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1 Theory

This section explains the theory of conjugate priors for exponential fam-
ilies of distributions, which is due to Diaconis and Ylvisaker (1979).

1.1 Conjugate Priors

A family of distributions P is conjugate to another family of distributions
M if, when applying Bayes rule with the likelihood for M, whenever the
prior is in P, the posterior is also in P.

The way one finds conjugate families is to make their PDF look like the
likelihood.

For an exponential family with canonical statistic y, canonical parameter
θ, and cumulant function c, the likelihood is

L(θ) = e〈y,θ〉−c(θ). (1)

More generally, the likelihood for sample size n from this family (see Sec-
tion 3 of Geyer, 2016a) is

L(θ) = e〈y,θ〉−nc(θ). (2)

where now y is the canonical statistic for sample size n, what Section 3 of
Geyer (2016a) writes as

∑n
i=1 yi, and θ and c are the same as before, but

now n appears.
Saying we want the prior to “look like” (2) means we want it to be a

function that looks like it (considered as a function of θ). But, of course, a
prior cannot depend on data. So we have to replace y by something known,
and, while we are at it, we also replace n too.

Thus we say that

hη,ν(θ) = e〈η,θ〉−νc(θ), θ ∈ Θ, (3)

defines a function hη,ν that is an unnormalized conjugate prior probability
density function (PDF) for θ, where η is a vector of the same dimension as
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the canonical statistic and canonical parameter, ν is a scalar, and Θ is the
full canonical parameter space for the family given by equation (7) in Geyer
(2016a).

The quantities η and ν are called hyperparameters of the prior, to distin-
guish them from θ which is the parameter we are making Bayesian inference
about. They are treated as known constants, different choices of which de-
termine which prior we are using. We don’t treat η and ν as parameters
the way Bayesians treat parameters (put priors on them, treat them as ran-
dom). Instead we treat η and ν the way frequentists treat parameters (as
non-random constants, different values of which determine different proba-
bility distributions).

1.2 Corresponding Posteriors

The “make the prior look like the likelihood” trick is not guaranteed to
work. It depends on what the likelihood looks like. So we check that it does
indeed work for exponential families.

Bayes rule can be expressed as

unnormalized posterior = likelihood× unnormalized prior. (4)

If we apply this with (2) as the likelihood and (3) as the unnormalized prior,
we obtain

e〈y,θ〉−nc(θ)e〈η,θ〉−νc(θ) = e〈y+η,θ〉−(n+ν)c(θ)

which is a distribution in the conjugate family with vector hyperparameter
y + η and scalar hyperparameter n+ ν. So it does work. This is indeed the
conjugate family.

In general, there is no simple expression for the normalized PDF of the
conjugate family, so we still have to use Markov chain Monte Carlo (MCMC)
to do calculations about the posterior.

1.3 The Philosophy of Conjugate Priors

What is the point of conjugate priors? Suppose we started with a flat
prior, which is the special case of the conjugate family with η = 0 (the zero
vector) and ν = 0 (the zero scalar). Then no matter how much data we ever
collect, our posterior will be some distribution in the conjugate family. (If
we start in the conjugate family, we stay in the conjugate family.)

The Bayesian learning paradigm says that the posterior distribution in-
corporating past data serves as the prior distribution for future data. So
this suggests that any prior based on data should be a conjugate prior.
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But, of course, the whole argument depends on starting with a flat prior.
If we don’t start with a prior in the conjugate family, then we don’t (in
general) get a posterior distribution in the conjugate family.

But this argument does suggest that conjugate priors are one kind of
prior that is reasonable for the model. For example, they have the kind of
tail behavior that could have come from observation of data from the model.

This is something that just using, for example, normal prior distributions
does not do. The normal distribution has tails that decrease more rapidly
than any other widely used distribution, and a lot faster than conjugate pri-
ors for some discrete exponential families. Consider a family with bounded
support of the canonical statistic, for example, logistic regression. The log
of (3) has derivative

∇ log hη,ν(θ) = η − ν∇c(θ) = η − νEθ(y)

using equation (5) in Geyer (2016a). The point is that since y is bounded, so
is Eθ(y), bounded considered as a function of θ, that is. And that means the
logarithmic derivative of the conjugate prior is bounded. And that means
the conjugate prior PDF has tails that decrease no more than exponentially
fast. But the normal distribution has tails that decrease superexponentially
fast (like exp(−‖β‖2), where ‖ · ‖ denotes the Euclidean norm). So normal
priors are more informative than conjugate priors (have lighter tails, much
lighter when far out in the tails). They express “uncertainty” about the
parameter that has more “certainty” than could reflect what is learned from
any amount of data. Something wrong there (philosophically).

In summary, when you use conjugate priors, they are guaranteed to be
something that could reflect uncertainty that comes from actual data. Other
priors pulled out of nowhere do not have this property.

