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Chapter 1

Random Variables and
Change of Variables

1.1 Random Variables

1.1.1 Variables

Before we tackle random variables, it is best to be sure we are clear about
the notion of a mathematical variable. A variable is a symbol that stands for
an unspecified mathematical object, like x in the expression x2 + 2x + 1.

Often, it is clear from the context what kind of object the variable stands for.
In this example, x can be any real number. But not all variables are numerical.
We will also use vector variables and variables taking values in arbitrary sets.

Thus, when being fussy, we specify the kind of mathematical objects a vari-
able can symbolize. We do this by specifying the set of objects which are possible
values of the variable. For example, we write

x2 + 2x + 1 = (x + 1)2, x ∈ R,

to show that the equality holds for any real number x, the symbol R indicating
the set of all real numbers.

1.1.2 Functions

In elementary mathematics, through first year calculus, textbooks, teachers,
and students are often a bit vague about the notion of a function, not distin-
guishing between a function, the value of a function, the graph of a function,
or an expression defining a function. In higher mathematics, we are sometimes
just as vague when it is clear from the context what is meant, but when clarity
is needed, especially in formal definitions, we are careful to distinguish between
these concepts.

1
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A function is a rule f that assigns to each element x of a set called the
domain of the function an object f(x) called the value of the function at x.
Note the distinction between the function f and the value f(x). There is also a
distinction between a function and an expression defining the function. We say,
let f be the function defined by

f(x) = x2, x ∈ R. (1.1)

Strictly speaking, (1.1) isn’t a function, it’s an expression defining the function
f . Neither is x2 the function, it’s the value of the function at the point x. The
function f is the rule that assigns to each x in the domain, which from (1.1) is
the set R of all real numbers, the value f(x) = x2.

As we already said, most of the time we do not need to be so fussy, but
some of the time we do. Informality makes it difficult to discuss some functions,
in particular, the two kinds described next. These functions are important for
other reasons besides being examples where care is required. They will be used
often throughout the course.

Constant Functions

By a constant function, we mean a function that has the same value at all
points, for example, the function f defined by

f(x) = 3, x ∈ R. (1.2)

We see here the difficulty with vagueness about the function concept. If we are
in the habit of saying that x2 is a function of x, what do we say here? The
analogous thing to say here is that 3 is a function of x. But that looks and
sounds really weird. The careful statement, that f is a function defined by
(1.2), is wordy, but not weird.

Identity Functions

The identity function on an arbitrary set S is the function f defined by

f(x) = x, x ∈ S. (1.3)

Here too, the vague concept seems a bit weird. If we say that x2 is a function, do
we also say x is a function (the identity function)? If so, how do we distinguish
between the variable x and the function x? Again, the careful statement, that
f is a function defined by (1.3), is wordy, but not weird.

Range and Codomain

If f is a function with domain A, the range of f is the set

range f = { f(x) : x ∈ S }
of all values f(x) for all x in the domain.
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Sometimes it is useful to consider f as a map from its domain A into a set
B. We write f : A → B or

A
f−→ B

to indicate this. The set B is called the codomain of f .
Since all the values f(x) of f are in the codomain B, the codomain necessarily

includes the range, but may be larger. For example, consider the function
f : R → R defined by f(x) = x2. The codomain is R, just because that’s
the way we defined f , but the range is the interval [0,∞) of nonnegative real
numbers, because squares are nonnegative.

1.1.3 Random Variables: Informal Intuition

Informally, a random variable is a variable that is random, meaning that its
value is unknown, uncertain, not observed yet, or something of the sort. The
probabilities with which a random variable takes its various possible values are
described by a probability model.

In order to distinguish random variables from ordinary, nonrandom variables,
we adopt a widely used convention of denoting random variables by capital
letters, usually letters near the end of the alphabet, like X, Y , and Z.

There is a close connection between random variables and certain ordinary
variables. If X is a random variable, we often use the corresponding small letter
x as the ordinary variable that takes the same values.

Whether a variable corresponding to a real-world phenomenon is considered
random may depend on context. In applications, we often say a variable is
random before it is observed and nonrandom after it is observed and its actual
value is known. Thus the same real-world phenomenon may be symbolized by
X before its value is observed and by x after its value is observed.

1.1.4 Random Variables: Formal Definition

The formal definition of a random variable is rather different from the infor-
mal intuition. Formally, a random variable isn’t a variable, it’s a function.

Definition 1.1.1 (Random Variable).
A random variable in a probability model is a function on the sample space
of a probability model.

The capital letter convention for random variables is used here too. We
usually denote random variables by capital letters like X. When considered
formally a random variable X a function on the sample space S, and we can
write

S
X−→ T

if we like to show that X is a map from its domain S (always the sample space)
to its codomain T . Since X is a function, its values are denoted using the usual
notation for function values X(s).
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An Abuse of Notation

A widely used shorthand that saves quite a bit of writing is to allow a relation
specifying an event rather than an event itself as the apparent argument of a
probability measure, that is, we write something like

P (X ∈ A) (1.4)

or
P (X ≤ x). (1.5)

Strictly speaking, (1.4) and (1.5) are nonsense. The argument of a probability
measure is an event (a subset of the sample space). Relations are not sets. So
(1.4) and (1.5) have the wrong kind of arguments.

But it is obvious what is meant. The events in question are the sets defined
by the relations. To be formally correct, in place of (1.4) we should write P (B),
where

B = { s ∈ S : X(s) ∈ A }, (1.6)

and in place of (1.5) we should write P (C), where

C = { s ∈ S : X(s) ≤ x }. (1.7)

Of course we could always plug (1.6) into P (B) getting the very messy

P ({ s ∈ S : X(s) ∈ A }) (1.8)

It is clear that (1.4) is much simpler and cleaner than (1.8).
Note in (1.5) the role played by the two exes. The “big X” is a random

variable. The “little x” is an ordinary (nonrandom) variable. The expression
(1.5) stands for any statement like

P (X ≤ 2)

or

P (X ≤ −4.76)

Why not use different letters so as to make the distinction between the two
variables clearer? Because we want to make an association between the random
variable “big X” and the ordinary variable “little x” that stands for a possible
value of the random variable X. Anyway this convention is very widely used,
in all probability and statistics books, not just in this course, so you might as
well get used to it.

The Incredible Disappearing Identity Random Variable

By “identity random variable” we mean the random variable X on the sample
space S defined by

X(s) = s, s ∈ S,
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that is, X is the identity function on S.
As we mentioned in our previous discussion of identity functions, when you’re

sloppy in terminology and notation the identity function disappears. If you don’t
distinguish between functions, their values, and their defining expressions x is
both a variable and a function. Here, sloppiness causes the disappearance of
the distinction between the random variable “big X” and the ordinary variable
“little s.” If you don’t distinguish between the function X and its values X(s),
then X is s.

When we plug in X(s) = s into the expression (1.6), we get

B = { s ∈ S : s ∈ A } = A.

Thus when X is the identity random variable P (X ∈ A) is just another notation
for P (A). Caution: when X is not the identity random variable, this isn’t true.

Another Useful Notation

For probability models (distributions) having a standard abbreviation, like
Exp(λ) for the exponential distribution with parameter λ we use the notation

X ∼ Exp(λ)

as shorthand for the statement that X is a random variable with this probability
distribution. Strictly speaking, X is the identity random variable for the Exp(λ)
probability model.

Examples

Example 1.1.1 (Exponential Random Variable).
Suppose

X ∼ Exp(λ).

What is
P (X > x),

for x > 0?
The definition of the probability measure associated with a continuous prob-

ability model says

P (A) =
∫

A

f(x) dx.

We only have to figure what event A we want and what density function f .

To calculate the probability of an event A. Integrate the density over
A for a continuous probability model (sum over A for a discrete
model).

The event A is
A = { s ∈ R : s > x } = (x,∞),
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and the density of the Exp(λ) distribution is from the handout

f(x) = λe−λx, x > 0.

We only have to plug these into the definition and evaluate the integral.
But when we do so, we have to be careful. We cannot just put in the limits

of integration x and ∞ giving

P (A) =
∫ ∞

x

f(x) dx, (1.9)

because the x in the limit of integration isn’t the same as the x that is the
variable of integration (in f(x) dx. In fact, this formula is obviously wrong
because it violates a basic sanity check of calculus

The “dummy” variable of integration never appears in the limits of
integration or in the expression that is the value of the integral.

Thus we need to use some other variable, say s, as the dummy variable of
integration (it’s called a “dummy” variable, because the value of the integral
doesn’t contain this variable, so it doesn’t matter what variable we use.) This
gives

P (A) =
∫ ∞

x

f(s) ds

=
∫ ∞

x

λe−λs ds

= −e−λs
∣∣∣∞
x

= e−λx

Note that in the second line

f(s) = λe−λs.

When we replace f(x) by f(s), we replace x by s everywhere x appears in the
definition of f(x).

Example 1.1.2 (A More Complicated Event).
Suppose, as before,

X ∼ Exp(λ).

But know we want to know

P
(
(X − µ)2 < a2

)
, (1.10)

where µ and a are positive real numbers.
We follow the same strategy as before. We need to evaluate (1.9), where A

is the event implicitly defined in (1.10), which is

A = {x > 0 : x < µ − a or x > µ + a }
= (0, µ − a) ∪ (µ + a,∞)
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the union of two disjoint intervals unless µ − a < 0, in which case the lower
interval is empty.

This mean that (1.9) becomes the sum of integrals over these two disjoint
sets

P (A) =
∫ µ−a

0

f(x) dx +
∫ ∞

µ+a

f(x) dx

= −e−λx
∣∣∣µ−a

0
− e−λx

∣∣∣∞
µ+a

= (1 − e−λ(µ−a)) + e−λ(µ+a)

unless µ − a < 0, in which case it is

P (A) =
∫ ∞

µ+a

f(x) dx

= e−λ(µ+a)

1.1.5 Functions of Random Variables

One immediate consequence of the formal definition of random variables is
that any function of random variables is another random variable. Suppose X
and Y are real valued random variables and we define Z = X2Y . Then Z is
also a function on the sample space S defined by

Z(s) = X(s)2Y (s), s ∈ S,

and similarly for any other function of random variables.

1.2 Change of Variables

1.2.1 General Definition

Consider a random variable X and another random variable Y defined by
Y = g(X), where g is an arbitrary function. Every function of random variables
is a random variable!

Note that
P (Y ∈ A) = P

(
g(X) ∈ A

)
. (1.11)

In one sense (1.11) is trivial. The two sides are equal because Y = g(X).
In another sense (1.11) is very deep. It contains the heart of the most general

change of variable formula. It tells how to calculate probabilities for Y in terms
of probabilities for X. To be precise, let PX denote the probability measure for
the model in which X is the identity random variable, and similarly PY for the
analogous measure for Y . Then the left hand side of (1.11) is trivial is PY (A)
and the right hand side is PX(B), where

B = { s ∈ S : g(s) ∈ A } (1.12)
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where S is the sample space of the probability model describing X. We could
have written g

(
X(s)

)
in place of g(s) in (1.12), but since X is the identity

random variable for the PX model, these are the same. Putting this all together,
we get the following theorem.

Theorem 1.1. If X ∼ PX and Y = g(X), then Y ∼ PY where

PY (A) = PX(B),

the relation between A and B being given by (1.12).

This theorem is too abstract for everyday use. In practice, we will use at lot
of other theorems that handle special cases more easily. But it should not be
forgotten that this theorem exists and allows, at least in theory, the calculation
of the distribution of any random variable.

Example 1.2.1 (Constant Random Variable).
Although the theorem is hard to apply to complicated random variables, it is
not too hard for simple ones. The simplest random variable is a constant one.
Say the function g in the theorem is the constant function defined by g(s) = c
for all s ∈ S.

To apply the theorem, we have to find, for any set A in the sample of Y ,
which is the codomain of the function g, the set B defined by (1.12). This
sounds complicated, and in general it is, but here is it fairly easy. There are
actually only two cases.

Case I: Suppose c ∈ A. Then

B = { s ∈ S : g(s) ∈ A } = S

because g(s) = c ∈ A for all s in S.

Case II: Conversely, suppose c /∈ A. Then

B = { s ∈ S : g(s) ∈ A } = ∅

because g(s) = c /∈ A for all s in S, that is there is no s such that the condition
holds, so the set of s satisfying the condition is empty.

Combining the Cases: Now for any probability distribution the empty set
has probability zero and the sample space has probability one, so PX(∅) = 0
and PX(S) = 1. Thus the theorem says

PY (A) =

{
1, c ∈ A

0, c /∈ A
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Thus even constant random variables have probability distributions. They
are rather trivial, all the probabilities being either zero or one, but they are
probability models that satisfy the axioms.

Thus in probability theory we treat nonrandomness as a special case of
randomness. There is nothing uncertain or indeterminate about a constant
random variable. When Y is defined as in the example, we always know Y =
g(X) = c, regardless of what happens to X. Whether one regards this as
mathematical pedantry or a philosophically interesting issue is a matter of taste.

1.2.2 Discrete Random Variables

For discrete random variables, probability measures are defined by sums

P (A) =
∑
x∈A

f(x) (1.13)

where f is the density for the model (Lindgren would say p. f.)
Note also that for discrete probability models, not only is there (1.13) giving

the measure in terms of the density, but also

f(x) = P ({x}). (1.14)

giving the density in terms of the measure, derived by taking the case A = {x}
in (1.13). This looks a little odd because x is a point in the sample space, and
a point is not a set, hence not an event, the analogous event is the set {x}
containing the single point x.

Thus our job in applying the change of variable theorem to discrete proba-
bility models is much simpler than the general case. We only need to consider
sets A in the statement of the theorem that are one-point sets. This gives the
following theorem.

Theorem 1.2. If X is a discrete random variable with density fX and sample
space S, and Y = g(X), then Y is a discrete random variable with density fY

defined by
fY (y) = PX(B) =

∑
x∈B

fX(x),

where
B = {x ∈ S : y = g(x) }.

Those who don’t mind complicated notation plug the definition of B into
the definition of fY obtaining

fY (y) =
∑
x∈S

y=g(x)

fX(x).

In words, this says that to obtain the density of a discrete random variable Y ,
one sums the probabilities of all the points x such that y = g(x) for each y.

Even with the simplification, this theorem is still a bit too abstract and
complicated for general use. Let’s consider some special cases.
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One-To-One Transformations

A transformation (change of variable)

S
g−→ T

is one-to-one if g maps each point x to a different value g(x) from all other
points, that is,

g(x1) 6= g(x2), whenever x1 6= x2.

A way to say this with fewer symbols is to consider the equation

y = g(x).

If for each fixed y, considered as an equation to solve for x, there is a unique
solution, then g is one-to-one. If for any y there are multiple solutions, it isn’t.

Whether a function is one-to-one or not may depend on the domain. So
if you are sloppy and don’t distinguish between a function and an expression
giving the value of the function, you can’t tell whether it is one-to-one or not.

Example 1.2.2 (x2).
The function g : R → R defined by g(x) = x2 is not one-to-one because

g(x) = g(−x), x ∈ R.

So it is in fact two-to-one, except at zero.
But the function g : (0,∞) → R defined by the very same formula g(x) = x2

is one-to-one, because there do not exist distinct positive real numbers x1 and
x2 such that x2

1 = x2
2. (Every positive real number has a unique positive square

root.)

This example seems simple, and it is, but every year some students get
confused about this issue on tests. If you don’t know whether you are dealing
with a one-to-one transformation or not, you’ll be in trouble. And you can’t tell
without considering the domain of the transformation as well as the expression
giving its values.

Inverse Transformations

A function is invertible if it is one-to-one and onto, the latter meaning that
its codomain is the same as its range.

Neither of the functions considered in Example 1.2.2 are invertible. The
second is one-to-one, but it is not onto, because the g defined in the example
maps positive real numbers to positive real numbers. To obtain a function that
is invertible, we need to restrict the codomain to be the same as the range,
defining the function

g : (0,∞) → (0,∞)

by
g(x) = x2.
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Every invertible function
S

g−→ T

has an inverse function
T

g−1

−→ S

(note g−1 goes in the direction opposite to g) satisfying

g
(
g−1(y)

)
= y, y = inT

and
g−1

(
g(x)

)
= x, x = inS.

A way to say this that is a bit more helpful in doing actual calculations is

y = g(x) wheneverx = g−1(y).

The inverse function is discovered by trying to solve

y = g(x)

for x. For example, if
y = g(x) = x2

then
x =

√
y = g−1(y).

If for any y there is no solution or multiple solutions, the inverse does not exist (if
no solutions the function is not onto, if multiple solutions it is not one-to-one).

Change of Variable for Invertible Transformations

For invertible transformations Theorem 1.2 simplifies considerably. The set
B in the theorem is always a singleton: there is a unique x such that y = g(x),
namely g−1(y). So

B = { g−1(y) },
and the theorem can be stated as follows.

Theorem 1.3. If X is a discrete random variable with density fX and sample
space S, if g : S → T is an invertible transformation, and Y = g(X), then Y is
a discrete random variable with density fY defined by

fY (y) = fX

(
g−1(y)

)
, y ∈ T. (1.15)

Example 1.2.3 (The “Other” Geometric Distribution).
Suppose X ∼ Geo(p), meaning that X has the density

fX(x) = (1 − p)px, x = 0, 1, 2, . . . (1.16)

Some people like to start counting at one rather than zero (Lindgren among
them) and prefer to call the distribution of the random variable Y = X + 1 the
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“geometric distribution” (there is no standard, some people like one definition,
some people like the other).

The transformation in question is quite simple

y = g(x) = x + 1

has inverse
x = g−1(y) = y − 1

if (big if) we get the domains right. The domain of X is the set of nonnegative
integers {0, 1, . . .}. The transformation g maps this to the set of positive integers
{1, 2, . . .}. So that is the range of g and the domain of g−1 and hence the sample
space of the distribution of Y . If we don’t get the domains right, we don’t know
the sample space for Y and so can’t completely specify the distribution.

Now we just apply the theorem. The density fX in the theorem is defined
by (1.16). The expression fX

(
g−1(y)

)
in the theorem means that everywhere

we see an x in the definition of fX(x), we plug in g−1(y) = y − 1. This gives

fY (y) = (1 − p)py−1, y − 1 = 0, 1, 2, . . . .

The condition on the right giving the possible values of y is not in the usual
form. If we clean it up, we get

fY (y) = (1 − p)py−1, y = 1, 2, 3, . . . (1.17)

Note that this does indeed say that Y has the domain (sample space) we figured
out previously.

Example 1.2.4 (A Useless Example).
Again consider the geometric distribution with density (1.16), but now consider
the transformation g(x) = x2. Since the domain is the nonnegative integers,
g is one-to-one. In order to make it onto, we must make the codomain equal
to the range, which is the set {0, 1, 4, 9, 16, . . .} of perfect squares. The inverse
transformation is x =

√
y, and applying the theorem gives

fY (y) = (1 − p)p
√

y, y = 0, 1, 4, 9, 16, . . .

for the density of Y = g(X).

The reason this is called a “useless example” is that the formula is fairly
messy, so people avoid it. In general one never has to do a change of variable
unless a test question or homework problem makes you. One can always do the
calculation using fX rather than fY . The question is which is easier.

1.2.3 Continuous Random Variables

For continuous random variables, probability measures are defined by inte-
grals

P (A) =
∫

A

f(x) dx (1.18)
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where f is the density for the model (Lindgren would say p. d. f.)
So far (one sentence) this section looks much like the section on discrete

random variables. The only difference is that (1.18) has an integral where
(1.13) has a sum. But the next equation (1.14) in the section on discrete random
variables has no useful analog for continuous random variables. In fact

P ({x}) = 0, for all x

(p. 32 in Lindgren). Because of this there is no simple analog of Theorem 1.2
for continuous random variables.

There is, however, an analog of Theorem 1.3.

Theorem 1.4. If X is a continuous random variable with density fX and sam-
ple space S, if g : S → T is an invertible transformation with differentiable
inverse h = g−1, and Y = g(X), then Y is a continuous random variable with
density fY defined by

fY (y) = fX

(
h(y)

) · |h′(y)|, y ∈ T. (1.19)

The first term on the right hand side in (1.19) is the same as the right hand
side in (1.15), the only difference is that we have written h for g−1. The second
term has no analog in the discrete case. Here summation and integration, and
hence discrete and continuous random variables, are not analogous.

We won’t bother to prove this particular version of the theorem, since it is
a special case of a more general theorem we will prove later (the multivariable
continuous change of variable theorem).

Example 1.2.5.
Suppose

X ∼ Exp(λ).

What is the distribution of Y = X2?
This is just like Example 1.2.4 except now we use the continuous change of

variable theorem.
The transformation in question is g : (0,∞) → (0,∞) defined by

g(x) = x2, x > 0.

The inverse transformation is, of course,

h(y) = g−1(y) = y1/2, y > 0,

and it also maps from (0,∞) to (0,∞). Its derivative is

h′(y) = 1
2y−1/2, y > 0.

The density of X is
fX(x) = λe−λx, x > 0.
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Plugging in h(y) =
√

y everywhere for x gives

fX

(
h(y)

)
= λe−λ

√
y

And multiplying by the derivative term gives the density of Y .

fY (y) = fX

(
h(y)

) · |h′(y)|
= λe−λ

√
y · 1

2y−1/2

=
λe−λ

√
y

2
√

y
, y > 0.

Note that we tack the range of y values on at the end. The definition of fY isn’t
complete without it.

1.3 Random Vectors

A vector is a mathematical object consisting of a sequence or tuple of real
numbers. We usually write vectors using boldface type

x = (x1, . . . , xn)

The separate numbers x1, . . ., xn are called the components or coordinates of
the vector. We can also think of a vector as a point in n-dimensional Euclidean
space, denoted Rn.

A random vector is simply a vector-valued random variable. Using the “big
X” and “little x” convention, we denote random vectors by capital letters and
their possible values by lower case letters. So a random vector

X = (X1, . . . , Xn)

is a vector whose components are real-valued random variables X1, . . ., Xn. For
contrast with vectors, real numbers are sometimes called scalars. Thus most of
the random variables we have studied up to now can be called random scalars
or scalar-valued random variables.

