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The Gauss-Markov Theorem

Suppose we do not want to assume the response vector is normal
(conditionally given covariates that are random). What then?

One justification for still using least squares estimators (LSE),
no longer MLE when normality is not assumed, is the following.

Theorem (Gauss-Markov). Suppose Y has mean vector µ and
variance matrix σ2I, and suppose µ = Mβ, where M has full rank.
Then the LSE

β̂ = (MTM)−1MTY

is the best linear unbiased estimator (BLUE) of β, where “best”
means

var(aT β̂) ≤ var(aT β̃), for all a ∈ Rp

where β̃ is any other linear and unbiased estimator.
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The Gauss-Markov Theorem (cont.)

We do not assume normality. We do assume the same first

and second moments of Y as in the linear model. We get the

conclusion that the LSE are BLUE, rather than MLE.

They can’t be MLE because we don’t have a statistical model,

having specified only moments, not distributions, so there is no

likelihood.

By the definition of “best” all linear functions of β̂ are also

BLUE. This includes µ̂ = Mβ̂ and µ̂new = Mnewβ̂.
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The Gauss-Markov Theorem (cont.)

Proof of Gauss-Markov Theorem. The condition that β̃ be

linear and unbiased is β̃ = AY for some matrix A satisfying

E(β̃) = Aµ = AMβ = β

for all β. Hence, if AM is full rank, then AM = I. It simplifies

the proof if we define

B = A− (MTM)−1MT

so

β̃ = β̂ + BY

and BM = 0.
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The Gauss-Markov Theorem (cont.)

For any vector a

var(aT β̃) = var(aT β̂) + var(aTBY) + 2 cov(aT β̂, aTBY)

If the covariance here is zero, that proves the theorem. Hence

it only remains to prove that.

cov(aT β̂, aTBY) = aT (MTM)−1MT var(Y)BTa

= σ2aT (MTM)−1MTBTa

is zero because BM = 0 hence MTBT = 0. And that finishes the

proof of the theorem.
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The Gauss-Markov Theorem (cont.)

Criticism of the theorem. The conclusion that LSE are BLUE
can seem to say more than it actually says. It doesn’t say the
LSE are the best estimators. It only says they are best among
linear and unbiased estimates. Presumably there are better esti-
mators that are either biased or nonlinear. Otherwise a stronger
theorem could be proved.

The Gauss-Markov theorem drops the assumption of exact nor-
mality, but it keeps the assumption that the mean specification
µ = Mβ is correct. When this assumption is false, the LSE are
not unbiased. More on this later.

Not specifying a model, the assumptions of the Gauss-Markov
theorem do not lead to confidence intervals or hypothesis tests.
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Bernoulli Response

Suppose the data vector Y has independent Bernoulli compo-

nents.

The assumption µ = Mβ now seems absurd, because

E(Yi) = Pr(Yi = 1)

is between zero and one, and linear functions are not constrained

this way. Moreover

var(Yi) = Pr(Yi = 1) Pr(Yi = 0)

so we cannot have constant variance var(Y) = σ2I.
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Bernoulli Response (cont.)

Here is what happens if we try to apply LSE to Bernoulli data
with the simple linear regression model µi = β1 + β2xi. Hollow
dots are the data, solid dots the LSE predicted values.
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Bernoulli Response (cont.)

The predicted values go outside the range of possible values.

Not good.

Also there is no way to do statistics — confidence intervals and

hypothesis tests – based on this model. Also not good.

We need a better idea.
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Sufficiency

Given a statistical model with parameter vector θ and data vector

Y, a statistic Z = g(Y), which may also be vector-valued, is

called sufficient if the conditional distribution of Y given Z does

not depend on θ.

A sufficient statistic incorporates all of the information in the

data Y about the parameter θ (assuming the correctness of the

statistical model).
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Sufficiency (cont.)

The sufficiency principle says that all statistical inference should

depend on the data only through the sufficient statistic.

The likelihood is

L(θ) = f(Y | Z)fθ(Z)

and we may drop terms that do not contain the parameter so

the likelihood is also

L(θ) = fθ(Z)

Hence likelihood inference and Bayesian inference automatically

obey the sufficiency principle. Non-likelihood frequentist infer-

ence (such as the method of moments) does not automatically

obey the sufficiency principle.
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Sufficiency (cont.)

The converse of this is also true. The Neyman-Fisher factoriza-

tion criterion says that if the likelihood is a function of the data

Y only through a statistic Z, then Z is sufficient.

This is because

fθ(y, z) = fθ(y | z)fθ(z) = h(y)L(θ)

where L(θ) depends on Y only through Z and h(Y) does not

contain θ. Write Lz(θ) for L(θ) to remind us of the dependence

on Z. Then

fθ(z) =
∫
A
fθ(y, z) dy = Lz(θ)

∫
A
h(y) dy

where A = {y : g(y) = z }.
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Sufficiency (cont.)

