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Can one be a good data analyst without being a half-good programmer? The short answer to
that is, ‘No.’ The long answer to that is, ‘No.’

— Frank Harrell, 1999 S-PLUS User Conference, New Orleans (October 1999), quoted by the R
function fortune in the CRAN package fortunes

1 License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (http:
//creativecommons.org/licenses/by-sa/4.0/).

2 R
2.1 Versions

• The version of R used to make this document is 4.1.0.

• The version of the rmarkdown package used to make this document is 2.10.

2.2 History
First came S, the first statistical computing language that was a real computer language. It was invented at
Bell Labs by John Chambers and co-workers. Development started in 1975. It was first distributed outside of
Bell Labs in 1980. Before 1988, S did not have real functions (it had macros to do the same job, but nowhere
near as well). A version of S with real functions was released in 1988.

S always was and still is proprietary software. It is not free as in free beer nor free as in free speech. After
purchasing it, one can only use it as the license allows. The name S is a one-letter name like C (another
language from Bell Labs).

In 1988 another company was founded to market S, with additions, as a proprietary product called S-PLUS
(or S+). After several changes of ownership, the current owner (TIBCO Software) does not seem to be selling
it any more, at least not as a product by itself.

Then came R, an implementation of a language very like S. It was invented at the University of Auckland by
Ross Ihaka and Robert Gentleman. The name R is a one-letter name like S but is also for Ross and Robert.
Development started in 1992. The first stable release was in 2000. R is now developed and maintained by the
“R Development Core Team.”

R always was and still is free software. It is free as in free beer and free as in free speech. After downloading
it for free, one can only use it as the license allows, but that license (GPL version 2) allows you to use it in
any way you please and modify it in any way you please, subject only to the proviso that either you do not
distribute your modifications outside of your organization or you distribute your modifications under the
same license so that others are also free to use and modify your code as they please (subject to the same
proviso).
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One might think that whether software is free or not makes no difference to ordinary users because they
don’t want to modify it. But it makes a very big difference indirectly. If anyone anywhere in the world wants
to modify R to solve a problem they have, they can do so, and they can make their solution available to
everyone everywhere if they chose (and according to the license if they make it available to anyone, then
they have to make it available to everyone). In contrast, proprietary software only gets features that the
marketing department thinks will have a large enough number of users to make a profit. Since R is the only
widely used free software statistical computing language, it has thousands of features that are not in any
proprietary statistical computing language. So ordinary users may not want to modify R, but they benefit
from the expert users who do want to.

According to an article in IEEE Spectrum, R is the fifth most popular computer programming language —
not the fifth most popular statistical language but the fifth most popular language overall. Their top five were
C, Java, Python, C++, and R in that order. R is (according to them) almost as popular as C++. The next
most popular language that is vaguely similar is Matlab in fourteenth place (it is more a numerical analysis
language than a statistics language). The next most popular statistics language is SAS in thirty-ninth place.
No other statistical language is on their list, which ranks forty-nine languages.

Several proprietary companies have been built on R.

• In 2007 a company called Revolution Computing (later called Revolution Analytics, later sold to
Microsoft) was founded to provide support for R and extensions for R specifically for big data. In July
2021, Microsoft announced that this product will be abandoned as a product and its technology will be
replaced by the CRAN distribution of R and some new CRAN packages.

• In 2011 a company called RStudio provided a product of the same name that is an integrated development
environment for R (and they also provide other tools for use with R). RStudio is free software.

2.3 CRAN and Bioconductor
Everything R is found at CRAN (https://cran.r-project.org/) or Bioconductor (https://www.bioconductor.
org/).

CRAN is where you get R if you don’t already have it or if you need a new version. CRAN is also where more
than ten thousand contributed extension packages for R come from (CRAN said “15340 available packages”
when I wrote this sentence, no doubt there are more now). Any of these packages can be installed in seconds
with one R command (or by mousing around in the menus in you are using an R app). These packages make
R very powerful, able to do just about any statistical analysis anyone has ever thought of.

I have a habit of pronouncing CRAN as cee-ran like CTAN (https://www.ctan.org/) and CPAN (http:
//www.cpan.org/) after which CRAN is modeled. But almost everyone else pronounces it cran as in cranberry.
I am trying to change, but sometimes forget.

Bioconductor is a smaller site that has many contributed extension packages for “bioinformatics” (it “only”
has 1823 software packages as I write this sentence). Bioconductor packages are also easy to install, although
not quite as easy as CRAN packages.

2.4 Manuals
All of the books that are the fundamental R documentation are free and found at CRAN (under the “Manuals”
link in the navigation). We won’t use any other books.

The only one of the R manuals that is written for beginners (like you) is An Introduction to R. You should
take a look at it. Anything that you find confusing in class or in the course notes (like this document) can
probably be clarified by looking up the subject in An Introduction to R.
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2.5 Other Books
There are now hundreds of books about some statistical topic using R. As I write, there are 61 books in the
“Use R!” series from Springer, 40 books in the “R series” from Chapman & Hall/CRC, and (if I counted
correctly) 130 books and videos with “R” in the title from O’Reilly. There are more from other publishers.
Many of these books are very good, but we don’t recommend any particular one for this course.

2.6 Why R?
R is the language of choice for statistical computing, at least among research statisticians and new companies
(start-ups and companies that were recently start-ups like Google, Facebook, Amazon, and the like). The
reasons are that R is a really developer friendly programming language. If anyone anywhere in the world
wants to make an R package to do some problem, CRAN will make it available to everyone everywhere. And
R does not make changes that break existing code (hardly ever). So such packages are easy to maintain.
There is nothing like CRAN for competing proprietary statistical computing languages. Since R is free
software, it is hackable by anyone who is a good programmer. It can be made to do anything. So again, if
anyone anywhere in the world has solved your problem, there is likely a CRAN package to do what you want.
Or if you are a company with great engineers, they can make R do whatever the company needs.

In older companies in which statistics has been important for many years (drug companies, for example)
SAS may be what they use. They’ve been using it for decades and don’t want to change. In other academic
disciplines besides statistics, other computing languages may be used for statistics (SAS, SPSS, Stata, for
example), but R is displacing them more and more. The reason is that there is so much available in R that is
not available anywhere else. For example, the R package aster (http://cran.r-project.org/package=aster)
does many forms of life history analysis that nothing else can do. So if hundreds of biologists want to analyze
their data, they have to learn R. The ones that become good at it then become R advocates. Similar stories
could be told about many kinds of statistical analysis that are available only in R.

You also hear Python, Perl, Julia, and other dynamic programming languages recommended for statistics or
“data science” but none of these languages actually have much real statistics available, not even 1% of what is
available on CRAN and Bioconductor. So they are useful if the statistics being done is very simple, but not
otherwise.

But the main reason we are teaching you R is that is what we know. As a statistics major, you are doomed
to learn R.

3 Some Very Basic Stuff
3.1 Style
Many organizations have “style guides” for the languages their programmers use. Many computer languages
— all modern ones, including R — allow a great deal of latitude in how one writes. This can make it difficult
for one programmer to read code written by another. So, just to make life easier for everyone, organizations
make everyone use the same style.

There are three style guides for R that are somewhat authoritative. The first two are actual style guides, one
by Google (https://google.github.io/styleguide/Rguide.xml) and another (http://adv-r.had.co.nz/Style.html),
a modification of the Google guide by Hadley Wickham, author of the R packages ggplot2, dplyr, and many
more (collectively called the Hadleyverse) and Chief Scientist at RStudio (https://www.rstudio.com/). The
other is the source code of R by the R Development Core Team. (Go to https://cran.r-project.org/ and
download the source code for the current version. I am not actually suggesting you do this now. Reading R
source code is not easy. You will have to do that eventually to become an R guru, if you want to be one. But
not yet.)
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3.2 Commands
R commands do not need semicolons. R commands are terminated by newlines if they are syntactically
complete. Otherwise they continue on the next line.
2 + 2

## [1] 4
2 +
2

## [1] 4
(2
+ 2)

## [1] 4

You can use semicolons to put a lot of R commands on one line, but don’t (the Google R style guide
recommends against this).
2 + 2; pi; "argle bargle"

## [1] 4

## [1] 3.141593

## [1] "argle bargle"

3.3 Assignment
Use <- for assignment, not =. Yes, the former is harder to type, but R from the most authoritative sources
uses the former (including the R sources). The assignment operator for R and the S language that preceded
it was <- for decades before John Chambers decided to add = to make the C++ programmers happy, which
of course it didn’t (actually I have no idea what his motivation was). The style guides and the R source code
do not agree with Chambers.

Strangely, -> is also an assignment operator. There is also a function assign. There are also <<- and ->>
operators.
foo <- 2
foo

## [1] 2
foo = 3
foo

## [1] 3
4 -> foo
foo

## [1] 4
foo <<- 5
foo

## [1] 5
6 ->> foo
foo

## [1] 6
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assign("foo", 7)
foo

## [1] 7

All of these do exactly the same thing in this context. In other contexts, they do different things. Inside
function bodies, the assignments with the double headed arrows do something different, which we won’t
explain here. The assign function with optional arguments allows the most flexibility in assignment and the
most precise specification of where the assignment is done, and we won’t explain that here either.

In short, use <- for assignment.

3.4 Autoprinting
An R command that is not an assignment and is executed at the top level (not inside a function) automatically
prints the value of the expression. So the way to see what an R object is, is just to make that object by itself
an R command.
x <- 1
x

## [1] 1

If the object is way too big to be worth looking at, the R functions head, tail, and summary, may be helpful.
x <- rnorm(10000)
head(x)

## [1] -0.9523335 -0.4463677 -1.5247012 -1.3777634 1.4868348 -0.8947662
tail(x)

## [1] -0.28534192 -1.69152176 1.16202019 -0.65634367 0.34131279 0.05214166
summary(x)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -3.868914 -0.670724 0.001415 0.004283 0.694038 4.672586

This feature is called autoprinting, and, though it seems very simple, it is actually rather complicated. It
can be changed by using the R function invisible, which makes what would ordinarily print not print,
and it actually works by hidden calls to the R function print or show (for S4 objects), which are generic
functions, so what gets printed is appropriate for the type of object. That explanation may make no sense at
this point, more about this later. Section 1.6 of R Internals explains (but that reference also makes no sense
to beginners).

Summary: assignment commands don’t print their values and other commands do.

This does not mean that assignment expressions don’t have values. They do. That’s why
x <- y <- 2
x

## [1] 2
y

## [1] 2

works.
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3.5 Whitespace
As in C and C++, whitespace is mostly not needed in R. There are a few places where if things were run
together, it would change the meaning, but not many. So one can write
x <- 2
x<-2

but the style guides recommend using white space to make it easier for people to read, whether the computer
needs it or not.

3.6 Objects
To understand computations in R, two slogans are helpful:

• Everything that exists is an object.
• Everything that happens is a function call.

— John Chambers, quoted in Section 6.3 of Advanced R by Hadley Wickham

In R everything is an object. This is a triviality. The technical term used to refer to R thingummies is object.

3.7 Object-Oriented Programming
By calling thingummies “objects” this does not mean we are doing object-oriented programming (OOP) that
you may have heard about in your C++ class. R objects are not like C++ objects. In R everything is
an object. In C++ only very special things that are instances of C++ classes created with the C++ new
operator are objects. In R, numbers, functions, bits of the R language (R expressions) are also objects. In
C++ those things are definitely not objects. The C programming language doesn’t have any objects at all,
either in the C++ sense or the R sense.

