqss and its method for the generic function predict were a lot fussier than those for lqs and rlm. Like with using smooth we had to remove the NA values by hand rather than just let the model fitting function take care of them (because rqss couldn't take care of them and gave a completely incomprehensible error message). And we had to add optional arguments from and to to the curve function because predict.rqss refused to extrapolate beyond the range of the data (this time giving a comprehensible error message).

Anyway, we seem to have got what we want. Now we can compute robust residuals.

```
rresid <- foo[1, ] - as.numeric(predict(qout, newdata = data.frame(x = age)))
rbind(height = foo[1, ], residual = rresid)
```



```
## residual -0.03749881
```

The robust residuals calculated this way are all small except for the two obvious gross errors. The only one large in absolute value (except for the gross errors) is at the left end of the data, and this is not surprising. All smoothers have trouble at the ends where there is only data on one side to help.

In the fitting we had to choose the lambda argument to the qss function by hand (because that is what the help page ?qss says to do), and it did not even tell us whether large lambda means more smooth or less smooth. But with some help from what lambda does to the residuals, we got a reasonable choice (and perhaps a lot smaller would also do, but we won't bother with more experimentation).

So let us apply this operation to all the data.

```
resid <- apply(foo, 1, function(y) {
    x <- age[! is.na(y)]
    y <- y[! is.na(y)]
    qout <- rqss(y ~ qss(x, constraint = "I", lambda = lambda))
    y - as.numeric(predict(qout, newdata = data.frame(x = age)))
})
```

\#\# Warning in y - as.numeric(predict(qout, newdata = data.frame(x = age))):
\#\# longer object length is not a multiple of shorter object length
\#\# Warning in y - as.numeric(predict(qout, newdata = data.frame(x = age))):
\#\# longer object length is not a multiple of shorter object length
\#\# Warning in y - as.numeric(predict(qout, newdata = data.frame(x = age))):
\#\# longer object length is not a multiple of shorter object length
\#\# Warning in y - as.numeric(predict(qout, newdata = data.frame(x = age))):
\#\# longer object length is not a multiple of shorter object length
\#\# Warning in rq.fit.sfnc(x, y, tau = tau, rhs = rhs, control = control, ...):
\#\# Warning in y - as.numeric(predict(qout, newdata = data.frame(x = age))):
\#\# longer object length is not a multiple of shorter object length
\#\# Warning in y - as.numeric(predict(qout, newdata = data.frame(x = age))):
\#\# longer object length is not a multiple of shorter object length
\#\# Warning in y - as.numeric(predict(qout, newdata = data.frame(x = age))):
\#\# longer object length is not a multiple of shorter object length
\#\# Warning in y - as.numeric(predict(qout, newdata = data.frame(x = age))):
\#\# longer object length is not a multiple of shorter object length
\#\# Warning in y - as.numeric(predict(qout, newdata = data.frame(x = age))):
\#\# longer object length is not a multiple of shorter object length
\#\# Error in predict.qss1(qss, newdata $=$ newd, ...): no extrapolation allowed in predict.qss
$\operatorname{dim}(f \circ o)$

```
## [1] 93 31
```

dim(resid)
\#\# NULL

Didn't work. We forgot about predict.rqss not wanting to predict beyond the range of the data (here beyond the range of x which is the ages for which data y are not NA). We're going to have to be trickier.

```
resid <- apply(foo, 1, function(y) {
    x <- age[! is.na(y)]
    y <- y[! is.na(y)]
    qout <- rqss(y ~ qss(x, constraint = "I", lambda = lambda))
    pout <- as.numeric(predict(qout, newdata = data.frame(x = x)))
    rout <- rep(NA, length(age))
    rout[match(x, age)] <- y - pout
    return(rout)
})
```

\#\# Warning in rq.fit.sfnc(x, y, tau = tau, rhs = rhs, control = control, ...):

That didn't work either. We get a very mysterious non-warning warning. The message printed above is entirely from the R function warning. It tells us what R function (one we never heard of, although it is documented, that is, ?rq.fit.sfnc shows a help page), but the "message" is empty. I did a little bit of debugging and found that the Fortran code that is called from R to do the calculations is returning an impossible error code (-17) which does not correspond to one of the documented errors. I have reported this as a bug to the package maintainer, and he said that somebody else had already reported it and it has already been fixed in the development version of the package so will be fixed in the next release.