Hence

fθ(Y | Z) =
fθ(Y,Z)

fθ(Z)
=

h(y)∫
A h(y) dy

does not depend on θ. That finishes (a sketchy but correct)

proof of the Neyman-Fisher factorization criterion. For the dis-

crete case, replace integrals by sums.
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Sufficiency (cont.)

The whole data is always sufficient, that is, the criterion is triv-

ially satisfied when Z = Y.

There need not be any non-trivial sufficient statistic.
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Sufficiency and Exponential Families

Recall the theory of exponential families of distributions (deck 3,
slides 105–113). A statistical model is called an exponential
family of distributions if the log likelihood has the form

l(θ) =
p∑

i=1

ti(x)gi(θ)− c(θ)

By the Neyman-Fisher factorization criterion

Y =
(
t1(X), . . . , tp(X)

)
is a p-dimensional sufficient statistic. It is called the natural
statistic of the family. Also

ψ =
(
g1(θ), . . . , gp(θ)

)
is a p-dimensional parameter vector for the family, called the
natural parameter.

15



Sufficiency and Exponential Families (cont.)

We want to use θ for the natural parameter vector instead of ψ

from here on. Then the log likelihood is

l(θ) = yTθ − c(θ)

A natural affine submodel is specified by a parametrization

θ = a + Mβ

where a is a known vector and M is a known matrix, called the

offset vector and model matrix. Usually a = 0, in which case we

have a natural linear submodel.
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Sufficiency and Exponential Families (cont.)

The log likelihood for the natural affine submodel is

l(β) = yTa + yTMβ − c(a + Mβ)

and the term that does not contain β can be dropped, giving

l(β) = yTMβ − c(a + Mβ) = (MTy)Tβ − c(a + Mβ)

which we see also has the exponential family form. We have a

new exponential family, with natural statistic MTy and natural

parameter β.
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Sufficiency and Exponential Families (cont.)

The log likelihood derivatives are

∇l(β) = MTy −MT∇c(a + Mβ)

∇2l(β) = −MT∇2c(a + Mβ)M

The log likelihood derivative identities say

Eβ{∇l(β)} = 0

varβ{∇l(β)} = −Eβ{∇2l(β)}
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Sufficiency and Exponential Families (cont.)

Combining these we get

Eβ{MTY} = MT∇c(a + Mβ)

varβ{MTY} = MT∇2c(a + Mβ)M

Hence the MLE is found by solving

MTy = MTEβ(Y)

for β (“observed equals expected”), and observed and expected
Fisher information are the same

I(β) = MT∇2c(a + Mβ)M

If the distribution of the natural statistic vector MTY is non-
degenerate, then the log likelihood is strictly concave and the
MLE is unique if it exists and is the global maximizer of the log
likelihood.
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Bernoulli Response (cont.)

Let us see how this helps us with Bernoulli response models.

The Bernoulli distribution is an exponential family. The log like-
lihood is

l(p) = y log(p) + (1− y) log(1− p)

= y
[
log(p)− log(1− p)

]
+ log(1− p)

= y log

(
p

1− p

)
+ log(1− p)

so the natural statistic is y and the natural parameter is

θ = log

(
p

1− p

)
= logit(p)

This function is called logit and pronounced with a soft “g”
(low-jit).
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Bernoulli Response (cont.)

The notion of natural affine submodels, suggests we model the

natural parameter affinely. If Y1, . . ., Yn are independent Bernoulli

random variables with

Yi ∼ Ber(µi)

let

θi = logit(µi)

and

θ = a + Mβ

This idea is called logistic regression.
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Bernoulli Response (cont.)

Here is what happens if we apply logistic regression to Bernoulli
data with the simple linear regression model θi = β1 + β2xi.
Hollow dots are the data, solid dots the MLE predicted values.
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Bernoulli Response (cont.)

The R commands to make the picture on the preceding page are

Rweb:> lout <- glm(y ~ x, family = binomial)

Rweb:> plot(x, y)

Rweb:> points(x, predict(lout, type = "response"), pch = 19)

There are differences between generalized linear models (GLM)
fit by the R function glm and linear models (LM) fit by the R
function lm. We need to specify family = binomial because glm

can fit response distributions other than Bernoulli. We need to
specify type = "response" in the predict function because this
function “predicts” (estimates, actually) either natural parame-
ters or mean-value parameters. The formula y ~ x is the same
for GLM and LM.
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Bernoulli Response (cont.)