R is not a particularly OOPy language. It does have three different OOP systems in the R core (the stuff
you get without having to attach a package). And it has several more OOP systems in packages found in
contributed extension packages on CRAN. But none of these OOP systems act like the C++ OOP system.
Moreover none of the OOP systems are necessary to most R programming. Most R programming is not
OOPy.

So forget what you learned about OOP in your C++ course. It won’t help you with R.

3.8 Dynamic
R is a dynamic programming language. This means two things.

1. Any name can be assigned objects of any type. Unlike C and C++ you do not have to “declare” what
type of object goes with each name.

2. You don’t compile in the sense that you compile C and C++. You can just type or cut-and-paste R
commands into the R program and see what happens.

This makes R infinitely easier to program than C/C++.

Nevertheless, R is just as powerful a language as C++. It is not as powerful as C. You can write operating
systems (Windows, OS X, Linux) in C but not in any other so-called high level language.

3.9 Reproducibility
Although you can type or cut-and-paste R commands into the R program and see what happens, you shouldn’t
when doing serious work. Put all of your R in a file, and run it in a clean R environment. The command to
do this from an operating system command line is

R CMD BATCH --vanilla foo.R
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Here foo.R is the file with the R commands. A file called foo.Rout will be produced. All of the R commands
in foo.R will be executed and all of the results will go into foo.Rout.

Except for randomness in random numbers used (and this can be removed by setting random number
generator seeds, about which more later), this is 100% reproducible. Throwing code at the interpreter is not
reproducible unless you deliberately start R so the global environment is empty and type in exactly the same
commands every time. R CMD BATCH is much more reproducible. We will insist that assignments use R CMD
BATCH or something else 100% reproducible (R markdown, for example).

3.10 Help
The R function help gives you the somewhat inappropriately named help on a subject (usually on a function
or on a dataset, but help on other things also exists). Many people do not find this help helpful. It depends
on what you are looking for.

R help pages are modeled after unix man pages. They are supposed to be complete, concise, and correct.
Most computer “help” outside of R help pages or unix man pages is none of these things. It tries to be
helpful and friendly and thus omits lots of things (not complete), belabors what it does cover (not concise),
and dumbs down things to the point of being wrong (not correct). Many people nevertheless find this stuff
helpful. Again, it depends on what you are looking for.

R help pages, on the other hand, do correctly answer all questions you might have. But sometimes the
answers are so terse, you may not understand them. They are thus useful only when you know the basics of
the subject but need to know some technical detail that you either forgot or never new. Exactly what does
this function do? Exactly what is the name of some argument to this function? Questions like that. R help
pages do not give any background. They do not tell you why or when you might want to use a function.

For background, you need a book, perhaps Introduction to R, perhaps some other book. In between help
pages and books, are package vignettes, which not all packages have. For example, in the CRAN package
mcmc (http://cran.r-project.org/package=mcmc) there are several vignettes; the main one that shows basic
use of the package is shown by the R commands

library(mcmc)
vignette("demo", "mcmc")

(We cannot show the output of this command in this document because R displays the output in a separate
window. But if you do this interactively, it will work. This applies to many commands in this section.)

As an example of using help, I had to do help(vignette) because I can never remember whether this
function is named vignette or vignettes or even how to spell it. Moreover, I did not remember the order
of the arguments or their names, so I needed the help for that too.

To see all the vignettes for this package do

library(mcmc)
vignette(package = "mcmc")

There is another command help.search that may be useful when you do not know the name of the function
(or other thing) that you want help for. For example

help.search("help")

returns a list of R functions that have “help” in their help page titles or names. Some of these are involved in
the R help system (including help.search itself); others are not.

R has two shorthands for getting help.

?whatever
??whatever

are shorthand for
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help(whatever)
help.search(whatever)

(The reason for the lack of quotation marks in these examples is explained in the following section).

3.11 Non-standard Evaluation
Some R functions use what some call “non-standard evaluation,” (a term apparently coined by Hadley
Wickham (http://adv-r.had.co.nz/)). Instead of just evaluating their arguments, they play tricks with some
of them.

This “playing tricks” is possible because R expressions are R objects too. So R can look at them and try to
understand them and not just evaluate them.

An example of this is when you do a plot and do not specify labels for the horizontal and vertical axes, R
makes up some labels from the expressions that specify the horizontal and vertical coordinates of the points
plotted.

Another example is help.

help("ls")
help(ls)
?ls
?"ls"

all do the same thing (show the help for the R function named ls). But

help("function")
help(function)
?function
?"function"

do not all do the same thing. The ones without quotation marks are an error and an incomplete R statement,
neither of which shows the help page. What is going on here?

The non-standard evaluation here is inside the R function named help. Before that function is even invoked,
the R interpreter (the part of the R program that actually executes R commands) must parse the command.
The text help(function) is not a valid R statement because function is a keyword that must be followed
by a function definition. So an error occurs before the R function named help can try to do its trick of
working whether or not there are quotation marks. The problem is similar with ?function except here since
nothing follows function the R interpreter realizes that you could follow this with a definition of a function,
so it just prints the prompt for a continuation line. And, of course, this has nothing to do with what you
wanted (help for the function named function).

The example of the R help system, shows that non-standard evaluation is sometimes problematic. When in
doubt, use the quotation marks.

A lot of R is like this. R does a lot of tricky things that are helpful most of the time (omitting quotation
marks saves two whole keystrokes when getting help) but when it is not helpful, it is seriously unhelpful.

In programming, one should never use non-standard evaluation unless that is what has to be done to get the
job done. For example, inside a function you are writing, you may need to assure that a package is loaded,
The function for this is named require. And it plays non-standard evaluation tricks just like help. Both
require(mcmc)
require("mcmc")

work. But you should only use the latter in programs you write.

The ability of R to do computing on the language is remarkable and far beyond what most computer languages
can do (only LISP and Scheme are comparable). So the fact that R can do non-standard evaluation is a good
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thing. The fact that non-standard evaluation can be used where not helpful does not automatically make it
bad. Only that particular use is (arguably) bad. It probably should not have been used in the R functions
help and help.search, but it is too late to change that now.

4 Functions
4.1 Functional Programming
R is a functional programming language. This means that functions are first class objects that you can do
anything with that you could do to any other object. You can assign them to variable names, or you can
assign them to be parts of compound objects (like lists), or you can use them as arguments or values of other
functions.

In this one respect, R is exactly like Haskell or Javascript or F# or Clojure or Ruby or other functional
programming languages. In other aspects, R is very different from those languages.

This [closures] is the best idea in the history of programming languages.

— Douglas Crockford

Crockford was talking about Javascript, but R has the same idea. It is the function named function, which
creates functions. Technically, they are called “closures” for reasons to be explained later.
typeof(function(x) x)

## [1] "closure"

In this respect R is different from and better than S. The R function named function creates true closures,
where S and S-PLUS did not, as explained in Section 3.3.1 of the R FAQ.

4.2 Pure Functional Programming
In a pure functional programming language, functions do not have side effects. If called with the same values
for the same arguments, they must always produce the same results.

There are very few totally pure functional programming languages because they cannot vary what they do to
adjust to the outside world. They cannot do input or output, they cannot do random numbers, they cannot
tell the time or date. And so forth. R isn’t totally pure either.

But it is more or less pure as far as computation goes. Unlike C and C++ functions, R functions cannot
change the values of their arguments. In R there is only one kind of argument (R object). There is none of
this nonsense about pointers and references. In C, you can write a function that changes its argument (or
more precisely what its argument points to)

void bar(int *x)
{

*x = 2;
}

when you call it as follows

int one = 1;
bar(&one);

after the call to bar returns, the value of one is 2.

In C++ the above also works (because almost all C is also valid C++) but the following also works

void baz(int& x)
{

x = 2;
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}

when you call it as follows

int one = 1;
baz(one);

after the call to baz returns, the value of one is 2.

In R nothing like this is possible the way R functions are commonly programmed.
ralph <- function(x) {

x <- 2
return(x)

}
x <- 1
ralph(x)

## [1] 2
x

## [1] 1

Inside the function, the value of x is changed to 2, but outside the function the value of x is unchanged by
the function. There are two variables named x one inside the function and one outside. This is just like C or
C++ functions that have non-pointer, non-reference arguments. The C or C++ function

int ralph(int x)
{

x = 2;
return x;

}

behaves just like our R function of the same name above.

R environments and R reference classes, which are syntactic sugar over environments, are exceptions. But
they are little used. (At least they are rarely used explicitly. A new environment is involved in every function
definition and every function invocation. More on this later.)

The vast majority of R functions cannot change their arguments the way C and C++ functions can. This
makes R much easier for programmers to program, and, more importantly, much easier for users to use. The
only way an ordinary R function that does not do I/O or use random numbers can have an effect on the
world outside itself is to return a value.

Every time a function that does not do input, use random numbers, or access the date, time, process ID, or
some such thing (all of which are forms of input) is called with the same values of the same arguments, it
will return the same result. In short, it is pure functional. Thus pure functional is the normal style of R
programming. Use it, don’t try to fight it.

If you need to return lots and lots of stuff, then put it in a list (which makes it one R object), and return
that. That’s what model fitting functions like lm and glm do. It is a very common R design pattern. More
on this later.

4.3 Functions Assigned Names
Here are some examples of R being a functional programming language.
fred <- function(x, y) x + y
fred(2, 3)

## [1] 5
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Never mind that this is just a toy example (we don’t need a function for addition, we already have one). This
shows the idiomatic way to define a function in R, at least a one-liner. A function that needs multiple lines
of code for its implementation needs curly brackets around the body of the function
fred <- function(x, y) {

x <- cos(x)
y <- exp(y)
x + y

}
fred(2, 3)

## [1] 19.66939

But unlike in C and C++, the curly brackets are not needed for one-liners.

How does the function know what value to return? It returns the value of the last expression it evaluates, in
the examples above the value of x + y.

The R function return immediately returns a value from a function (and no further code in the function
body is executed). So we could have written
fred <- function(x, y) return(x + y)
fred(2, 3)

## [1] 5

if we wanted our function to look more like C/C++. But it still doesn’t really look like C or C++ because in
them return is a keyword (part of the syntax of the language) not a function, so (in C/C++) one could
write return x + y without parentheses. In R that is invalid.

Unlike in C or C++, an R function cannot not return a value. Many R functions seem to not return a value,
but they do.
sally <- plot(1:10, 2:11)
sally

## NULL

If a function cannot think of anything better to return, it can return invisible(NULL). That means it
returns the R object NULL and that object does not get printed when the value is not assigned so users don’t
see it and can imagine that it doesn’t exist.

But every function returns a value. Many R functions that ordinary users think don’t return values (because
they never see them and don’t wonder about them) actually return objects with useful stuff in them. We
won’t worry about that now. Just keep it in mind: every R function returns a value (which is an R object).

Just one more example illustrating that the R function return returns immediately:
fred <- function(x, y) {

x <- cos(x)
y <- exp(y)
return(x + y)
cat("just something here that can never get executed\n")

}
fred(2, 3)

## [1] 19.66939
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4.4 Functions as Arguments to Functions
R functions can be arguments to other R functions. The R function optimize optimizes functions of one
(scalar) variable. Its first argument is the function to optimize, and the second is an interval over which to
minimize it.
fred <- function(x) exp(x) - log(x)
optimize(fred, c(0.1, 10))

## $minimum
## [1] 0.5671468
##
## $objective
## [1] 2.330366

If we look at a plot done by the following code
curve(fred, from = 0.1, to = 10, log = "y")

which is
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Figure 1: Graph of Mathematical Function Computed by R Function fred

we can see that optimize seems to have found the solution. We used a log scale for the vertical axis because
otherwise we wouldn’t be able to see where the minimum was (try the same without log = "y").