I seem to recall not getting this message when lambda was larger. Try that.

```
lambda <- 0.6
resid <- apply(foo, 1, function(y) {
    x <- age[! is.na(y)]
    y <- y[! is.na(y)]
    qout <- rqss(y ~ qss(x, constraint = "I", lambda = lambda))
    pout <- as.numeric(predict(qout, newdata = data.frame(x = x)))
    rout <- rep(NA, length(age))
    rout[match(x, age)] <- y - pout
    return(rout)
})
dim(foo)
## [1] 93 31
dim(resid)
## [1] 31 93
```

As discussed in the section about sweep in the course notes on matrices, sometimes apply returns the transpose of what you want.

```
resid <- t(resid)
```

Now we need to select a cutoff

```
range(resid, na.rm = TRUE)
## [1] -89.25433 624.90000
stem(resid)
##
## The decimal point is 2 digit(s) to the right of the |
##
## -0 | 9877655555
## -0 | 44444443333211111111111111111111111111111111111111111111111110000000000+1280
## 0 | 000000000000000000000000000000000000000000000000000000000000000000000+1328
## 0 | 7999
## 1 | 00000000000000000000000
## 1 | 8888
## 2 |
## 2 | 777
## 3 | 1
## 3 | 666
## 4 | 4
## 4 | 5555
## 5 | 44
## 5 |
## 6 | 2
```

That didn't show much.

```
bigresid <- abs(as.vector(resid))
bigresid <- bigresid[bigresid > 1]
stem(log10(bigresid))
```

\#\#
\#\# The decimal point is 1 digit(s) to the left of the \mid
\#\#
\#\# 0 | 000001112222344445556666788899901111222335555555688999
\#\# 2 | 00022233466678822335677
\#\# 4 | 01224581247
\#\# 6 | 36334
\#\# 8 | 0180222333444444455555556666666777777777778888888889999999999999999
\#\# 10 | 0000000011111111234581
\#\# 12 | 2245
\#\# 14 | 233333055567
\#\# 16 | 45556633
\#\# 18 | 055615556999
\#\# 20 | 00000000000000000000
\#\# 22 | 5666
\#\# 24 | 3339666
\#\# 26 | 4555533
\#\# 28 | 0

That is still confusing. I had hoped there would be an obvious separation between small OK residuals (less than 1 , which is what we have already removed) and the big bad residuals. But it seems to be a continuum. Let us decide that all of the residuals greater than 0.8 on the \log scale, which is $10^{0.8}=6.3095734$ without logs are bad.

```
outies <- log10(abs(resid)) > 0.8
outies[is.na(outies)] <- FALSE
foo[outies] <- NA
```

And now we should redo our whole analysis above and see how big our problems still are.

```
qux <- NULL
for (i in 1:nrow(foo)) {
    x <- foo[i, ]
    x <- x[! is.na(x)]
    d <- diff(x)
    jj <- which(d <= -0.2)
    for (j in jj) {
        below <- if (j - 1 >= 1) x[j - 1] else NA
        above <- if (j + 2 <= length(x)) x[j + 2] else NA
        qux <- rbind(qux, c(i, below, x[j], x[j + 1], above))
    }
}
qux
```

\#\# HT16 HT16.5 HT17 HT17.5
\#\# [1,] $2 \begin{array}{llllll}177.3 & 177.6 & 177.3 & 177.0\end{array}$
\#\# [2,] $2177.6 \quad 177.3 \quad 177.0 \quad 177.0$
\#\# [3,] $10 \begin{array}{llllll}164.2 & 164.6 & 163.9 & 165.0\end{array}$
\#\# [4,] $19172.2 \quad 172.3171 .2 \quad 172.5$
\#\# [5,] $21173.8 \quad 175.0 \quad 174.7 \quad 176.1$
\#\# [6,] $28 \quad 176.1 \quad 178.3177 .9 \quad 178.2$
\#\# [7,] $34161.9 \quad 161.9 \quad 161.7 \quad 161.9$
\#\# [8,] 35 164.4 165.8164 .9 NA
\#\# [9,] $36 \quad 163.0 \quad 163.4163 .1 \quad 163.0$
\#\# [10,] $56 \quad 163.6 \quad 165.3164 .5 \quad 164.4$
\#\# [11,] $56 \quad 164.4 \quad 164.3164 .1 \quad 164.0$
\#\# [12,] $60 \quad 171.5 \quad 171.4171 .2 \quad \mathrm{NA}$
\#\# [13,] $62180.4 \quad 180.4 \quad 180.2 \quad 180.5$
\#\# [14,] $63166.8 \quad 168.9 \quad 168.2 \quad 168.2$
\#\# [15,] $68 \quad 161.0 \quad 161.5 \quad 161.0 \quad 161.8$
\#\# [16,] $68 \quad 161.0 \quad 161.8 \quad 161.6 \quad \mathrm{NA}$
\#\# [17,] $74 \quad 78.2 \quad 84.2 \quad 78.0 \quad 88.4$
\#\# [18,] $78156.0 \quad 157.1156 .5 \quad \mathrm{NA}$