Rweb:> summary(lout)

Call:

glm(formula = y ~ x, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.8959 -0.3421 -0.0936 0.3460 1.9061

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.7025 2.4554 -2.730 0.00634 **

x 0.3617 0.1295 2.792 0.00524 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Bernoulli Response (cont.)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.7025 2.4554 -2.730 0.00634 **

x 0.3617 0.1295 2.792 0.00524 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

More differences between GLM and LM. The “Estimate” col-
umn contains MLE (not LSE) of the regression coefficients.
The “Std. Error” column contains estimated standard devia-
tions of the regression coefficients, which are approximate (not
exact) obtained from the inverse Fisher information matrix. The
“z value” column gives the asymptotic (not exact) test statis-
tic for a two-tailed test of whether the regression coefficient is
zero; its reference distribution is standard normal (not Student
t). The “Pr(>|z|)” column gives the P -value for this test.
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Bernoulli Response (cont.)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.7025 2.4554 -2.730 0.00634 **

x 0.3617 0.1295 2.792 0.00524 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

An approximate, large sample 95% confidence interval for the

second regression coefficient is

Rweb:> 0.3617 + c(-1,1) * qnorm(0.975) * 0.1295

[1] 0.1078847 0.6155153
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Bernoulli Response (cont.)

So far everything is similar for GLM and LM. There are dif-

ferences inherent in the nature of GLM. There are some extra

arguments to functions because GLM are more complicated. Hy-

pothesis tests and confidence intervals are approximate, based

on the asymptotics of maximum likelihood.
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Bernoulli Response (cont.)

Estimate of the natural parameter θ = logit(p) for a new individ-

ual with covariate value x = 25, and its standard error derived

from inverse Fisher information and the delta method.

Rweb:> tout <- predict(lout, newdata = data.frame(x = 25),

+ se.fit = TRUE)

Rweb:> print(tout)

$fit

1

2.339301

$se.fit

[1] 1.051138
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Bernoulli Response (cont.)

Asymptotic 95% confidence interval

Rweb:> tout$fit + c(-1,1) * qnorm(0.975) * tout$se.fit

[1] 0.2791077 4.3994944
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Bernoulli Response (cont.)

Estimate of the mean-value parameter p for a new individual
with covariate value x = 25, and its standard error derived from
inverse Fisher information and the delta method.

Rweb:> pout <- predict(lout, newdata = data.frame(x = 25),

+ se.fit = TRUE, type = "response")

Rweb:> print(pout)

$fit

1

0.91208

$se.fit

1

0.08429082
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Bernoulli Response (cont.)

Asymptotic 95% confidence intervals

Rweb:> pout$fit + c(-1,1) * qnorm(0.975) * pout$se.fit

[1] 0.7468731 1.0772870

Rweb:> invlogit <- function(theta) 1 / (1 + exp(- theta))

Rweb:> invlogit(tout$fit + c(-1,1) * qnorm(0.975) * tout$se.fit)

[1] 0.5693274 0.9878655

These intervals are asymptotically equivalent, but the sample

size is not large enough for them to be close. Clearly, the delta

method does not work so well here. Perhaps the second interval

is preferred.
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Likelihood Ratio Tests

Suppose ln is the log likelihood for a statistical model that sat-

isfies the “usual regularity conditions” for maximum likelihood.

Suppose we have a nested submodel specified by θ = Mβ, and

θ̂n and β̂n are the MLE for the supermodel and submodel, re-

spectively. Suppose the Fisher information matrix for the super-

model I(θ) and submodel MT I(θ)M are both full rank. Then the

asymptotic distribution of

2
[
ln(θ̂n)− ln(Mβ̂n)

]
is chi-square with degrees of freedom that is the difference in

dimensions of θ and β.
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Likelihood Ratio Tests (cont.)

We now repeat the argument in Deck 3, Slides 32–50, 86–87,

and 90–91 to get simultaneous asymptotics for θ̂n and β̂n.

Expanding the gradient of the log likelihood in a Taylor series

gives

∇ln(θ) ≈ ∇ln(θ0) +
[
∇2ln(θ0)

]
(θ − θ0)

from which we obtain

op(1) = n−1/2∇ln(θ0) +
[
n−1∇2ln(θ0)

]
n1/2(θ̂n − θ0)

op(1) = n−1/2∇ln(θ0)M +
[
n−1MT∇2ln(θ0)M

]
n1/2(β̂n − β0)

where θ0 = Mβ0 is the true parameter value.
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Likelihood Ratio Tests (cont.)