Strictly speaking, there is a difference between a function f of a vector
variable having values f(x) and a function f of several scalar variables having
values f(x1, . . . , xn). One function has one argument, the other n arguments.
But in practice we are sloppy about the distinction, so we don’t have to write
f
(
(x1, . . . , xn)

)
when we want to consider f a function of a vector variable and

explicitly show the components of the vector. The sloppiness, which consists in
merely omitting a second set of parentheses, does no harm.

That having been said, there is nothing special about random vectors. They
follow the same rules as random scalars, though we may need to use some
boldface letters to follow our convention.
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1.3.1 Discrete Random Vectors

A real-valued function f on a countable subset S of Rn is the probability
density (Lindgren would say p. f.) of a discrete random vector if it satisfies the
following two properties

f(x) ≥ 0, for all x ∈ S (1.20a)∑
x∈S

f(x) = 1 (1.20b)

The corresponding probability measure (“big P”) is defined by

P (A) =
∑
x∈A

f(x) (1.20c)

for all events A (events being, as usual, subsets of the sample space S).
Except for the boldface type, these are exactly the same properties that

characterize probability densities and probability measures of a discrete random
scalar. The only difference is that x is really an n-tuple, so f is “really” a
function of several variables, and what looks simple in this notation, may be
complicated in practice. We won’t give an example here, but will wait and make
the point in the context of continuous random vectors.

1.3.2 Continuous Random Vectors

Similarly, a real-valued function f on a subset S of Rn is the probability
density (Lindgren would say p. d. f.) of a continuous random vector if it satisfies
the following two properties

f(x) ≥ 0, for all x ∈ S (1.21a)∫
S

f(x) dx = 1 (1.21b)

The corresponding probability measure is defined by

P (A) =
∫

A

f(x) dx (1.21c)

for all events A (events being, as usual, subsets of the sample space S).
Again, except for the boldface type, these are exactly the same properties

that characterize probability densities and probability measures of a continuous
random scalar. Also note that the similarity between the discrete and continuous
cases, the only difference being summation in one and integration in the other.

To pick up our point about the notation hiding rather tricky issues, we go
back to the fact that f is “really” a function of several random variables, so
the integrals in (1.21b) and (1.21c) are “really” multiple (or iterated) integrals.
Thus (1.21c) could perhaps be written more clearly as

P (A) =
∫∫

· · ·
∫

A

f(x1, x2, . . . , xn) dx1 dx2 · · · dxn
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Whether you prefer this to (1.21c) is a matter of taste. It does make some of
the difficulty more explicit.

Example 1.3.1.
Suppose that f is the probability density on the unit square in R2 defined by

f(x, y) = x + y, 0 < x < 1 and 0 < y < 1. (1.22)

Suppose we wish to calculate P (X +Y > 1), or written out more explicitly, the
probability of the event

A = { (x, y) : 0 < x < 1 and 0 < y < 1 and x + y > 1 }
We have to integrate over the set A. How do we write that as an iterated
integral?

Suppose we decide to integrate over y first and x second. In the first integral
we keep x fixed, and consider y the variable. What are the limits of integration
for y? Well, y must satisfy the inequalities 0 < y < 1 and 1 < x + y. Rewrite
the latter as 1 − x < y. Since 1 − x is always greater than zero, the inequality
0 < y plays no role, and we see that the interval over which we integrate y is
1 − x < y < 1.

Now we need to find the limits of integration of x. The question is whether
the interval over which we integrate is 0 < x < 1 or whether there is some other
restriction limiting us to a subinterval. What decides the question is whether
it is always possible to satisfy 1 − x < y < 1, that is, whether we always have
1 − x < 1. Since we do, we see that 0 < x < 1 is correct and

P (A) =
∫ 1

0

∫ 1

1−x

f(x, y) dy dx

The inner integral is∫ 1

1−x

(x + y) dy = xy +
y2

2

∣∣∣∣1
1−x

=
(

x +
1
2

)
−

(
x(1 − x) +

(1 − x)2

2

)
= x +

x2

2

So the outer integral is∫ 1

0

(
x +

x2

2

)
dx =

x2

2
+

x3

6

∣∣∣∣1
0

=
2
3

In more complicated situations, finding the limits of integration can be much
trickier. Fortunately, there is not much use for this kind of trickery in probability
and statistics. In principle arbitrarily obnoxious problems of this sort can arise,
in practice they don’t.

Note that we get an exactly analogous sort of problem calculating proba-
bilities of arbitrary events for discrete random vectors. The iterated integrals
become iterated sums and the limits of integration are replaced by limits of
summation. But the same principles apply. We don’t do an example because
the sums are harder to do in practice than integrals.
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1.4 The Support of a Random Variable

The support of a random variable is the set of points where its density is
positive. This is a very simple concept, but there are a few issues about supports
that are worthwhile stating explicitly.

If a random variable X has support A, then P (X ∈ A) = 1, because if S is
the sample space for the distribution of X

1 =
∫

S

fX(x) dx

=
∫

A

fX(x) dx +
∫

Ac

fX(x) dx

=
∫

A

fX(x) dx

= P (X ∈ A)

because fX is zero on Ac and the integral of zero is zero.
Thus, as long as the only random variables under consideration are X and

functions of X it makes no difference whether we consider the sample space to
be S (the original sample space) or A (the support of X). We can use this
observation in two ways.

• If the support of a random variable is not the whole sample space, we can
throw the points where the density is zero out of the sample space without
changing any probabilities.

• Conversely, we can always consider a random variable to live in a larger
sample space by defining the density to be zero outside of the original
sample space.

Simple examples show the idea.

Example 1.4.1.
Consider the U(a, b) distribution. We can consider the sample space to be the
interval (a, b), in which case we write the density

f(x) =
1

b − a
, a < x < b. (1.23a)

On the other hand, we may want to consider the sample space to be the whole
real line, in which case we can write the density in two different ways, one using
case splitting

f(x) =


0, x ≤ a

1
b−a , a < x < b

0, b ≤ x

(1.23b)

and the other using indicator functions

f(x) =
1

b − a
I(a,b)(x), x ∈ R. (1.23c)
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In most situations you can use whichever form you prefer. Why would
anyone every use the more complicated (1.23b) and (1.23c)? There are several
reasons. One good reason is that there may be many different random variables,
all with different supports, under consideration. If one wants them all to live
on the same sample space, which may simplify other parts of the problem, then
one needs something like (1.23b) or (1.23c). Another reason not so good is
mere habit or convention. For example, convention requires that the domain
of a c. d. f. be the whole real line. Thus one commonly requires the domain of
the matching density to also be the whole real line necessitating something like
(1.23b) or (1.23c) if the support is not the whole real line.

1.5 Joint and Marginal Distributions

Strictly speaking, the words “joint” and “marginal” in describing probability
distributions are unnecessary. They don’t describe kinds of probability distribu-
tions. They are just probability distributions. Moreover, the same probability
distribution can be either “joint” or “marginal” depending on context. Each is
the probability distribution of a set of random variables. When two different
sets are under discussion, one a subset of the other, we use “joint” to indicate
the superset and “marginal” to indicate the subset. For example, if we are
interested in the distribution of the random variables X, Y , and Z and simulta-
neously interested in the distribution of X and Y , then we call the distribution
of the three variables with density fX,Y,Z the “joint” distribution and density,
whereas we call the distribution of the two variables X and Y with density fX,Y

the “marginal” distribution and density. In a different context, we might also
be interested in the distribution of X alone with density fX . In that context
we would call fX,Y the joint density and fX the marginal density. So whether
fX,Y is “joint” or “marginal” depends entirely on context.

What is the relationship between joint and marginal densities? Given fX,Y ,
how do we obtain fX? (If we can see that, other questions about joint and
marginal densities will be obvious by analogy.)

First, note that this is a question about change of variables. Given the
“original” random vector (X,Y ) what is the distribution of the random variable
defined by the transformation

X = g(X,Y )?

This is not the sort of transformation covered by any of the special-case change
of variable theorems (it is certainly not one-to-one, since any two points with
the same x value but different y values map to the same point x). However, the
general change of variable theorem, Theorem 1.1, does apply (it applies to any
change of variables).

Theorem 1.1 applied to this case says that

PX(A) = PX,Y (B), (1.24)
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where

B = { (x, y) ∈ R2 : g(x, y) ∈ A }
= { (x, y) ∈ R2 : x ∈ A }
= A × R.

because g(x, y) = x, the notation A × R indicating the Cartesian product of A
and R, the set of all points (x, y) with x ∈ A and y ∈ R.

Now the definition of the density of a continuous (scalar) random variable
applied to the left hand side of (1.24) gives us

PX(A) =
∫

A

fX(x) dx,

whereas the definition of the density of a continuous (bivariate) random vector
applied to the right hand side of (1.24) gives us

PX,Y (B) =
∫∫

B

fX,Y (x, y) dx dy

=
∫∫

A×R
fX,Y (x, y) dx dy

=
∫

A

∫ +∞

−∞
fX,Y (x, y) dy dx

Thus we can calculate P (X ∈ A) in two different ways, which must be equal∫
A

fX(x) dx =
∫

A

∫ +∞

−∞
fX,Y (x, y) dy dx

Equality of the two expressions for arbitrary events A requires that fX(x) be
the result of the y integral, that is,

fX(x) =
∫

fX,Y (x, y) dy. (1.25)

In words we can state this result as follows

To go from joint to marginal you integrate (or sum) out the variables
you don’t want.

Those readers who are highlighting with a marker, should change colors here
and use fire engine red glitter sparkle for this one, something that will really
stand out. This point is very important, and frequently botched by students. If
you don’t remember the slogan above, you will only know that to produce the
marginal of X you integrate with respect to x or y. Not knowing which, you
will guess wrong half the time. Of course, if you have good calculus awareness
you know that ∫

fX,Y (x, y) dx

like any integral
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• cannot be a function of the dummy variable of integration x, and

• is a function of the free variable y.

Thus ∫
fX,Y (x, y) dx = some function of y only

and hence can only be fY (y) and cannot be fX(x). Thus making the mistake
of integrating with respect to the wrong variable (or variables) in attempting
to produce a marginal is really dumb on two counts: first, you were warned
but didn’t get it, and, second, it’s not only a mistake in probability theory but
also a calculus mistake. I do know there are other reasons people can make
this mistake, being rushed, failure to read the question, or whatever. I know
someone will make this mistake, and I apologize in advance for insulting you
by calling this a “dumb mistake” if that someone turns out to be you. I’m only
trying to give this lecture now, when it may do some good, rather than later,
written in red ink all over someone’s test paper. (I will, of course, be shocked
but very happy if no one makes the mistake on the tests.)

Of course, we sum out discrete variables and integrate out continuous ones.
So how do we go from fW,X,Y,Z to fX,Z? We integrate out the variables we
don’t want. We are getting rid of W and Y , so

fX,Z(x, z) =
∫∫

fW,X,Y,Z(w, x, y, z) dw dy.

If the variables are discrete, the integrals are replaced by sums

fX,Z(x, z) =
∑
w

∑
y

fW,X,Y,Z(w, x, y, z).

In principle, it couldn’t be easier. In practice, it may be easy or tricky, depending
on how tricky the problem is. Generally, it is easy if there are no worries about
domains of integration (and tricky if there are such worries).

Example 1.5.1.
Consider the distribution of Example 1.3.1 with joint density of X and Y given
by (1.22). What is the marginal distribution of Y ? We find it by integrating
out X

fY (y) =
∫

f(x, y) dx =
∫ 1

0

(x + y) dx =
x2

2
+ xy

∣∣∣∣1
0

=
(

1
2

+ y

)
Couldn’t be simpler, so long as you don’t get confused about which variable

you integrate out.
That having been said, it is with some misgivings that I even mention the

following examples. If you are having trouble with joint and marginal distribu-
tions, don’t look at them yet! They are tricky examples that very rarely arise.
If you never understand the following examples, you haven’t missed much. If
you never understand the preceding example, you are in big trouble.
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Example 1.5.2 (Uniform Distribution on a Triangle).
Consider the uniform distribution on the triangle with corners (0, 0), (1, 0), and
(0, 1) with density

f(x, y) = 2, 0 < x and 0 < y and x + y < 1

What is the marginal distribution of X? To get that we integrate out Y . But
the fact that the support of the distribution is not rectangular with sides parallel
to the axes means we must take care about limits of integration.

When integrating out y we consider x fixed at one of its possible values.
What are the possible values? Clearly x > 0 is required. Also we must have
x < 1− y. This inequality is least restrictive when we take y = 0. So the range
of the random variable X is 0 < x < 1.

For x fixed at a value in this range, what is the allowed range of y? By
symmetry, the analysis is the same as we did for x. We must have 0 < y < 1−x,
but now we are considering x fixed. So we stop here. Those are the limits. Thus

fX(x) =
∫ 1−x

0

f(x, y) dy =
∫ 1−x

0

2 dy = 2y
∣∣∣1−x

0
= 2(1 − x), 0 < x < 1.

Note that the marginal is not uniform, although the joint is uniform!

Example 1.5.3 (The Discrete Analog of Example 1.5.2).
We get very similar behavior in the discrete analog of Example 1.5.2. Consider
the uniform distribution on the set

Sn = { (x, y) ∈ Z2 : 1 ≤ x ≤ y ≤ n }
for some positive integer n (the symbol Z denotes the set of integers, so Z2 is
the set of points in R2 with integer coordinates).

Of course the density of the uniform distribution is constant

f(x, y) =
1

card(Sn)
, (x, y) ∈ Sn.

We only have to count the points in Sn to figure out what it is.
We do the count in two bits. There are n points of the form (i, i) for i = 1,

. . ., n, and there are
(
n
2

)
points of the form (i, j) with 1 ≤ i < j ≤ n. Hence

card(Sn) = n +
(

n

2

)
= n +

n(n − 1)
2

=
n(n + 1)

2

Now in order to have a problem we need a question, which we take to be the
same as in the preceding example: what is the marginal of X? To find that we
sum out y

fX(x) =
n∑

y=x

f(x, y) =
2

n(n + 1)

n∑
y=x

1 =
2(n − x + 1)

n(n + 1)

because there are n − x + 1 integers between x and n (including both ends).
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1.6 Multivariable Change of Variables

1.6.1 The General and Discrete Cases

This section is very short. There is nothing in the general change of variable
theorem (Theorem 1.1 about dimension. It applies to all problems, scalar,
vector, or whatever.

Similarly, there is nothing in the specializations of the general theorem to
the discrete case (Theorems 1.2 and 1.3) about dimension. These too apply to
all problems, scalar, vector, or whatever.

1.6.2 Continuous Random Vectors

Derivatives of Vector Functions

But Theorem 1.4 obviously doesn’t apply to the vector case, at least not
unless it is made clear what the notation |h′(y)| in (1.19) might mean when
h is a vector-valued function of a vector variable. For future reference (to be
used next semester) we develop the general case in which the dimensions of the
domain and codomain are allowed to be different, although we only want the
case where they are the same right now.

Let g be a function that maps n-dimensional vectors to m-dimensional vec-
tors (maps Rn to Rm). If we write y = g(x), this means y is m-dimensional
and x is n-dimensional. If you prefer to think in terms of many scalar variables
instead of vectors, there are really m functions, one for each component of y

yi = gi(x1, . . . , xn), i = 1, . . . , m.

So g(x) really denotes a vector of functions

g(x) =

 g1(x)
...

gm(x)


which, if you want to write the functions as having n scalar arguments rather
than just one vector argument, can also be written

g(x) =

 g1(x1, . . . , xn)
...

gm(x1, . . . , xn)


Vector notation is very compact! A few symbols say a lot.

The derivative of the function g at the point x (assuming it exists) is the
matrix of partial derivatives. It is written ∇g(x) and pronounced “del g of x.”
Throughout this section we will also write it as the single letter G. So

G = ∇g(x)
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is the matrix with elements

gij =
∂gi(x)
∂xj

Note that if g maps n-dimensional vectors to m-dimensional vectors, then it is
an m×n matrix (rather than the n×m). The reason for this choice will become
apparent eventually, but not right now.

Example 1.6.1.
Suppose we are interested in the map from 3-dimensional space to 2-dimensional
space defined by

u =
x√

x2 + y2 + z2

v =
y√

x2 + y2 + z2

where the 3-dimensional vectors are (x, y, z) and the 2-dimensional vectors
(u, v). We can write the derivative matrix as

G =

(
∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

)

This is sometimes written in calculus books as

G =
∂(u, v)

∂(x, y, z)

a notation Lindgren uses in Section 12.1 in his discussion of Jacobians. This
notation has never appealed to me. I find it confusing and will avoid it.

Calculating these partial derivatives, we get

∂u

∂x
= (x2 + y2 + z2)−1/2 − 1

2
x(x2 + y2 + z2)−3/22x

=
y2 + z2

r3

(where we have introduced the notation r =
√

x2 + y2 + z2),

∂u

∂y
= −1

2
x(x2 + y2 + z2)−3/22y

= −xy

r3

and so forth (all the other partial derivatives have the same form with different
letters), so

∇g(x, y, z) =
1
r3

(
y2 + z2 −xy −xz
−xy x2 + z2 −yz

)
(1.26)
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To be careful, we should point out that the function g is undefined when its
argument is zero, but it exists and is differentiable with derivative (1.26) every-
where else.

Note that the derivative matrix is 2×3 as required in mapping 3-dimensional
vectors to 2-dimensional vectors.

Invertible Transformations

A multivariate change of variables h cannot be invertible unless it maps
between spaces of the same dimension, that is, from Rn to Rn for some n.
The determinant of its derivative matrix is called the Jacobian of the mapping,
denoted

J(x) = det
(∇h(x)

)
.

(In an alternative terminology, some people call the derivative matrix ∇h(x) the
Jacobian matrix and its determinant the Jacobian determinant, but “Jacobian”
used as a noun rather than an adjective usually means the determinant.)

The Jacobian appears in the change of variable theorem for multiple inte-
grals.

Theorem 1.5 (Change of Variables in Integration). Suppose that h is an
invertible, continuously differentiable mapping with nonzero Jacobian defined on
an open subset of Rn, and suppose that A is a region contained in the domain
of h and that f is an integrable function defined on h(A), then∫

h(A)

f(x) dx =
∫

A

f [h(y)] · |J(y)| dy,

where J is the Jacobian of h.

The notation h(A) means the image of the region A under the mapping h,
that is

h(A) = {h(x) : x ∈ A }.
Corollary 1.6 (Change of Variables for Densities). Suppose that g is
an invertible mapping defined on an open subset of Rn containing the support
of a continuous random vector X having probability density fX, and suppose
that h = g−1 is continuously differentiable with nonzero Jacobian J . Then the
random vector Y = g(X) has probability density

fY(y) = fX[h(y)] · |J(y)| (1.27)

If we plug the definition of the Jacobian into (1.27) we get

fY(y) = fX[h(y)] · ∣∣det
(∇h(y)

)∣∣ .

Note that the univariate change-of-variable formula

fY (y) = fX [h(y)] · |h′(y)|.
is a special case.
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Proof. The general change of variable theorem (Theorem 1.1) says

PY(A) = PX(B) (1.28)

where
B = {x ∈ S : g(x) ∈ A }

where S is the sample space of the random vector X, which we may take to be
the open subset of Rn on which g is defined. Because g is invertible, we have
the relationship between A and B

B = h(A)
A = g(B)

Rewriting (1.28) using the definition of measures in terms of densities gives∫
A

fY(y) dy =
∫

B

fX(x) dx =
∫
h(A)

fX(x) dx (1.29)

Now applying Theorem 1.5 to the right hand side gives∫
A

fY(y) dy =
∫

A

fX[h(y)] · |J(y)| dy.

This can be true for all sets A only if the integrands are equal, which is the
assertion of the theorem.

Calculating determinants is difficult if n is large. However, we will usually
only need the bivariate case ∣∣∣∣a b

c d

∣∣∣∣ = ad − bc

Example 1.6.2.
Suppose f is the density on R2 defined by

f(x, y) =
1
2π

exp
(
−x2

2
− y2

2

)
, (x, y) ∈ R2.

Find the joint density of the variables

U = X

V = Y/X

(This transformation is undefined when X = 0, but that event occurs with
probability zero and may be ignored. We can redefine the sample space to
exclude the y-axis without changing any probabilities).

The inverse transformation is

X = U

Y = UV
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This transformation has derivative ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

 =

1 0

v u


and Jacobian 1 · u − v · 0 = u.

Thus the joint density of U and V is

g(u, v) =
1
2π

exp
(
−u2

2
− (uv)2

2

)
· |u|

=
|u|
2π

exp
(
−u2(1 + v2)

2

)
As another example of the multivariate change-of-variable formula we give a

correct proof of the convolution formula (Theorem 23 of Chapter 4 in Lindgren)1

Theorem 1.7 (Convolution). If X and Y are independent continuous real-
valued random variables with densities fX and fY , then X + Y has density

fX+Y (z) =
∫

fX(z − y)fY (y) dy. (1.30)

This is called the convolution formula, and the function fX+Y is called the
convolution of the functions fX and fY .

Proof. Consider the change of variables

u = x + y

v = y

(this is the mapping g in the corollary, which gives the new variables in terms
of the old) having inverse mapping

x = u − v

y = v

(this is the mapping h in the corollary, which gives the old variables in terms
of the new). The Jacobian is

J(u, v) =
∣∣∣∣ ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ =
∣∣∣∣1 −1
0 1

∣∣∣∣ = 1

1What’s wrong with Lindgren’s proof is that he differentiates under the integral sign with-
out any justification. Every time Lindgren uses this differentiation under the integral sign
trick, the same problem arises. The right way to prove all such theorems is to use the multi-
variate change of variable formula.
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The joint density of X and Y is fX(x)fY (y) by independence. By the change-
of-variable formula, the joint density of U and V is

fU,V (u, v) = fX,Y (u − v, v)|J(u, v)|
= fX(u − v)fY (v)

We find the marginal of U by integrating out V

fU (u) =
∫

fX(u − v)fY (v) dv

which is the convolution formula.