Some of these look quite confusing. It is not clear what is going on. Let's stop here, even though we are not completely satisfied. This is enough time spent on this one issue on a completely made up example.

3.2.5 Codes

We still have to figure out what $\operatorname{SEX}==1$ and $\operatorname{SEX}==2$ mean. And, wary of different sites doing different things, let us look at this per site. There should be height differences at the largest age recorded.

```
maxht <- apply(foo, 1, max, na.rm = TRUE)
sitesex <- with(growth, paste(SITE, SEX))
unique(sitesex)
```

\#\# [1] "A 1" "A 2" "B 1" "B 2" "C 1" "C 2" "D 1" "D 2"
boxplot(split(maxht, sitesex), ylab = "maximum height")

So we see another problem. Sites A, B, and C coded the taller sex (male, presumably) as 1, but site D coded them as 2. So we have to fix that.

```
growth$SEX[growth$SITE == "D"] <- 3 - growth$SEX[growth$SITE == "D"]
sort(unique(growth$SEX))
## [1] 1 2
sitesex <- with(growth, paste(SITE, SEX))
boxplot(split(maxht, sitesex), ylab = "maximum height")
```


Looks OK now.

3.2.6 Summary

Finding errors in data is really, really hard. But it is essential.
Our example was hard, we still aren't sure we fixed all the errors. And I cheated. I put the errors in the data in the first place, and then I went and found them (or most of them - it is just impossible to tell whether some of the data entry errors that result in small changes are errors or not).

This example would have been much harder if I did not know what kinds of errors were in the data.

4 Data Scraping

One source of data is the World Wide Web. In general, it is very hard to read data off of web pages. But there is a lot to data there, so it is very useful.

The language HTML in which web pages are coded, is not that easy to parse automatically. There is a CRAN package XML that reads and parses XML data including HTML data. But I have found it so hard to use that I can't actually use it (just not enough persistence, I'm sure).

Except there is one function in that package that is easy to use, so we will just illustrate that. The R function readHTMLTable in the R package XML finds all the HTML tables in a web page and turns each one into an R data frame. It returns a list, each element of which is one table in the web page.

Let's try it. For example we will use http://www.wcha.com/women/standings.php, which is the standings for the conference that Golden Gopher Womens's Hockey is in.

```
library(XML)
foo <- readHTMLTable("http://www.wcha.com/women/standings.php",
    stringsAsFactors = FALSE)
length(foo)
```