This is a very common design pattern in R. There is a function integrate that does integrals of R functions.
There is a function uniroot that finds zeros (roots) of R functions. In the recommended package boot
(which comes with every R installation) there is a function boot that simulates the approximate sampling
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distribution of an arbitrary statistic specified by an R function using the nonparametric bootstrap. In the
CRAN package mcmc (http://cran.r-project.org/package=mcmc) there is a function metrop that simulates
random vectors having probability density function specified by an R function. Many other functions use this
pattern. To specify a function, use an R function. To tell another R function about this function, pass this
function as an argument to that function.

The R functions of the apply family (apply, eapply, lapply, mapply, rapply, sapply, tapply, and vapply),
and those of the higher-order function family (Filter, Map, and Reduce) all take an argument that is an
R function that they apply to components of an object. Also sweep and outer do this. In functional
programming, a function that takes a function as an argument or returns another function as its value is
called a higher-order function. (I didn’t know about some of these until I looked them up to make this list.)
Eventually, we will learn about all of these, but not right now.

4.5 Anonymous Functions
R functions don’t need names. The R function whose name is function makes functions. They don’t need
to be assigned to names to work. If we don’t bother to give a function a name, the jargon widely used in
functional programming is that we are using an anonymous function. We can redo the preceding example
using an anonymous function.
optimize(function(x) exp(x) - log(x), c(0.1, 10))

## $minimum
## [1] 0.5671468
##
## $objective
## [1] 2.330366

This is just the preceding example with the expression defining fred plugged in where fred was passed as an
argument to optimize. In general, anyplace you can use an R object, you can also use an expression defining
that object (except when nonstandard evaluation is involved).

You don’t need to do things like this very often,
(function(x) exp(x) - log(x))(2.7)

## [1] 13.88648

but it does work. Here an anonymous function is being evaluated at the argument value 2.7. The parentheses
around the function definition are necessary to make the whole function definition something we can apply
the function invocation parentheses to.

5 Vectors
In R all of the objects that “hold stuff” are vectors. There are no objects that can hold only one number or
only one character string. You may think there are, but those objects are really vectors.
one <- 1
one

## [1] 1
is.vector(one)

## [1] TRUE
length(one)

## [1] 1
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Why does R print

[1] 1

and

[1] TRUE

for these results? (The ## in front of output is a foible of the R package knitr and also of rmarkdown which
uses knitr that I am using to make this document. It doesn’t appear when you are using R yourself.)

If a vector takes many lines to print, each line starts with the index of the first component of the vector to
appear on that line.
1:40

## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
## [26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

As we can see, the R binary operator : makes sequences. As we can also see, R uses one-origin indexing like
FORTRAN rather than zero-origin indexing like C and C++.

R vectors come in two kinds. In atomic vectors all of the components have to have the same type. In lists
the components can be of different types.

5.1 Types
The types an R atomic vector can have are (table from Section 2.1.1 of the R Language Definition)

typeof mode storage.mode
logical logical logical
integer numeric integer
double numeric double
complex complex complex
character character character
raw raw raw

The column headings are the names of R functions (typeof, mode, and storage.mode) and the entries are
what they say about various kinds of atomic objects. There is one other R function of this kind, class that
also gives useful information about R objects.

5.1.1 Numeric

one <- 1
typeof(one)

## [1] "double"
mode(one)

## [1] "numeric"
storage.mode(one)

## [1] "double"
class(one)

## [1] "numeric"
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The result of storage.mode is what C and C++ think of as the type. Type "double" means it is stored as
a C or C++ double.

One might ask, why is R storing the integer 1 as a double? And the answer is sometimes it does. For the most
part R users (even knowledgeable users) do not need to distinguish between integers and doubles (between
“fixed point” and “floating point” numbers). The R functions mode and class don’t distinguish, reporting
"numeric" for both.

Let’s try another.
lone <- length(one)
typeof(lone)

## [1] "integer"
mode(lone)

## [1] "numeric"
storage.mode(lone)

## [1] "integer"
class(lone)

## [1] "integer"

For some reason, the R function length returns its result as numbers of type "integer". So we see R really
does have two kinds of numbers. But, as we said above, most users never notice the difference and don’t need
to notice.

This is different from C and C++ which have an insane assortment of numbers. They have three floating
point types (float, double, and long double) and I don’t know how many integer types (char, short, int,
long, and long long, and all of these with unsigned in front, like unsigned char, and maybe some I forgot
about). In R we don’t worry about any of this. For the most part R numbers are just numbers, and we won’t
say any more about them until we discuss computer arithmetic.

5.1.2 Complex

The "complex" type is what you’d expect.
typeof(sqrt(-1))

## Warning in sqrt(-1): NaNs produced

## [1] "double"

Hmmmmm. That didn’t work. Let’s try again.
typeof(sqrt(-1+0i))

## [1] "complex"

What did they do?
sqrt(-1)

## Warning in sqrt(-1): NaNs produced

## [1] NaN
sqrt(-1+0i)

## [1] 0+1i
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Apparently, R only thinks that
√
−1 = i when you tell it that you are working with complex numbers by

specifying −1 as a complex number, -1+0i in R notation. Otherwise, it says that square roots of negative
numbers do not exist. The result NaN stands for “not a number”. We will learn more about it when we get to
computer arithmetic. This behavior is useful in statistics, most of the time, because we don’t use complex
numbers much.

5.1.3 Logical

In R the two logical values TRUE and FALSE are special values different from any numbers. TRUE and FALSE are
not R objects but keywords. The technical term in R for words that are part of the R syntax and cannot be
variable names is “reserved word” rather than “keyword”. To see the documentation on them, do ?Reserved
or help(Reserved).

R, for backwards compatibility with its predecessor S, also understands T and F as synonyms, but you should
never use them. The difference is that T and F are not keywords but just R objects that can be redefined,
and that will wreak havoc if you are expecting them to behave as logical values.
typeof(TRUE)

## [1] "logical"
typeof(T)

## [1] "logical"
T <- "spaghetti"
typeof(T)

## [1] "character"

If you try
TRUE <- "spaghetti"

## Error in TRUE <- "spaghetti": invalid (do_set) left-hand side to assignment

you will find that you can’t do that. TRUE is a keyword and cannot be the name of an R object.

This is very different from ancient C and C++ which did not have logical types. Instead they used zero or
types convertible to zero like null pointers as their equivalent of FALSE, and everything else as their equivalent
of TRUE. Modern C and C++ do have what they call “Boolean” types, they are new and not used by all
programmers.

Always use TRUE and FALSE. Never use T and F instead.

5.1.4 Character

Type "character", also called “string” by some (probably because of the influence of C and C++), we have
already seen. Here is another example.
LETTERS

## [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q" "R" "S"
## [20] "T" "U" "V" "W" "X" "Y" "Z"

5.1.5 Raw

Type "raw" cannot be constructed in R. It is there for the use of C or C++ functions called from R. They
can return objects of type "raw" that R does not understand and cannot use. They can only be passed to C
or C++ functions called from R that understand them. So we won’t pay any more attention to this type.
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5.2 Atomic Vectors
We have already seen atomic vectors (since R has no scalars, every object that may have looked like a scalar
is really an atomic vector). So nothing more needs to be said except that R vectors are much smarter than C
vectors. Like C++ objects of class std::vector they know their own size and type. (In general, every R
object knows lots of things about itself). Unlike C++ vectors, R vectors don’t have methods. Instead there
are functions that work on them. (This is because all of this goes back before R to S before it had OOP.)
length(LETTERS)

## [1] 26
head(LETTERS)

## [1] "A" "B" "C" "D" "E" "F"
tail(LETTERS)

## [1] "U" "V" "W" "X" "Y" "Z"
length(colors())

## [1] 657
head(colors())

## [1] "white" "aliceblue" "antiquewhite" "antiquewhite1"
## [5] "antiquewhite2" "antiquewhite3"
tail(colors())

## [1] "yellow" "yellow1" "yellow2" "yellow3" "yellow4"
## [6] "yellowgreen"
length(1:20)

## [1] 20
length(double())

## [1] 0

R is just fine with vectors of length zero.

5.3 Vectors, Operators, and Functions
Since every R object that holds stuff (not functions, expressions, and the like) is a vector, operators and
functions have to deal with that. Since S and R have had this “everything is a vector” from their beginnings,
every function and operator knows how to deal with vectors (at least each knows its own special way to deal
with vectors).

5.3.1 Componentwise with Recycling

Many mathematical functions deal with vectors the same way. If the operands or arguments are vectors of
the same length, they work componentwise.
1:5 + 6:10

## [1] 7 9 11 13 15
1:5 * 6:10

## [1] 6 14 24 36 50
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1:5 ^ 6:10

## Warning in 1:5^6:10: numerical expression has 15625 elements: only the first
## used

## [1] 1 2 3 4 5 6 7 8 9 10

Oops! That last wasn’t what we meant.
(1:5)^(6:10)

## [1] 1 128 6561 262144 9765625

And many functions work the same
dnorm(1:5, 6:10, 11:15)

## [1] 0.03270787 0.03048103 0.02849997 0.02673528 0.02515888

If we look up what this function does (?dnorm), we find that it calculates the probability density function of
normal distributions; it calculates fµ,σ(x), where the arguments to dnorm are x, µ, and σ in that order. The
call above is the same as
dnorm(1, 6, 11)

## [1] 0.03270787
dnorm(2, 7, 12)

## [1] 0.03048103
dnorm(3, 8, 13)

## [1] 0.02849997
dnorm(4, 9, 14)

## [1] 0.02673528
dnorm(5, 10, 15)

## [1] 0.02515888

except for being five commands rather than one.

When the arguments are different lengths, these operators and functions still work. When one of the arguments
is length one, these do what you’d expect.
1:5 + 2

## [1] 3 4 5 6 7
1:5 * 2

## [1] 2 4 6 8 10
(1:5)^2

## [1] 1 4 9 16 25
dnorm(1:5, 2, 2)

## [1] 0.1760327 0.1994711 0.1760327 0.1209854 0.0647588

This is a special case of a more general rule called the recycling rule.
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• If the operands or arguments are vectors of different lengths, then the length of the result is the length
of the longest operand or argument.

• Each operand or argument is extended to this length by recycling: for example an operand 1:2 is
extended to length 5 as the vector with components 1, 2, 1, 2, 1.

The recycling rule can be very confusing.
dnorm(1:2, 1:3, 1:5)

## [1] 0.39894228 0.19947114 0.10648267 0.09666703 0.07820854
dnorm(1, 1, 1)

## [1] 0.3989423
dnorm(2, 2, 2)

## [1] 0.1994711
dnorm(1, 3, 3)

## [1] 0.1064827
dnorm(2, 1, 4)

## [1] 0.09666703
dnorm(1, 2, 5)

## [1] 0.07820854

Sometimes R gives a warning about this kind of confusion.
1:2 + 1:3

## Warning in 1:2 + 1:3: longer object length is not a multiple of shorter object
## length

## [1] 2 4 4

and sometimes it doesn’t (as we saw above with dnorm).