1.4 Proper Priors

The fundamental theorem about conjugate priors for exponential families
is Theorem 1 in Diaconis and Ylvisaker (1979), which we repeat here.

Theorem 1 (Diaconis-Ylvisaker). The conjugate prior (3) determined by
η and ν is proper if and only if ν > 0 and η/ν lies in the interior of the
convex support of the exponential family, which is the smallest convex set
that contains the canonical statistic of the family with probability one.

So what does that last bit mean? A set S in a vector space is convex if
it contains all convex combinations of its points, which in turn are defined
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to be points of the form
∑k

i=1 pixi, where xi are points and pi are scalars
that are nonnegative and sum to one.

The “nonnegative and sum to one” should ring a bell. It is the condition
for probability mass functions. So another way to explain convexity is to say
that S is convex if the mean of every probability distribution concentrated
on a finite set of points of S is contained in S.

Corollary 2. If a conjugate prior for the canonical parameter of exponential
family is proper, then the parameterization is identifiable.

Proof. By Theorem 1 in Geyer (2009), which also is Theorem 1 in Geyer
(2016a), the canonical parameterization is identifiable if and only if the con-
vex support has the same dimension as the canonical statistic and parameter
vectors. So if the parameterization is not identifiable, then the convex sup-
port lies in a lower-dimensional subspace and has empty interior, but by
Theorem 1 above, that implies the prior is not proper.

The converse to this corollary is that, if we want a proper prior, then we
had better have an identifiable parameterization.

1.4.1 Saturated Models

To get a more concrete picture, let us calculate the convex supports for
a few simple probability models.

Bernoulli Regression First consider the saturated model for Bernoulli
regression. The the components yi of the response vector y are Bernoulli.
Each yi has support {0, 1}. Hence y has support {0, 1}n, where n is the
dimension of y. The convex support must fill in all the points in between,
so it is [0, 1]n. The interior of the convex support is the points inside, not on
the surface, so that is (0, 1)n. Here we are using the convention that square
brackets for an interval indicate that the end points are included, and round
brackets indicate that the end points are excluded. To be absolutely clear
the interior of the convex support is

(0, 1)n = { y ∈ Rn : 0 < yi < 1 for all i }. (5)

Poisson Regression Poisson regression is similar. The components yi
of the response vector y are Poisson. Each yi has support N (the set of
nonnegative integers). Hence y has support Nn, where n is the dimension
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of y. The convex support is thus [0,∞)n, and the interior of the convex
support is

(0,∞)n = { y ∈ Rn : 0 < yi for all i }.

Multinomial, Try III The multinomial distribution is a bit different. If
y is a multinomial random vector of dimension k for sample size n, then the
components of y are nonnegative integers that sum to n. Unlike the case for
Bernoulli or Poisson regression, the components of y are not independent
and the support is not a Cartesian product. But we just said what it was
(components are nonnegative integers that sum to n). In math notation
that is {

y ∈ Nk :
∑k

i=1 yi = n
}
,

and the convex support must fill in points in between{
y ∈ [0,∞)k :

∑k
i=1 yi = n

}
,

and the interior of the convex support is empty because the convex support is
contained in a lower-dimensional subspace and hence is not a neighborhood
of any point.

Hence there can be no proper conjugate prior if we take y to be the
canonical statistic of the family, what Geyer (2016a, Section 2.4.3) calls the
“Try III” parameterization of the multinomial.

Multinomial, Try II If instead we use the “Try II” parameterization
(Geyer, 2016a, Section 2.4.2) in which the canonical statistic has components
y1, y2, . . . , yk−1 (omitting the count for the last category), then the support
of the canonical statistic vector is{

y ∈ Nk−1 :
∑k−1

i=1 yi ≤ n
}
,

(less than or equal to n because we have dropped yk from the sum), and the
interior of convex support is{

y ∈ (0,∞)k−1 :
∑k−1

i=1 yi < n
}
.

1.4.2 Canonical Affine Models

Theorem 1 also applies to canonical affine submodels because they too
are full exponential families (Geyer, 2016a, Section 4.6). The only difference
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is that the canonical statistic vector has the form MT y where M is the
model matrix and y is the canonical statistic vector of the saturated model.

It is usually hard to calculate the convex support of MT y even if the
convex support of y is known. Thus it is usually hard to know the set of
all hyperparameters that yield proper conjugate priors. Hence the following
theorem, which, at least, allows us to identify some proper conjugate priors.

Theorem 3. If η/ν is a vector in the relative interior of the convex support
of a full exponential family and M is the model matrix for a canonical affine
submodel that has identifiable canonical parameterization, then MT η and ν
are hyperparameters for a proper conjugate prior for the submodel canonical
parameter.