We got two tables, and looking at the web page we see two tables, the main standings and the head-to-head table.

```
foo[[1]]
```

```
## 1
## 2
## 3
## 4
## 5
## 6
## 7
## 8
## 9
## 10 Teams are awarded three points for each win in regulation or overtime, and one point for an overt
\begin{tabular}{lrrrrrrrrrrrr} 
\#\# & V2 & V3 & V4 & V5 & V6 & V7 & V8 & V9 & V10 & V11 & V12 & V13 \\
\#\# 1 & GP & W & L & T & SW & Pts & GF & GA & & W & L & T \\
\#\# 2 & Wisconsin & 28 & 22 & 2 & 4 & 3 & 73 & 110 & 24 & 33 & 3 \\
\#\# 3 & Minnesota & 28 & 19 & 4 & 5 & 3 & 65 & 88 & 46 & 26 & 8 \\
\#\# 4 & Minnesota Duluth & 28 & 19 & 5 & 4 & 1 & 62 & 82 & 47 & 25 & 7 \\
\#\# 5 & North Dakota & 28 & 11 & 12 & 5 & 3 & 41 & 62 & 57 & 16 & 16 \\
\#\# 6 & Ohio State & 28 & 7 & 16 & 5 & 2 & 28 & 40 & 73 & 14 & 18 \\
\#\# 7 & St. Cloud State & 28 & 7 & 18 & 3 & 2 & 26 & 43 & 82 & 9 & 23 \\
\#\# 8 & Bemidji State & 28 & 7 & 18 & 3 & 1 & 25 & 49 & 80 & 12 & 20 \\
\#\# 9 & Minnesota State & 28 & 4 & 21 & 3 & 1 & 16 & 33 & 98 & 7 & 26
\end{tabular}
## 10 <NA> <NA>
## V14 V15 V16
## 1 GF GA <NA>
## 2 4 157
## 3 5 5 124
## 4 5 110 62
## 5 6 84 73
## 6 5 69 82
## 7 4 61 113
## 8 3 67 90
## 9 4 45 127
## 10 <NA> <NA> <NA>
```

That didn't work as nicely as it should have, but we did get the data. Try 2.

```
foo <- readHTMLTable("http://www.wcha.com/women/standings.php",
    stringsAsFactors = FALSE, header = TRUE)
foo[[1]]
```


\#\#

\#\# 1
\#\# 2
\#\# 3
\#\# 4
\#\# 5
\#\# 6
\#\# 7

```
## 8
## 9
## 10 Teams are awarded three points for each win in regulation or overtime, and one point for an overt
\begin{tabular}{lrrrrrrrrrrrr} 
\#\# & V2 & V3 & V4 & V5 & V6 & V7 & V8 & V9 & V10 & V11 & V12 & V13 \\
\#\# 1 & GP & W & L & T & SW & Pts & GF & GA & & W & L & T \\
\#\# 2 & Wisconsin & 28 & 22 & 2 & 4 & 3 & 73 & 110 & 24 & & 33 & 3 \\
\#\# 3 & Minnesota & 28 & 19 & 4 & 5 & 3 & 65 & 88 & 46 & 26 & 8 \\
\#\# 4 & Minnesota Duluth & 28 & 19 & 5 & 4 & 1 & 62 & 82 & 47 & 25 & 7 \\
\#\# 5 & North Dakota & 28 & 11 & 12 & 5 & 3 & 41 & 62 & 57 & 16 & 16 \\
\#\# 6 & Ohio State & 28 & 7 & 16 & 5 & 2 & 28 & 40 & 73 & 14 & 18 \\
\#\# 7 & St. Cloud State & 28 & 7 & 18 & 3 & 2 & 26 & 43 & 82 & 9 & 23 \\
\#\# 8 & Bemidji State & 28 & 7 & 18 & 3 & 1 & 25 & 49 & 80 & 12 & 20 \\
\#\# 9 & Minnesota State & 28 & 4 & 21 & 3 & 1 & 16 & 33 & 98 & 7 & 26
\end{tabular}
## 10 <NA> <NA>
## V14 V15 V16
## 1 GF GA <NA>
## 2 4 4 157 35
## 3 5 124 69
## 4 5 110 62
## 5 6 84 73
## 6 5 69 82
## 7 4 61 113
## 8 3 67 90
## 9 4 45 127
## 10 <NA> <NA> <NA>
```

That didn't work any better. The problem is that this web site uses really crufty HTML. It doesn't tell us which are the headers, the way HTML has been able to do for at least a decade. So we just have to look at it and fix it up "by hand" (in R).

```
foo <- foo[[1]]
fooname <- foo[1, ]
foobody <- foo[1 + 1:8,]
fooname
```

```
## V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16
```

\#\# 1 GP W L T SW Pts GF GA W L T GF GA <NA>
foobody

\#\#	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14	V15
\#\#	2	1	Wisconsin	28	22	2	4	3	73	110	24	33	3	4	157
\#\#	3	2	Minnesota	28	19	4	5	3	65	88	46	26	8	5	124
\#\#	4	3	Minnesota Duluth 28	19	5	4	1	62	82	47	25	7	5	110	62
\#\# 5	4	North Dakota 28	11	12	5	3	41	62	57	16	16	6	84	73	
\#\# 6	5	Ohio State 28	7	16	5	2	28	40	73	14	18	5	69	82	
\#\# 7	6	St. Cloud State 28	7	18	3	2	26	43	82	9	23	4	61	113	
\#\# 8	7	Bemidji State 28	7	18	3	1	25	49	80	12	20	3	67	90	
\#\# 9	8	Minnesota State 28	4	21	3	1	16	33	98	7	26	4	45	127	