I don’t recommend you use confusing recycling. If you do, put in a comment to explain.

5.3.2 Reduce

There is another common design pattern where functions take a vector and produce a number
sum(1:5)

## [1] 15
prod(1:5)

## [1] 120
max(1:5)

## [1] 5
min(1:5)

## [1] 1

There is even a higher-order function Reduce that uses this design pattern with an arbitrary function.
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Reduce("+", 1:5, 0)

## [1] 15
Reduce(function(x, y) if (x > y) x else y, 1:5, -Inf)

## [1] 5

(the first does the same as sum, the second does the same as max).

5.3.3 Ifelse

Since every R object is a vector (except for those that aren’t). One should use this feature of the language
as much as possible. In R, iteration (for and while loops) is used much less than in C and C++. A lot of
iteration can be replaced by functions that operate on vectors (as all R functions have no choice but to do).

For example, sum does sums without a loop, and Reduce does this for any operation. The functions in the
apply family (listed in Section 4.4 above allow the design pattern of componentwise calculation with recycling
to be applied with arbitrary functions.

The R function ifelse allows the if-then-else design pattern to be applied vectorwise.
x <- rnorm(6)
x

## [1] -0.57437246 0.02213632 -0.01467365 -0.16258077 0.48008950 -0.13596559
ifelse(x < 0, x - 3, x + 3)

## [1] -3.574372 3.022136 -3.014674 -3.162581 3.480090 -3.135966
x + 3 * sign(x)

## [1] -3.574372 3.022136 -3.014674 -3.162581 3.480090 -3.135966

5.4 Indexing
R has four (!) different ways to “index” vectors (extract subvectors, or otherwise refer to subvectors).

• vector of positive integers
• vector of negative integers
• logical vector
• character vector

Indexing is also sometimes called subscripting. Because vector indices are often denoted as subscripts in
mathematics. For example, ?Subscript gives the help for the indexing operators, but so does ?Extract,
which is the official name of this help page (Subscript is an “alias”).

5.4.1 Indexing with Positive Integers

LETTERS[7]

## [1] "G"

But here as everywhere else what would be a scalar in C or C++ can be a vector in R
LETTERS[2 * 1:7 - 1]

## [1] "A" "C" "E" "G" "I" "K" "M"

So that illustrates the first type (positive integer vector).

20



5.4.2 Indexing with Negative Integers

LETTERS[- (2 * 1:7 - 1)]

## [1] "B" "D" "F" "H" "J" "L" "N" "O" "P" "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"

(This would be different if we omitted the parentheses.) Negative indices indicate components to omit. The
result is all of the components except the ones whose indices are the positive integers corresponding to these
negative integers.

5.4.3 Index Zero?

LETTERS[0:5]

## [1] "A" "B" "C" "D" "E"

Apparently zero is just ignored in an integer index vector.

5.4.4 Indexing with Logicals

LETTERS[seq(along = LETTERS) %% 2 == 1]

## [1] "A" "C" "E" "G" "I" "K" "M" "O" "Q" "S" "U" "W" "Y"

The logical expression indicates odd indices. We see a bunch of new stuff here. The R function seq makes
sequences more complicated than the : operator can make, although we could replace this with
LETTERS[1:length(LETTERS) %% 2 == 1]

## [1] "A" "C" "E" "G" "I" "K" "M" "O" "Q" "S" "U" "W" "Y"

The %% operator calculates remainders (from division, in this case division by 2). As in C and C++, the
operator for logical equality is ==.

We could also do this more simply with
LETTERS[seq(1, length(LETTERS), 2)]

## [1] "A" "C" "E" "G" "I" "K" "M" "O" "Q" "S" "U" "W" "Y"

but that wouldn’t illustrate logical indexing.

5.4.5 Indexing with Character Strings

The fourth kind of indexing (with a character vector) doesn’t work unless the R object we are taking
components out of has names. So let’s give our example names.
names(LETTERS) <- letters
LETTERS[c("d", "o", "g")]

## d o g
## "D" "O" "G"

The R function c “concatenates” (pastes together) vectors to make one vector.

Here we see a very powerful feature of R. Some functions can appear on the left-hand side of an assignment.
Actually (technical quibble!), the function being called in the example above is not named names but rather
is named names<-
get("names<-")

## function (x, value) .Primitive("names<-")
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but most R users don’t know that and don’t need to know that. They just “know” that names can be used
on either side of an assignment.

The R documentation encourages this way of thinking. From the help page for these functions, which one
gets by ?names or help(names),

Usage:

names(x)
names(x) <- value

Indexing also works on the left-hand side of an assignment.
LETTERS[seq(along = LETTERS) %% 2 == 1] <- "woof"
LETTERS

## a b c d e f g h i j k
## "woof" "B" "woof" "D" "woof" "F" "woof" "H" "woof" "J" "woof"
## l m n o p q r s t u v
## "L" "woof" "N" "woof" "P" "woof" "R" "woof" "T" "woof" "V"
## w x y z
## "woof" "X" "woof" "Z"

The R objects LETTERS and letters are, like T and F and pi and some other things, already defined when
you start R (all of the predefined constants, have the same help page, so asking for the help for any one of
them shows all of them).

When we started redefining LETTERS we made a new variable in our global environment (what R calls where
it keeps objects you give names by assignment). But the objects with the same names defined by R are still
there hidden by our assignments (they are in another place, more on this later). We can see them again by
removing ours.
rm(LETTERS)
LETTERS

## [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q" "R" "S"
## [20] "T" "U" "V" "W" "X" "Y" "Z"

This is the magic of R environments. More on this later.

5.5 Type Coercion
R, like C and C++ does a lot of type coercion (changing variable of one type into another behind your back).
Since R has fewer types than C and C++, its type coercion is (slightly) less crazy than C/C++’s.

The most useful is coercion of logical to numeric in arithmetic contexts. For example,
x <- rnorm(100)
sum(x < 0)

## [1] 55

counts how many components of x are negative. Section 2.4 of Introduction to R explains this.

Sometimes useful and sometimes not is automatic coercion of all kinds of objects to character in character
contexts.
foo <- 1:10
names(foo) <- foo + 100
foo

## 101 102 103 104 105 106 107 108 109 110
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## 1 2 3 4 5 6 7 8 9 10
class(names(foo))

## [1] "character"
letters[1:3] <- rnorm(3)
letters[1:10]

## [1] "0.913645757856674" "0.313859249160365" "-0.140181152554142"
## [4] "d" "e" "f"
## [7] "g" "h" "i"
## [10] "j"

The first is arguably useful. The latter may do more harm than good. The character conversions are explained
in Section 2.6 of Introduction to R.

Coercions can also be performed by explict use of functions.
as.character(1:5)

## [1] "1" "2" "3" "4" "5"
as.numeric(letters[1:5])

## Warning: NAs introduced by coercion

## [1] 0.9136458 0.3138592 -0.1401812 NA NA
as.logical(0:5)

## [1] FALSE TRUE TRUE TRUE TRUE TRUE

Here my claim that R help pages are complete, concise, and correct is wrong (I reported this as a bug, but the
R core team did not agree, so the bug was not fixed). The information is in ?Logic but apparently nowhere
else. That help page says

Numeric and complex vectors will be coerced to logical values, with zero being false and all
non-zero values being true.

The help page for as.logical does not say what it does when the argument is numeric. It appears to be
following the way of C and C++, converting zero to FALSE and everything else to TRUE except for NA or NaN
which are left as (logical) NA.
foo <- as.integer(c(0:5, NA))
foo

## [1] 0 1 2 3 4 5 NA
as.logical(foo)

## [1] FALSE TRUE TRUE TRUE TRUE TRUE NA
foo <- c(0:5, pi, NA, NaN)
# has to be type double if contains pi
foo

## [1] 0.000000 1.000000 2.000000 3.000000 4.000000 5.000000 3.141593 NA
## [9] NaN
as.logical(foo)

## [1] FALSE TRUE TRUE TRUE TRUE TRUE TRUE NA NA
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5.6 Lists
Vectors that are not atomic can hold different types of R object. They are created by the R function named
list.
sally <- list(color = "red", number = pi,

method = function(x, y) x + y)
sally

## $color
## [1] "red"
##
## $number
## [1] 3.141593
##
## $method
## function(x, y) x + y

And they are generally called lists.

5.7 More On Indexing
With lists there are two kinds of indexing. All of what we saw in Section 5.4 above works on lists. But for
lists there is also another entirely different kind, or perhaps two entirely different kinds, depending on how
you count.
sally[3]

## $method
## function(x, y) x + y

makes a list whose single component is the third component of sally. That is often not what we want, so
there is another kind of indexing using double square brackets.
sally[[3]]

## function(x, y) x + y

See the difference?

• sally[3] is a list having one element named method, which is a function.
• sally[[3]] is that function.

Hence sally[3] is equal to list(sally[[3]]).

The reason why we need both kinds (single square brackets and double square brackets) is that you usually
(?) want what double square brackets does, but that doesn’t always work.
sally[2:3]

## $number
## [1] 3.141593
##
## $method
## function(x, y) x + y
sally[[2:3]]

## Error in sally[[2:3]]: subscript out of bounds

I didn’t know what would happen with the latter until I tried it, but the documentation says double square
brackets indexing can only select a single component (the argument must be a vector of length one). Since
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these are operators the documentation is a bit hard to find. You need to quote bits of syntax to see the
documentation. For double square brackets ?"[[" or help("[[") does the job. The same goes for other
reserved words: ?"function" or help("function") is the way to see the documentation for the function
named function.

One can also use the $ operator instead of the [[ operator if the list has names and if the name in question
is a valid R name (also called symbol). ?name shows the documentation for that, except it doesn’t tell you
what the valid names are. For some strange reason, ?make.names does tell you what the valid names are.

So
sally$method

## function(x, y) x + y
sally[["method"]]

## function(x, y) x + y
sally[[3]]

## function(x, y) x + y

all do the same thing.

But if we change the example
names(sally)[3] <- "function"
sally[["function"]]

## function(x, y) x + y
sally[[3]]

## function(x, y) x + y

but

sally$function

## Error: unexpected 'function' in "sally$function"

sally$function is an error because function is an R reserved word hence not a valid name (this is not an
Rmarkdown code chunk because knitr (which underlies rmarkdown) is too clever for its own good here and
cannot just echo the actual R error message and has to make up its own error message, which is worthless).

As
sally

## $color
## [1] "red"
##
## $number
## [1] 3.141593
##
## $`function`
## function(x, y) x + y

suggests,
sally$`function`

## function(x, y) x + y
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does work, but IMHO this is less clear than sally[["function"]].

5.8 Nit Picking about Indexing
As with +, indexing syntax is syntactic sugar for function calls.
get("[")

## .Primitive("[")
get("[[")

## .Primitive("[[")
get("$")

## .Primitive("$")
get("[<-")

## .Primitive("[<-")
get("[[<-")

## .Primitive("[[<-")

but, like most R users, you don’t need to know these functions exist unless you want to implement them
yourself for some R class that you have created, but before we can understand what that means we would
have to learn about the basic R OOP system (so-called S3 classes), and this is not the time for that.

Nevertheless, this does illustrate the quotation in Section 3.6 above: in R everything that happens is a function
call, even things that don’t look at all like function calls.

6 More On Functions
The examples in Section 4 above illustrate most of the things that knowledgeable users of R (what this course
is trying to turn you into) do with functions. But there is lots more to learn about functions.