This gives

n1/2(θ̂n − θ0) =
[
−n−1∇2ln(θ0)

]−1
n−1/2∇ln(θ0) + op(1)

n1/2(β̂n − β0) =
[
−n−1MT∇2ln(θ0)M

]−1
n−1/2∇ln(θ0)M + op(1)

from which

n−1/2∇ln(θ0)
D−→ N

(
0, I(θ0)

)
−n−1∇2ln(θ0)

P−→ I(θ0)

and Slutsky’s theorem given
1/2(θ̂n − θ0)

n1/2(β̂n − β0)
n−1/2∇ln(θ0)

 D−→


I(θ0)−1Z[

MT I(θ0)M
]−1

MTZ

Z


where Z ∼ N

(
0, I(θ0)

)
.
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Likelihood Ratio Tests (cont.)

Now we expand the log likelihood itself in a Taylor series giving

ln(θ)− ln(θ0) ≈
[
∇ln(θ0)

]T
(θ−θ0)+

1

2
(θ−θ0)T

[
∇2ln(θ0)

]
(θ−θ0)

from which we obtain

2
[
ln(θ̂n)− ln(Mβ̂n)

]
= 2

[
n−1/2∇ln(θ0)

]T
n1/2(θ̂n − θ0)

+ n1/2(θ̂n − θ0)T
[
n−1∇2ln(θ0)

]
n1/2(θ̂n − θ0)

− 2
[
n−1/2∇ln(θ0)

]T
n1/2M(β̂n − β0)

− n1/2(β̂n − β0)TMT
[
n−1∇2ln(θ0)

]
n1/2M(β̂n − β0)

+ op(1)
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Likelihood Ratio Tests (cont.)

Using the results established on slides 34–35 and Slutsky’s the-

orem, we obtain

2
[
ln(θ̂n)− ln(Mβ̂n)

] D−→ 2ZT I(θ0)−1Z+ZT I(θ0)−1I(θ0)I(θ0)−1Z

− 2ZTM
[
MT I(θ0)M

]−1
MTZ

− ZTM
[
MT I(θ0)M

]−1
MT I(θ0)M

[
MT I(θ0)M

]−1
MTZ

= ZT
(
I(θ0)−1 −M

[
MT I(θ0)M

]−1
MT

)
Z

where Z ∼ N
(
0, I(θ0)

)
.
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Likelihood Ratio Tests (cont.)

Let A be the symmetric matrix square root of I(θ0) (5101,

Deck 5, Slide 110), that is, if

I(θ0) = ODOT

is a spectral decomposition (O is orthogonal and D is diagonal),

then

A = OD1/2OT

where D1/2 is diagonal and its diagonal elements are the square

roots of the corresponding diagonal elements of D. Assuming

the Fisher information matrix is invertible, so is A and

A−1 = OD−1/2OT
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Likelihood Ratio Tests (cont.)

Suppose U is a multivariate standard normal random vector.
Then

E(AU) = 0

var(AU) = A var(U)AT = A2 = I(θ0)

so Z and AU have the same distribution. Hence

2
[
ln(θ̂n)− ln(Mβ̂n)

] D−→ UTA
(
A−2 −M

[
MTA2M

]−1
MT

)
AU

= UT
(
I−AM

[
MTA2M

]−1
MTA

)
AU

= UT (I−H)U

where

H = AM
[
MTA2M

]−1
MTA

is the hat matrix corresponding to the model matrix AM.
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Likelihood Ratio Tests (cont.)

We know from the basic theorem for linear models (Deck 5,

Slide 31) that UT (I − H)U has a chi-square distribution with

n− q degrees of freedom, where here n is the rank of I and q is

the rank of H. Here n is the dimension of θ and q is also the

rank of M and the dimension of β (assuming M is full rank).

That proves the theorem about likelihood ratio tests.
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Poisson Response

Suppose the data vector Y has independent Poisson compo-

nents.

The assumption µ = Mβ again seems absurd, because

E(Yi) ≥ 0

and linear functions are not constrained this way. Moreover

var(Yi) = µ

so we cannot have constant variance var(Y) = σ2I.
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Poisson Response (cont.)

The Poisson distribution is an exponential family. The log like-

lihood is

l(µ) = y log(µ)− µ

so the natural statistic is y and the natural parameter is

θ = log(µ)
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Poisson Response (cont.)

The notion of natural affine submodels, suggests we model the

natural parameter affinely. If Y1, . . ., Yn are independent Poisson

random variables with

Yi ∼ Poi(µi)

let

θi = log(µi)

and

θ = a + Mβ

This idea is called Poisson regression.
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Poisson Response (cont.)
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Counts for a non-homogeneous Poisson process in each hour
throughout a 14 day period.
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Poisson Response (cont.)

hour of day

F
re

qu
en

cy

0 5 10 15 20

0
20

40
60

80
10

0
12

0

Counts for the same process shown on the previous slide aggre-
gated by hour of the day.
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Poisson Response (cont.)

The process seems to be periodic with two daily peaks. Hence

we model the natural parameter as a Fourier series with terms

have frequencies one per day and two per day. The following R

statements do this.