We see that web site is really crufty in its table coding. The names are off by one. And some of the names are blank, and column 11 in the table is just empty, just there to take up space.

```
foobody <- foobody[ , -11]
fooname <- fooname[-length(fooname)]
fooname[1] <- "Team"
fooname <- c("Place", fooname)
fooname <- fooname[-11]
names(foobody) <- fooname
foobody
```

\#\#	Place	Team GP	W	L	T	SW	Pts	GF	GA	W	L	T	GF	GA
\#\# 2	1	Wisconsin 28	22	2	4	3	73	110	24	33	3	4	157	35
\#\# 3	2	Minnesota 28	19	4	5	3	65	88	46	26	8	5	124	69
\#\# 4	3	Minnesota Duluth 28	19	5	4	1	62	82	47	25	7	5	110	62
\#\# 5	4	North Dakota 28	11	12	5	3	41	62	57	16	16	6	84	73
\#\# 6	5	Ohio State 28	7	16	5	2	28	40	73	14	18	5	69	82
\#\# 7	6	St. Cloud State 28	7	18	3	2	26	43	82	9	23	4	61	113
\#\# 8	7	Bemidji State 28	7	18	3	1	25	49	80	12	20	3	67	90
\#\# 9	8	Minnesota State 28	4	21	3	1	16	33	98	7	26	4	45	127

Except that is bad because we have duplicate variable names. Looking at the table on the web, we we see we have W, L, T, GF, GA both for play within the conference and for overall (both conference and non-conference games). So we modify the latter.

```
fooname[duplicated(fooname)] <-
    paste(fooname[duplicated(fooname)], "0", sep = ".")
names(foobody) <- fooname
foobody
```

		Team	GP	W	L	T	SW	Pts	GF	GA	W. 0	L. 0	T. 0	GF. 0	GA. 0
\# 2	1	Wisconsin	28	22	2	4	3	73	110	24	33	3	4	157	35
\#\# 3	2	Minnesota	28	19	4	5	3	65	88	46	26	8	5	124	69
4	3	Minnesota Duluth	28	19	5	4	1	62	82	47	25	7	5	110	62
\#\# 5	4	North Dakota	28	11	12	5	3	41	62	57	16	16	6	84	73
\#\# 6	5	Ohio State	28	7	16	5	2	28	40	73	14	18	5	69	82
\#\# 7	6	St. Cloud State	28	7	18	3	2	26	43	82	9	23	4	61	113
\#\# 8	7	Bemidji State	28	7	18	3	1	25	49	80	12	20	3	67	90
\# 9	8	Minnesota State	28	4	21	3	1	16	33	98	7	26	4	45	12

Better. Ugly, but usable.

5 Web Services

Some web sites have APIS that allow computers to talk to them (not just people look at them).

5.1 Github Example

Here is an example. It is copied from the vignette json-apis for the CRAN package jsonlite (for those who don't know JSON is the most popular data interchange format (for computers to talk to computers)).

```
library(jsonlite)
foo <- fromJSON("https://api.github.com/users/cjgeyer/repos")
names(foo)
```

\#\# [1]	"id"	"name"
\#\# [4]	"owner"	"privall_name"
\#\# [7]	"description"	"fork"
\#\# [10] "forks_url"	"keys_url"	"url"_url"
\#\# [13]	"teams_url"	"hooks_url"

Hmmmmm. An incredible amount of stuff there, most of which I don't understand even though I am a long time github user.

But

```
foo$name
```

\#\# [1] "bar"	"bernor"	"foo"	"gdor"	"glmbb"	
\#\# [6]	"glmdr"	"linkingTo"	"mat"	"mcmc"	"nice"
\#\# [11]	"polyapost"	"pooh"	"potts"	"qux"	"rcdd"
\#\# [16]	"trust"	"TSHRC"	"ump"		

are the names of my github public repos.
Of course, to do anything nontrivial you have to understand the web service. Read up on their API, and so forth.