6.1 Storing Functions in Objects
One can put an anonymous function into a compound object.
sally <- list(color = "red", number = pi,

method = function(x, y) x + y)
sally$method(2, 3)

## [1] 5

As we saw in Section 5.7 above, one R syntax to extract a named element from a list is the $ operator. The
C++ syntax to extract a method or a field from an object is the . operator. Since both languages are
about the same age, there is no reason to think the C++ one is in any way better, even though it is more
widely copied in other languages. This sort of looks like sally is a C++-like object and method is a method
of its class. But R isn’t using any such notions here. An R list can contain anything. So it can contain
functions. Here sally$method happens to be a function. To invoke a function, you put its arguments in a
comma-separated list in round brackets after it. Like the example above.

Here is another example that shows the same thing with weirder syntax.
sally[[3]](2, 3)

## [1] 5
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Here sally[[3]] is the third component of sally, which is a function. We invoke it in the usual way.

6.2 Functions whose Values are Functions
Here is an example of a function returning a function.
fred <- function(y) function(x) x + y
fred(2)(3)

## [1] 5

Now we have gotten to the power of functional programming that makes it both much more powerful than
procedural programming languages like C++ and Java but also very confusing to programmers trained in
procedural programming. What is going on here?

Here fred is a function whose value is a function. So when we say fred(2) we have invoked the function
fred with the argument 2 and gotten a function of one argument that adds 2 to that argument. (One might
prefer saying it adds y to that argument, where y is the value of the argument of fred. Here y is 2.) So
fred(2) is a function of one variable, that adds 2 to its argument. We invoke it by putting its argument in
parentheses after it. Hence the above.

All very logical. Mr. Spock or Lieutenant Commander Data would have no trouble. You may have some
trouble following this.

Functions like this are used in various places in mathematics. We can think of this fred as almost but not
quite the same thing as our first example of a function named fred in Section 4.3 above. They do the same
thing. Both “are” functions of two arguments that add their arguments, but “are” has to be in scare quotes
because only the first example is really a function of two arguments. It is invoked fred(2, 3) just like any
other R function of two arguments. The higher-order version is a function of one argument that returns a
function of one argument, so it is invoked fred(2)(3) as above. It is almost but not quite the same. The
two functions do the same thing, but they are not invoked in the same way. Going from one to the other is
called currying and uncurrying.

This design pattern is less widely used in R than the other kind of higher-order function (taking functions as
arguments). But there are a few examples. The R function ecdf, given a data vector, returns the empirical
cumulative distribution function (ECDF) corresponding to that data. What it returns is an R function that
evaluates the ECDF. The R functions D and deriv differentiate R expressions
D(expression(x^3), "x")

## 3 * x^2
D(expression(sin(x)), "x")

## cos(x)
deriv(expression(sin(x)), "x")

## expression({
## .value <- sin(x)
## .grad <- array(0, c(length(.value), 1L), list(NULL, c("x")))
## .grad[, "x"] <- cos(x)
## attr(.value, "gradient") <- .grad
## .value
## })

but deriv can also produce a function
deriv(expression(sin(x)), "x", function.arg = "x")

## function (x)
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## {
## .value <- sin(x)
## .grad <- array(0, c(length(.value), 1L), list(NULL, c("x")))
## .grad[, "x"] <- cos(x)
## attr(.value, "gradient") <- .grad
## .value
## }

Readers may find these examples using deriv incomprehensible at this point. Hopefully, these will make
sense after we learn more.

6.3 Partially Evaluated Functions
Many, perhaps most, knowledgeable R users do not understand functions that return functions, currying, and
uncurrying. They do not need to because these techniques are not much used in R. But they do understand
something very similar.
fred <- function(x, y) x + y
fran <- function(x) fred(x, 2)
fran(3)

## [1] 5

Here we have a function fred with two arguments x and y, but we want to consider it a function of x only
for fixed y. We call this new function fran. This is a very useful technique. It is widely used in mathematics.

Name the mathematical functions that correspond to the R functions fred and fran by the letters f and
g, respectively (because in math we usually denote functions by single letters). What is the relationship
between f and g? It is

g(x) = f(x, 2), for all x.
This concept is so important that mathematicians have many ways to write it. We could also say that the
function g is f( · , 2). We could also say that the function g is x 7→ f(x, 2).

6.4 Some Real Nit Picking
6.4.1 The Function Function

We said above the R function named function makes other functions, but that is not quite correct. If
function were actually an R function then typing the function name on a line by itself would tell R to print
the definition of the function. This works with every other function, for example,
sum

## function (..., na.rm = FALSE) .Primitive("sum")

But it doesn’t work with function: if you type function on a line by itself at the R interpreter, it just
says this is not a complete command and gives you a continuation prompt. So function is actually an R
keyword (part of the syntax) rather than just the name of a function that is defined somewhere in R. There is
actually an R function named function, and it is called when expressions containing the keyword function
are evaluated. To see it we can do either of the following
get("function")

## .Primitive("function")
`function`

## .Primitive("function")

This doesn’t tell us much, only that the R function named function is very low level. There is almost no R
code in its definition.
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6.4.2 The Addition Function

Here is another definition of our first example that is very hard to read.
fred <- `+`
fred(2, 3)

## [1] 5

This tells us that in R almost everything is a function. A lot of R syntax is syntactic sugar for function calls.
When you write 2 + 3 in R, what actually happens is that a function whose name is + and which has two
arguments is invoked with 2 and 3 as the arguments.

This illustrates again the quotation in Section 3.6 above: in R everything that happens is a function call,
even things that don’t look at all like function calls.

6.4.3 The Quit Function

Why does one type q() to quit R if you are using the command line rather than a GUI app? Because the
function named q is the function that quits R and q() is calling this function with no arguments.

In R lots of things are functions that are not functions in other programming languages.

7 Still More On Functions
Before you can consider yourself a knowledgeable R user, you have to know about

• named arguments,
• default values for arguments,
• missing arguments,
• ... (the bit of R syntax that enables variable number of arguments)

7.1 Named Arguments
Like in C and C++ every function argument in R has a name. How else would you refer to it inside the
function? Unlike in C and C++ the names of R function arguments can be used outside the function when
invoking the function. Here’s an example.
fred <- function(x, y) x^y
fred(2, 3)

## [1] 8
fred(3, 2)

## [1] 9
fred(x = 2, y = 3)

## [1] 8
fred(y = 3, x = 2)

## [1] 8

Again, never mind that we don’t need a function to do exponentiation because we already have the caret
operator to do it. This is just a toy function that unlike our earlier fred is not a symmetric function of its
arguments.

When we don’t use names and reverse the order of the arguments, the value of the function changes. When
we do use names, the order doesn’t matter. The names tell R which argument is which, and the order is
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ignored. This means users don’t have to remember the order so long as they remember (or look up in the
documentation) the names.

R has a feature called partial matching of argument names (done by the R function pmatch). Users don’t
have to specify the whole argument name, just enough to uniquely specify the argument.
fred <- function(xerxes, yolanda) xerxes^yolanda
fred(y = 3, x = 2)

## [1] 8

7.2 Default Values for Arguments
In an R function arguments can be given default values. If the user omits the argument, then the default is
used.
fred <- function(xerxes = 4, yolanda = 5) xerxes^yolanda
fred()

## [1] 1024
fred(2)

## [1] 32
fred(2, 3)

## [1] 8
fred(yola = 3)

## [1] 64

Default values for arguments can be complicated expressions.
fred <- function(x, fun1 = mean, fun2 = function(x) mean(x^2))

fun2(x - fun1(x))
fred(1:10)

## [1] 8.25

The above definition is so confusing that I had trouble reading it a week after I wrote it. The first line of the
function definition is the signature (what the arguments are) and the second line is the body. This function
calculates fun2(x - fun1(x)).

By default fred(x) calculates the variance of the empirical distribution for data x (dividing by n instead of
n− 1). But by using the optional arguments we can calculate the median absolute deviation from the median
fred(1:10, median, function(x) median(abs(x)))

## [1] 2.5

Default values for arguments can also depend on other arguments. My first attempt at writing the function
above was
fred <- function(x, mu = mean(x), fun = function(x) mean(x^2))

fun(x - mu)
fred(1:10)

## [1] 8.25

This shows that the default value for the second argument (mu) can depend on the first argument (x). The
third argument does not depend on the first argument because in function(x) mean(xˆ2)) the name x is
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the argument of the anonymous function this expression creates. Unfortunately, this makes a bad example
because this version of the function is harder to use, so we wouldn’t actually write it this way.
fred(1:10, median(1:10), function(x) median(abs(x)))

## [1] 2.5

For what seems to be the ultimate in R default values trickery, let us look at the R function svd
svd

## function (x, nu = min(n, p), nv = min(n, p), LINPACK = FALSE)
## {
## if (!missing(LINPACK))
## stop("the LINPACK argument has been defunct since R 3.1.0")
## x <- as.matrix(x)
## if (any(!is.finite(x)))
## stop("infinite or missing values in 'x'")
## dx <- dim(x)
## n <- dx[1L]
## p <- dx[2L]
## if (!n || !p)
## stop("a dimension is zero")
## La.res <- La.svd(x, nu, nv)
## res <- list(d = La.res$d)
## if (nu)
## res$u <- La.res$u
## if (nv) {
## if (is.complex(x))
## res$v <- Conj(t(La.res$vt))
## else res$v <- t(La.res$vt)
## }
## res
## }
## <bytecode: 0x55d99dbb1b88>
## <environment: namespace:base>

The defaults for arguments nu and nv depend on n and p which don’t exist when the function is invoked.
They aren’t created until lines 5 and 6 of the function body. But this works because R does lazy evaluation
of function arguments. They are not evaluated until they are used, and nu and nv are not used until line
9 of the function body, which is after n and p are initialized. All of this is explained, more or less, in the
documentation (?svd).

7.3 Missing Arguments
Arguments can be missing whether or not there is a default value. But if so, the function must either never
try to use them or define them itself. And why would it want to do either of these? That would be like not
having the argument at all.

But the R function missing allows us to do different things in the function depending on whether the
argument is missing or not. Here is an example
sample

## function (x, size, replace = FALSE, prob = NULL)
## {
## if (length(x) == 1L && is.numeric(x) && is.finite(x) && x >=
## 1) {
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## if (missing(size))
## size <- x
## sample.int(x, size, replace, prob)
## }
## else {
## if (missing(size))
## size <- length(x)
## x[sample.int(length(x), size, replace, prob)]
## }
## }
## <bytecode: 0x55d99ef774d8>
## <environment: namespace:base>

It is clear that we have to use missing rather than a default argument in order to do different things in case
the first argument has length one or not.

Unfortunately, this is a horrible example of really bad programming. R does this to be backwards compatible
with S, and S did it in an extremely misguided attempt to be helpful. But this is the kind of help users
don’t need. It is very surprising. Only the most expert of users can remember this weirdness, and they don’t
always remember it. Better the original programmer of sample had never thought of this trick. This is an
example you should not emulate!

There are many examples in the R code base where missing is used well. But they are complicated, and we
don’t want to explain them now.