Noninvertible Transformations

When a change of variable Y = g(X) is not invertible, things are much
more complicated, except in one special case, which is covered in this section.
Of course, the general change of variable theorem (Theorem 1.1) always applies,
but is hard to use.

The special case we are interested in is exemplified by the univariate change
of variables

R g−→ [0,∞)

defined by
g(x) = x2, x ∈ R2. (1.31)

This function is not invertible, because it is not one-to-one, but it has two “sort
of” inverses, defined by

h+(y) =
√

y, y ≥ 0. (1.32a)

and
h−(y) = −√

y, y ≥ 0. (1.32b)

Our first task is to make this notion of a “sort of” inverse mathematically
precise, and the second is to use it to get a change of variable theorem. In aid of
this, let us take a closer look at the notion of inverse functions. Two functions g
and h are inverses if, first, they map between the same two sets but in opposite
directions

S
g−→ T

S
h←− T

and, second, if they “undo” each other’s actions, that is,

h[g(x)] = x, x ∈ S (1.33a)

and
g[h(y)] = y, y ∈ T. (1.33b)
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Now we want to separate these two properties. We say h is a left inverse of
g if (1.33a) holds and a right inverse of g if (1.33b) holds. Another name for
right inverse is section. It turns out that the important property for change of
variable theorems is the right inverse property (1.33b), for example, the function
g defined by (1.31) has two right inverses defined by (1.32a) and (1.32b).

The next concept we need to learn in order to state the theorem in this
section is “partition.” A partition of a set S is a family of sets {Ai : i ∈ I} that
are disjoint and cover S, that is,

Ai ∩ Aj = ∅, i ∈ I, j ∈ I, and i 6= j

and ⋃
i∈I

Ai = S.

The last concept we need to learn, or more precisely relearn, is the notion
of the support of a random variable. This should have been, perhaps, run into
Section 1.4, but too late now. A more general notion of the support of a random
variable is the following. An event A is a (not the) support of a random variable
X if P (X ∈ A) = 1. The support defined Section 1.4 is a support under the
new definition, but not the only one. For example, if X is a continuous random
variable, we can throw out any single point, any finite set of points, even a
countable set of points, because any such set has probability zero. We will see
why this more general definition is important in the examples.

These three new concepts taken care of, we are now ready to state the
theorem.

Theorem 1.8. Suppose g : U → V is a mapping, where U and V are open
subsets of Rn, and U is a support of a continuous random variable X having
probability density fX. Suppose that hi, i ∈ I are continuously differentiable sec-
tions (right inverses) of g with nonzero Jacobians Ji = det(∇hi), and suppose
the sets hi(V ), i ∈ I form a partition of U . Then the random vector Y = g(X)
has probability density

fY(y) =
∑
i∈I

fX[hi(y)] · |Ji(y)| (1.34)

Proof. The proof starts just like the proof of Theorem 1.6, in particular, we still
have

PY(A) = PX(B)

where

B = {x ∈ U : g(x) ∈ A }

Now g is not invertible, but the sets hi(A) form a partition of B. Hence we
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have ∫
A

fY(y) dy =
∫

B

fX(x) dx

=
∑
i∈I

∫
hi(A)

fX(x) dx

=
∑
i∈I

∫
A

fX[hi(y)] · |Ji(y)| dy.

This can be true for all sets A only if the integrands are equal, which is the
assertion of the theorem.

Example 1.6.3.
Suppose X is a random variable with density

fX(x) =
1√
2π

e−x2/2, x ∈ R

(that this is a probability density will be proved in Chapter 6 in Lindgren), and
suppose Y = X2. What is the density of Y ?

In order to apply the theorem, we need to delete the point zero from the
sample space of X, then the transformation

(−∞, 0) ∪ (0,+∞)
g−→ (0,+∞)

defined by g(x) = x2 has the two sections (right inverses)

(−∞, 0)
h−←− (0,+∞)

and
(0,+∞)

h+←− (0,+∞)

defined by h−(y) = −√
y and h+(y) = +

√
y. And the ranges of the sections do

indeed form a partition of the domain of g.
The sections have derivatives

h′
−(y) = −1

2
y−1/2

h′
+(y) = +

1
2
y−1/2

and applying the theorem gives

fY (y) = fX(
√

y) · 1
2
√

y
+ fX(−√

y) · 1
2
√

y

=
1√
y
fX(

√
y)

=
1√
2πy

e−y/2, y > 0.
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because fX happens to be a symmetric about zero, that is, fX(x) = fX(−x).
Note that it is just as well we deleted the point zero at the beginning, because

the resulting density is undefined at zero anyway.

It is worthwhile stating a couple of intermediate results of the preceding
example in a corollary.

Corollary 1.9. Suppose X is a continuous random scalar with density fX , then
Y = X2 has density

fY (y) =
1

2
√

y

[
fX(

√
y) + fX(−√

y)
]
, y > 0.

Moreover, if fX is symmetric about zero, then

fY (y) =
1√
y
fX(

√
y), y > 0.



Chapter 2

Expectation

2.1 Introduction

Expectation and probability are equally important concepts. An important
educational objective of this course is that students become “ambidextrous” in
reasoning with these two concepts, able to reason equally well with either.

Thus we don’t want to think of expectation as a derived concept—something
that is calculated from probabilities. We want the expectation concept to stand
on its own. Thus it should have the same sort of treatment we gave probability.
In particular, we need to have the connection between expectation and the
law of large numbers (the analog of Section 2.2 in Lindgren) and axioms for
expectation (the analog of Section 2.4 in Lindgren).

Suppose you are asked to pick a single number to stand in for a random vari-
able. Of course, the random variable, when eventually observed, will probably
differ from whatever number you pick (if the random variable is continuous it
will match whatever number you pick with probability zero). But you still have
to pick a number. Which number is best?

The expectation (also called expected value) of a real-valued random variable,
if it exists, is one answer to this problem. It is the single number that a rational
person “should” expect as the value of the random variable when it is observed.
Expectation is most easily understood in economic contexts. If the random
variable in question is the value of an investment or other uncertain quantity,
the expectation is the “fair price” of the investment, the maximum amount a
rational person is willing to pay to pay for the investment.

The notion of expectation of a non-monetary random variable is less clear,
but can be forced into the monetary context by an imaginary device. Suppose
the random variable in question is the weight of a student drawn at random
from a list of all students at the university. Imagine you will be paid a dollar
per pound of that student’s weight. How much would you be willing to pay to
“invest” in this opportunity? That amount is (or should be) the expected value
of the student’s weight.

31
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2.2 The Law of Large Numbers

What Lindgren describes in his Section 2.2 is not the general form of the law
of large numbers. It wasn’t possible to explain the general form then, because
the general form involves the concept of expectation.

Suppose X1, X2, . . . is an independent and identically distributed sequence
of random variables. This means these variables are the same function X (a
random variable is a function on the sample space) applied to independent
repetitions of the same random process. The average of the first n variables is
denoted

Xn =
1
n

n∑
i=1

Xi. (2.1)

The general form of the law of large numbers says the average converges to the
expectation E(X) = E(Xi), for all i. In symbols

Xn → E(X), as n → ∞. (2.2)

It is not clear at this point, just what the arrow on the left in (2.2) is supposed
to mean. Vaguely it means something like convergence to a limit, but Xn is a
random variable (any function of random variables is a random variable) and
E(X) is a constant (all expectations are numbers, that is, constants), and we
have no mathematical definition of what it means for a sequence of random
variables to converge to a number. For now we will make do with the sloppy
interpretation that (2.2) says that Xn gets closer and closer to E(X) as n goes
to infinity, in some sense that will be made clearer later (Chapter 5 in Lindgren
and Chapter 4 of these notes).

2.3 Basic Properties

2.3.1 Axioms for Expectation (Part I)

In this section, we begin our discussion of the formal mathematical prop-
erties of expectation. As in many other areas of mathematics, we start with
fundamental properties that are not proved. These unproved (just assumed)
properties are traditionally called “axioms.” The axioms for expectation are
the mathematical definition of the expectation concept. Anything that satisfies
the axioms is an instance of mathematical expectation. Anything that doesn’t
satisfy the axioms isn’t. Every other property of expectation can be derived
from these axioms (although we will not give a completely rigorous derivation
of all the properties we will mention, some derivations being too complicated
for this course).

The reason for the “Part I” in the section heading is that we will not cover all
the axioms here. Two more esoteric axioms will be discussed later (Section 2.5.4
of these notes).

Expectation is in some respects much a much simpler concept that prob-
ability and in other respects a bit more complicated. The issue that makes
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expectation more complicated is that not all real-valued random variables have
expectations. The set of real valued random variables that have expectation is
denoted L1 or sometimes L1(P ) where P is the probability measure associated
with the expectation, the letter “L” here being chosen in honor of the French
mathematician Henri Lebesgue (1875–1941), who invented the general defini-
tion of integration used in advanced probability theory (p. 67 of these notes),
the digit “1” being chosen for a reason to be explained later. The connection
between integration and expectation will also be explained later.

An expectation operator is a function that assigns to each random variable
X ∈ L1 a real number E(X) called the expectation or expected value of X.
Every expectation operator satisfies the following axioms.

Axiom E1 (Additivity). If X and Y are in L1, then X + Y is also in L1,
and

E(X + Y ) = E(X) + E(Y ).

Axiom E2 (Homogeneity). If X is in L1 and a is a real number, then aX
is also in L1, and

E(aX) = aE(X).

These properties agree with either of the informal intuitions about expecta-
tions. Prices are additive and homogeneous. The price of a gallon of milk and
a box of cereal is the sum of the prices of the two items separately. Also the
price of three boxes of cereal is three times the price of one box. (The notion of
expectation as fair price doesn’t allow for volume discounts.)

Axiom E3 (Positivity). If X is in L1, then

X ≥ 0 implies E(X) ≥ 0.

The expression X ≥ 0, written out in more detail, means

X(s) ≥ 0, s ∈ S,

where S is the sample space. That is, X is always nonnegative.
This axiom corresponds to intuition about prices, since goods always have

nonnegative value and prices are also nonnegative.

Axiom E4 (Norm). The constant random variable I that always has the value
one is in L1, and

E(I) = 1. (2.3)

Equation (2.3) is more commonly written

E(1) = 1, (2.4)

and we will henceforth write it this way. This is something of an abuse of nota-
tion. The symbol “1” on the right hand side is the number one, but the symbol
“1” on the left hand side must be a random variable (because the argument of
an expectation operator is a random variable), hence a function on the sample
space. So in order to understand (2.4) we must agree to interpret a number in a
context that requires a random variable as the constant random variable always
equal to that number.
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2.3.2 Derived Basic Properties

Theorem 2.1 (Linearity). If X and Y are in L1, and a and b are real numbers
then aX + bY is also in L1, and

E(aX + bY ) = aE(X) + bE(Y ). (2.5)

Proof of Theorem 2.1. The existence part of Axiom E2 implies aX ∈ L1 and
bY ∈ L1. Then the existence part of Axiom E1 implies aX + bY ∈ L1.

Then Axiom E1 implies

E(aX + bY ) = E(aX) + E(bY )

and Axiom E2 applied to each term on the right hand side implies (2.5).

Corollary 2.2 (Linear Functions). If X is in L1, and Y = a + bX, where a
and b are real numbers, then Y is also in L1, and

E(Y ) = a + bE(X). (2.6)

Proof. If we let X in Theorem 2.1 be the constant random variable 1, then (2.5)
becomes

E(a · 1 + bY ) = aE(1) + bE(Y ),

and applying Axiom E4 to the E(1) on the right hand side gives

E(a + bY ) = E(a · 1 + bY ) = a · 1 + bE(Y ) = a + bE(Y ),

and reading from end to end gives

E(a + bY ) = a + bE(Y ), (2.7)

which except for notational differences is what was to be proved.

If the last sentence of the proof leaves you unsatisfied, you need to think a bit
more about “mathematics is invariant under changes of notation” (Problem 2-1).

Example 2.3.1 (Fahrenheit to Centigrade).
Corollary 2.2 arises whenever there is a change of units of measurement. All
changes of units are linear functions. Most are purely multiplicative, 2.54 cen-
timeters to the inch and so forth, but a few are the more general kind of linear
transformation described in the corollary. An example is the change of temper-
ature units from Fahrenheit to centigrade degrees. If X is a random variable
having units of degrees Fahrenheit and Y is the a random variable that is the
same measurement as X but in units of degrees centigrade, the relation between
the two is

Y =
5
9
(X − 32).

The corollary then implies

E(Y ) =
5
9
[E(X) − 32],
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that is, the expectations transform the same way as the variables under a change
of units. Thus, if the expected daily high temperature in January in Minneapolis
is 23 ◦F, then this expected value is also −5 ◦C. Expectations behave sensibly
under changes of units of measurement.

Theorem 2.3 (Linearity). If X1, . . ., Xn are in L1, and a1, . . ., an are real
numbers then a1X1 + · · · anXn is also in L1, and

E(a1X1 + · · · + anXn) = a1E(X1) + · · · + anE(Xn).

Theorem 2.1 is the case n = 2 of Theorem 2.3, so the latter is a generalization
of the former. That’s why both have the same name. (If this isn’t obvious, you
need to think more about “mathematics is invariant under changes of notation.”
The two theorems use different notation, a1 and a2 instead of a and b and X1

and X2 instead of X and Y , but they assert the same property of expectation.)

Proof of Theorem 2.3. The proof is by mathematical induction. The theorem
is true for the case n = 2 (Theorem 2.1). Thus we only need to show that the
truth of the theorem for the case n = k implies the truth of the theorem for the
case n = k + 1. Apply Axiom E1 to the case n = k + 1 giving

E(a1X1 + · · · + ak+1Xk+1) = E(a1X1 + · · · + akXk) + E(ak+1Xk+1).

Then apply Axiom E2 to the second term on the right hand side giving

E(a1X1 + · · · + ak+1Xk+1) = E(a1X1 + · · · + akXk) + ak+1E(Xk+1).

Now the n = k case of the theorem applied to the first term on the right hand
side gives the n = k + 1 case of the theorem.

Corollary 2.4 (Additivity). If X1, . . ., Xn are in L1, then X1 + · · ·Xn is
also in L1, and

E(X1 + · · · + Xn) = E(X1) + · · · + E(Xn).

This theorem is used so often that it seems worth restating in words to help
you remember.

The expectation of a sum is the sum of the expectations.

Note that Axiom E1 is the case n = 2, so the property asserted by this theorem
is a generalization. It can be derived from Axiom E1 by mathematical induction
or from Theorem 2.3 (Problem 2-2).

Corollary 2.5 (Subtraction). If X and Y are in L1, then X − Y is also in
L1, and

E(X − Y ) = E(X) − E(Y ).

Corollary 2.6 (Minus Signs). If X is in L1, then −X is also in L1, and

E(−X) = −E(X).
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These two properties are obvious consequences of linearity (Problems 2-3
and 2-4).

Corollary 2.7 (Constants). Every constant random variable is in L1, and

E(a) = a.

This uses the convention we introduced in connection with (2.4). The symbol
“a” on the right hand side represents a real number, but the symbol “a” on the
left hand side represents the constant random variable always equal to that
number. The proof is left as an exercise (Problem 2-6).

Note that a special case of Corollary 2.7 is E(0) = 0.

Theorem 2.8 (Monotonicity). If X and Y are in L1, then

X ≤ Y implies E(X) ≤ E(Y ).

The expression X ≤ Y , written out in full, means

X(s) ≤ Y (s), s ∈ S,

where S is the sample space. That is, X is always less than or equal to Y .
Note that the positivity axiom (E3) is the special case X = 0 of this theorem.

Thus this theorem is a generalization of that axiom.
This theorem is fairly easily derived from the positivity axiom (E3) and the

Theorem 2.5 (Problem 2-7).
All of the theorems in this section and the axioms in the preceding section

are exceedingly important and will be used continually throughout the course.
You should have them all at your fingertips. Failure to recall the appropriate
axiom or theorem when required will mean failure to do many problems. It is
not necessary to memorize all the axioms and theorems. You can look them
up when needed. But you do need to have some idea what each axiom and
theorem is about so you will know that there is something to look up. After all,
you can’t browse the entire course notes each time you use something.

Axiom E3 and Theorem 2.8 are important in what I call “sanity checks.”
Suppose you are given a description of a random variable X and are told to
calculate its expectation. One of the properties given is X ≥ 3, but your answer
is E(X) = 2. This is obviously wrong. It violates Theorem 2.8. You must have
made a mistake somewhere! Sanity checks like this can save you from many
mistakes if you only remember to make them. A problem isn’t done when you
obtain an answer. You should also take a few seconds to check that your answer
isn’t obviously ridiculous.

2.3.3 Important Non-Properties

What’s a non-property? It’s a property that students often use but isn’t
true. Students are mislead by analogy or guessing. Thus we stress that the
following are not true in general (although they are sometimes true in some
special cases).
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The Multiplicativity Non-Property

One might suppose that there is a property analogous to the additivity
property, except with multiplication instead of addition

E(XY ) = E(X)E(Y ), Uncorrelated X and Y only! (2.8)

As the editorial comment says, this property does not hold in general. We will
later see that when (2.8) does hold we have a special name for this situation:
we say the variables X and Y are uncorrelated.

Taking a Function Outside an Expectation

Suppose g is a linear function defined by

g(x) = a + bx, x ∈ R, (2.9)

where a and b are real numbers. Then

E{g(X)} = g(E{X}), Linear g only! (2.10)

is just Theorem 2.2 stated in different notation. The reason for the editorial
comment is that (2.10) does not hold for general functions g, only for linear
functions. Sometime you will be tempted to use (2.10) for a nonlinear function
g. Don’t! Remember that it is a “non-property.”

For example, you may be asked to calculate E(1/X) for some random vari-
able X. The “non-property,” if it were true, would allow to take the function
outside the expectation and the answer would be 1/E(X), but it isn’t true, and,
in general

E

(
1
X

)
6= 1

E(X)

There may be a way to do the problem, but the “non-property” isn’t it.

2.4 Moments

If k is a positive integer, then the real number

αk = E(Xk) (2.11)

is called the k-th moment of the random variable X.
If p is a positive real number, then the real number

βp = E(|X|p) (2.12)

is called the p-th absolute moment of the random variable X.
If k is a positive integer and µ = E(X), then the real number

µk = E{(X − µ)k} (2.13)
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is called the k-th central moment of the random variable X. (The symbols α,
β, and µ are Greek letters. See Appendix A).

Sometimes, to emphasize we are talking about (2.11) rather than one of
the other two, we will refer to it as the ordinary moment, although, strictly
speaking, the “ordinary” is redundant.

That’s not the whole story on moments. We can define lots more, but all
moments are special cases of one of the two following concepts.

If k is a positive real number and a is any real number, then the real number
E{(X −a)k} is called the k-th moment about the point a of the random variable
X. We introduce no special symbol for this concept. Note that the k-th ordinary
moment is the special case a = 0 and the k-th central moment is the case a = µ.

If p is a positive real number and a is any real number, then the real number
E{|X −a|p} is called the p-th absolute moment about the point a of the random
variable X. We introduce no special symbol for this concept. Note that the
p-th absolute moment is the special case a = 0.

2.4.1 First Moments and Means

The preceding section had a lot of notation and definitions, but nothing else.
There was nothing there you could use to calculate anything. It seems like a lot
to remember. Fortunately, only a few special cases are important. For the most
part, we are only interested in p-th moments when p is an integer, and usually
a small integer. By far the most important cases are p = 1, which is covered in
this section, and p = 2, which is covered in the following section. We say p-th
moments (of any type) with p = 1 are first moments, with p = 2 are second
moments, and so forth (third, fourth, fifth, . . .).

First ordinary moment is just a fancy name for expectation. This moment
is so important that it has yet another name. The first ordinary moment of a
random variable X is also called the mean of X. It is commonly denoted by
the Greek letter µ, as we did in (2.13). Note that α1, µ, and E(X) are different
notations for the same thing. We will use them all throughout the course.

When there are several random variables under discussion, we denote the
mean of each using the same Greek letter µ, but add the variable as a subscript
to distinguish them: µX = E(X), µY = E(Y ), and so forth.

Theorem 2.9. For any random variable in L1, the first central moment is zero.

The proof is left as an exercise (Problem 2-9).
This theorem is the first one that allows us to actually calculate a moment of

a nonconstant random variable, not a very interesting moment, but it’s a start.

Symmetric Random Variables

We say two random variables X and Y have the same distribution if

E{g(X)} = E{g(Y )}
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holds for all real-valued functions g such that the expectations exist and if both
expectations exist or neither. In this case we will say that X and Y are equal
in distribution and use the notation

X
D= Y.

This notation is a bit misleading, since it actually says nothing about X and
Y themselves, but only about their distributions. What is does imply is any of
the following

PX = PY

FX = FY

fX = fY

that is, X and Y have the same probability measure, the same distribution
function, or the same probability density. What it does not imply is anything
about the values of X and Y themselves, which like all random variables are
functions on the sample space. It may be that X(ω) is not equal to Y (ω) for
any ω. Nevertheless, the notation is useful.

We say a real-valued random variable X is symmetric about zero if X and
−X have the same distribution, that is, if

X
D= −X.

Note that this is an example of the variables themselves not being equal. Clearly,
X(ω) 6= −X(ω) unless X(ω) = 0, which may occur with probability zero (will
occur with probability zero whenever X is a continuous random variable).

We say a real-valued random variable X is symmetric about a point a if X−a
is symmetric about zero, that is, if

X − a
D= a − X.

The point a is called the center of symmetry of X. (Note: Lindgren, definition
on p. 94, gives what is at first glance a completely unrelated definition of this
concept. The two definitions, his and ours, do in fact define the same concept.
See Problem 2-11.)