The only point we are making here is that CRAN has the packages to support this stuff.

5.2 Crandb Example

Here is another example copied from the README at https://github.com/metacran/crandb.

```
foo <- fromJSON("http://crandb.r-pkg.org/-/latest")
class(foo)
## [1] "list"
length(foo)
## [1] 10426
class(foo[[1]])
## [1] "list"
names(foo[[1]])
```

\#\# [1]	"Package"	"Type"	"Title"
\#\#	[4] "Version"	"Date"	"Author"
\#\# [7] "Maintainer"	"Description"	"License"	
\#\# [10] "Depends"	"Suggests"	"NeedsCompilation"	
\#\# [13] "Packaged"	"Repository"	"Date/Publication"	
\#\# [16] "crandb_file_date" "date"	"releases"		

Woof! 10426 CRAN packages as of the last time this handout was rendered.
Here's the ones on which I am an author (I apologize for tooting my own horn).

```
aut <- sapply(foo, function(x) x$Author)
nam <- sapply(foo, function(x) x$Package)
nam[grep("Geyer", aut)]
```

\#\#	aster	aster2	fuzzyRankTests	glmbb
$\# \#$	"aster"	"aster2"	"fuzzyRankTests"	"glmbb"
$\# \#$	mcmc	nice	polyapost	pooh
$\# \#$	"mcmc"	"nice"	"polyapost"	"pooh"
$\# \#$	potts	rcdd	trust	TSHRC
$\# \#$	"potts"	"rcdd"	"trust"	"TSHRC"
$\# \#$	ump			
$\# \#$	"ump"			

Everything appears twice because the vectors have names and the names are the same as the values for the vector nam.

```
as.vector(nam[grep("Geyer", aut)])
```

| \#\# [1] "aster" | "aster2" | "fuzzyRankTests" "glmbb" | |
| ---: | ---: | :--- | :--- | :--- |
| \#\# [5] "mcmc" | "nice" | "polyapost" | "pooh" |
| \#\# [9] "potts" | "rcdd" | "trust" | "TSHRC" |
| \#\# [13] "ump" | | | |

drops the names.

6 Databases

6.1 SQL Databases

A large amount of the world's data is stored in relational database management systems (RDBMS) (Wikipedia page for that) like Oracle, MySQL, Microsoft SQL Server, PostgreSQL and IBM DB2.

The "computer language" of those thingummies is SQL (structured query language) with "computer language" in scare quotes, because it isn't a complete computer language.
R can talk to an RDBMS via the CRAN package DBI (which we won't illustrate).
Instead we will use the package RSQLite which talks to a very different kind of SQL database, called SQLite.
Oracle, Microsoft SQL Server, IBM DB2 are very expensive and require a lot of staff to support. The U uses Oracle, although we say we use PeopleSoft, a company which was long ago bought by Oracle. When you register for classes or get your grades. That's PeopleSoft (Oracle). MySQL is nominally free software but is owned by Oracle, and just to be safe, there are two free software clones of it (MariaDB and Percona). PostgreSQL is free software. None of these can be set up by ordinary users.

In contrast, SQLite is just a program. Any user can install it and use it. The CRAN package RSQLite has the SQLite RDBMS built in. So anyone can play with SQL and with R talking to RDBMS.

Once you get what you are trying to do working in RSQLite, you shouldn't have too much trouble getting your R code to talk to another RDBMS via DBI except, of course, that an RDBMS like the U's Oracle database won't talk to just any program. It's all locked up behind firewalls and other security thingummies. But assuming you do have permission to query the database using a computer, then you should be able do it using R.

Let's try to put our last example into an SQL database.
An SQL database has one or more tables that are more or less like data frames in R . The columns are variables and the rows (SQL calls them tuples) are individuals (cases). Certain columns are special (primary and secondary keys, but we won't worry about that yet).