Rweb:> w <- hour / 24 * 2 * pi

Rweb:> out2 <- glm(count ~ I(sin(w)) + I(cos(w)) +

+ I(sin(2 * w)) + I(cos(2 * w)), family = poisson)

Rweb:> summary(out2)

Rweb:> plot(hourofday, count, xlab = "hour of the day")

Rweb:> curve(predict(out2, data.frame(w = x / 24 * 2 * pi),

+ type="response"), add=TRUE)
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Poisson Response (cont.)

Regression coefficients table output by the summary command

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.65917 0.02494 66.516 < 2e-16 ***

I(sin(w)) -0.13916 0.03128 -4.448 8.66e-06 ***

I(cos(w)) -0.28510 0.03661 -7.787 6.86e-15 ***

I(sin(2 * w)) -0.42974 0.03385 -12.696 < 2e-16 ***

I(cos(2 * w)) -0.30846 0.03346 -9.219 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Poisson Response (cont.)
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Counts for the process shown on slides 43–44 plotted against
hour of the day with estimated regression function.
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Poisson Response (cont.)

Regression coefficients are of no interest at all in a model like

this.

Here is an example confidence interval for the natural parameter

for the first hour of the day.

Rweb:> w1 <- 1 / 24 * 2 * pi

Rweb:> tout <- predict(out2, newdata = data.frame(w = w1),

+ se.fit = TRUE)

Rweb:> tout$fit + c(-1, 1) * qnorm(0.975) * tout$se.fit

[1] 0.7318283 0.9996925
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Poisson Response (cont.)

And here are corresponding confidence intervals for the mean-

value parameter for the first hour of the day.

Rweb:> pout <- predict(out2, newdata = data.frame(w = w1),

+ se.fit = TRUE, type = "response")

Rweb:> pout$fit + c(-1, 1) * qnorm(0.975) * pout$se.fit

[1] 2.058481 2.695144

Rweb:> exp(tout$fit + c(-1, 1) * qnorm(0.975) * tout$se.fit)

[1] 2.078878 2.717446
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Poisson Response (cont.)

The first interval on the preceding slide uses the estimated mean

value plus or minus 1.96 standard errors calculated using inverse

Fisher information and the delta method. The second uses the

interval for θ given on the slide before that, mapping it to the

mean value parameter scale.

Unlike the situation on slide 31, these two kinds of intervals

closely agree in this example. So asymptotics of maximum like-

lihood and the delta method seem to be working well here.
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Poisson Response (cont.)

Fit three models in which the natural parameter is given by a

Fourier series with frequency one per day, two per day or three

per day

Rweb:> out1 <- glm(count ~ I(sin(w)) + I(cos(w)),

+ family = poisson)

Rweb:> out2 <- glm(count ~ I(sin(w)) + I(cos(w)) +

+ I(sin(2 * w)) + I(cos(2 * w)), family = poisson)

Rweb:> out3 <- glm(count ~ I(sin(w)) + I(cos(w)) +

+ I(sin(2 * w)) + I(cos(2 * w)) + I(sin(3 * w)) +

+ I(cos(3 * w)), family = poisson)
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Poisson Response (cont.)

Do likelihood ratio tests of model comparison (also called anal-
ysis of deviance)

Rweb:> anova(out1, out2, out3, test = "Chisq")

Analysis of Deviance Table

Model 1: count ~ I(sin(w)) + I(cos(w))

Model 2: count ~ I(sin(w)) + I(cos(w)) + I(sin(2 * w)) +

I(cos(2 * w))

Model 3: count ~ I(sin(w)) + I(cos(w)) + I(sin(2 * w)) +

I(cos(2 * w)) + I(sin(3 * w)) + I(cos(3 * w))

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 333 651.10

2 331 399.58 2 251.52 2.412e-55

3 329 396.03 2 3.55 0.17
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Poisson Response (cont.)

Model 3 fits no better than model 2 (P = 0.17). Model 2

fits much better than model 1 (P ≈ 0). Hence Model 2 is the

simplest model that appears to fit the data.
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Link Functions, Latent Variables

The approach to Bernoulli response presented here, now most

widely used, was not historically the first.

The first was probit regression.

Here is a story that appeals to some people more than the the-

ory of sufficient statistics and exponential families that leads to

logistic regression.
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Link Functions, Latent Variables (cont.)

Suppose we really have a linear model but don’t get to observe

its response. A variable that is not observable but is part of the

description of a statistical model is called latent. Hence we are

imagining a latent linear model with mean vector

η = Mβ

The latent response for the i-th individual is

Zi ∼ N (ηi, σ
2)

55



Link Functions, Latent Variables (cont.)