Some of the most interesting probability models we will meet later involve
symmetric random variables, hence the following theorem is very useful.

Theorem 2.10. Suppose a real-valued random variable X is symmetric about
the point a. If the mean of X exists, it is equal to a. Every higher odd integer
central moment of X that exists is zero.

In notation, the two assertions of the theorem are

E(X) = µ = a

and
µ2k−1 = E{(X − µ)2k−1} = 0, for any positive integer k.

The proof is left as an exercise (Problem 2-10).
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2.4.2 Second Moments and Variances

The preceding section says all that can be said in general about first mo-
ments. As we shall now see, second moments are much more complicated.

The most important second moment is the second central moment, which
also has a special name. It is called the variance and is often denoted σ2. (The
symbol σ is a Greek letter. See Appendix A). We will see the reason for the
square presently. We also use the notation var(X) for the variance of X. So

σ2 = µ2 = var(X) = E{(X − µ)2}.

As we did with means, when there are several random variables under discussion,
we denote the variance of each using the same Greek letter σ, but add the
variable as a subscript to distinguish them: σ2

X = var(X), σ2
Y = var(Y ), and so

forth.
Note that variance is just an expectation like any other, the expectation of

the random variable (X − µ)2.
All second moments are related.

Theorem 2.11 (Parallel Axis Theorem). If X is a random variable with
mean µ and variance σ2, then

E{(X − a)2} = σ2 + (µ − a)2

Proof. Using the fact
(b + c)2 = b2 + 2bc + c2 (2.14)

from algebra

(X − a)2 = (X − µ + µ − a)2

= (X − µ)2 + 2(X − µ)(µ − a) + (µ − a)2

Taking expectations of both sides and applying linearity of expectation (every-
thing not containing X is nonrandom and so can be pulled out of expectations)
gives

E{(X − a)2} = E{(X − µ)2} + 2(µ − a)E(X − µ) + (µ − a)2E(1)

= σ2 + 2(µ − a)µ1 + (µ − a)2

By Theorem 2.9, the middle term on the right hand side is zero, and that
completes the proof.

The name of this theorem is rather strange. It is taken from an analogous
theorem in physics about moments of inertia. So the name has nothing to do
with probability in general and moments (as understood in probability theory
rather than physics) in particular, and the theorem is not commonly called
by that name. We will use it because Lindgren does, and perhaps because
the theorem doesn’t have any other widely used name. In fact, since it is so
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simple, it is often not called a theorem but just a calculation formula or method.
Sometimes it is called “completing the square” after the method of that name
from high-school algebra, although that name isn’t very appropriate either. It
is a very simple theorem, just the algebraic identity (2.14), which is related to
“completing the square” plus linearity of expectation, which isn’t. Whatever it
is called, the theorem is exceedingly important, and many important facts are
derived from it. I sometimes call it “the most important formula in statistics.”

Corollary 2.12. If X is a random variable having first and second moments,
then

var(X) = E(X2) − E(X)2.

The proof is left as an exercise (Problem 2-13).
This corollary is an important special case of the parallel axis theorem. It

also is frequently used, but not quite as frequently as students want to use it.
It should not be used in every problem that involves a variance (maybe in half
of them, but not all). We will give a more specific warning against overusing
this corollary later.

There are various ways of restating the corollary in symbols, for example

σ2
X = E(X2) − µ2

X ,

and
µ2 = α2 − α2

1.

As always, mathematics is invariant under changes of notation. The important
thing is the concepts symbolized rather than the symbols themselves.

The next theorem extends Theorem 2.2 from means to variances.

Theorem 2.13. Suppose X is a random variable having first and second mo-
ments and a and b are real numbers, then

var(a + bX) = b2 var(X). (2.15)

Note that the right hand side of (2.15) does not involve the constant part a
of the linear transformation a + bX. Also note that the b comes out squared.
The proof is left as an exercise (Problem 2-15).

Before leaving this section, we want to emphasize an obvious property of
variances.

Sanity Check: Variances are nonnegative.

This holds by the positivity axiom (E3) because the variance of X is the expec-
tation of the random variable (X − µ)2, which is nonnegative because squares
are nonnegative. We could state this as a theorem, but won’t because its main
use is as a “sanity check.” If you are calculating a variance and don’t make
any mistakes, then your result must be nonnegative. The only way to get a
negative variance is to mess up somewhere. If you are using Corollary 2.12, for
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example, you can get a negative number as a result of the subtraction, if you
have calculated one of the quantities being subtracted incorrectly.

So whenever you finish calculating a variance, check that it is nonnegative.
If you get a negative variance, and have time, go back over the problem to try
to find your mistake. There’s never any question such an answer is wrong.

A more subtile sanity check is that a variance should rarely be zero. We will
get to that later.

2.4.3 Standard Deviations and Standardization

Standard Deviations

The nonnegative square root of the variance is called the standard deviation.
Conversely, the variance is the square of the standard deviation. The symbol
commonly used for the standard deviation is σ. That’s why the variance is
usually denoted σ2.

As with the mean and variance, we use subscripts to distinguish variables
σX , σY , and so forth. We also use the notation sd(X), sd(Y ), and so forth.
Note that we always have the relations

sd(X) =
√

var(X)

var(X) = sd(X)2

So whenever you have a variance you get the corresponding standard deviation
by taking the square root, and whenever you have a standard deviation you
get the corresponding variance by squaring. Note that the square root always
is possible because variances are always nonnegative. The σ and σ2 notations
make this obvious: σ2 is the square of σ (duh!) and σ is the square root of
σ2. The notations sd(X) and var(X) don’t make their relationship obvious, nor
do the names “standard deviation” and “variance” so the relationship must be
kept in mind.

Taking the square root of both sides of (2.15) gives the analogous theorem
for standard deviations.

Corollary 2.14. Suppose X is a random variable having first and second mo-
ments and a and b are real numbers, then

sd(a + bX) = |b| sd(X). (2.16)

It might have just occurred to you to ask why anyone would want two such
closely related concepts. Won’t one do? In fact more than one introductory
(freshman level) statistics textbook does just that, speaking only of standard
deviations, never of variances. But for theoretical probability and statistics, this
will not do. Standard deviations are almost useless for theoretical purposes.
The square root introduces nasty complications into simple situations. So for
theoretical purposes variance is the preferred concept.
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In contrast, for all practical purposes standard deviation is the preferred
concept, as evidenced by the fact that introductory statistics textbooks that
choose to use only one of the two concepts invariably choose standard deviation.

The reason has to do with units of measurement and measurement scales.
Suppose we have a random variable X whose units of measurement are inches,
for example, the height of a student in the class. What are the units of E(X),
var(X), and sd(X), assuming these quantities exist?

The units of an expectation are the same as the units of the random variable,
so the units of E(X) are also inches. Now var(X) is also just an expectation,
the expectation of the random variable (X − µ)2, so its units are the units of
(X − µ)2, which are obviously inches squared (or square inches, if you prefer).
Then obviously, the units of sd(X) are again inches. Thus X, E(X), and sd(X)
are comparable quantities, all in the same units, whereas var(X) is not. You
can’t understand what var(X) tells you about X without taking the square root.
It’s isn’t even in the right units of measurement.

The theoretical emphasis of this course means that we will be primarily
interested in variances rather than standard deviations, although we will be
interested in standard deviations too. You have to keep in mind which is which.

Standardization

Given a random variable X, there is always a linear transformation Z =
a + bX, which can be thought of as a change of units of measurement as in
Example 2.3.1, that makes the transformed variable Z have mean zero and
standard deviation one. This process is called standardization.

Theorem 2.15. If X is a random variable having mean µ and standard devi-
ation σ and σ > 0, then the random variable

Z =
X − µ

σ
(2.17)

has mean zero and standard deviation one.
Conversely, if Z is a random variable having mean zero and standard devi-

ation one, µ and σ are real numbers, and σ ≥ 0, then the random variable

X = µ + σZ (2.18)

has mean µ and standard deviation σ.

The proof is left as an exercise (Problem 2-17).
Standardization (2.17) and its inverse (2.18) are useful in a variety of con-

texts. We will use them throughout the course.

2.4.4 Mixed Moments and Covariances

When several random variables are involved in the discussion, there are
several moments of each type, as we have already discussed. If we have two
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random variables X and Y , then we also have two (ordinary) first moments µX

and µY and two second central moments σ2
X and σ2

Y , but that is not the whole
story. To see why, it is helpful to make a brief digression into the terminology
of polynomials.

Polynomials and Monomials

Forget random variables for a second and consider polynomials in two (or-
dinary) variables x and y. A general polynomial of degree zero is a constant
function f defined by

f(x, y) = a, x, y ∈ R,

where a is a constant. A general polynomial of degree one is a linear function
f defined by

f(x, y) = a + bx + cy, x, y ∈ R,

where a, b, and c are constants. A general polynomial of degree two is a
quadratic function f defined by

f(x, y) = a + bx + cy + dx2 + exy + ky2, x, y ∈ R,

where a, b, c, d, e, and k are constants. The point is that we have a new kind
of term, the term exy that contains both variables in the polynomial of degree
two. In general, we say the degree of a term is the sum of the exponents of all
the variables in the term, so x2 and xy = x1y1 are both terms of degree two.

One term of a polynomial is called a monomial. The convention that the
degree of a monomial is the sum of the exponents of the variables is arbitrary,
but it is a useful convention for the following reason. It seems sensible to consider
(x + y)2 a quadratic polynomial because it is the square of a linear polynomial,
but the identity

(x + y)2 = x2 + 2xy + y2

shows us that this sort of quadratic polynomial involves the “mixed” monomial
xy. The reason why this monomial is said to have degree two rather than degree
one will become clearer as we go along.

Mixed Moments

We apply the same sort of thinking to moments. We say E(XY ) is a “mixed”
second moment if X and Y are two random variables and in general that an
expectation of the form

E

(
n∏

i=1

Xki
i

)
, (2.19)

where X1, . . ., Xn are n random variables, is a “mixed” K-th moment, where

K =
n∑

i=1

ki (2.20)
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is the sum of the exponents. If you are not familiar with the product notation
in (2.19), it is analogous to the summation notation in (2.20). The expression
(2.19) can also be written

E
(
Xk1

1 Xk2
2 · · ·Xkn

n

)
just as (2.20) can be written

K = k1 + k2 + · · · + kn.

The general formula (2.19) allows for the possibility that some of the ki may
be zero if we adopt the convention that (a0 = 1 for all real a so, for example
x0y2z1 = y2z).

Even more general than (2.19) we allow, just as in the non-mixed case,
moments about arbitrary points, so we also say

E

{
n∏

i=1

(Xi − ai)ki

}

is a K-th moment, where K is again the sum of the exponents (2.20) and a1,
a2, . . ., an are arbitrary real numbers. We say this sort of mixed moment is a
central moment if it is a moment about the means, that is,

E

{
n∏

i=1

(Xi − µi)ki

}

where
µi = E(Xi), i = 1, . . . , n.

(The convention that we use the random variable as a subscript would require
µXi

here rather than µi, but the simplicity of avoiding the extra level of sub-
scripts makes the simpler form preferable.)

Covariance

All of that is a lot of abstract notation and complicated definitions. As in
the case of non-mixed moments, by far the most important case, the one we
will be concerned with more than all the higher-order moments together, is the
second central mixed moment, which has a special name. The covariance of
two random variables X and Y , written cov(X,Y ), is the second central mixed
moment

cov(X,Y ) = E
{
(X − µX)(Y − µY )

}
,

where, as usual, µX = E(X) and µY = E(Y ).
Note a fact that follows trivially from the definition: a covariance is a sym-

metric function of its arguments, that is, cov(X,Y ) = cov(Y,X) for any two
random variables X and Y .
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Note that variance is a special case of covariance. When X and Y are the
same random variable, we get

cov(X,X) = E
{
(X − µX)2

}
= var(X).

The covariance of a random variable with itself is its variance. This is one reason
why covariance is considered a (mixed) second moment (rather than some sort
of first moment). A more important reason arises in the following section.

For some unknown reason, there is no standard Greek-letter notation for
covariance. We can always write σ2

X instead of var(X) if we like, but there is no
standard analogous notation for covariance. (Lindgren uses the notation σX,Y

for cov(X,Y ), but this notation is nonstandard. For one thing, the special case
σX,X = σ2

X looks weird. For another, no one who has not had a course using
Lindgren as the textbook will recognize σX,Y . Hence it is better not to get in
the habit of using the notation.)

Variance of a Linear Combination

A very important application of the covariance concept is the second-order
analog of the linearity property given in Theorem 2.3. Expressions like the
a1X1 + · · ·+ anXn occurring in Theorem 2.3 arise so frequently that it is worth
having a general term for them. An expression a1x1 + · · · anxn, where the ai

are constants and the xi are variables is called a linear combination of these
variables. The same terminology is used when the variables are random. With
this terminology defined, the question of interest in this section can be stated:
what can we say about variances and covariances of linear combinations?

Theorem 2.16. If X1, . . ., Xm and Y1, . . ., Yn are random variables having
first and second moments and a1, . . ., am and b1, . . ., bn are constants, then

cov

 m∑
i=1

aiXi,

n∑
j=1

bjYj

 =
m∑

i=1

n∑
j=1

aibj cov(Xi, Yj). (2.21)

Before we prove this important theorem we will look at some corollaries that
are even more important than the theorem itself.

Corollary 2.17. If X1, . . ., Xn are random variables having first and second
moments and a1, . . ., an are constants, then

var

(
n∑

i=1

aiXi

)
=

n∑
i=1

n∑
j=1

aiaj cov(Xi, Xj). (2.22)

Proof. Just take m = n, ai = bi, and Xi = Yi in the theorem.

Corollary 2.18. If X1, . . ., Xm and Y1, . . ., Yn are random variables having
first and second moments, then

cov

 m∑
i=1

Xi,

n∑
j=1

Yj

 =
m∑

i=1

n∑
j=1

cov(Xi, Yj). (2.23)
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Proof. Just take ai = bj = 1 in the theorem.

Corollary 2.19. If X1, . . ., Xn are random variables having first and second
moments, then

var

(
n∑

i=1

Xi

)
=

n∑
i=1

n∑
j=1

cov(Xi, Xj). (2.24)

Proof. Just take ai = 1 in Corollary 2.17.

The two corollaries about variances can be rewritten in several ways using
the symmetry property of covariances, cov(Xi, Xj) = cov(Xj , Xi), and the fact
that variance is a special case of covariance, cov(Xi, Xi) = var(Xi). Thus

var

(
n∑

i=1

aiXi

)
=

n∑
i=1

n∑
j=1

aiaj cov(Xi, Xj)

=
n∑

i=1

a2
i var(Xi) +

n∑
i=1

n∑
j=1
j 6=i

aiaj cov(Xi, Xj)

=
n∑

i=1

a2
i var(Xi) + 2

n−1∑
i=1

n∑
j=i+1

aiaj cov(Xi, Xj)

=
n∑

i=1

a2
i var(Xi) + 2

n∑
i=2

i−1∑
j=1

aiaj cov(Xi, Xj)

Any of the more complicated re-expressions make it clear that some of the
terms on the right hand side in (2.22) are “really” variances and each covari-
ance “really” occurs twice, once in the form cov(Xi, Xj) and once in the form
cov(Xj , Xi). Taking ai = 1 for all i gives

var

(
n∑

i=1

Xi

)
=

n∑
i=1

n∑
j=1

cov(Xi, Xj)

=
n∑

i=1

var(Xi) +
n∑

i=1

n∑
j=1
j 6=i

cov(Xi, Xj)

=
n∑

i=1

var(Xi) + 2
n−1∑
i=1

n∑
j=i+1

cov(Xi, Xj)

=
n∑

i=1

var(Xi) + 2
n∑

i=2

i−1∑
j=1

cov(Xi, Xj)

(2.25)

We also write out for future reference the special case m = n = 2.
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Corollary 2.20. If W , X, Y , and Z are random variables having first and
second moments and a, b, c, and d are constants, then

cov (aW + bX, cY + dZ) = ac cov(W,Y ) + ad cov(W,Z)
+ bc cov(X,Y ) + bd cov(X,Z) (2.26)

var (aX + bY ) = a2 var(X) + 2ab cov(X,Y ) + b2 var(Y ) (2.27)
cov (W + X,Y + Z) = cov(W,Y ) + cov(W,Z)

+ cov(X,Y ) + cov(X,Z) (2.28)
var (X + Y ) = var(X) + 2 cov(X,Y ) + var(Y ) (2.29)

No proof is necessary, since all of these equations are special cases of those
in Theorem 2.16 and its corollaries.

This section contains a tremendous amount of “equation smearing.” It is the
sort of thing for which the acronym MEGO (my eyes glaze over) was invented.
To help you remember the main point, let us put Corollary 2.19 in words.

The variance of a sum is the sum of the variances plus the sum of
twice the covariances.

Contrast this with the much simpler slogan about expectations on p. 35.
The extra complexity of the of the variance of a sum contrasted to the

expectation of a sum is rather annoying. We would like it to be simpler. Un-
fortunately it isn’t. However, as elsewhere in mathematics, what cannot be
achieved by proof can be achieved by definition. We just make a definition that
describes the nice case.

Definition 2.4.1.
Random variables X and Y are uncorrelated if cov(X,Y ) = 0.

We also say a set X1, . . ., Xn of random variables are uncorrelated if each
pair is uncorrelated. The reason for the name “uncorrelated” will become clear
when we define correlation.

When a set of random variables are uncorrelated, then there are no covari-
ance terms in the formula for the variance of their sum; all are zero by definition.

Corollary 2.21. If the random variables X1, . . ., Xn are uncorrelated, then

var(X1 + . . . + Xn) = var(X1) + . . . + var(Xn).

In words,

The variance of a sum is the sum of the variances if (big if) the
variables are uncorrelated.

Don’t make the mistake of using this corollary or the following slogan when
its condition doesn’t hold. When the variables are correlated (have nonzero
covariances), the corollary is false and you must use the more general formula
of Corollary 2.19 or its various rephrasings.



2.4. MOMENTS 49

What happens to Corollary 2.17 when the variables are uncorrelated is left
as an exercise (Problem 2-16).

At this point the reader may have forgotten that nothing in this section has
yet been proved, because we deferred the proof of Theorem 2.16, from which
everything else in the section was derived. It is now time to return to that proof.

Proof of Theorem 2.16. First define

U =
m∑

i=1

aiXi

V =
n∑

j=1

bjYj

Then note that by linearity of expectation

µU =
m∑

i=1

aiµXi

µV =
n∑

j=1

bjµYj

Then

cov(U, V ) = E{(U − µU )(V − µV )}

= E


(

m∑
i=1

aiXi −
m∑

i=1

aiµXi

) n∑
j=1

bjYj −
n∑

j=1

bjµYj


= E


m∑

i=1

(aiXi − aiµXi
)

n∑
j=1

(
bjYj − bjµYj

)
= E


m∑

i=1

n∑
j=1

aibj(Xi − µXi
)(Yj − µYj

)


=

m∑
i=1

n∑
j=1

aibjE
{
(Xi − µXi

)(Yj − µYj
)
}

=
m∑

i=1

n∑
j=1

aibj cov(Xi, Yj),

the last equality being the definition of covariance, the next to last linearity
of expectation, and the rest being just algebra. And this proves the theorem
because cov(U, V ) is the left hand side of (2.21) in different notation.
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2.4.5 Exchangeable Random Variables

We say random variables X1, . . ., Xn are exchangeable if

(X1, . . . , Xn) D= (Xi1 , . . . , Xin
)

for any of the n! permutations i1, . . ., in of the integers 1, . . ., n. (This is
equivalent to the definition in Section 3.8 in Lindgren.) In particular, if we look
at marginal distributions, this implies

X1
D= Xi, i = 1, . . . , n,

that is, all of the Xi have the same distribution,

(X1, X2)
D= (Xi, Xj), i = 1, . . . , n, j = 1, . . . , n, i 6= j,

and analogous statements for triples, quadruples, and so forth. In turn, these
imply

E(X1) = E(Xi),
var(X1) = var(Xi),

and analogous statements for all moments of X1 and Xi, for all i,

cov(X1, X2) = cov(Xi, Xj),

and analogous statements for all mixed moments of X1 and X2 and Xi and Xj ,
for all i and j, and so forth for moments involving three or more variables.

Theorem 2.22. If X1, . . ., Xn are exchangeable random variables, then

var(X1 + · · · + Xn) = n var(X1) + n(n − 1) cov(X1, X2). (2.30)

Proof. Apply (2.25). All n terms var(Xi) are equal to var(X1), which accounts
for the first term on the right hand side of (2.30). All the cov(Xi, Xj) terms for
i 6= j are equal to cov(X1, X2), and there are

2
(

n

2

)
= n(n − 1)

of these, which accounts for the second term on the right hand side of (2.30).

2.4.6 Correlation

The Cauchy-Schwarz Inequality

Theorem 2.23 (Cauchy-Schwarz Inequality). For any random variables
X and Y having first and second moments

E(|XY |) ≤
√

E(X2)E(Y 2). (2.31)
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This inequality is also called the Schwarz inequality or the Cauchy-Schwarz-
Buniakowski inequality Statisticians generally prefer two-name eponyms, so
that’s what we’ve used.

Proof. By the positivity property of expectation for any a ∈ R

0 ≤ E{(X + aY )2} = E(X2) + 2aE(XY ) + a2E(Y 2).

There are only two ways the right hand side can be nonnegative for all a.
Case I. E(Y 2) = 0, in which case we must also have E(XY ) = 0, so the

right hand side is equal to E(X2) regardless of the value of a.
Case II. E(Y 2) > 0, in which case the right hand side is a quadratic function

of a that goes to infinity as a goes to plus or minus infinity and achieves its
minimum where its derivative

2E(XY ) + 2aE(Y 2)

is equal to zero, that is, at

a = −E(XY )/E(Y 2),

the minimum being

E(X2) − 2
E(XY )
E(Y 2)

E(XY ) +
(
−E(XY )

E(Y 2)

)2

E(Y 2) = E(X2) − E(XY )2

E(Y 2)

And this is nonnegative if and only if

E(XY )2 ≤ E(X2)E(Y 2).