To understand this we need to know what “relative interior” is. It is the
interior relative to the smallest affine subspace containing the set (Rockafel-
lar, 1970, Chapter 6).

Again, we can understand this concept by examples. If the convex sup-
port of the saturated model has the same dimension as the canonical statis-
tic, as we saw was the case for Bernoulli regression, Poisson regression, and
the multinomial distribution with “Try II” parameterization, then the rela-
tive interior is the same as the interior.

Only with the multinomial distribution with “Try III” parameterization
did we have a lower-dimensional convex support which yields an empty
interior. That is where the notion of relative interior is useful. It is what
we might think is the interior if we weren’t careful. For the multinomial it
is what we get if we replace ≤ by < in the formula for the convex support
obtaining {

y ∈ (0,∞)k :
∑k

i=1 yi = n
}
.

Proof of Theorem 3. By Theorem 6.6 in Rockafellar (1970) if η/ν is in the
relative interior of the convex support saturated model, then MT η/ν is in
the relative interior of convex support the submodel. By Theorem 1 in
Geyer (2009) the relative interior of the convex support of the submodel is
equal to the interior if and only if the submodel canonical parameterization
is identifiable.
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2 Examples

2.1 Logistic Regression

2.1.1 Saturated Model

This example follows an example that is just R code (Geyer, 2016b)
where is it said that adding 1/2 to the count in each cell of a product
binomial (logistic regression) model has the same effect as using a proper
prior.

The log likelihood for the saturated model in terms of ordinary param-
eters is

l(p) =

n∑
i=1

[
yi log(pi) + (ni − yi) log(1− pi)

]
(6)

(we have a reason for starting with ordinary parameters rather than canon-
ical parameters — we will get to them).

By adding 1/2 to each cell of the table, what was meant was to add
1/2 to each of the yi and to each of the ni − yi, which is clearly what the
cited computer code does. Let us generalize writing ε rather than 1/2 and
allowing it to be any positive real number.

Then the unnormalized log posterior is

l(p) =

n∑
i=1

[
(yi + ε) log(pi) + (ni − yi + ε) log(1− pi)

]
. (7)

From (4) we get

log unnormalized posterior = log likelihood + log unnormalized prior

from which we see that the log unnormalized prior is (7) minus (6), which
is

n∑
i=1

[
ε log(pi) + ε log(1− pi)

]
is the log unnormalized prior we are using. Now we introduce canonical
parameters

pi =
eθi

1 + eθi
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so the log unnormalized prior becomes

h(θ) =
n∑
i=1

[
ε log

(
eθi

1 + eθi

)
+ ε log

(
1

1 + eθi

)]

=
n∑
i=1

[
εθi − 2ε log

(
1 + eθi

)] (8)

and we have now put the prior in exponential family form. The vector
hyperparameter η is the vector having all components equal to ε and ν =
2ε (compare with the form of the log likelihood for logistic regression in
Section 5.1 of Geyer, 2016a).

So does this prior satisfy the conditions to be proper given in Theorem 1?
Or, to be more precise, would it be proper if we were using the saturated
model?

Since we said ε > 0, we clearly have ν = 2ε > 0. That’s one part. Then
η/ν is the vector having all components equal to 1/2. And this is indeed a
point in (5), so this does give a proper prior.

2.1.2 Canonical Affine Submodel

When we go to canonical affine submodels, Corollary 2 assures us that
adding 1/2 to each cell of the table gives a proper conjugate prior for the
submodel canonical parameter.

2.2 Poisson Regression

Now we turn to our other example, which is homework problem 3-2. In
the statement of the problem, it is claimed that adding 1/2 to the count for
each cell of the contingency again results in a proper conjugate prior. As we
shall see, this claim is wrong.

Now the saturated model log likelihood is

l(θ) = 〈y, θ〉 − c(θ),

where

c(θ) =
n∑
i=1

eθi

(Geyer, 2016a, equation (40)).
It is now clear from Theorem 1 that a proper conjugate prior has the

form (3) with η having components ηi > 0 and also with ν > 0.
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And the latter requirement is what adding 1/2 to each component of y
leaves out. That gives an unnormalized log posterior of

〈y + 1/2, θ〉 − c(θ) = 〈y + η, θ〉 − (1 + ν)c(θ)

with ηi = 1/2 for all i and ν = 0.
We see that our unnormalized prior for the saturated model is just

g(θ) = e〈η,θ〉

and applying this to the canonical affine submodel gives

g(β) = e〈M
T η,β〉

and this cannot possibly integrate to something finite because it goes to
infinity as β goes to infinity in some direction (which depends on what M
is).

If we wanted a proper prior, its log unnormalized density would have to
have the form

h(β) = 〈MT η, β〉 − νc(a+Mβ)

with all components of η strictly positive and ν > 0.
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