7.4 . . .
The ... syntax allows R functions to have an arbitrary number of arguments. For example,
args(list)

## function (...)
## NULL

The ... matches every argument. This shows how you can capture the ... arguments if one wants to
operate on them in a function you are writing
alice <- function(...) {

args <- list(...)
if (is.null(args$fred)) args$fred <- "J. Fred Muggs"
args

}
alice(x = "foo", y = "bar")

## $x
## [1] "foo"
##
## $y
## [1] "bar"
##
## $fred
## [1] "J. Fred Muggs"
alice(fred = 10)

## $fred
## [1] 10
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This is the design pattern you use when you want to set a ... argument if the user has not set it, and
otherwise want to leave it the way the user set it. We also see that the R idiom for testing whether a list
does not have a named element is is.null(args$fred).

Whether partial matching is used on arguments that are not ... arguments depends on where the ...
is: named arguments that come before ... are partially matched, and those that come after ... are not
partially matched. This is so hard to remember that many help pages, for example optimize, explicitly say

Note that arguments after ... must be matched exactly.
fred <- function(..., herman = "default")

list(dots = list(...), herman = herman)
fred(g = 1:10, h = c("red", "orange", "yellow", "blue",

"green", "indigo", "violet"), i = function(x) x)

## $dots
## $dots$g
## [1] 1 2 3 4 5 6 7 8 9 10
##
## $dots$h
## [1] "red" "orange" "yellow" "blue" "green" "indigo" "violet"
##
## $dots$i
## function(x) x
##
##
## $herman
## [1] "default"

Argument herman is not matched by argument h because herman comes after ... and so must be exactly
matched.

But
fred <- function(herman = "default", ...)

list(dots = list(...), herman = herman)
fred(g = 1:10, h = c("red", "orange", "yellow", "blue",

"green", "indigo", "violet"), i = function(x) x)

## $dots
## $dots$g
## [1] 1 2 3 4 5 6 7 8 9 10
##
## $dots$i
## function(x) x
##
##
## $herman
## [1] "red" "orange" "yellow" "blue" "green" "indigo" "violet"

Now argument herman is matched by argument h because herman comes before ... and so may be partially
matched.

There are probably many uses of ... that I have never thought of. The two main uses are

• to allow the function to work on a variable number of arguments (like the R function list and many
other R functions), and

• to pass arguments to another function (like the R function optimize and many other R functions).
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From ?optimize, in the “Usage” section

optimize(f, interval, ..., lower = min(interval),
upper = max(interval), maximum = FALSE,
tol = .Machine$double.eps^0.25)

optimise(f, interval, ..., lower = min(interval),
upper = max(interval), maximum = FALSE,
tol = .Machine$double.eps^0.25)

(R allows either American or British spelling for this function name) and later on in the “Arguments” section

...: additional named or unnamed arguments to be
passed to ‘f’.

7.5 A Long Example (Maximum Likelihood Estimation)
7.5.1 Make Up Data

Suppose we want to do maximum likelihood estimation for the gamma distribution with unknown shape
parameter and known scale parameter, which we take to be the R default value.

First we make up data.
alpha <- pi
n <- 30
set.seed(42)
x <- rgamma(n, shape = alpha)

Here we first make up the true unknown parameter value alpha and sample size n. Of course we actually
know alpha but the whole point of the example is to pretend we don’t know alpha and have to estimate it
from the data x (which is a random sample from the distribution with this parameter value).

The reason for the set.seed command is so that we get the same x every time this document is created. If
we deleted that statement, we would get a different x every time.

7.5.2 Using Dot-Dot-Dot

First define the log likelihood function. The argument we want to optimize over (the parameter) has to come
first if it is to be optimized by R function optimize (or R function optim or R runction nlm if this is a vector
argument rather than a scalar argument).
logl <- function(alpha, x)

sum(dgamma(x, shape = alpha, log = TRUE))

R function optimize needs an interval in which it is to seek the optimum. Here we choose the interval mean
plus or minus 3 standard deviations, which should contain the true unknown mean with high probability
(and for the gamma distribution with default scale parameter alpha is the mean). Except, when the lower
endpoint of this interval is negative that is outside the range of the variable, that won’t work. So make the
lower endpoint a positive number much smaller than the mean in this case.
interval <- mean(x) + c(-1, 1) * 3 * sd(x)
interval <- pmax(mean(x) / 1e3, interval)
interval

## [1] 0.00307587 8.44529568

So now we are ready to do the maximization.
oout <- optimize(logl, maximum = TRUE, interval, x = x)
oout$maximum
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## [1] 3.04927
mean(x)

## [1] 3.07587

The point of showing both the maximum likelihood estimator (MLE) and the sample mean, both of which
are consistent and asymptotically normal estimators of the unknown parameter α, is just to show that they
are different.

A plot of the log likelihood done by the following code
mylogl <- Vectorize(function(alpha) logl(alpha, x))
curve(mylogl, from = interval[1], to = interval[2],

xlab=expression(alpha), ylab=expression(logl(alpha)))
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Figure 2: Graph of Log Likelihood

shows that the optimization seems to have worked. The tricks needed to draw this curve we do not want to
explain right now.

All of that is interesting, and we will go over it in detail at some point in the course. But in this section, the
only point that is interesting is how we are using the ... argument to optimize. The R function optimize
does not have an argument named x or even an argument that comes before ... in the argument list that
can be partially matched to x (from the documentation quoted above only the arguments f and interval
come before ... and neither begins with x). Thus optimize considers x a ... argument and passes it to f
when f is called (many times) from inside optimize to evaluate the function being maximized (that is logl
which is called f inside optimize). When optimize calls f it does it by defining an anonymous function
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function(arg) f(arg, ...)

(typing optimize at the R command line shows you its definition) and since we know that in this case ...
matches only the argument x = x, this is the same as defining the objective function to be

function(arg) f(arg, x = x)

or, since f is another name for logl, as

function(arg) logl(arg, x = x)

Note that here the R function optimize is using the trick of “partially evaluated functions” explained in
Section 6.3 above. It takes the given function, which it calls f and which can have many arguments, and
converts it to an anonymous function of one argument. It passes this to a C function named do_fmin to
actually do the optimization, so we cannot see how that works without reading the C source code for R,
which we won’t bother with. The point is that this C function only needs to know how maximize R functions
of one variable. It doesn’t need to know about any other variables.

7.5.3 Alternative Solution (Using Global Variables)

The preceding section shows the approved (in some circles) way to do that problem.

But here is another way (that some people deem evil and stupid). Just define logl as a function of one
variable.
logl <- function(alpha)

sum(dgamma(x, shape = alpha, log = TRUE))

and then do the optimization as before except now we omit the x = x.
oout <- optimize(logl, maximum = TRUE, interval)
oout$maximum

## [1] 3.04927

How does that work? How does logl when called from within optimize find out what x is?

The short answer is that it looks it up in the R global environment (which is where we defined it in the first
place). So it works. And we didn’t need x = x.

And now for the caution about this method. Global variables are evil. (An interesting bit of computing
history: Wiki Wiki Web was the first Wiki that Wikipedia and zillions of other wikis copy (Wikipedia entry
Wiki)).

In serious work, global variables should never be used. Especially, they should never be used in code that you
make for others to use. What if you call the data x inside your function and the user calls the data y outside
your function. That won’t work. But if the ... trick is used, then the user can still call the data y and make
the argument to match x via the ... mechanism x = y, that is, the argument named x (in the function you
wrote) is the data named y (outside the function) by the user.

So put logl back the way it was originally
logl <- function(alpha, x)

sum(dgamma(x, shape = alpha, log = TRUE))

and now call the data y
y <- x
rm(x) # now x is gone

and
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oout <- optimize(logl, maximum = TRUE, interval, x = y)
oout$maximum

## [1] 3.04927

still works.

In short, don’t use global variables. Except. The Perl slogan is TIMTOWTDI (there is more than one way to
do it), pronounced tim-toady (Wikipedia entry). This could also be an R slogan. There is no one true way to
use R. There are many ways of R. As we said above, the way of this problem that uses global variables is the
simplest, easiest, and most R-ish for one-off uses when the programmer and the user are one.

You only need to avoid global variables to be politically correct in the computer science sense (as the Wiki
Wiki Web page cited above explains) or to have your code usable by others (including your future self six
months from now).

7.5.4 Having Your Cake and Eating It Too (Closures)

There is a way that combines the virtues of both of the preceding ways. No global variables, and no ...
variables either. But it is somewhat mysterious.

It uses the fact that R functions are closures (mentioned in Section 4.1 above). They remember local variables
in the environment in which they were created. So we can put x in there.

Here’s how that works. For ease of explanation, we do it in two steps. Note that this is also very similar to
our toy example in Section 6.2 above except that this is a non-toy function.
make.logl <- function(x) function(alpha)

sum(dgamma(x, shape = alpha, log = TRUE))

logl <- make.logl(y)

and then do the optimization as before when we could omit the x = y.
oout <- optimize(logl, maximum = TRUE, interval)
oout$maximum

## [1] 3.04927

It works the same. But how does it work?

• R function make.logl is a higher order function. It is a function that returns a function, and that
function has the same definition as the R function logl in the other examples.

• The returned function, like any R function, “knows” local variables in the environment in which it was
defined, which is the execution environment of R function make.logl when it is invoked.

• The only local variable there is named x.

• When R function make.logl is invoked, we give it the value named y in the R global environment.

• Inside make.logl and inside the function that make.logl returns this value has the name x.

• So this R function logl works the same way all the others did.

Note that we are really using the power of functional programming here.

• R function optimize is a higher order function because its first argument is a function.

• R function make.logl is a higher order function because it returns a function.

• So we are using a higher order function to create the function that we pass as an argument to another
higher order function.
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7.5.5 The Same Except Even More Mysterious

As always, we can use an anonymous function instead of giving it the name make.logl.
logl <- (function(x) function(alpha)

sum(dgamma(x, shape = alpha, log = TRUE)))(y)

and then do the optimization as before
oout <- optimize(logl, maximum = TRUE, interval)
oout$maximum

## [1] 3.04927

The reason for the parentheses around the anonymous function definition

function(x) function(alpha)
sum(dgamma(x, shape = alpha, log = TRUE))

is to make the whole definition something to which R can apply the other use of parentheses: function
invocation, in this case (y).

But this is uncomprehensible to almost all R users. Until you get quite used to this design pattern, it is
perhaps best to do it as in the preceding section.

7.5.6 Where is X?

But where does R put x? In the environment of the function.
environment(logl)$x

## [1] 5.3396900 1.8035110 2.7199928 1.1513247 2.4719243 1.6810323 6.9406407
## [8] 2.5406468 1.1712249 0.8665140 5.2110715 4.4706090 4.2691549 3.4834492
## [15] 4.4443983 1.4835538 2.1667205 6.7240825 6.1847368 3.2562157 3.1559991
## [22] 2.0398708 0.5531137 1.3241273 3.4336934 3.9113621 4.5918039 1.7446038
## [29] 1.6205851 1.5204572
identical(environment(logl)$x, y)

## [1] TRUE

The local variable x is stored in the function itself.

8 Stop Me before I Crash and Burn
There is a very old computer slogan GIGO (garbage in, garbage out) (Wikipedia entry) that goes back to the
1950’s. There is a more modern meaning garbage in, gospel out that refers to people believing anything that
comes from a computer no matter how ridiculous (the internet is never wrong).

Another R slogan could be garbage in, error messages out (GIEMO) R functions should not allow users to
shoot themselves in the foot. They should not be footguns. This is unlike some languages we know

Within C++, there is a much smaller and cleaner language struggling to get out.

— Bjarne Stroustrup

C makes it easy to shoot yourself in the foot; C++ makes it harder, but when you do it blows
your whole leg off.