Taking the square root of both sides gives almost what we want

|E(XY )| ≤
√

E(X2)E(Y 2). (2.32)

Plugging |X| in for X and |Y | in for Y in (2.32) gives (2.31).

Note that the proof establishes (2.32) as well as (2.31). Both of these in-
equalities are useful and we can regard one as a minor variant of the other. The
proof shows that (2.32) implies (2.31). We will eventually see (Theorem 2.28)
that the implication also goes the other way, that (2.31) implies (2.32). For
now, we will just consider them to be two inequalities, both of which have been
proved.

Correlation

The correlation of real-valued random variables X and Y having strictly
positive variances is

cor(X,Y ) =
cov(X,Y )√

var(X) var(Y )

=
cov(X,Y )

sd(X) sd(Y )
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If var(X) or var(Y ) is zero, the correlation is undefined.
Again we might ask why two such closely related concepts as correlation and

covariance. Won’t just one do? (Recall that we asked the same question about
variance and standard deviation.) Here too we have the same answer. The
covariance is simpler to handle theoretically. The correlation is easier to under-
stand and hence more useful in applications. Correlation has three important
properties.

First, it is a dimensionless quantity, a pure number. We don’t think much
about units, but if we do, as we noted before the units X and sd(X) are the
same and a little thought shows that the units of cov(X,Y ) are the product of
the units of X and Y . Thus in the formula for the correlation all units cancel.

Second, correlation is unaltered by changes of units of measurement, that is,

cor(a + bX, c + dY ) = sign(bd) cor(X,Y ), (2.33)

where sign(bd) denotes the sign (plus or minus) of bd. The proof is left as an
exercise (Problem 2-25).

Third, we have the correlation inequality.

Theorem 2.24 (Correlation Inequality). For any random variables X and
Y for which correlation is defined

−1 ≤ cor(X,Y ) ≤ 1. (2.34)

Proof. This is an immediate consequence of Cauchy-Schwarz. Plug in X − µX

for X and Y − µY for Y in (2.32), which is implied by Cauchy-Schwarz by the
comment following the proof of the inequality, giving

|cov(X,Y )| ≤
√

var(X) var(Y ).

Dividing through by the right hand side gives the correlation inequality.

The correlation has a widely used Greek letter symbol ρ (lower case rho). As
usual, if correlations of several pairs of random variables are under consideration,
we distinguish them by decorating the ρ with subscripts indicating the random
variables, for example, ρX,Y = cor(X,Y ). Note that by definition of correlation

cov(X,Y ) = cor(X,Y ) sd(X) sd(Y )
= ρX,Y σXσY

This is perhaps one reason why covariance doesn’t have a widely used Greek-
letter symbol (recall that we said the symbol σX,Y used by Lindgren is nonstan-
dard and not understood by anyone who has not had a course using Lindgren
as the textbook).

Problems

2-1. Fill in the details at the end of the proof of Corollary 2.2. Specifically,
answer the following questions.
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(a) Why does (2.7) assert the same thing as (2.6) in different notation?

(b) What happened to the existence assertion of the corollary? Why it is clear
from the use made of Theorem 2.1 in the proof that a+bX has expectation
whenever X does?

2-2. Prove Corollary 2.4. As the text says, this may be done either using
Axiom E1 and mathematical induction, the proof being similar to that of Theo-
rem 2.3 but simpler, or you can use Theorem 2.3 without repeating the induction
argument (the latter is simpler).

In all of the following problems the rules are as follows. You may assume in
the proof of a particular theorem that all of the preceding theorems have been
proved, whether the proof has been given in the course or left as an exercise.
But you may not use any later theorems. That is, you may use without proof
any theorem or corollary with a lower number, but you may not use any with
a higher number. (The point of the rule is to avoid circular so-called proofs,
which aren’t really proofs because of the circular argument.)

2-3. Prove Corollary 2.5.

2-4. Prove Corollary 2.6.

2-5. If X1, X2, . . . is a sequence of random variables all having the same ex-
pectation µ, show that

E(Xn) = µ,

where, as usual, Xn is defined by (2.1).

2-6. Prove Corollary 2.7.

2-7. Prove Theorem 2.8 from Axiom E3 and Theorem 2.5.

2-8. A gambler makes 100 one-dollar bets on red at roulette. The probability
of winning a single bet is 18/38. The bets pay even odds, so the gambler gains
$1 when he wins and loses $1 when he loses.

What is the mean and the standard deviation of the gambler’s net gain
(amount won minus amount lost) on the 100 bets?

2-9. Prove Theorem 2.9.

2-10. Prove Theorem 2.10.

2-11. Lindgren (Definition on p. 94) defines a continuous random variable to
be symmetric about a point a if it has a density f that satisfies

f(a + x) = f(a − x), for all x.

We, on the other hand, gave a different definition (p. 39 in these notes) gave a
different definition (that X − a and a − X have the same distribution), which
is more useful for problems involving expectations and is also more general
(applying to arbitrary random variables, not just continuous ones). Show that
for continuous random variables, the two definitions are equivalent, that is,
suppose X is a continuous random variable with density fX , and
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(a) Find the density of Y = X − a.

(b) Find the density of Z = a − X.

(c) Show that these two densities are the same function if and only if

fX(a + x) = fX(a − x), for all x.

2-12. For the densities in Problem 4-8 in Lindgren, find the medians of the
distributions.

2-13. Prove Corollary 2.12.

2-14. Suppose X is a zero-one-valued random variable, that is, X(s) is either
zero or one for all s. Suppose X has mean µ.

(a) Show that αk = µ for all positive integers k.

(b) Show that 0 ≤ µ ≤ 1.

(c) Show that var(X) = µ(1 − µ).

2-15. Prove Theorem 2.13. Hint: It helps to define Y = a + bX and to use
Property 2.2. Since there are now two random variables under discussion, the
means must be denoted µX and µY (what does Property 2.2 say about µY ) and
similarly for the variances (what is to be shown is that σ2

Y = b2σ2
X).

2-16. Give the general formula for the variance of a linear combination of un-
correlated random variables.

2-17. Prove Theorem 2.15.

2-18. Suppose X is a random variable having mean µX and standard deviation
σX and σX > 0. Find a linear transformation Y = a + bX so that Y has
mean µY and σY , where µY is any real number and σY is any nonnegative real
number.

2-19. If X1, X2, . . . is a sequence of uncorrelated random variables all having
the same expectation µ and variance σ2, show that

sd(Xn) =
σ√
n

,

where, as usual, Xn is defined by (2.1).

2-20. State the result analogous to Theorem 2.22 giving var(Xn). You need
not prove your theorem (the proof is an obvious variation of the proof of Theo-
rem 2.22).

2-21. Suppose X1, X2, . . ., Xn are exchangeable with nonzero variance and

X1 + X2 + · · · + Xn = 0.

What is cor(Xi, Xj) for i 6= j.
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2-22. Suppose X1, . . ., Xn are exchangeable random variables. Show that

− 1
n − 1

≤ cor(Xi, Xj).

Hint: Consider var(X1 + · · · + Xn). Compare with the preceding problem.

2-23. An infinite sequence of random variables X1, X2, . . . is said to be ex-
changeable if the finite sequence X1, . . ., Xn is exchangeable for each n.

(a) Show that correlations cor(Xi, Xj) for an exchangeable infinite sequence
must be nonnegative. Hint: Consider Problem 2-22.

(b) Show that the following construction gives an exchangeable infinite se-
quence X1, X2, . . . of random variables having any correlation in the range
0 ≤ ρ ≤ 1. Let Y1, Y2, . . . be an i. i. d. sequence of random variables with
variance σ2, let Z be a random variable independent of all the Yi with
variance τ2, and define Xi = Yi + Z.

2-24. Consider an infinite sequence of random variables X1, X2, . . . having
covariances

cov(Xi, Xj) = ρ|i−j|σ2

where −1 < ρ < 1 and σ > 0. Find var(Xn) where, as usual, Xn is defined by
(2.1). Try to simplify your formula so that it does not have an explicit sum.
Hint: The geometric series

n−1∑
k=0

ak =
1 − an

1 − a
, −1 < a < 1

helps.

2-25. Prove (2.33).

2-26. Show that for any linear function, that is, a function T satisfying (2.35),
T (0) = 0.

2.5 Probability Theory as Linear Algebra

This section has two objectives.
The minor objective is to explain something that might be bothering the

astute reader. What is the connection between the linearity property of expec-
tation (Property 2.1) and the linearity property that defines linear transforma-
tions in linear algebra. They look similar. What’s the connection?

The major objective is to provide some mathematical models for expectation.
Everything we have done so far, important as it is, mostly tells us how some
expectations relate to other expectations. Linearity of expectation, for example
tells us that if we know E(X) and E(Y ), then we can calculate E(aX + bY ). It
doesn’t tell us where E(X) and E(Y ) come from in the first place.
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2.5.1 The Vector Space L1

Although we haven’t gotten to it yet, we will be using linear algebra in this
course. The linearity property of linear transformations between vector spaces
will be important. If these two linearity properties (the one from linear algebra
and the one from probability theory) are different, what is the difference and
how can you keep from confusing them?

Fortunately, there is nothing to confuse. The two properties are the same,
or, more precisely, expectation is a linear transformation.

Theorem 2.25. L1 is a real vector space, and E is a linear functional on L1.

The proof is trivial (we will give it below). The hard part is understanding
the terminology, especially if your linear algebra is a bit rusty. So our main
effort will be reviewing enough linear algebra to understand what the theorem
means.

Vector Spaces

Every linear algebra book starts with a definition of a vector space that
consists of a long list of formal properties. We won’t repeat them. If you are
interested, look in a linear algebra book. We’ll only review the facts we need
here.

First a vector space is a set of objects called vectors. They are often denoted
by boldface type. It is associated with another set of objects called scalars. In
probability theory, the scalars are always the real numbers. In linear algebra,
the scalars are often the complex numbers. More can be proved about complex
vector spaces (with complex scalars) than about real vector spaces (with real
scalars), so complex vector spaces are more interesting to linear algebraists.
But they have no application in probability theory. So to us “scalar” is just a
synonym for “real number.”

There are two things you can do with vectors.

• You can add them (vector addition). If x and y are vectors, then there
exists another vector x + y.

• You can multiply them by scalars (scalar multiplication). If x is a vector
and a is a scalar, then there exists another vector ax.

If you got the impression from your previous exposure to linear algebra (or
from Chapter 1 of these notes) that the typical vector is an n-tuple

x = (x1, . . . , xn)

or perhaps a “column vector” (n × 1 matrix)

x =

x1

...
xn


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you may be wondering what the connection between random variables and vec-
tors could possibly be. Random variables are functions (on the sample space)
and functions aren’t n-tuples or matrices.

But n-tuples are functions. You just have to change notation to see it. Write
x(i) instead of xi, and it’s clear that n-tuples are a special case of the function
concept. An n-tuple is a function that maps the index i to the value xi.

So the problem here is an insufficiently general notion of vectors. You should
think of functions (rather than n-tuples or matrices) as the most general notion
of vectors. Functions can be added. If f and g are functions on the same
domain, then h = f + g means

h(s) = f(s) + g(s), for all s in the domain.

Functions can be multiplied by scalars. If f is a function and a is a scalar (real
number), then h = af means

h(s) = af(s), for all s in the domain.

Thus the set of scalar-valued functions on a common domain form a vector space.
In particular, the scalar-valued random variables of a probability model (all real-
valued functions on the sample space) form a vector space. Theorem 2.25 asserts
that L1 is a subspace of this vector space.

Linear Transformations and Linear Functionals

If U and V are vector spaces and T is a function from U to V , then we say
that T is linear if

T (ax + by) = aT (x) + bT (y),
for all vectors x and y and scalars a and b. (2.35)

Such a T is sometimes called a linear transformation or a linear mapping rather
than a linear function.

The set of scalars (the real numbers) can also be thought of as a (one-
dimensional) vector space, because scalars can be added and multiplied by
scalars. Thus we can also talk about scalar-valued (real-valued) linear functions
on a vector space. Such a function satisfies the same property (2.35). The only
difference is that it is scalar-valued rather than vector-valued. In linear algebra,
a scalar-valued linear function is given the special name linear functional.

Theorem 2.25 asserts that the mapping from random variables X to their
expectations E(X) is a linear functional on L1. To understand this you have to
think of E as a function, a rule that assigns values E(X) to elements X of L1.

Proof of Theorem 2.25. The existence assertions of Properties E1 and E2 assert
that random variables in L1 can be added and multiplied by scalars yielding a
result in L1. Thus L1 is a vector space. Property 2.1 now says the same thing
as (2.35) in different notation. The map E, being scalar-valued, is thus a linear
functional on L1.
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2.5.2 Two Notions of Linear Functions

The preceding section showed that there was no difference between the notion
of linearity used in linear algebra and linearity of expectation in probability
theory.

There is, however, another notion of linearity. In fact, we already used it in
(2.9) and silently skipped over the conflict with (2.35). To be more precise, we
should say that (2.9) defines a function that is linear in the sense of high-school
algebra or first-year calculus (or in the sense used in statistics and various other
kinds of applied mathematics), and (2.35) defines a function that is linear in
the sense of linear algebra (and other higher mathematics).

To simplify terminology and indicate the two notions with single words,
mathematicians call the first class of functions affine and the second class linear.
Note that affine functions are what everyone but pure mathematicians calls
linear functions.

The two notions are closely related, but slightly different. An affine function
is a linear function plus a constant. If T is a linear function from a vector space
U to a vector space V , that is, a function satisfying (2.35), and a is any vector
in V , then the map A defined by

A(x) = a + T (x), x ∈ V (2.36)

is an affine function.
If we were mathematical purists, we would always call functions of the form

(2.36) “affine,” but if we taught you to do that, no one would understand what
you were talking about except for pure mathematicians. So we won’t. We will
call functions of the form (2.36) “linear,” like everyone but pure mathematicians.
Only when we think confusion is likely will we call them “linear in the ordinary
sense” or “affine.”

Confusion between the two is fairly easy to clear up. Linear functions (in the
strict sense) are a special case of affine functions. They are the ones satisfying
T (0) = 0 (Problem 2-26). So just check whether this holds. If so, linear is
meant in the strict sense, if not, linear is meant in the ordinary sense.

So that explains the difference between affine and linear. The only question
remaining is why (2.9) defines an affine function. What does (2.9) have to
do with (2.36)? First (2.9) defines a scalar-valued affine function of a scalar
variable. This makes both the constant and the function values in (2.36) scalar,
so we can rewrite it as

g(x) = a + h(x), x ∈ R,

where a is a scalar and h is a scalar-valued linear function on R. To get this in
the form (2.9) we only need to show that the most general scalar-valued linear
function on R has the form

h(x) = bx, x ∈ R,

where b is a real number. The homogeneity property applied to h says

h(x) = h(x · 1) = xh(1), x ∈ R.
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So we are done, the identification b = h(1) makes the two equations the same.

2.5.3 Expectation on Finite Sample Spaces

Consider a finite set S and define L1 to be the set of all real-valued functions
on S. This makes L1 a finite-dimensional vector space. The elements of L1 differ
from n-tuples only in notation. A random variable X ∈ L1 is determined by its
values

X(s), s ∈ S,

and since S is finite, this means X is determined by a finite list of real numbers.
If S is indexed

S = {s1, . . . , sn}
then we could even, if we wanted, collect these values into an n-tuple

(x1, . . . , xn)

where
xi = X(si), i = 1, . . . , n,

which shows explicitly the correspondence between n-tuples and functions on a
set of cardinality n.

However, we don’t want to make too much of this correspondence. In fact
the only use we want to make of it is the following fact: every linear functional
T on an n-dimensional vector space has the form

T (x) =
n∑

i=1

aixi (2.37)

where, as usual, x = (x1, . . . , xn). This is sometimes written

T (x) = a′x

where a = (a1, . . . , an) the prime indicating transpose and a and x being con-
sidered as column vectors. Other people write

T (x) = a · x
the operation indicated by the dot being called the scalar product or dot product
of the vectors a and x.

We now want to change back to our original notation, writing vectors as
functions on a finite set S rather than n-tuples, in which case (2.37) becomes

T (x) =
∑
s∈S

a(s)x(s)

Now we want to make another change of notation. If we want to talk about
vectors that are elements of L1 (and we do), we should use the usual notation,
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denoting those elements (which are random variables) by X rather than x and
their components by X(s) giving

T (X) =
∑
s∈S

a(s)X(s). (2.38)

To summarize the argument of this section so far

Theorem 2.26. For probability models on a finite sample space S, every linear
functional on L1 has the form (2.38).

But not every linear functional is an expectation operator. Every linear
functional satisfies two of the probability axioms (homogeneity and additivity).
But a linear functional need not satisfy the other two (positivity and norm).

In order that (2.38) be positive whenever X ≥ 0, that is, when X(s) ≥ 0,
for all s, it is required that

a(s) ≥ 0, s ∈ S. (2.39a)

In order that (2.38) satisfy the norm property (2.4) it is required that∑
s∈S

a(s) = 1, (2.39b)

because X = 1 means X(s) = 1, for all s. We have met functions like this
before: a function a satisfying (2.39a) and (2.39b) we call a probability density.
Lindgren calls them probability functions (p. f.’s).

Theorem 2.27. For probability models on a finite sample space S, every ex-
pectation operator on L1 has the form

E(X) =
∑
s∈S

p(s)X(s) (2.40)

for some function p : S → R satisfying

p(s) ≥ 0, s ∈ S, (2.41a)

and ∑
s∈S

p(s) = 1. (2.41b)

A function p as defined in the theorem is called a probability density or just
a density.

Remark. Theorem 2.27 is also true if the word “finite” in the first sentence is
replaced by “countable” (see Theorem 2.30).
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A little section about mathematics is invariant under changes of notation.
We often write (2.40) in different notation. If X is a random variable with
density fX having domain S (the range of possible values of X), then

E{g(X)} =
∑
x∈S

g(x)fX(x). (2.42)

Note that (2.42) is exactly the same as (2.40) except for purely notational dif-
ferences. The special case where g is the identity function

E(X) =
∑
x∈S

xfX(x) (2.43)

is of some interest. Lindgren takes (2.43) as the definition of expectation. For us
it is a trivial special case of the more general formula (2.42), which in turn is not
a definition but a theorem (Theorem 2.27). For us the definition of expectation
is “an operator satisfying the axioms.”

Example 2.5.1 (The Binomial Distribution).
Recall the binomial distribution (Section B.1.2 of Appendix B) having density

f(x) =
(

n

x

)
px(1 − p)n−x, x = 0, . . . , n.

We want to calculate E(X). By the formulas in the preceding discussion

E(X) =
n∑

x=0

xf(x)

=
n∑

k=0

k

(
n

k

)
pk(1 − p)n−k

=
n∑

k=0

k
n!

k!(n − k)!
pk(1 − p)n−k

=
n∑

k=1

n!
(k − 1)!(n − k)!

pk(1 − p)n−k

= np
n∑

k=1

(n − 1)!
(k − 1)!(n − k)!

pk−1(1 − p)n−k

= np

n∑
k=1

(
n − 1
k − 1

)
pk−1(1 − p)n−k

= np

n−1∑
m=0

(
n − 1

m

)
pm(1 − p)n−1−m

•Going from line 1 to line 2 we just plugged in the definition of f(x) and
changed the dummy variable of summation from x to k.
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•Going from line 2 to line 3 we just plugged in the definition of the binomial
coefficient.

•Going from line 3 to line 4 we just observed that the k = 0 term is zero
and then canceled the k in the numerator with the k in the k! in the
denominator.

•Going from line 4 to line 5 we pulled an n out of the n! and a p out of the
pk.

•Going from line 5 to line 6 we just used the definition of the binomial
coefficient again.

•Going from line 6 to line 7 we changed the dummy variable of summation
to m = k − 1.

Now the binomial theorem says the sum in the last line is equal to one. Alter-
natively, the sum in the last line is equal to one because the summand is the
Bin(n − 1, p) density, and every probability density sums to one. Hence

E(X) = np.

2.5.4 Axioms for Expectation (Part II)

Absolute Values

Axiom E5 (Absolute Values). If X is in L1, then so is |X|.
Note that this axiom trivially applies to the probability models on a finite

sample space discussed in the preceding section, because every real-valued func-
tion is in L1. This axiom is only interesting when the sample space is infinite.

With this axiom, we can prove another basic property of expectation that is
mostly used in theoretical arguments.

Theorem 2.28 (Absolute Values). If X is in L1, then

|E(X)| ≤ E(|X|).
The name of this theorem is “taking an absolute value inside an expectation

can only increase it.” That’s a long-winded name, but there is no widely used
short name for the theorem.

Derivation of Property 2.28. First note that X ≤ |X|. Applying Property 2.8
to these two random variables gives

E(X) ≤ E(|X|),
which is what was to be proved in the case that E(X) is nonnegative.

To prove the other case, we start with the fact that −X ≤ |X|. Another
application of Property 2.8 along with Property 2.6 gives

−E(X) = E(−X) ≤ E(|X|).
But when E(X) is negative −E(X) = |E(X)|, so that proves the other case.
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Note that there is no explicit mention of Axiom E5 in the proof. The implicit
mention is that only the axiom allows us to talk about E(|X|). None of the
other axioms guarantee that |X| has expectation.

Monotone Convergence

The last axiom for expectation analogous to the countable additivity axiom
for probability (called Axiom 3a on p. 30 in Lindgren). This is the monotone
convergence axiom. To understand it we need a preliminary definition. For
a sequence of numbers {xn}, the notation xn ↑ x means x1 ≤ x2 ≤ . . . and
xn → x. For a sequence of random variables {Xn} on a sample space S, the
notation Xn ↑ X means Xn(s) ↑ X(s) for all s ∈ S.