What we get to observe is

Yi =

1, Zi ≥ 0

0, Zi < 0

Then

Yi ∼ Ber(µi)

where

µi = Pr (Zi ≥ 0) = Pr
(
Zi − ηi
σ

≥ −
ηi
σ

)
= 1−Φ

(
−
ηi
σ

)
= Φ

(
ηi
σ

)
where Φ is the DF of the standard normal distribution.
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Link Functions, Latent Variables (cont.)

Since ηi is a linear function of the regression coefficients, σ is

not estimable. Multiply σ by c and divide all components of β by

c, then the µi are unchanged. Hence we might as well set σ = 1.

To recap

Yi ∼ Ber(µi)

µi = Φ(ηi)

η = Mβ

This is called probit regression and the parameter η is called the

linear predictor. It is also a GLM, fit by the R function glm.
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Link Functions, Latent Variables (cont.)

How can we know that a variable Zi that we cannot observe and

have no reason to believe really exists is really exactly normal?

We can’t! Thus it seems plausible to replace the normal DF in

µi = Φ(ηi)

by other DF, Cauchy for example. That is also a GLM, fit by

the R function glm.

Logistic regression with

µi =
1

1 + exp(−ηi)
also falls in this latent variable scheme, since the right hand side

is the DF of a distribution called logistic.
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Link Functions, Latent Variables (cont.)
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Same data as on slide 22 with logistic (black), probit (blue), and
cauchit (orange) regression curves.
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Link Functions, Latent Variables (cont.)

These GLM’s are said to differ in their link functions, which map

mean value parameter to linear predictor.

Unlike the case of the logit link, GLM using other link functions

are not exponential families. They are called curved exponential

families, which means smooth submodels of an exponential fam-

ily. The saturated model is an exponential family, but probit or

cauchit submodels are not.

This means the log likelihood is not concave and local maxima

of the log likelihood are not necessarily global maxima. Nor do

these models have low dimensional sufficient statistics (only the

whole data vector is sufficient).
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Link Functions, Latent Variables (cont.)

So you really have to like the story about unobservable latent

variables only the signs of which are observable in order to use

probit or cauchit link rather than the default logit link.

The logit link has much stronger statistical properties. It even

has a competing story about unobservable unobservable latent

variables only the signs of which are observable.

Nevertheless, some people do like these stories and do use these

other links.
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Categorical Data Analysis

Now we turn to the case where all of the data, response and
predictors, are categorical.

We assume individuals classified into categories. The data used
in the analysis are the counts of the number of individuals clas-
sified into each category.

If the category labels are univariate, the category counts are Yi,
we say we have a one-dimensional contingency table.

If the category labels are bivariate, the category counts are Yij,
we say we have a two-dimensional contingency table.

And so forth.
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Categorical Data Analysis

Three sampling models are widely used: Poisson, multinomial,
and product multinomial.

In the Poisson sampling model, the category counts (the Yi or
Yij or . . .) are assumed to be independent Poisson.

In the multinomial sampling model, the category counts (the Yi
or Yij or . . .) are assumed to be jointly multinomial.

5101 Homework problems 9-10 and 9-11. If we start with Poisson
sampling, then the multinomial sampling model arises when we
condition on the total number of individuals (the sample size). If
we start with multinomial sampling, then the Poisson sampling
model arises when we make the sample size a Poisson random
variable.
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Categorical Data Analysis

If the category counts are Yij, write

Yi+ =
∑
j

Yij

Y+j =
∑
i

Yij

and so forth for higher dimensional indices. If we write out the
Yij in an array in the usual way, then Yi+ are row sums and Y+j
are column sums.

If we start with Poisson sampling, then we get product multino-
mial sampling when we condition on a marginal. If we condition
on the Yi+, then the rows are independent multinomials. If we
condition on the Y+j, then the columns are independent multi-
nomials. Similarly for higher dimensional tables.
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Categorical Data Analysis

It’s called product multinomial because the joint distribution is

the product of multinomials (product of multinomials for each

row if we condition on Yi+ and so forth).

Multinomial sampling can be considered the special case where

the indices are univariate Yi and we condition on Y+.
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Pearson’s Chi-Square Statistic

Before continuing with categorical data analysis, we must men-

tion a historical anomaly.

Often, the likelihood ratio test is not used in categorical data

analysis, not because there is anything wrong with it, but because

of history.

Categorical data analysis was invented before maximum likeli-

hood, hence before likelihood ratio tests. It was also invented

before the general notion of linear models and before t and F

distributions.
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Pearson’s Chi-Square Statistic (cont.)