— Bjarne Stroustrup

Since so much of R is functions, if none of the functions are footguns, then the whole language is not a
footgun (almost). Of course, some R functions are footguns, such as the notorious sample mentioned above
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(Section 7.3) and the notorious [ function also mentioned above (Section 5.4) but without mentioning its
footgun behavior, which involves matrices (and will be explained in the next handout). But the vast majority
of R functions are not footguns because they follow GIEMO. The first job of a good R function that is usable
by humans who make mistakes is to check that no errors are possible. In order to not be a footgun our log
likelihood function in Section 7.4.1 above should have been something like
logl <- function(alpha, x) {

stopifnot(is.numeric(alpha))
stopifnot(is.finite(alpha))
stopifnot(length(alpha) == 1)
stopifnot(alpha > 0)
stopifnot(is.numeric(x))
stopifnot(is.finite(x))
stopifnot(x > 0)
sum(dgamma(x, shape = alpha, log = TRUE))

}

Of course, since dgamma is not a footgun, you can rely on it to catch some of these errors. But you should
not. You should catch them yourself, for the following reasons.

• Just from looking at our code, we can tell our function is not a footgun.
• If we look at the R code for dgamma, we see that it hardly checks anything and instead leaves these

checks for the C function it calls to do the work.
• Reading the C source code is hard.
• Actually, a lot more than hard. We just don’t want to go there.

Let’s check that it still works.
oout <- optimize(logl, maximum = TRUE, interval, x = y)
oout$maximum

## [1] 3.04927

9 Control-Flow Constructs
9.1 If-Then-Else
R has loops and if-then-else, but they behave quite differently from C and C++.

For one thing, like everything else in the R language, they are expressions. We have already seen this in
Section 5.3.2 above where we used if (x > y) x else y as part of a larger expression. You can’t do that
in C or C++.

9.2 For
For another thing for loops in R iterate over the elements of a vector or list. They do not do arithmetic on
indices. In this they work more like so-called for-each loops in Java or C++ (more on this below).

Thus, while the C or C++ or Java

for (int i = 0; i < n; i++) {
// do case i

}

does have an R equivalent

for (i in 1:n) {
# do case i

}
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the R is different in that it does not do any arithmetic on i and 1:n is just a vector of integers like any other
place 1:n is used in R.

R also has the following. Suppose todo is a list of some sort(s) of R objects, then

for (o in todo) {
# process object o

}

iterates over elements of this list. This is what we mean by the for control-flow construct in R being more
like for-each in Java or C++ (and like nothing in C).

Beginners who have been brainwashed in languages like C or C++ are tempted to treat for in R like for in
C or C++, writing the last example with indices

for (i in 1:length(todo)) {
o <- todo[[i]]
# process object o

}

This works, of course, but it is clumsy and inelegant. Don’t use indices unless you have to, for example, when
processing several vectors of the same length in parallel.

Just for our own amusement (readers can skip to the end of this subsection and not miss anything about
R) we look at the Java and C++ for-each code. In Java if todo is an object of a class that implements the
Iterable<Foo> interface, then

for (Foo o : todo) {
// process object o

}

does the same thing as the R for loop above. The C++ analog looks just the same except that the description
of what todo has to be in order for this to work is so complicated that I cannot figure out any way to
condense it here.

9.3 Repeat
Because R does not have the C and C++ kind of for, the R for cannot be used to write an infinite loop
(that one leaves by using the break statement). The C or C++ idiom is

for (;;) {
// each time through the loop decide if we are ready
// to leave using a break statement

}

The R equivalent is

repeat {
# each time through the loop decide if we are ready
# to leave using a break expression

}

9.4 Comment
Tradition among experienced S programmers has always been that loops (typically for loops) are
intrinsically inefficient: expressing computations without loops has provided a measure of entry
into the inner circle of S programming.

John Chambers (Programming With Data, p. 173) quoted by the R function fortune in the
CRAN package fortunes}
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Sometimes you need loops. Often you don’t. We didn’t feel the need for any actual examples in this document.
We will avoid them whenever we can in this course. Knowledgeable R users know that loops should be
avoided when possible, whether or not they have the knowledge to actually avoid loops in any particular case.

10 An Extended Example (Winsorized Means)
10.1 The Problem
Write a function that does Winsorized means. This is defined as replace x of the data from each end with the
closest data value that is not removed and then average.

10.2 The Design
That is not enough of a problem statement. We need a more careful statement before we start coding. What
values of x are allowed? Obviously we cannot remove more than all of the data so we must have 0 < x ≤ 0.5.

But we can’t remove all of the data either, because otherwise “the closest data value that is not removed”
makes no sense. So we must have x < 0.5.

If there are an odd number of data points, then in order to keep at least one data point, we must have
x < (n− 1)/(2n). If there are an even number of data points, then in order to keep at least one data point,
in which case we must actually keep two because of symmetry, we must have x < (n− 2)/(2n).

What if there are zero data points? How should we define the mean of zero data points? What does R do in
this case?
mean(double())

## [1] NaN

Presumably we should do the same thing for this case.

What if there are missing data or “not a number” data?
mean(NA)

## [1] NA
mean(NaN)

## [1] NaN

Presumably we should do the same thing for these cases.

Thus our function should look something like this
winsorizedMean <- function(x, winsorize = 0.2) {

stopifnot(is.numeric(x))
stopifnot(is.numeric(winsorize))
stopifnot(length(winsorize) == 1)
stopifnot(0 < winsorize & winsorize < 0.5)
n <- length(x)
if (n == 0) return(NaN)
if (anyNA(x)) return(NaN)
# now calculate the Winsorized mean of x in the case where
# we know length(x) > 0 and there are no NA or NaN in x

}

That takes care of the GIEMO issue.

It does not agree with our previous design decision to return NA if there are NA in the input. This is because
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anyNA(NA)

## [1] TRUE
anyNA(NaN)

## [1] TRUE

does not distinguish between NA and NaN.

We had never heard of the function anyNA before writing this example. We found it discussed on the help
page for is.na.

Before we can adjust the data, we need it in sorted order because x at each end implicitly refers to the data
in sorted order (as laid out on the number line). There is an R function sort that does that. Looking at the
help page for that, we see that there is a faster function sort.int that does partial sorting to make it even
faster. Partial sorting seems to be just what we need here. ?sort says

If partial is not NULL, it is taken to contain indices of elements of the result which are to be
placed in their correct positions in the sorted array by partial sorting. For each of the result
values in a specified position, any values smaller than that one are guaranteed to have a smaller
index in the sorted array and any values which are greater are guaranteed to have a bigger index
in the sorted array.

If we do a partial sort that gets the two components that we use to replace other components correctly, then
we can calculate the Winsorized mean.

So what are those indices? We are supposed to trim n * winsorize from each end. But that may not be a
round number. We need to round that down to find our how many data values to Winsorize at each end.
And how do we round? The help page ?round describes many functions that do rounding. Reading their
descriptions tells us that floor rounds down.

So if we define

k <- floor(n * winsorize)

then the check

k < n / 2

will do the job of making sure that we have at least one non-replaced data value. Then we want to do a
partial sort getting the indices k + 1 and n - k correct.

And then what do we do? We could do the replacement, but we could also just do the arithmetic without
doing the replacement

(k + 1) * (x[k + 1] + x[n - k]) + sum(x[seq(k + 2, n - k - 1)])

divided by n is the Winsorized mean, except when k + 2 > n - k - 1, in which case we should be taking
the sum of an empty set of numbers (that is, zero) but the R function seq produces the sequence that goes
down from k + 2 to n - k - 1 in this case, so that won’t work. So we have to special case this.

10.3 The Implementation
This leaves us with
winsorizedMean <- function(x, winsorize = 0.2) {

stopifnot(is.numeric(x))
stopifnot(is.numeric(winsorize))
stopifnot(length(winsorize) == 1)
stopifnot(0 < winsorize & winsorize < 0.5)
n <- length(x)
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if (n == 0) return(NaN)
if (anyNA(x)) return(NaN)

k <- floor(n * winsorize)
if (k >= n / 2) stop("winsorize too large")
if (k == 0) return(mean(x))
x <- sort.int(x, partial = c(k + 1, n - k))
if (k + 2 >= n - k - 1)

return(mean(x[c(k + 1, n - k)]))
else

return ((k + 1) * (x[k + 1] + x[n - k]) +
sum(x[seq(k + 2, n - k - 1)])) / n

}

10.4 Testing
Once we have an implementation, we are about half done. Now we need to test it to see that it works correctly.
And if we were putting this in an R package we were writing, we would also have to write a good help page.

The tests should test all the behavior, including that it gives the right errors under the right conditions.
winsorizedMean("fred")

## Error in winsorizedMean("fred"): is.numeric(x) is not TRUE
winsorizedMean(double())

## [1] NaN
winsorizedMean(NA)

## Error in winsorizedMean(NA): is.numeric(x) is not TRUE
winsorizedMean(NaN)

## [1] NaN
winsorizedMean(1:10, 0.6)

## Error in winsorizedMean(1:10, 0.6): 0 < winsorize & winsorize < 0.5 is not TRUE
winsorizedMean(1:10, "fred")

## Error in winsorizedMean(1:10, "fred"): is.numeric(winsorize) is not TRUE
winsorizedMean(1:10, 1:10)

## Error in winsorizedMean(1:10, 1:10): length(winsorize) == 1 is not TRUE
winsorizedMean(1:10, -3)

## Error in winsorizedMean(1:10, -3): 0 < winsorize & winsorize < 0.5 is not TRUE

OK, except we did not get the result expected when the input was NA. A look at the help page for NA tells us
that the trouble is that there are NA values of each atomic vector type except raw and the default type is
logical. So try again.
winsorizedMean(NA_real_)

## [1] NaN
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winsorizedMean(c(1.1, 2.2, NA))

## [1] NaN

OK.

Now how do we get the “winsorize too large” error message? We actually cannot get that (I think). If
winsorize is less than 1/2, then k should be less than n / 2.

I confess that when I was writing this code, I forgot to put in checks that the winsorize argument was
OK when I first wrote this function. Without those checks, the check about k >= n / 2 does do something
important. While I was writing these tests, I realized I should be checking whether both arguments were
wrong, and went back and inserted checks for the winsorize argument. So now the check about k >= n / 2
does nothing as far as I can see, but I left it in the code, because it does check a condition that we need to be
true in order for the function to work correctly. So if our analysis that it can never be triggered is wrong, it
is there to save us.

Now we need to test each code path that calculates a non-error result. There are three of them.
# make up some data
x <- rnorm(20)
identical(winsorizedMean(x, 0.001), mean(x))

## [1] TRUE

So the path where the Winsorized mean is just the mean seems to work.

When do we have k + 2 >= n - k - 1? We have equality when

2k = n− 3

and this means n must be odd. With our even-length data, we have (n− 3)/2 = 17/2 = 8.5 and k is greater
than that when k = 9. And that should happen when winsorize is greater than 9/20.
identical(winsorizedMean(x, 0.499), median(x))

## [1] TRUE

The reason why this test works is that in both cases the function is returning the average of the two middle
values.