Axiom E6 (Monotone Convergence). Suppose X1, X2, . . . is a sequence
of random variables in L1 such that Xn ↑ X. If

lim
n→∞E(Xn) < ∞,

then X ∈ L1 and
E(Xn) ↑ E(X).

Conversely, if
lim

n→∞E(Xn) = ∞,

then X /∈ L1.

The monotone convergence axiom is a fairly difficult subject, so difficult
that Lindgren omits it entirely from his book, although this makes no sense
because the countable additivity axiom for probability is equally difficult and is
included. So this is really more treating expectation is a second class concept,
subsidiary to probability. Our insistence on including it is part and parcel of
our notion that probability and expectation are equally important and deserve
equal treatment.

That having been said, this axiom can be considered the dividing line be-
tween material at the level of this course and material over our heads. If a proof
involves monotone convergence, it is too hard for us. We will state some results
that can only be proved using the monotone convergence axiom, but we will
leave the proofs for more advanced courses.

There is a “down arrow” concept defined in obvious analogy to the “up
arrow” concept (the sequence converges down rather than up), and there is an
analogous form of monotone convergence

Corollary 2.29 (Monotone Convergence). Suppose X1, X2, . . . is a se-
quence of random variables in L1 such that Xn ↓ X. If

lim
n→∞E(Xn) > −∞,

then X ∈ L1 and
E(Xn) ↓ E(X).
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Conversely, if
lim

n→∞E(Xn) = −∞,

then X /∈ L1.

2.5.5 General Discrete Probability Models

If the sample space S of a probability model is countably infinite, we would
like to use the same formulas (2.40), (2.41a) and (2.41b), that we used for
finite sample spaces, but we run into problems related to infinite series. The
sum may not exist (the series may not converge), and if it does exist, its value
may depend on the particular enumeration of the sample space that is used.
Specifically, there are many ways to enumerate the sample space, writing it as
a sequence S = {s1, s2, . . . }, and when we write out the infinite sum explicitly
as

E(X) =
∞∑

i=1

X(si)p(si) = lim
n→∞

n∑
i=1

X(si)p(si)

the limit may depend on the particular enumeration chosen. The axioms of
expectation, however, solve both of these problems.

First, not all random variables have expectation, only those in L1 so the
fact that expectation may not be defined for some random variables should not
bother us. For discrete probability models on a sample space S defined by a
probability density p, we define L1 to be the set of all functions X : S → R
satisfying ∑

s∈S

|X(s)|p(s) < ∞. (2.44)

This definition trivially satisfies Axiom E5 and also satisfies the existence parts
of Axioms E1, E2, and E4.

For X ∈ L1 we define expectation by the same formula (2.40) as in the
finite sample space case. Note that then the sum in (2.44) is E(|X|). Thus our
definition says that X has expectation if and only if |X| also has expectation.
Another way to say the same thing is that (2.40) defines an expectation if and
only if the series is absolutely summable, which means the sum of the absolute
values of the terms of the series exists.

Because of the rearrangement of series theorem from calculus, which says
that if a series is absolutely summable then the sum of the series does not
depend on the order in which the terms are summed, we can rearrange the
terms in the sum as we please without changing the result. That is why we
can write (2.40) as an unordered sum using notation that does not specify any
particular ordering.

Theorem 2.30. All probability models on a countable sample space S are de-
fined by a function function p : S → R satisfying

p(s) ≥ 0, s ∈ S, (2.45a)
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and ∑
s∈S

p(s) = 1. (2.45b)

The corresponding expectation operator is E : L1 → R, where L1 is the set of
functions X : S → R such that∑

s∈S

p(s)|X(s)| < ∞,

and
E(X) =

∑
s∈S

p(s)X(s) (2.46)

Following our policy that any proof that involves dominated convergence is
beyond the scope of this course, we won’t try to prove the theorem.

Note that the remarks about mathematics is invariant under changes of
notation in the preceding section apply here too. In particular, (2.42) and
(2.43) apply just as well in the case that S is countably infinite (so long as the
expectation in question exists).

Example 2.5.2 (The Poisson Distribution).
The the Poisson distribution is the discrete distribution having density

f(x) =
µx

x!
e−µ, x = 0, 1, . . . .

(Section B.1.4 of Appendix B). If X ∼ Poi(µ), then

E(X) =
∞∑

x=0

xf(x)

=
∞∑

k=0

k
µk

k!
e−µ

= µ
∞∑

k=1

µ(k − 1)
(k − 1)!

e−µ

= µ
∞∑

m=0

µm

m!
e−µ

•Going from line 1 to line 2 we just plugged in the definition of f(x) and
changed the dummy variable of summation from x to k.

•Going from line 2 to line 3 we just observed that the k = 0 term is
zero, then canceled the k in the numerator with the k in the k! in the
denominator, and then pulled a µ out of the µk.

•Going from line 3 to line 4 we changed the dummy variable of summation
to m = k − 1.
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The sum in the last line is equal to one because the summand is the Poi(µ)
density, and every probability density sums to one. Hence

E(X) = µ.

2.5.6 Continuous Probability Models

When the sample space is uncountable, like R or Rd we cannot use the
formulas of Theorem 2.27 to define expectation. There is no notion of sums
with an uncountably infinite number of terms.

There is, however, another concept that behaves much like summation, which
is integration. We just replace the sums by integrals.

Theorem 2.31. Probability models on having a subset S of R or Rd can be
defined by a function function f : S → R satisfying

f(x) ≥ 0, x ∈ S, (2.47a)

and ∫
S

f(x) dx = 1. (2.47b)

The space L1 of random variables having expectations is the set of real-valued
functions g : S → R such that∫

S

|g(x)|f(x) dx < ∞.

The corresponding expectation operator is E : L1 → R is defined by

E{g(X)} =
∫

S

g(x)f(x) dx. (2.48)

As in the discrete case, we define expectation so that Y has expectation only
if |Y | also has expectation. Since we are using integrals rather than sums, we
are now interested in absolute integrability rather than absolute summability,
but there is a complete analogy between the two cases.

Similar formulas hold when the sample space is Rd or a subset S of Rd.
The general formula, written in vector notation and ordinary multiple-integral
notation is

E{g(X)} =
∫

S

g(x)f(x) dx

=
∫∫

· · ·
∫

S

g(x1, x2, . . . , xn)f(x1, x2, . . . , xn) dx1 dx2 · · · dxn

(2.49)

Now we take a time out for a comment that is “beyond the scope of this
course.” We just lied to you, sort of. Theorem 2.31 is not true if the integral
signs indicate the kind of integral (the so-called Riemann integral) described in
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elementary calculus courses. All the axioms except monotone convergence are
satisfied, and monotone convergence

lim
n→∞

∫
gn(x)f(x) dx =

∫
g(x)f(x) dx, if gn ↑ g. (2.50)

holds sometimes but not always.
The problem is that the limit of a sequence of Riemann integrable functions

is not necessarily Riemann integrable. So even though (2.50) is true whenever
all the functions involved are Riemann integrable, that isn’t enough to satisfy
the monotone convergence axiom. The way around this problem is a tour de
force of higher mathematics. One just makes (2.50) hold by definition. First
one shows that for two sequences gn ↑ g and hn ↑ g increasing to the same limit

lim
n→∞

∫
gn(x)f(x) dx = lim

n→∞

∫
hn(x)f(x) dx (2.51)

Therefore if we just define the right hand side of (2.50) to be the left hand side,
the equation is then true by definition. This definition is unambiguous because
the value of the limit does not depend on the sequence chosen (2.51). This
“extension by monotone convergence” of the definition of the integral is called
the Lebesgue integral .

Note that the Riemann integral always agrees with the Lebesgue integral
whenever both are defined, so this is not a totally new concept. Every function
you already know how to integrate has the same integral in both senses. The
only point of Lebesgue integration is that it allows the integration of some really
weird functions, too weird to have Riemann integrals. Since no really weird
functions are of any practical interest, the only point of the whole exercise is
to prove theorems using the monotone convergence axiom. And since that is
beyond the scope of this course, we won’t worry about it.

Example 2.5.3 (The Gamma Distribution).
The the Gamma distribution is the continuous distribution having density

f(x) =
λα

Γ(α)
xα−1e−λx, x > 0

(Section B.2.3 of Appendix B). If X ∼ Gam(α, λ), then

E(X) =
∫ ∞

0

xf(x) dx

=
∫ ∞

0

λα

Γ(α)
xαe−λx dx

=
Γ(α + 1)
λΓ(α)

∫ ∞

0

λα+1

Γ(α + 1)
xαe−λx dx

•Going from line 1 to line 2 we just plugged in the definition of f(x) and
collected the x and xα−1 terms together.



68 Stat 5101 (Geyer) Course Notes

•Going from line 2 to line 3 we just pulled some constants outside of the
integral.

The integral in the last line is equal to one because the integrand is the density
of the Gam(α + 1, λ) distribution, and every probability density integrates to
one. Hence

E(X) =
Γ(α + 1)
λΓ(α)

=
α

λ

the second equality being the recurrence relation for the gamma function (B.3)
in Section B.3.1 of Appendix B.

2.5.7 The Trick of Recognizing a Probability Density

The astute reader may have recognized a pattern to Examples 2.5.1, 2.5.2,
and 2.5.3. In each case the sum or integral was done by recognizing that by
moving certain constants (terms not containing the variable of summation or
integration) outside of the sum or integral leaving only the sum or integral of a
known probability density, which is equal to one by definition.

Of course, you don’t have to use the trick. There is more than one way to
do it. In fact, we even mentioned that you could instead say that we used the
binomial theorem to do the sum in Example 2.5.1. Similarly, you could say we
use the Maclaurin series for the exponential function

ex = 1 + x +
x2

2
+ · · · + xk

k!
+ · · ·

to do the sum in Example 2.5.2, and you could say we use the definition of the
gamma function, (B.2) in Appendix B plus the change-of-variable formula to do
the integral in Example 2.5.3. In fact, the argument we gave using the fact that
densities sum or integrate to one as the case may be does use these indirectly,
because those are the reasons why these densities sum or integrate to one.

The point we are making here is that in every problem involving an expec-
tation in which you are doing a sum or integral, you already have a know sum
or integral to work with. This is expecially important when there is a whole
parametric family of densities to work with. In calculating the mean of a Γ(α, λ)
distribution, we used the fact that a Γ(α + 1, λ) density, like all densities, in-
tegrates to one. This is a very common trick. One former student said that
if you can’t do an integral using this trick, then you can’t do it at all, which
is not quite true, but close. Most integrals and sums you will do to calculate
expectations can be done using this trick.

2.5.8 Probability Zero

Events of probability zero are rather a nuisance, but they cannot be avoided
in continuous probability models. First note that every outcome is an event of
probability zero in a continuous probability model, because by definition

P (X = a) =
∫ a

a

f(x) dx,
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and a definite integral over an interval of length zero is zero.
Often when we want to assert a fact, it turns out that the best we can get

from probability is an assertion “with probability one” or “except for an event of
probability zero.” The most important of these is the following theorem, which
is essentially the same as Theorem 5 of Chapter 4 in Lindgren.

Theorem 2.32. If Y = 0 with probability one, then E(Y ) = 0. Conversely, if
Y ≥ 0 and E(Y ) = 0, then Y = 0 with probability one.

The phrase “Y = 0 with probability one” means P (Y = 0) = 1. The proof
of the theorem involves dominated convergence and is beyond the scope of this
course.

Applying linearity of expectation to the first half of the theorem, we get an
obvious corollary.

Corollary 2.33. If X = Y with probability one, then E(X) = E(Y ).

If X = Y with probability one, then the set

A = { s : X(s) 6= Y (s) }
has probability zero. Thus a colloquial way to rephrase the corollary is “what
happens on a set of probability zero doesn’t matter.” Another rephrasing is “a
random variable can be arbitrarily redefined on a set of probability zero without
changing any expectations.”

There are two more corollaries of this theorem that are important in statis-
tics.

Corollary 2.34. var(X) = 0 if and only if X is constant with probability one.

Proof. First, suppose X = a with probability one. Then E(X) = a = µ,
and (X − µ)2 equals zero with probability one, hence by Theorem 2.32 its
expectation, which is var(X), is zero.

Conversely, by the second part of Theorem 2.32, var(X) = E{(X −µ)2} = 0
implies (X−µ)2 = 0 with probability one because (X−µ)2 is a random variable
that is nonnegative and integrates to zero. Since (X − µ)2 is zero only when
X = µ, this implies X = µ with probability one.

Corollary 2.35. |cor(X,Y )| = 1 if and only if there exist constants α and β
such that Y = α + βX with probability one.

Proof. First suppose Y = α + βX with probability one. Then by (2.33)

cor(α + βX,X) = sign(β) cor(X,X) = ±1.

That proves one direction of the “if and only if.”
To prove the other direction, we assume ρX,Y = ±1 and have to prove that

Y = α+βX with probability one, where α and β are constants we may choose.
I claim that the appropriate choices are

β = ρX,Y
σY

σX

α = µY − βµX
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(these are just pulled out of the air here, the choice will make sense after we
have done best linear prediction).

We want to prove that Y = α + βX with probability one. We can do this
by showing that (Y −α−βX)2 is zero with probability one, and this will follow
from Theorem 2.32 if we can show that (Y − α − βX)2 has expectation zero.
Hence let us calculate

E
{
(Y − α − βX)2

}
= E

{(
Y − µY − ρX,Y

σY

σX
(X − µX)

)2
}

= E
{

(Y − µY )2
}

− 2E

{
(Y − µY )

(
ρX,Y

σY

σX
(X − µX)

)}
+ E

{(
ρX,Y

σY

σX
(X − µX)

)2
}

= var(Y ) − 2ρX,Y
σY

σX
cov(X,Y ) + ρ2

X,Y

σ2
Y

σ2
X

var(X)

= σ2
Y − 2ρ2

X,Y σ2
Y + ρ2

X,Y σ2
Y

= σ2
Y (1 − ρ2

X,Y )

which equals zero because of the assumption |ρX,Y | = 1.

2.5.9 How to Tell When Expectations Exist

We say a random variable Y dominates a random variable X if |X| ≤ |Y |.
Theorem 2.36. If Y dominates X and Y has expectation, then X also has
expectation. Conversely if Y dominates X and the expectation of X does not
exist, then the expectation of Y does not exist either.

The proof involves monotone convergence and is hence beyond the scope of
this this course.1

We say a random variable X is bounded if |X| ≤ a for some constant a.
1Actually this theorem is way, way beyond the scope of this course, the one subject we will

touch on that is really, really, really weird. Whether this theorem is true or false is a matter
of taste. Its truth depends on an axiom of set theory (the so-called axiom of choice), which
can be assumed or not without affecting anything of practical importance. If the theorem is
false, that means there exists a random variable X dominated by another random variable Y
such that Y is in L1 and X isn’t. However, the usual assumptions of advanced probability
theory imply that every Riemann integrable random variable dominated by Y is in L1, hence
X cannot be written as the limit of a sequence Xn ↑ X for a sequence of Riemann integrable
random variables Xn. This means that X is weird indeed. Any conceivable description of
X (which like any random variable is a function on the sample space) would have not only
infinite length but uncountably infinite length. That’s weird! What is not widely known, even
among experts, is that there is no need to assume such weird functions actually exist. The
entirety of advanced probability theory can be carried through under the assumption that
Theorem 2.36 is true (R. M. Solovay, “A Model of Set-Theory in Which Every Set of Reals is
Lebesgue Measurable,” Annals of Mathematics, 92:1-56, 1970).
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Corollary 2.37. Every bounded random variable is in L1.

Corollary 2.38. In a probability model with a finite sample space, every random
variable is in L1.

The corollaries take care of the trivial cases. Thus the question of existence
or non-existence of expectations only applies to unbounded random variables
in probability models on infinite sample spaces. Then Theorem 2.36 is used
to determine whether expectations exist. An expectation is an infinite sum in
the discrete case or an integral in the continuous case. The question is whether
the integral or sum converges absolutely. That is, if we are interested in the
expectation of the random variable Y = g(X) where X has density f , we need
to test the integral

E(|Y |) =
∫

|g(x)|f(x) dx

for finiteness in the continuous case, and we need to test the corresponding sum

E(|Y |) =
∑
x∈S

|g(x)|f(x)

for finiteness in the discrete case. The fact that the integrand or summand has
the particular product form |g(x)|f(x) is irrelevant. What we need to know here
are the rules for determining when an integral or infinite sum is finite.

We will cover the rules for integrals first. The rules for sums are very anal-
ogous. Since we are only interested in nonnegative integrands, we can always
treat the integral as representing “area under the curve” where the curve in
question is the graph of the integrand. Any part of the region under the curve
that fits in a finite rectangle is, of course, finite. So the only way the area under
the curve can be infinite is if part of the region does not fit in a finite rectangle:
either the integrand has a singularity (a point where it goes to infinity), or the
domain of integration is an unbounded interval. It helps if we focus on each
problem separately: we test whether integrals over neighborhoods of singulari-
ties are finite, and we test whether integrals over unbounded intervals are finite.
Integrals over bounded intervals not containing singularities do not need to be
checked at all.

For example, suppose we want to test whether∫ ∞

0

h(x) dx

is finite, and suppose that the only singularity of h is at zero. For any numbers
a and b such that 0 < a < b < ∞ we can divide up this integral as∫ ∞

0

h(x) dx =
∫ a

0

h(x) dx +
∫ b

a

h(x) dx +
∫ ∞

b

h(x) dx

The first integral on the right hand side may be infinite because of the singu-
larity. The third integral on the right hand side may be infinite because of the
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unbounded domain of integration. The second integral on the right hand side
must be finite: the integral of a bounded function over a bounded domain is
always finite, we do not need to check.

It is rare that we can exactly evaluate the integrals. Usually we have to use
Theorem 2.36 to settle the existence question by comparing with a simpler inte-
gral. The following lemmas give the most useful integrals for such comparisons.
While we are at it, we give the analogous useful infinite sums. The proofs are
all elementary calculus.

Lemma 2.39. For any positive real number a or any positive integer m∫ ∞

a

xb dx and
∞∑

n=m

nb

exist if and only if b < −1.

Lemma 2.40. For any positive real number a∫ a

0

xb dx

exists if and only if b > −1.

Lemma 2.41. For any positive real number a or any positive integer m and
any positive real number c and any real number b (positive or negative)∫ ∞

a

xbe−cx dx and
∞∑

n=m

nbe−cn

exist.

The following two lemmas give us more help using the domination theorem.

Lemma 2.42. Suppose g and h are bounded, strictly positive functions on an
interval [a,∞) and

lim
x→∞

g(x)
h(x)

= k, (2.52)

where k is a strictly positive constant, then either both of the integrals∫ ∞

a

g(x) dx and
∫ ∞

a

h(x) dx (2.53)

are finite, or neither is. Similarly, either both of the sums

∞∑
k=m

g(k) and
∞∑

k=m

h(k) (2.54)

are finite, or neither is, where m is any integer greater than a.
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Example 2.5.4 (Exponentially Decreasing Tails).
The following densities

f(x) =
1√
2π

e−x2/2, −∞ < x < ∞

and
f(x) =

1
2
e−|x|, −∞ < x < ∞

have moments of all orders, that is, E(|X|p) exists for all p > 0.
Why? Because the densities are bounded (no singularities) and have expo-

nentially decreasing tails, so Lemma 2.41 assures us that all moments exist.

Example 2.5.5 (Polynomially Decreasing Tails).
The following densities

f(x) =
1

π(1 + x2)
, −∞ < x < ∞

and
f(x) =

6
π2x2

, x = 1, 2, . . .

do not have moments of all orders. In fact, for both E(|X|p) exists for p > 0 if
and only if p < 1. Thus for these two distributions, neither the mean, nor the
variance, nor any higher moment exists.

Why? In both cases, if we look at the integrand or summand |x|pf(x) in
the integral or sum we need to check, we see that it behaves like |x|p−2 at
infinity. (More formally, the limit of the integrand or summand divided by
|x|p−2 converges to a constant as x goes to plus or minus infinity. Hence by
Lemma 2.42, the expectation exists if and only if the integral or sum of |x|p−2

exists.) By Lemma 2.39 the integral or sum exists if and only if p − 2 < −1,
that is, p < 1.

To do problems involving singularities, we need another lemma analogous to
Lemma 2.42. This lemma involves only integrals not sums because sequences
cannot go to infinity except at infinity (all the terms are actually finite).

Lemma 2.43. Suppose g and h are strictly positive functions on an interval
(a, b) and both have singularities at a but are bounded elsewhere, and suppose

lim
x→a

g(x)
h(x)

= k,

where k is a strictly positive constant, then either both of the integrals∫ b

a

g(x) dx and
∫ b

a

h(x) dx

are finite, or neither is.
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Example 2.5.6 (The Gamma Distribution Again).
The the Gamma distribution is the continuous distribution having density

f(x) =
λα

Γ(α)
xα−1e−λx, x > 0

(Section B.2.3 of Appendix B). For X ∼ Gam(α, λ), we consider here when Xp

is in L1 for any real number p, positive or negative. The integral that defines
the expectation is

E(Xp) =
∫ ∞

0

xp λα

Γ(α)
xα−1e−λx dx =

λα

Γ(α)

∫ ∞

0

xα+p−1e−λx dx

if the integral exists (which is the question we are examining).
From Lemma 2.41, the integral over (a,∞) exists for for any a > 0 and any

p positive or negative. The only issue is the possible singularity of the integrand
at the origin. There is a singularity if α + p − 1 < 0. Otherwise the integrand
is bounded and the expectation exists.

Since e0 = 1, the integrand behaves like xα+p−1 at zero and according to
Lemma 2.43 this is integrable over a neighborhood of zero if and only if α+p−1 >
−1, that is, if and only if p > −α.

2.5.10 Lp Spaces

We start with another consequence of the domination theorem and the meth-
ods for telling when expectations exist developed in the preceding section.

Theorem 2.44. If X is a real-valued random variable and |X − a|p is in L1

for some constant a and some p ≥ 1, then

|X − b|q ∈ L1,

for any constants b and any q such that 1 ≤ q ≤ p.