Since, we have to put data in tables, we have a problem. The reason fromJSON did not return a data frame in the second example (Section 5.2 above) like it did in the first example (Section 5.1 above) is that the items in an R package description can vary.

```
foo.nam <- lapply(foo, names)
foo.nam.union <- Reduce(union, foo.nam)
foo.nam.intersection <- Reduce(intersect, foo.nam)
foo.nam.union
```

```
## [1] "Package"
## [3] "Title"
## [5] "Date"
## [7] "Maintainer"
## [9] "License"
## [11] "Suggests"
## [13] "Packaged"
## [15] "Date/Publication"
## [17] "date"
## [19] "Authors@R"
## [21] "BugReports"
## [23] "VignetteBuilder"
## [25] "RoxygenNote"
## [27] "Encoding"
```

```
"Type"
"Version"
"Author"
"Description"
"Depends"
"NeedsCompilation"
"Repository"
"crandb_file_date"
"releases"
"URL"
"LazyData"
"Imports"
"Contact"
"SystemRequirements"
```

\#\#	[29]	"LazyLoad"	"Lazyload"
\#\#	[31]	"Classification/ACM"	"Classification/JEL"
\#\#	[33]	"LinkingTo"	"Collate"
\#\#	[35]	"Additional_repositories"	"Repository/R-Forge/Project"
\#\#	[37]	"Repository/R-Forge/Revision"	"Repository/R-Forge/DateTimeStamp"
\#\#	[39]	"Keywords"	"biocViews"
\#\#	[41]	"Enhances"	"Copyright"
\#\#	[43]	"ByteCompile"	"License_restricts_use"
\#\#	[45]	"BuildVignettes"	"X-CRAN-Original-Maintainer"
\#\#	[47]	"X-CRAN-Original-URL"	"X-CRAN-Comment"
\#\#	[49]	"ZipData"	"References"
\#\#	[51]	"SuggestsNote"	"DependsNote"
\#\#	[53]	"Classification/MSC"	"Acknowledgments"
\#\#	[55]	"Roxygen"	"MailingList"
\#\#	[57]	"Acknowledgements"	"RcppModules"
\#\#	[59]	"OS_type"	"Biarch"
\#\#	[61]	"URLNote"	"BuildManual"
\#\#	[63]	"Priority"	"Note"
\#\#	[65]	"License_is_FOSS"	"BuildResaveData"
\#\#	[67]	"VersionSplus"	"MaintainerSplus"
\#\#	[69]	"VersionNote"	"Disclaimer"
\#\#	[71]	"KeepSource"	"Data"
\#\#	[73]	"BioViews"	"lazy-loading"
\#\#	[75]	"LazyDataCompression"	"Reference"
\#\#	[77]	"LicenseNote"	"LastChangedDate"
\#\#	[79]	"LastChangedRevision"	"SVNRevision"
\#\#	[81]	"Namespace"	"Address"
\#\#	[83]	"Keyword"	"Contributors"
\#\#	[85]	"Language"	"Revision"
\#\#	[87]	"NOTE"	"Requires"
\#\#	[89]	"Acknowledgement"	"Respository"
\#\#	[91]	"DateNote"	"Citation"
\#\#	[93]	"LazyDataNote"	"Dependencies"
\#\#	[95]	"Lazydata"	"HowToCite"
\#\#	[97]	"Classification/ACM-2012"	"Publication"
\#\#	[99]	"Reference Manual"	"Published"
\#\#	[101]	"RequiredLauncherGeneration"	"Special Acknowledgement"
\#\#	[103]	"Affiliations"	"Archs"
\#\#	[105]	"LicenseDetails"	"SCM"
\#\#	[107]	"RdMacros"	"X-CRAN-Original-Package"
\#\#	[109]	"Dialect"	"SysDataCompression"
\#\#	[111]	"RcmdrModels"	"Log-Exceptions"
\#\#	[113]	"Models"	"Limitations"
\#\#	[115]	"Check"	"X-CRAN-History"
\#\#	[117]	"Recommends"	"SystemRequirementsNote"
\#\#	[119]	"X-CRAN-Original-OS_type"	"Url"
\#\#	[121]	"Encoding "	"DisplayMode"
\#\#	[123]	"Reverse depends"	"Nickname"
\#\#	[125]	"BuildKeepEmpty"	"Twitter"
\#\#	[127]	"Remotes"	"SystemRequirement"
\#\#	[129]	"Github"	

```
foo.nam.intersection
```

```
## [1] "Package" "Title" "Version"
## [4] "Author" "Maintainer" "Description"
## [7] "License" "crandb_file_date" "date"
## [10] "releases"
```

So the only table we could make for all the packages, would have only the foo.nam.intersection variables unless we allowed for missing values. SQL does have a missing value called NULL. This is unlike R's NULL and more like R's NA. But let's not try that right away.