Now for the last case, which does something really complicated and tricky. How do we test that? My answer,
developed over long experience in programming in R and C and many other languages, is that we redo the
calculation in the least tricky, most straightforward way possible, a way that is hopefully obviously correct. If
we get the same answers both ways, we appear to be good.
w1 <- winsorizedMean(x)
sx <- sort(x)
ilow <- seq(along = x) < length(x) * 0.2
ihig <- seq(along = x) > length(x) * 0.8
x.nonrep <- sx[! (ilow & ihig)]
sx[ilow] <- min(x.nonrep)
sx[ihig] <- max(x.nonrep)
w2 <- mean(sx)
identical(w1, w2)

## [1] FALSE

What happened?
w1 - w2
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## [1] -2.174608

It looks like our function is broken. But it may be that the test is wrong. So first we test the test.
sort(x)

## [1] -3.49290641 -2.95357980 -2.83756309 -1.34087504 -1.00310455 -0.78182847
## [7] -0.50945013 -0.31734752 -0.28206969 -0.11876296 0.03776714 0.16022185
## [13] 0.30327340 0.37355389 0.58092897 0.62265967 0.62524329 0.98139727
## [19] 1.49877604 1.78178702
sx

## [1] -3.49290641 -3.49290641 -3.49290641 -1.34087504 -1.00310455 -0.78182847
## [7] -0.50945013 -0.31734752 -0.28206969 -0.11876296 0.03776714 0.16022185
## [13] 0.30327340 0.37355389 0.58092897 0.62265967 1.78178702 1.78178702
## [19] 1.78178702 1.78178702

Our “hopefully obviously correct” method was wrong. Here we have n ∗ winsorize = 20 × 0.2 = 4, so we
should replace the four lowest values with the fifth lowest. And we certainly did not do that.

But first let us check that we are not making another mistake.
floor(length(x) * 0.2)

## [1] 4

OK. At least our analysis that we should be replacing the four lowest and four highest is correct (despite
inexactness of computer arithmetic).
ilow

## [1] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
ihig

## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [13] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE

Clearly, we wanted <= rather than < in our definitions of these.
ilow <- seq(along = x) <= length(x) * 0.2
ihig <- seq(along = x) >= length(x) * 0.8
ilow

## [1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
ihig

## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [13] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE

If you so the arithmetic counting on your fingers, 20× 0.8 = 16, so R is right, and my notion that this should
do the Right Thing is Wrong. Try again.
ihig <- rev(ilow)
ihig

## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [13] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE

So now those are right.
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sx <- sort(x)
sx

## [1] -3.49290641 -2.95357980 -2.83756309 -1.34087504 -1.00310455 -0.78182847
## [7] -0.50945013 -0.31734752 -0.28206969 -0.11876296 0.03776714 0.16022185
## [13] 0.30327340 0.37355389 0.58092897 0.62265967 0.62524329 0.98139727
## [19] 1.49877604 1.78178702
x.nonrep <- sx[! (ilow & ihig)]
x.nonrep

## [1] -3.49290641 -2.95357980 -2.83756309 -1.34087504 -1.00310455 -0.78182847
## [7] -0.50945013 -0.31734752 -0.28206969 -0.11876296 0.03776714 0.16022185
## [13] 0.30327340 0.37355389 0.58092897 0.62265967 0.62524329 0.98139727
## [19] 1.49877604 1.78178702

Oops! That was just dumb. I guess I needed a logical or rather than logical and or maybe just the parentheses
in different places.
x.nonrep <- sx[(! ilow) & (! ihig)]
x.nonrep

## [1] -1.00310455 -0.78182847 -0.50945013 -0.31734752 -0.28206969 -0.11876296
## [7] 0.03776714 0.16022185 0.30327340 0.37355389 0.58092897 0.62265967

OK. Now for the rest of the check.
sx[ilow] <- min(x.nonrep)
sx[ihig] <- max(x.nonrep)
w2 <- mean(sx)
identical(w1, w2)

## [1] FALSE

What happened?
w1 - w2

## [1] -2.333141

so it is not just inexactness of computer arithmetic.
sort(x)

## [1] -3.49290641 -2.95357980 -2.83756309 -1.34087504 -1.00310455 -0.78182847
## [7] -0.50945013 -0.31734752 -0.28206969 -0.11876296 0.03776714 0.16022185
## [13] 0.30327340 0.37355389 0.58092897 0.62265967 0.62524329 0.98139727
## [19] 1.49877604 1.78178702
sx

## [1] -1.00310455 -1.00310455 -1.00310455 -1.00310455 -1.00310455 -0.78182847
## [7] -0.50945013 -0.31734752 -0.28206969 -0.11876296 0.03776714 0.16022185
## [13] 0.30327340 0.37355389 0.58092897 0.62265967 0.62265967 0.62265967
## [19] 0.62265967 0.62265967

That sure looks like what we are supposed to average to calculate the Winsorized mean. So now that we
think the check is right, it appears that our function is buggy.

So now we have to debug it.
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n <- length(x)
winsorize <- 0.2
k <- floor(n * winsorize)
k

## [1] 4
myx <- sort.int(x, partial = c(k + 1, n - k))
myx

## [1] -3.49290641 -2.83756309 -2.95357980 -1.34087504 -1.00310455 -0.50945013
## [7] -0.78182847 0.16022185 -0.11876296 -0.28206969 -0.31734752 0.03776714
## [13] 0.30327340 0.37355389 0.58092897 0.62265967 0.62524329 0.98139727
## [19] 1.49877604 1.78178702
w3 <- (k + 1) * (myx[k + 1] + x[n - k]) +

sum(myx[seq(k + 2, n - k - 1)]) / n
identical(w1, w3)

## [1] FALSE

Oh! In copying this code from the function definition, I found an error. A parenthesis was out of place.

10.5 Re-Implementation

winsorizedMean <- function(x, winsorize = 0.2) {
stopifnot(is.numeric(x))
stopifnot(is.numeric(winsorize))
stopifnot(length(winsorize) == 1)
stopifnot(0 < winsorize & winsorize < 0.5)
n <- length(x)
if (n == 0) return(NaN)
if (anyNA(x)) return(NaN)

k <- floor(n * winsorize)
if (k >= n / 2) stop("winsorize too large")
if (k == 0) return(mean(x))
x <- sort.int(x, partial = c(k + 1, n - k))
if (k + 2 >= n - k - 1)

return(mean(x[c(k + 1, n - k)]))
else

return(((k + 1) * (x[k + 1] + x[n - k]) +
sum(x[seq(k + 2, n - k - 1)])) / n)

}

Actually, I realized I had more than one parenthesis mistake in the last expression. Hopefully, this works.

10.6 Re-Test

w1 <- winsorizedMean(x)
identical(w1, w2)

## [1] FALSE
w1 - w2

## [1] -1.387779e-17

47



all.equal(w1, w2)

## [1] TRUE

We should have remembered the slogan

Never test objects of type "double" for equality! Use the R function all.equal instead (which
tests for close to equal, using an optional argument tolerance to say how close).

So our function works.

And we also have to do all the rest of the tests.
winsorizedMean("fred")

## Error in winsorizedMean("fred"): is.numeric(x) is not TRUE
winsorizedMean(double())

## [1] NaN
winsorizedMean(NA_real_)

## [1] NaN
winsorizedMean(NaN)

## [1] NaN
winsorizedMean(1:10, 0.6)

## Error in winsorizedMean(1:10, 0.6): 0 < winsorize & winsorize < 0.5 is not TRUE
winsorizedMean(1:10, "fred")

## Error in winsorizedMean(1:10, "fred"): is.numeric(winsorize) is not TRUE
winsorizedMean(1:10, 1:10)

## Error in winsorizedMean(1:10, 1:10): length(winsorize) == 1 is not TRUE
winsorizedMean(1:10, -3)

## Error in winsorizedMean(1:10, -3): 0 < winsorize & winsorize < 0.5 is not TRUE
identical(winsorizedMean(x, 0.001), mean(x))

## [1] TRUE
identical(winsorizedMean(x, 0.499), median(x))

## [1] TRUE

I was happy with this for a day or two, but then I started to wonder about the definition of the sample
median being different for even and odd sample sizes. Is this still OK for odd n?
x <- rnorm(21)
winsorizedMean("fred")

## Error in winsorizedMean("fred"): is.numeric(x) is not TRUE
winsorizedMean(double())

## [1] NaN
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winsorizedMean(NA_real_)

## [1] NaN
winsorizedMean(NaN)

## [1] NaN
winsorizedMean(1:10, 0.6)

## Error in winsorizedMean(1:10, 0.6): 0 < winsorize & winsorize < 0.5 is not TRUE
winsorizedMean(1:10, "fred")

## Error in winsorizedMean(1:10, "fred"): is.numeric(winsorize) is not TRUE
winsorizedMean(1:10, 1:10)

## Error in winsorizedMean(1:10, 1:10): length(winsorize) == 1 is not TRUE
winsorizedMean(1:10, -3)

## Error in winsorizedMean(1:10, -3): 0 < winsorize & winsorize < 0.5 is not TRUE
identical(winsorizedMean(x, 0.001), mean(x))

## [1] TRUE
identical(winsorizedMean(x, 0.499), median(x))

## [1] TRUE
w1 <- winsorizedMean(x)
sx <- sort(x)
ilow <- seq(along = x) <= length(x) * 0.2
ihig <- rev(ilow)
x.nonrep <- sx[(! ilow) & (! ihig)]
sx[ilow] <- min(x.nonrep)
sx[ihig] <- max(x.nonrep)
w2 <- mean(sx)
identical(w1, w2)

## [1] TRUE

11 Summary
1. R good!
2. Functions good!
3. Vectors good!
4. Vectorizing functions and operators good!
5. Higher-order functions good!
6. Global variables bad, except when they aren’t.
7. Garbage in, error messages out (GIEMO)!
8. Design before you code!
9. Test to assure correctness!

10. Keep user interfaces simple. Don’t make users memorize crazy special cases like the R function sample
does. KISS (keep it simple, stupid)!

49


	License
	R
	Versions
	History
	CRAN and Bioconductor
	Manuals
	Other Books
	Why R?

	Some Very Basic Stuff
	Style
	Commands
	Assignment
	Autoprinting
	Whitespace
	Objects
	Object-Oriented Programming
	Dynamic
	Reproducibility
	Help
	Non-standard Evaluation

	Functions
	Functional Programming
	Pure Functional Programming
	Functions Assigned Names
	Functions as Arguments to Functions
	Anonymous Functions

	Vectors
	Types
	Numeric
	Complex
	Logical
	Character
	Raw

	Atomic Vectors
	Vectors, Operators, and Functions
	Componentwise with Recycling
	Reduce
	Ifelse

	Indexing
	Indexing with Positive Integers
	Indexing with Negative Integers
	Index Zero?
	Indexing with Logicals
	Indexing with Character Strings

	Type Coercion
	Lists
	More On Indexing
	Nit Picking about Indexing

	More On Functions
	Storing Functions in Objects
	Functions whose Values are Functions
	Partially Evaluated Functions
	Some Real Nit Picking
	The Function Function
	The Addition Function
	The Quit Function


	Still More On Functions
	Named Arguments
	Default Values for Arguments
	Missing Arguments
	…
	A Long Example (Maximum Likelihood Estimation)
	Make Up Data
	Using Dot-Dot-Dot
	Alternative Solution (Using Global Variables)
	Having Your Cake and Eating It Too (Closures)
	The Same Except Even More Mysterious
	Where is X?


	Stop Me before I Crash and Burn
	Control-Flow Constructs
	If-Then-Else
	For
	Repeat
	Comment

	An Extended Example (Winsorized Means)
	The Problem
	The Design
	The Implementation
	Testing
	Re-Implementation
	Re-Test

	Summary