Proof. First the case q = p. The ratio of the integrands defining the expectations
of |X − a|p and |X − b|p converges, that is

|x − b|pf(x)
|x − a|pf(x)

=
∣∣∣∣ x − b

x − a

∣∣∣∣p
goes to 1 as x goes to plus or minus infinity. Thus both integrals exist, and
|X − b|p ∈ L1.

In the case q < p, the ratio of integrands

|x − b|qf(x)
|x − a|pf(x)

=
|x − b|q
|x − a|p

converges to zero as x goes to plus or minus infinity. Again this implies both
integrals exist and |X − b|p ∈ L1.
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Definition 2.5.1 (Lp Spaces).
For any p ≥ 1, the set of random variables X such that |X|p ∈ L1 is called Lp.

With this definition, we can rephrase the theorem. The condition of the
theorem can now be stated concisely as X ∈ Lp, because if |X − a|p ∈ L1,
then the theorem implies |X|p ∈ L1 too, which is the same as X ∈ Lp. The
conclusion of the theorem can also be restated as X ∈ Lq. Hence L1 ⊃ Lq ⊃ Lp

when 1 ≤ q ≤ p.
The reason for the name “Lp space” is the following theorem, which we will

not prove.

Theorem 2.45. Each Lp is a vector space.

What the theorem says is that Lp is closed under addition and scalar mul-
tiplication, that is,

X ∈ Lp and Y ∈ Lp implies X + Y ∈ Lp

and
X ∈ Lp and a ∈ R implies aX ∈ Lp.

All of this having been said, I have to admit that the main use of the Lp

concept at this level is purely as a shorthand. L2 is the set of random variables
having variances. By Theorem 2.44 and the following comment L1 ⊃ L2 so these
random variables also have means. Thus we could have stated the condition
“X is a random variable having first and second moments” in Corollary 2.12
and succeeding theorems about second moments much more concisely as “X ∈
L2.” Whether you like the shorthand or not is a matter of taste. One thing,
though, that we did learn in this section is that the words “first and” could
have been deleted from the condition of Corollary 2.12 and theorems with similar
conditions. If second moments exist, then so do first moments by Theorem 2.44.

2.6 Probability is a Special Case of Expectation

A special kind of random variable is the indicator function (or indicator
random variable) of an event A (a random variable is a function on the sample
space, so an indicator function is a random variable). This is denoted IA and
defined by

IA(ω) =

{
1, ω ∈ A

0, ω /∈ A

The indicator function characterizes the set A. It is the set of points ω such
that IA(ω) = 1. More importantly from our point of view, indicator functions
connect probability and expectation. The relation

P (A) = E(IA) (2.55)

holds for all events A. Probability is just expectation of indicator functions.
Thus probability is a dispensable concept. It is just a special case of expectation.
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The proof of (2.55) for discrete probability models is trivial.

E(IA) =
∑
ω∈Ω

IA(ω)p(ω)

=
∑
ω∈A

p(ω)

= P (A)

The first equality is the definition (2.40), the third is the definition of probability
(p. 30 in Lindgren), and the middle equality just uses the definition of indicator
functions: terms for ω ∈ A have IA(ω) = 1 and terms for ω /∈ A have IA(ω) = 0
and can be dropped from the sum. The proof of (2.55) for continuous probability
models is the same except that we replace sums by integrals.

All of the probability axioms can be derived from the expectation axioms by
just taking the special case when the random variables are indicator functions.
Since indicator functions are nonnegative, Axiom E1 implies

E(IA) = P (A) ≥ 0

which is the first probability axiom. Axiom E2 implies

E(1) = E(IΩ) = P (Ω) = 1

which is the second probability axiom. The sum of indicator functions is not
necessarily an indicator function, in fact

IA + IB = IA∪B + IA∩B. (2.56)

This is easily verified by checking the four possible cases, ω in or not in A and
in or not in B. Applying Axiom E4 to both sides of (2.56) gives

P (A) + P (B) = E(IA) + E(IB)
= E(IA∪B) + E(IA∩B)
= P (A ∪ B) + P (A ∩ B)

which is the general addition rule for probabilities and implies the third proba-
bility axiom, which is the special case A ∩ B = ∅.

The countable additivity axiom is applied by the monotone convergence. A
nondecreasing sequence of indicator functions corresponds to a nondecreasing
sequence of sets. Hence Axiom E5 implies

P (An) ↑ P (A), whenever An ↑ A

This statement, continuity of probability, implies countable additivity (just run
the proof on p. 29 in Lindgren backwards).
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2.7 Independence

2.7.1 Two Definitions

Lindgren (p. 79, equation (3)) gives the following as a definition of indepen-
dent random variables.

Definition 2.7.1 (Independent Random Variables).
Random variables X and Y are independent if

P (X ∈ A and Y ∈ B) = P (X ∈ A)P (Y ∈ B). (2.57)

for every event A in the range of X and B in the range of Y .

We take a quite different statement as the definition.

Definition 2.7.2 (Independent Random Variables).
Random variables X and Y are independent if

E{g(X)h(Y )} = E{g(X)}E{h(Y )} (2.58)

for all real-valued functions g and h such that these expectations exist.

These two definitions are equivalent—meaning they define the same concept.
That means that we could take either statement as the definition and prove the
other. Lindgren takes (2.57) as the definition and “proves” (2.58). This is
Theorem 11 of Chapter 4 in Lindgren. But the “proof” contains a lot of hand
waving. A correct proof is beyond the scope of this course.

That’s one reason why we take Definition 2.7.2 as the definition of the con-
cept. Then Definition 2.7.1 describes the trivial special case of Definition 2.7.2
in which the functions in question are indicator functions, that is, (2.57) says
exactly the same thing as

E{IA(X)IB(Y )} = E{IA(X)}E{IB(Y )}. (2.59)

only in different notation. Thus if we take Definition 2.7.2 as the definition, we
easily (trivially) prove (2.57). But the other way around, the proof is beyond
the scope of this course.

2.7.2 The Factorization Criterion

Theorem 2.46 (Factorization Criterion). A finite set of real-valued random
variables is independent if and only if their joint distribution is the product of
the marginals.

What this says is that X1, . . ., Xn are independent if and only if

fX1,...,Xn
(x1, . . . , xn) =

n∏
i=1

fXi
(xi) (2.60)
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One direction of the theorem is easy to establish. If (2.60) holds

E

{
n∏

i=1

gi(Xi)

}
=

∫
· · ·

∫ (
n∏

i=1

gi(xi)fXi
(xi)

)
dx1 · · · dxn

=
n∏

i=1

∫
gi(xi)fXi

(xi)dxi

=
n∏

i=1

E {gi(Xi)}

So the Xi are independent. The proof of the other direction of the theorem is
beyond the scope of this course.

The simple statement of Theorem 2.46 assumes the marginal densities are
defined on the whole real line If necessary, they are extended by zero off the
supports of the variables.

It is not enough to look only at the formulas defining the densities.
You must also look at the domains of definition.

The following example shows why.

Example 2.7.1 (A Cautionary Example).
The random variables X and Y having joint density

f(x, y) = 4xy, 0 < x < 1 and 0 < y < 1 (2.61)

are independent, but the random variables X and Y having joint density

f(x, y) = 8xy, 0 < x < y < 1 (2.62)

are not! For more on this, see Problem 2-35.
The difference is easy to miss. The formulas defining the densities are very

similar, both factor as a function of x times a function of y. The difference is in
the domains of definition. The one for which the factorization criterion holds is
a rectangle with sides parallel to the axes. The other isn’t.

2.7.3 Independence and Correlation

Theorem 2.47. Independent random variables are uncorrelated.

The converse is false!

Example 2.7.2.
Suppose X is a nonconstant random variable having a distribution symmetric
about zero, and suppose Y = X2 is also nonconstant. For example, we could
take X ∼ U(−1, 1), but the details of the distribution do not matter, only that
it is symmetric about zero and nonconstant and that X2 also has a nonconstant
distribution.
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Then X and Y are uncorrelated (Problem 2-37) but not independent. Inde-
pendence would require that

E{g(X)h(Y )} = E{g(X)}E{h(Y )}

hold for all functions g and h. But it obviously does not hold when, to pick just
one example, g is the squaring function and h is the identity function so g(X) =
Y and h(Y ) = Y , because no nonconstant random variable is independent of
itself.2

Problems

2-27. Suppose X ∼ Bin(n, p).

(a) Show that
E{X(X − 1)} = n(n − 1)p2

Hint: Follow the pattern of Example 2.5.1.

(b) Show that
var(X) = np(1 − p).

Hint: Use part (a).

2-28. Suppose X ∼ Poi(µ).

(a) Show that
E{X(X − 1)} = µ2

Hint: Follow the pattern of Example 2.5.2.

(b) Show that
var(X) = µ.

Hint: Use part (a).

2-29. Verify the moments of the DU(1, n) distribution given in Section B.1.1
of Appendix B.
Hint: First establish

n∑
k=1

k2 =
n(n + 1)(2n + 1)

6

by mathematical induction.

2Bizarrely, constant random variables are independent of all random variables, including
themselves. This is just the homogeneity axiom and the “expectation of a constant is the
constant” property:

E{g(a)h(X)} = g(a)E{h(X)} = E{g(a)}E{h(X)}
for any constant a and random variable X.
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2-30. Verify the moments of the U(a, b) distribution given in Section B.2.1 of
Appendix B.

2-31. The proof of Corollary 2.35 used cor(X,X) = 1 without comment. Prove
this.

2-32. Suppose X ∼ Gam(α, λ).

(a) For any real number p > −α, the p-th ordinary moment

αp = E(Xp)

exists. Calculate it.

Hint: Follow the pattern of Example 2.5.3. Your answer will involve
gamma functions that cannot be simplified using the recurrence relation if
p is not an integer (which we didn’t say it was).

(b) Show that
var(X) =

α

λ2

Hint: Use part (a) and the recurrence relation for gamma functions, (B.3)
in Appendix B.

2-33. Suppose X has probability density

f(x) =
3
x4

, x > 1

(note the domain).

(a) For what positive integers k is Xk in L1?

(b) Calculate E(Xk) for the positive integers k such that the expectation ex-
ists.

2-34. Suppose X has probability density

f(x) =
1

2
√

x
, 0 < x < 1

(note the domain).

(a) For what positive integers k is Xk in L1?

(b) Calculate E(Xk) for the positive integers k such that the expectation ex-
ists.

2-35. Calculate the marginal distributions for

(a) the density (2.61) and

(b) the density (2.62).
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Show that the factorization criterion

(c) holds for the density (2.61) and

(d) fails for the density (2.62).

2-36. Prove Theorem 2.47.

2-37. This fills in some details left unsaid in Example 2.7.2.

(a) Prove that X and Y defined in Example 2.7.2 are uncorrelated.

Hint: Use Theorem 2.10.

(b) Prove that no nonconstant random variable is independent of itself.

Hint: If all we know is that X is nonconstant, then all we know is that
there exists an event A such that 0 < P (X ∈ A) < 1. Now use Defini-
tion 2.7.1.

2-38. Prove the following identities. For any n ≥ 1

µn =
n∑

k=0

(
n

k

)
(−1)kαk

1αn−k

and

αn =
n∑

k=0

(
n

k

)
αk

1µn−k

where, as defined in Section 2.4, µk is the k-th central moment and αk is the
k-th ordinary moment.
Hint: Use the binomial theorem (Problem 1-14 on p. 7 of Lindgren).
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Chapter 3

Conditional Probability and
Expectation

3.1 Parametric Families of Distributions

Scalar Variable and Parameter

Sometimes, like in the “brand name distributions” in Appendix B of these
notes, we consider probability models having an adjustable constant in the for-
mula for the density. Generically, we refer to such a constant as a parameter
of the distribution. Usually, though not always, we use Greek letters for pa-
rameters to distinguish them from random variables (large Roman letters) and
possible values of random variables (small Roman letters). A lot of different
Greek letters are used for parameters (check out Appendix B), the Greek letter
used for a “generic” parameter (when we are talking generally, not about any
particular distribution) is θ (lower case theta, see Appendix A).

When we want to emphasize the dependence of the density on the parameter,
we write fθ or f( · | θ) rather than just f for the density function and fθ(x) or
f(x | θ) for the value of the density function at the point x. Why two notations?
The former is simpler and a good deal less clumsy in certain situations, but the
latter shows explicitly the close connection between conditional probability and
parametric families, which is the subject of this section and the following section.

Thus we say: let X be a random variable having density fθ on a sample space
S. This means that for each particular value of the parameter θ the function fθ

is a density, that is,
fθ(x) ≥ 0, x ∈ S (3.1a)

and ∫
fθ(x) dx = 1 (3.1b)

(with, as usual, the integral replaced by a sum in the discrete case). Note that
this is exactly the usual condition for a function to be a probability density, just

83
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like (2.47a) and (2.47b). The only novelty is writing fθ in place of f . If you
prefer the other notation, this condition would become

f(x | θ) ≥ 0, x ∈ S (3.2a)

and ∫
f(x | θ) dx = 1 (3.2b)

Again, there is no novelty here except for the purely notational novelty of writing
f(x | θ) instead of fθ(x) or f(x).

Example 3.1.1 (The Exponential Distribution).
We want to write the exponential distribution (Section B.2.2 in Appendix B) in
the notation of parametric families. The parameter is λ. We write the density
as

fλ(x) = λe−λx, x > 0

or as

f(x | λ) = λe−λx, x > 0

the only difference between either of these or the definition in Section B.2.2
being the notation on the left hand side: f(x) or fλ(x) or f(x | λ).

Each different value of the parameter θ gives a different probability distri-
bution. As θ ranges over its possible values, which we call the parameter space,
often denoted Θ when the parameter is denoted θ, we get a parametric family
of densities

{ fθ : θ ∈ Θ }
although we won’t see this notation much until we get to statistics next semester.

Vector Variable or Parameter

Vector Variable

Another purely notational variant involves random vectors. We typically
indicate vector variables with boldface type, as discussed in Section 1.3 of these
notes, that is, we would write f(x) or fθ(x) or f(x | θ). As usual we are sloppy
about whether these are functions of a single vector variable x = (x1, . . . , xn) or
of many scalar variables x1, . . ., xn. When we are thinking in the latter mode,
we write f(x1, . . . , xn) or fθ(x1, . . . , xn) or f(x1, . . . , xn | θ).

Example 3.1.2 (The Exponential Distribution).
Suppose X1, . . ., Xn are independent and identically distributed Exp(λ) random
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variables. We write the density of the random vector X = (X1, . . . , Xn) as

fλ(x) =
n∏

i=1

λe−λxi

= λn exp

(
−λ

n∑
i=1

xi

)
, xi > 0, i = 1, . . . , n.

or, according to taste, we might write the left hand side as fλ(x1, . . . , xn) or
f(x | λ) or f(x1, . . . , xn | λ).

Vector Parameter

Similarly, when we have a vector parameter θ = (θ1, . . . , θm), we write the
density as fθ(x) or f(x | θ). And, as usual, we are sloppy about whether there
is really one vector parameter or several scalar parameters θ1, . . ., θm. When
we are thinking in the latter mode, we write fθ1,...,θm

(x) or f(x | θ1, . . . , θm).

Example 3.1.3 (The Gamma Distribution).
We want to write the gamma distribution (Section B.2.3 in Appendix B) in the
notation of parametric families. The parameter is θ = (α, λ). We write the
density as

fθ(x) = fα,λ(x) =
λα

Γ(α)
xα−1e−λx, x > 0

or if we prefer the other notation we write the left hand side as f(x | θ) or
f(x | α, λ).

The parameter space of this probability model is

Θ = { (α, λ) ∈ R2 : α > 0, λ > 0 }

that is, the first quadrant with boundary points excluded.

Vector Variable and Vector Parameter

And, of course, the two preceeding cases can be combined. If we have a vector
random variable X = (X1, . . . , Xn) and a vector parameter θ = (θ1, . . . , θm),
we can write write the density as any of

fθ(x)
f(x | θ)

fθ1,...,θm
(x1, . . . , xn)

f(x1, . . . , xn | θ1, . . . , θm)

according to taste.
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3.2 Conditional Probability Distributions

Scalar Variables

The conditional probability distribution of one random variable Y given
another X is the probability model you are supposed to use in the situation
when you have seen X and know its value but have not yet seen Y and don’t
know its value. The point is that X is no longer random. Once you know its
value x, it’s a constant not a random variable.

We write the density of this probability model, the conditional distribution
of Y given X as f(y | x). We write expectations with respect to this model as
E(Y | x), and we write probabilities as

P (Y ∈ A | x) = E{IA(Y ) | x}

(couldn’t resist an opportunity to reiterate the lesson of Section 2.6 that prob-
ability is a special case of expectation).

We calculate probabilities or expectations from the density in the usual way
with integrals in the continuous case

E{g(Y ) | x} =
∫

g(y)f(y | x) dy (3.3)

P{Y ∈ A | x} =
∫

A

f(y | x) dy (3.4)

and with the integrals replaced by sums in the discrete case.
Note that

A conditional probability density is just an ordinary probability den-
sity, when considered as a function of the variable(s) in front of the
bar alone with the variable(s) behind the bar considered fixed.

This means that in calculating a conditional probability or expectation from a
conditional density

always integrate with respect to the variable(s) in front of the bar

(with, of course, “integrate” replaced by “sum” in the discrete case).

Example 3.2.1 (Exponential Distribution).
Of course, one doesn’t always have to do an integral or sum, expecially when a
“brand name” distribution is involved. Suppose the conditional distribution of
Y given X is Exp(X), denoted

Y | X ∼ Exp(X)

for short. This means, of course, that the conditional density is

f(y | x) = xe−xy, y > 0
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(just plug in x for λ in the formula in Section B.2.2 in Appendix B), but we
don’t need to use the density to calculate the conditional expectation, because
we know that the mean of the Exp(λ) distribution is 1/λ, hence (again just
plugging in x for λ

E(Y | x) =
1
x

or
E(Y | X) =

1
X

depending on whether we are thinking of the variable behind the bar as random
(big X) or fixed (little x) As we shall see, both viewpoints are useful and we
shall use both in different situations.

If the known formulas for a “brand name” distribution don’t answer the
question, then we do need an integral

P (a < Y < b | x) =
∫ b

a

f(y | x) dy

=
∫ b

a

xe−xy dy

= −e−xy
∣∣∣b
a

= e−xa − e−xb

and, of course, if we are thinking of X as being random too, we would write

P (a < Y < b | X) = e−aX − e−bX

just the same except for big X instead of little x.

The astute reader will by now have understood from the hint given by the
notation why this chapter started with a section on the seemingly unrelated
topic of parametric families of distributions.

Conditional probability distributions are no different from parametric
families of distributions.

For each fixed value of x, the conditional density f(y | x), considered as a
function of y alone, is just an ordinary probability density. Hence it satisfies the
two properties

f(y | x) ≥ 0, for all y (3.5a)

and ∫
f(y | x) dy = 1 (3.5b)

(with the integral replaced by a sum in the discrete case). Notice that there
is no difference, except a purely notational one, between the pair of conditions
(3.5a) and (3.5b) and the pair of conditions (3.2a) and (3.2b). Here we have a
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Roman letter behind the bar; there we had a Greek letter behind the bar, but
(mathematics is invariant under changes of notation) that makes no conceptual
difference whatsoever.

The fact that conditional probability is a special case of ordinary probability
(when we consider the variable or variables behind the bar fixed) means that we
already know a lot about conditional probability. Every fact we have learned
so far in the course about ordinary probability and expectation applies to its
special case conditional probability and expectation. Caution: What we just
said applies only when the variable(s) behind the bar are considered fixed. As
we shall see, things become more complicated when both are treated as random
variables.

Vector Variables

Of course, either of the variables involved in a conditional probability distri-
bution can be vectors. Then we write either of

f(y | x)
f(y1, . . . yn | x1, . . . xm)

according to taste, and similarly either of

E(Y | x)
E(Y1, . . . Yn | x1, . . . xm)

Since we’ve already made this point in the context of parametric families of
distributions, and conditional probability distributions are no different, we will
leave it at that.

3.3 Axioms for Conditional Expectation

The conditional expectation E(Y | x) is just another expectation operator,
obeying all the axioms for expectation. This follows from the view explained
in the preceeding section that conditional expectation is a special case of ordi-
nary unconditional expectation (at least when we are considering the variable
or variables behind the bar fixed). If we just replace unconditional expecta-
tions with conditional expectations everywhere in the axioms for unconditional
expectation, they are still true.

There are, however, a couple of additional axioms for conditional expecta-
tion. Axiom E2 can be strengthened (as described in the next section), and an
entirely new axiom (described in the two sections following the next) can be
added to the set of axioms.

3.3.1 Functions of Conditioning Variables

Any function of the variable or variables behind the bar (the conditioning
variables) behaves like a constant in conditional expectations.
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Axiom CE1. If Y is in L1 and a is any function, then

E{a(X)Y | X} = a(X)E(Y | X).

We don’t have to verify that conditional expectation obeys the axioms of
ordinary unconditional expectation, because conditional expectation is a special
case of unconditional expectation (when thought about the right way), but this
axiom isn’t a property of unconditional expectation, so we do need to verify
that it holds for conditional expectation as we have already defined it. But the
verification is easy.

E{a(X)Y | X} =
∫

a(X)yf(y | X) dy

= a(X)
∫

yf(y | X) dy

= a(X)E(Y | X)

because any term that is not a function of the variable of integration can be
pulled outside the integral (or sum in the discrete case).

Two comments:

• We could replace big X by little x if we want

E{a(x)Y | x} = a(x)E(Y | x)

though, of course, this now follows from Axiom E2 of ordinary expectation
because a(x) is a constant when x is a constant.

• We could replace big Y by any random variable, for example, g(Y ) for
any function g, obtaining

E{a(X)g(Y ) | X} = a(X)E{g(Y ) | X}.