Are all of these fields scalars?

```
foo[[1]][foo.nam.intersection]
## $Package
## [1] "A3"
##
## $Title
## [1] "Accurate, Adaptable, and Accessible Error Metrics for Predictive\nModels"
##
## $Version
## [1] "1.0.0"
##
## $Author
## [1] "Scott Fortmann-Roe"
##
## $Maintainer
## [1] "Scott Fortmann-Roe <scottfr@berkeley.edu>"
##
## $Description
## [1] "Supplies tools for tabulating and analyzing the results of predictive models. The methods emplo
##
## $License
## [1] "GPL (>= 2)"
##
## $crandb_file_date
## [1] "2015-08-16 17:08:22"
##
## $date
## [1] "2015-08-16T23:05:52+00:00"
##
## $releases
## list()
```

Not releases. So forget that. Also two dates seems unnecessary. Make a data frame.

```
foo.nam.intersection <- foo.nam.intersection[foo.nam.intersection != "releases"]
foo.nam.intersection <- foo.nam.intersection[foo.nam.intersection != "date"]
bar <- list()
for (n in foo.nam.intersection)
    bar[[n]] <- as.vector(sapply(foo, function(x) x[[n]]))
names(bar)
```

```
## [1] "Package" "Title" "Version"
## [4] "Author" "Maintainer" "Description"
## [7] "License" "crandb_file_date"
names(bar)[8] <- "Date"
bar <- as.data.frame(bar, stringsAsFactors = FALSE)
dim(bar)
## [1] 10426 8
```

Now we put it in a temporary RSQLite database following the vignette in the package RSQLite.

```
library(DBI)
mydb <- dbConnect(RSQLite::SQLite(), "")
dbWriteTable(mydb, "cran", bar)
## [1] TRUE
```

Now we have an SQL database to play with. To do anything with it, we need to know some SQL. And if we started on that it would be a whole semester learning SQL. There's a computer science course for that.

So we will just do a simple example.

```
qux <- dbGetQuery(mydb, "SELECT * FROM cran WHERE Author LIKE '%Geyer%'")
class(qux)
## [1] "data.frame"
names(qux)
\#\# [1] "Package" "Title" "Version" "Author" "Maintainer"
## [6] "Description" "License" "Date"
qux$Package
\begin{tabular}{llll} 
\#\# & {\([1]\)} & "aster" & "aster2" \\
\#\# & {\([5]\)} & "mcmc" & "nice" \\
\(\# \#\) & {\([9]\)} & "potts" & "rcdd"
\end{tabular}
## [13] "ump"
```


6.2 NoSQL Databases

A recent development (last 20 years) is so-called noSQL databases. These take a great leap backward in terms of features. But they do so in order to be huge, scaling to the size needed by Google, Amazon, or Facebook. R can talk to some of these too.

```
dbnames <- c("CouchDB", "MongoDB", "Cassandra", "Redis", "Dynamo", "HBase")
quux <- list()
for (d in dbnames) {
    query <- paste("SELECT Package FROM cran WHERE Description LIKE '%", d,
        "%' OR Title LIKE '%", d, "%'", sep = "")
    quux[[d]] <- as.vector(dbGetQuery(mydb, query))
}
quux
## $CouchDB
## Package
## 1 couchDB
## 2 R4CouchDB
## 3 sofa
##
## $MongoDB
## Package
## 1 jSonarR
## 2 mongolite
## 3 RMongo
## 4 toxboot
##
## $Cassandra
## Package
## 1 RCassandra
##
## $Redis
## Package
## 1 doRedis
## 2 RcppRedis
## 3 redist
## 4 ropercenter
## 5 rredis
## 6 storr
## 7 ukds
##
## $Dynamo
## Package
## 1 awsjavasdk
##
## $HBase
## Package
## 1 implyr
## 2 rfishbase
```

In these redist and rfishbase are false positives (they contain the string looked for, but don't apply to the database in question). And toxboot is sort of a false positive. It does connect to one particular MongoDB database, but is not a general interface to MongoDB.
But doing an example of any of these is far beyond the scope of this course (and what the instructor knows).

6.3 Clean Up

One last thing. Close the database connection.
dbDisconnect(mydb)