Suppose we have categorical data and suppose multinomial sam-

pling. Denote the data by Yi, i ∈ I, denote the sample size by n,

and denote the cell probabilities by pi, so

E(Yi) = npi, i ∈ I (∗)

Our abstract notation for the index set allows for any dimen-

sions for the contingency table. If we have a four-dimensional

contingency table, with data naturally denoted Yijkl, then we can

consider i in (∗) to stand for four-tuples of indices.
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Pearson’s Chi-Square Statistic (cont.)

We wish to compare two nested models. The big model makes

no restrictions on the cell probabilities other than that they are

nonnegative and sum to one. The small model makes the cell

probabilities functions pi(θ) of a parameter θ. Suppose θ̂ is the

MLE of θ, and suppose θ̃ is another estimator asymptotically

equivalent to the MLE, that is,

θ̃ = θ̂ + op(n
−1/2)

We assume the mapping θ 7→ p(θ) is differentiable and its Jaco-

bian ∇p(θ) is always full rank.
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Pearson’s Chi-Square Statistic (cont.)

Assume the little model is correct. Then Pearson’s chi-square

statistic

X2
n =

∑
i∈I

[Yi − npi(θ̃)]2

npi(θ̃)

is asymptotically equivalent to the likelihood ratio test statistic

G2
n = 2

∑
i∈I

Yi log

(
Yi

npi(θ̂)

)

that is

X2
n −G2

n = op(1)

and the asymptotic distribution of both is chi-square with degrees

of freedom the difference in dimensions of the models.
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Pearson’s Chi-Square Statistic (cont.)

The big model has dimension k−1, where k is the number of cat-

egories and the cardinality of I. The little model has dimension

p, where p is the dimension of θ.

So the asymptotic distribution of X2 or G2 is chi-square with

k − 1− p degrees of freedom.

If the null hypothesis is completely specified, a model containing

only a single parameter, then we say p = 0, and the degrees of

freedom is k − 1.
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Folklore

A bit of silly folklore that has no mathematics behind it says the
chi-square approximation is o. k. if and only if

npi(θ̃n) ≥ 5, i ∈ I
(the estimated expected value under the null hypothesis is at
least 5 in each cell).

Asymptotics, of course, does not work that way. Adequacy of
approximation is not an all or nothing thing. There are examples
in the literature of violations of this rule of thumb both ways.
Good asymptotic approximation with less than 5 expected in
some cells, and bad asymptotic approximation with greater than
5 in all cells.

People like rules, even if they are arbitrary and unscientific.
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One-Dimensional Contingency Table

Simulated data about rolls of a die

i 1 2 3 4 5 6
yi 1038 964 975 983 1035 1005

If the die is fair, then all numbers are equally probable, so the

null hypothesis is pi = 1/6, i = 1, . . ., 6.
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One-Dimensional Contingency Table (cont.)

The R function chisq.test does chi-square tests for one and two
dimensional contingency tables.

Rweb:> out <- chisq.test(y)

Rweb:> print(out)

Chi-squared test for given probabilities

data: y

X-squared = 4.904, df = 5, p-value = 0.4277

Pearson’s chi-squared test statistic is 4.904 on 5 degrees of free-
dom. The P -values is P = 0.4277, which is not statistically
significant. We accept the null hypothesis that the die is fair.
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One-Dimensional Contingency Table (cont.)

The likelihood ratio test we do by hand

Rweb:> Gsq <- 2 * sum(out$observed *

+ log(out$observed / out$expected))

Rweb:> print(Gsq)

[1] 4.894725

Rweb:> pchisq(Gsq, out$parameter, lower.tail = FALSE)

[1] 0.4288628

We get almost the same test statistic X2 = 4.904 and G2 =

4.895 and almost the same P -values P = 0.4277 for the X2 test

and P = 0.4289 for the G2 test.
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One-Dimensional Contingency Table (cont.)

More simulated data about rolls of a die

i 1 2 3 4 5 6
yi 1047 1017 951 1004 952 1029

If the die is fair, then all numbers are equally probable, so the

null hypothesis is pi = 1/6, i = 1, . . ., 6. Here we have a specific

alternative hypothesis in mind: that the die is shaved on the six

and one faces, making all the other faces smaller, which gamblers

call six-ace flats.
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One-Dimensional Contingency Table (cont.)

Rweb:> out0 <- chisq.test(y)

Rweb:> print(out0)

Chi-squared test for given probabilities

data: y

X-squared = 8.06, df = 5, p-value = 0.1530

The chi-square test with default arguments tests the null hypoth-
esis of equal probabilities and the null hypothesis is accepted
P = 0.15. The P -value is somewhat low but not statistically
significant according to anyone’s standards.

But this test is not about the six-ace flats hypothesis!
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One-Dimensional Contingency Table (cont.)

We do the likelihood ratio test with equal probabilities for the
null hypothesis and six-ace flats for the alternative.

Rweb:> nrolls <- sum(y)

Rweb:> phat0 <- rep(1 / 6, 6)

Rweb:> phat1 <- rep(NA, 6)

Rweb:> phat1[c(1, 6)] <- sum(y[c(1, 6)]) / 2 / nrolls

Rweb:> phat1[- c(1, 6)] <- sum(y[- c(1, 6)]) / 4 / nrolls

Rweb:> print(phat1)

[1] 0.1730 0.1635 0.1635 0.1635 0.1635 0.1730

Rweb:> Gsq <- 2 * sum(y * log(phat1 / phat0))

Rweb:> print(Gsq)

[1] 4.305331

Rweb:> pchisq(Gsq, 1, lower.tail = FALSE)

[1] 0.03799309
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One-Dimensional Contingency Table (cont.)

When we actually do the likelihood ratio test with null hypothesis

equal probabilities and alternative hypothesis six-ace flats, the

null hypothesis is rejected (P = 0.038).

Moral of the story: you can’t say anything about a hypothesis

until you have done a test involving that hypothesis!
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One-Dimensional Contingency Table (cont.)

The same three models can be fit using the R function glm

assuming Poisson sampling

Rweb:> sixace <- factor(num %in% c(1, 6))

Rweb:> num <- factor(num)

Rweb:> out.big <- glm(y ~ num, family = poisson)

Rweb:> out.middle <- glm(y ~ sixace, family = poisson)

Rweb:> out.little <- glm(y ~ 1, family = poisson)
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One-Dimensional Contingency Table (cont.)

The likelihood ratio tests (a. k. a., analysis of deviance) have
the same test statistics and the same P -values for both Poisson
and multinomial sampling.

Rweb:> anova(out.little, out.middle, out.big, test = "Chisq")

Analysis of Deviance Table

Model 1: y ~ 1

Model 2: y ~ sixace

Model 3: y ~ num

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 5 8.0945

2 4 3.7892 1 4.3053 0.0380

3 0 8.97e-14 4 3.7892 0.4353
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Two-Dimensional Contingency Table

In a two-dimensional contingency table, the data are Yij and

the cell probabilities pij. The test that is usually done has null

hypothesis that the cell probabilities have multiplicative form

pij = αiβj, for all i and j

If the αi are chosen to be nonnegative and sum to one, then

the βj have the same property and these are the marginal dis-

tributions of the random variables whose values are the row and

column labels.
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Two-Dimensional Contingency Table (cont.)

This this hypothesis is one of statistical independence if both row

and column labels are random, that is, if we have multinomial

sampling.

If we fix one marginal, that is, if we have product multinomial

sampling, than we say the test is of homogeneity of proportions.

Either way, the chi-square test statistic is the same and the

degrees of freedom is the same.
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Two-Dimensional Contingency Table (cont.)

If there are r rows and c columns, then there are k = rc cells in the

contingency table. In order to figure the degrees of freedom, we

need to know the number of parameters for the null hypothesis.

Since we have the two constraints
r∑

i=1

αi = 1

c∑
j=1

βj = 1

the null hypothesis has (r − 1) + (c− 1) free parameters. Hence

the degrees of freedom for the chi-square test is

rc− (r − 1)− (c− 1) = (r − 1)c− (r − 1) + 1 = (r − 1)(c− 1)

83



Two-Dimensional Contingency Table (cont.)

We need to know the MLE for α and β. The log likelihood is

r∑
i=1

c∑
j=1

yij log(αiβj) =
r∑

i=1

yi+ log(αi) +
c∑

j=1

y+j log(βj)

where, as before, the + subscript indicates summation over an
index.

In order to maximize the likelihood we must write it in terms of
free parameters

` =
r−1∑
i=1

yi+ log(αi) + yr+ log

1−
r−1∑
i=1

αi


+

c−1∑
j=1

y+j log(βj) + y+c log

1−
c−1∑
j=1

βj


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Two-Dimensional Contingency Table (cont.)

Then
∂`

∂αi
=
yi+
αi
−

yr+

1−
∑r−1
k=1αk

=
yi+
αi
−
yr+
αr

∂`

∂βj
=
y+j

βj
−

y+c

1−
∑c−1
k=1 βk

=
y+j

βj
−
y+c

βc

setting equal to zero and solving gives

α̂i = α̂r ·
yi+
yr+

β̂j = β̂c ·
y+j

y+c
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Two-Dimensional Contingency Table (cont.)

Now we again use the fact that the alphas and betas sum to

one.
r∑

i=1

α̂i = α̂r ·
y++

yr+
= 1

c∑
j=1

β̂j = β̂c ·
y++

y+c
= 1

hence

α̂i =
yi+
y++

β̂j =
y+j

y++

An example is on the computer examples web pages.
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