3.3.2 The Regression Function

It is now time to confront squarely an issue we have been tiptoeing around
with comments about writing E(Y | x) or E(Y | X) “according to taste.” In
order to clearly see the contrast with unconditional expectation, let first review
something about ordinary unconditional expectation.

E(X) is not a function of X. It’s a constant, not a random variable.

This doesn’t conflict with the fact that an expectation operator is a function
E : L1 → R when considered abstractly. This is the usual distinction between a
function and it’s values: E is indeed a function (from L1 to R), but E(X) isn’t
a function, it’s the value that the expectation operator assigns to the random
variable X, and that value is a real number, a constant, not a random variable
(not a function on the sample space).

So E(X) is very different from g(X), where g is an ordinary function. The
latter is a random variable (any function of a random variable is a random
variable).

So what’s the corresponding fact about conditional expectation?
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E(Y | X) is not a function of Y , but it is a function of X, hence a
random variable.

We saw this in Example 3.2.1

Y | X ∼ Exp(X)

implies

E(Y | X) =
1
X

which is, apparently, a function of X and not a function of Y .
In a way, there is nothing surprising here. If we consider the conditioning

variable fixed, then E(Y | x) is just a special case of ordinary expectation.
Hence E(Y | x) is not a function of Y any more than E(Y ) is. Furthermore,
E(Y | x) is not a random variable because x isn’t a random variable (little x).

In another way, this is surprising. If we consider the conditioning variable
to be random, then it no longer looks like conditional expectation is a special
case of ordinary expectation, because the former is a random variable and the
latter isn’t! What happens is that which is a special case of which gets turned
around.

Unconditional expectation is the special case of conditional expecta-
tion obtained by conditioning on an empty set of variables.

This accords with the naive view that a conditional probability model for Y
given X is what you use when you have seen X but not yet seen Y . Clearly,
what you use when you have seen (nothing) but not yet seen Y is the the
ordinary unconditional models we have been using all along. It says that E(Y )
can be thought of as E(Y | ) with nothing behind the bar. Applying our other
slogan to this special case we see that

E(Y ) = E(Y | ) is not a function of Y , but it is a function of
(nothing), hence a constant random variable.

Thus when we think of unconditional expectation as a special case of conditional
expectation E(Y ) isn’t a constant but a constant random variable, which is
almost the same thing—only a mathematician and a rather pedantic one could
care about the difference.

So we have two somewhat conflicting views of conditional probability and
expectation.

• When we consider the conditioning variables (the variables behind the bar)
fixed, conditional expectation is just a special case of ordinary uncondi-
tional expectation. The conditioning variables behave like parameters of
the probability model.

• When we consider the conditioning variables (the variables behind the
bar) random, unconditional expectation is just a special case of conditional
expectation, what happens when we condition on an empty set of variables.
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What’s to blame for the confusion is partly just the notation, it’s not clear
from the notation that E(Y | X) is a function of X but not a function of Y ,
and partly the real conflict between seeing the conditioning variable sometimes
as random and sometimes as constant. There’s nothing to be done about the
second problem except to be very careful to always understand which situation
you are in. For the first, we can change terminology and notation.

If E(Y | X) is a function of X, we can write it as a function of X, say g(X).
In Example 3.2.1 we had

E(Y | X) = g(X) =
1
X

which means that g is the function defined by

g(x) =
1
x

, x > 0

just an ordinary function of an ordinary variable, that is, g is an ordinary
function, and g(x) is an ordinary number, but, of course, g(X) is a random
variable (because of the big X).

Another name for this function g is the regression function of Y on X.
When it’s clear from the context which is the conditioning variable and which is
the other variable, we can say just regression function. But when any confusion
might arise, the longer form is essential. The regression function of Y on X,
that is, E(Y | X) is quite different from the regression function of X on Y ,
that is, E(X | Y ). For one thing, the former is a function of X and the latter
is a function of Y . But not only that, they are in general quite different and
unrelated functions.

3.3.3 Iterated Expectations

We saw in the preceding section that E(Y | X) is a random variable, a
function of X, say g(X). This means we can take its expectation

E{g(X)} = E{E(Y | X)}.
The left hand side is nothing unusual, just an expectation like any other. The
right hand side looks like something new. We call it an “iterated expectation”
(an unconditional expectation of a conditional expectation). Iterated expec-
tation has a very important property which is the last axiom for conditional
probability.

Axiom CE2. If Y ∈ L1, then

E{E(Y | X)} = E(Y ). (3.6)

A proof that the notion of conditional expectation we have so far developed
satisfies this axiom will have to wait until the next section. First we give some
examples and consequences.
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Example 3.3.1 (Random Sum of Random Variables).
Suppose X0, X1, . . . is an infinite sequence of identically distributed random
variables, having mean E(Xi) = µX , and suppose N is a nonnegative integer-
valued random variable independent of the Xi and having mean E(N) = µN .
It is getting a bit ahead of ourselves, but we shall see in the next section that
this implies

E(Xi | N) = E(Xi) = µX . (3.7)

Question: What is the expectation of

SN = X1 + · · · + XN

(a sum with a random number N of terms and each term Xi a random variable)
where the sum with zero terms when N = 0 is defined to be zero?

Linearity of expectation, which applies to conditional as well as uncondi-
tional probability, implies

E(SN | N) = E(X1 + · · ·Xn | N)
= E(X1 | N) + · · · + E(Xn | N)
= E(X1) + · · · + E(XN )
= NµX

the next to last equality being (3.7). Hence by the iterated expectation axiom

E(SN ) = E{E(SN | N)} = E(NµX) = E(N)µX = µNµX .

Note that this example is impossible to do any other way than using the iter-
ated expectation formula. Since no formulas were given for any of the densities,
you can’t use any formula involving explicit integrals.

If we combine the two conditional probability axioms, we get the following.

Theorem 3.1. If X and Y are random variables and g and h are functions
such that g(X) and h(Y ) are in L1, then

E{g(X)E[h(Y ) | X]} = E{g(X)h(Y )}. (3.8)

Proof. Replace Y by g(X)h(Y ) in Axiom CE2 obtaining

E{E[g(X)h(Y ) | X]} = E{g(X)h(Y )}.
then apply Axiom CE1 to pull g(X) out of the inner conditional expectation
obtaining (3.8).

The reader should be advised that our treatment of conditional expectation
is a bit unusual. Rather than state two axioms for conditional expectation,
standard treatments in advanced probability textbooks give just one, which
is essentially the statement of this theorem. As we have just seen, our two
axioms imply this one, and conversely our two axioms are special cases of this
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one: taking g = a and h the identity function in (3.8) gives our Axiom CE1,
and taking g = 1 and h the identity function in (3.8) gives our Axiom CE2.
Thus our treatment characterizes the same notion of conditional probability as
standard treatments.

Another aspect of advanced treatments of conditional probability is that
standard treatments usually take the statement Theorem 3.1 as a definition
rather than an axiom. The subtle difference is the following uniqueness asser-
tion.

Theorem 3.2. If X and Y are random variables and h is a function such that
h(Y ) ∈ L1, then then there exists a function f such that f(X) ∈ L1 and

E{g(X)f(X)} = E{g(X)h(Y )} (3.9)

for every function g such that g(X)h(Y ) ∈ L1. The function f is unique up to
redefinition on sets of probability zero.

The proof of this theorem is far beyond the scope of this course. Having
proved this theorem, advanced treatments take it as a definition of conditional
expectation. The unique function f whose existence is guaranteed by the theo-
rem is defined to be the conditional expectation, that is,

E{h(Y ) | X} = f(X).

The theorem makes it clear that (as everywhere else in probability theory)
redefinition on a set (event) of probability zero makes no difference.

Although we cannot prove Theorem 3.2, we can use it to prove a fancy
version of the iterated expectation formula.

Theorem 3.3. If Y ∈ L1, then

E
{
E(Z | X,Y )

∣∣ X
}

= E(Z | X). (3.10)

Of course, the theorem also holds when the conditioning variables are vec-
tors, that is, if m < n

E
{
E(Z | X1, . . . , Xn)

∣∣ X1, . . . Xm

}
= E(Z | X1, . . . , Xm).

In words, an iterated conditional expectation (a conditional expectation inside
another conditional expectation) is just the conditional expectation condition-
ing on the set of variables of the outer conditional expectation, if the set of
conditioning variables in the outer expectation is a subset of the conditioning
variables in the inner expectation. That’s a mouthful. The formula (3.10) is
simpler.

Proof of Theorem 3.3. By Theorem 3.2 and the following comment,

• E(Z | X,Y ) is the unique (up to redefinition on sets of probability zero)
function f1(X,Y ) such that

E{g1(X,Y )f1(X,Y )} = E{g1(X,Y )Z} (3.11a)

for all functions g1 such that g1(X,Y )Z ∈ L1.
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• The iterated expectation on the left hand side of (3.10) is the unique (up
to redefinition on sets of probability zero) function f2(X) such that

E{g2(X)f2(X)} = E{g2(X)f1(X,Y )} (3.11b)

for all functions g2 such that g2(X)f1(X,Y ) ∈ L1.

• E(Z | X) is the unique (up to redefinition on sets of probability zero)
function f3(X) such that

E{g3(X)f3(X)} = E{g3(X)Z} (3.11c)

for all functions g3 such that g3(X)Z ∈ L1.

Since (3.11a) holds for any function g1, it holds when g1(X,Y ) = g3(X),
from which, combining (3.11a) and (3.11c), we get

E{g3(X)f3(X)} = E{g3(X)Z} = E{g3(X)f1(X,Y )} (3.11d)

Reading (3.11d) from end to end, we see it is the same as (3.11b), because (3.11d)
must hold for any function g3 and (3.11b) must hold for any function g2. Thus
by the uniqueness assertion of Theorem 3.2 we must have f2(X) = f3(X), except
perhaps on a set of probability zero (which does not matter). Since f2(X) is
the left hand side of (3.10) and f3(X) is the right hand side, that is what was
to be proved.

Theorem 3.2 can also be used to prove a very important fact about indepen-
dence and conditioning.

Theorem 3.4. If X and Y are independent random variables and h is a func-
tion such that h(Y ) ∈ L1, then

E{h(Y ) | X} = E{h(Y )}.
In short, conditioning on an independent variable or variables is the same

as conditioning on no variables, making conditional expectation the same as
unconditional expectation.

Proof. If X and Y are independent, the right hand side of (3.9) becomes
E{g(X)}E{h(Y )} by Definition 2.7.2. Hence, in this special case, Theorem 3.2
asserts that E{h(Y ) | X} is the unique function f(X) such that

E{g(X)f(X)} = E{g(X)}E{h(Y )}
whenever g(X) ∈ L1. Certainly the constant f(X) = a, where a = E{h(Y )} is
one such function, because

E{g(X)a} = E{g(X)}a = E{g(X)}E{h(Y )}
so by the uniqueness part of Theorem 3.2 this is the conditional expectation, as
was to be proved.
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3.4 Joint, Conditional, and Marginal

As was the case with unconditional expectation, our “axioms first” treat-
ment of conditional expectation has been a bit abstract. When the problem
is solved by pulling a function of the conditioning variables outside of a con-
ditional expectation or by the iterated expectation formula, either the special
case in Axiom CE2 with the outside expectation an unconditional one or the
general case in Theorem 3.3 in which both expectations are conditional, then
the axioms are just what you need. But for other problems you need to be able
to calculate conditional probability densities and expectations by doing sums
and integrals, and that is the subject to which we now turn.

3.4.1 Joint Equals Conditional Times Marginal

Note that the iterated expectation axiom (Axiom CE2), when we write out
the expectations as integrals, equates

E{E(Y | X)} =
∫ (∫

yf(y | x) dy

)
fX(x) dx

=
∫∫

yf(y | x)fX(x) dx dy

(3.12a)

and
E(Y ) =

∫∫
yf(x, y) dx dy. (3.12b)

Equation (3.12b) is correct, because of the general definition of expectation of
a function of two variables:

E{g(X,Y )} =
∫∫

g(x, y)f(x, y) dx dy

whenever the expectation exists. Now just take g(x, y) = y.
One way that the right hand sides of (3.12a) and (3.12b) can be equal is if

f(x, y) = f(y | x)fX(x) (3.13)

or in words,
joint = conditional × marginal

In fact, by the uniqueness theorem (Theorem 3.2), this is the only way the
iterated expectation axiom can hold, except, as usual, for possible redefinition
on sets of probability zero.

This gives a formula for calculating a conditional probability density from
the joint

f(y | x) =
f(x, y)
fX(x)

(3.14)

or in words,

conditional =
joint

marginal
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Of course, there is a slight problem with (3.14) when the denominator is zero,
but since the set of x such that fX(x) = 0 is a set of probability zero, this does
not matter, and f(y | x) can be defined arbitrarily for all such x.

Example 3.4.1 (Uniform Distribution on a Triangle).
This continues Example 1.5.2. Recall from that example that if X and Y have
joint density

f(x, y) = 2, 0 < x and 0 < y and x + y < 1

that the marginal of X is

fX(x) = 2(1 − x), 0 < x < 1.

Thus the conditional is

f(y | x) =
2

2(1 − x)
=

1
1 − x

Or we should say this is the conditional for some values of x and y. As
usual, we have to be careful about domains of definition or we get nonsense.
First, the marginal only has the formula we used when 0 < x < 1, so that is one
requirement. Then for x in that range, the joint is only defined by the formula
we used when 0 < y and x + y < 1, that is, when 0 < y < 1 − x. Thus to be
precise, we must say

f(y | x) =
1

1 − x
, 0 < y < 1 − x and 0 < x < 1. (3.15)

What about other values of x and y? What if we want the definition for
all real x and y? First, for f(y | x) to be a probability density (considered as
a function of y for fixed x) it must integrate to 1 (integrating with respect to
y). Since our formula already does integrate to one over its domain of definition
0 < y < 1 − x, it must be zero elsewhere. Thus when 0 < x < 1

f(y | x) =

{
1

1−x , 0 < y < 1 − x

0, elsewhere

or, if you prefer a definition using an indicator function,

f(y | x) =
1

1 − x
I(0,1−x)(y), y ∈ R.

What about x outside (0, 1)? Those are x such that the marginal is zero, so
the formula “joint over marginal” is undefined. As we have already said, the
definition is then arbitrary, so we may say

f(y | x) = 42

or whatever we please when x ≤ 0 or 1 ≤ x. (It doesn’t even matter that this
function doesn’t integrate to one!) Mostly we will ignore such nonsense and
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only define conditional densities where the values are not arbitrary and actually
matter. The only reason we mention this issue at all is so that you won’t think
f(y | x) has to have a sensible definition for all possible x.

So how about conditional expectations? Given the formula (3.15) for the
conditional density, we just plug and chug

E(Y | x) =
∫

yf(y | x) dy =
1 − x

2
(3.16a)

E(Y 2 | x) =
∫

y2f(y | x) dy =
(1 − x)2

3
(3.16b)

var(Y | x) = E(Y 2 | x) − E(Y | x)2 =
(1 − x)2

12
(3.16c)

and so forth, (3.16c) holding because of Corollary 2.12, which like every other
fact about unconditional expectation, also holds for conditional expectation so
long as we are considering the conditioning variables fixed.

We could end Section 3.4 right here. Formulas (3.13) and (3.14) tell us how
to calculate conditionals from joints and joints from conditionals and marginals.
And the fact that “conditional expectation is a special case of ordinary expec-
tation” (so long as we are considering the conditioning variables fixed) tells how
to compute expectations. So what else is there to know? Well, nothing, but a
lot more can be said on the subject. The rest of Section 3.4 should give you a
much better feel for the subject and allow you to calculate conditional densities
and expectations more easily.

3.4.2 Normalization

A standard homework problem for courses like this specifies some nonneg-
ative function h(x) and then asks for what real number k is f(x) = kh(x) a
probability density.

Clearly we must have k > 0, because k < 0 would entail negative prob-
abilities and k = 0 would make the density integrate (or sum in the discrete
case) to zero. Either violates the defining properties for a probability density,
which are (1.20a) and (1.20b) in the discrete case and (1.21a) and (1.21b) in
the continuous case.

For reasons that will soon become apparent, we prefer to use c = 1/k. This
is allowed because k 6= 0. Thus the problem becomes: for what real number c is

f(x) =
1
c
h(x)

a density function? The process of determining c is called normalization and c
is called the normalizing constant for the unnormalized density h(x).

To determine c we use the second defining property for a probability density
(1.20b) or (1.21b) as the case may be, which implies

c =
∫

h(x) dx (3.17)
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(with integration replaced by summation if the probability model is discrete).
In order for c to be a positive number, the integral (or sum in the discrete
case) must exist and be nonzero. This gives us two conditions on unnormalized
densities. A real-valued function h(x) is an unnormalized density provided the
following two conditions hold.

• It is nonnegative: h(x) ≥ 0, for all x.

• It is integrable in the continuous case or summable in the discrete case
and the integral or sum is nonzero.

Then
f(x) =

1
c
h(x)

is a normalized probability density, where c is given by (3.17) in the continuous
case and by (3.17) with the integral replaced by a sum in the discrete case.

Example 3.4.2.
Consider the function

h(x) = xα−1e−x, x > 0,

where α > 0. How do we normalize it to make a probability density?
The normalizing constant is

c =
∫ ∞

0

xα−1e−x dx = Γ(α)

by (B.2) in Appendix B. Thus we obtain a gamma distribution density

f(x) =
1

Γ(α)
xα−1e−x.

So what’s the big deal? We already knew that! Is “normalization” just a
fancy name for something trivial? Well, yes and no. You can form your own
opinion, but not until the end of Section 3.4.

3.4.3 Renormalization

We start with a slogan

Conditional probability is renormalization.

What this means will become apparent presently.
First, f(y | x) is just an ordinary probability density when considered as a

function of y for fixed x. We maintain this view, y is the variable and x is fixed,
throughout this subsection.

Second, since x is fixed, the denominator in

f(y | x) =
f(x, y)
fX(x)

(3.18)
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is constant (not a function of y). Thus we can also write

f(y | x) ∝ f(x, y) (3.19)

the symbol ∝ meaning “proportional to” (still thinking of y as the only variable,
the proportionality does not hold if we vary x). This says the joint is just like the
conditional, at least proportional to it, the only thing wrong is that it doesn’t
integrate to one (still thinking of y as the only variable, the joint does, of course,
integrate to one if we integrate with respect to x and y). Formula (3.19) says
that if we graph the conditional and the joint (as functions of y!) we get the
same picture, they are the same shape, the only difference is the scale on the
vertical axis (the constant of proportionality). So if we put in the constant of
proportionality, we get

f(y | x) =
1

c(x)
f(x, y). (3.20)

We have written the “constant” as c(x) because it is a function of x, in fact,
comparing with (3.18) we see that

c(x) = fX(x).

We call it a “constant” because we are considering x fixed.
All of this can be summarized in the following slogan.

A joint density is an unnormalized conditional density. Its normal-
izing constant is a marginal density.

Spelled out in more detail, the joint density f(x, y) considered as a function of
y alone is an unnormalized probability density, in fact, is it proportional to the
conditional density (3.19). In order to calculate the conditional density, we need
to calculate the normalizing constant, which just happens to turn out to be the
marginal fX(x), and divide by it (3.18).

If we take this argument a bit further and plug the definition of the marginal
into (3.18), we get

f(y | x) =
f(x, y)∫
f(x, y) dy

(3.21)

This shows more explicitly how “conditional probability is renormalization.”
You find a conditional probability density by dividing the joint density by what
it integrates to. How do we remember which variable is the variable of inte-
gration here? That’s easy. In this whole subsection y is the only variable; x is
fixed. In general, a conditional density is an ordinary density (integrates to one,
etc.) when considered a function of the variable “in front of the bar” with the
conditioning variable, the variable “behind the bar” fixed. That’s what we are
doing here. Hence we divide by the integral of the joint density with respect to
the variable “in front of the bar.”

It is occasionally useful that (3.21) holds whether or not the joint density is
normalized. Suppose we are given an unnormalized joint density h(x, y) so that

f(x, y) =
1
c
h(x, y)
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for some normalizing constant c. Plugging this into (3.21) gives

f(y | x) =
h(x, y)∫
h(x, y) dy

(3.22)

The c’s cancel in the numerator and denominator.
Our slogan about conditional probability and renormalization helps us re-

member which marginal is meant in

conditional =
joint

marginal

• If the conditional in question is f(y | x), then we are considering y the
variable (x is fixed).

• Thus the marginal in question is the one obtained by integrating with
respect to y (that’s what we are considering variable).

• The marginal obtained by integrating out y is the marginal of the other
variable (slogan on p. 19 in these notes). Hence the marginal is fX(x).

But even if you are confused about how to calculate marginals or which
marginal you need to divide by, you should still be able to calculate conditionals
using (3.21) and (3.22), which contain no marginals and are in fact derivable
on the spot. Both are obvious consequences of the facts that

• Conditional densities are proportional to joint densities considered as func-
tions of the variable(s) in front of the bar.

• Conditional densities integrate to one considered as functions of the vari-
able(s) in front of the bar.

Example 3.4.3.
Consider the function

h(x, y) = (x + y2)e−x−y, x > 0, y > 0.

If we take this to be an unnormalized joint density, what are the two conditional
densities f(x | y) and f(y | x)?

Integrating with respect to x gives∫ ∞

0

h(x, y) dx = e−y

∫ ∞

0

xe−x dx + y2e−y

∫ ∞

0

e−x dx

= (1 + y2)e−y

We used the formula ∫ ∞

0

xne−x dx = Γ(n + 1) = n! (3.23)
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to evaluate the integrals. Hence

f(x | y) =
f(x, y)∫
f(x, y) dx

=
x + y2

1 + y2
e−x

Similarly∫ ∞

0

h(x, y) dy = xe−x

∫ ∞

0

e−y dy + e−x

∫ ∞

0

y2e−y dy

= (x + 2)e−x

Again, we used (3.23) to evaluate the integrals. So

f(y | x) =
f(x, y)∫
f(x, y) dy

=
x + y2

x + 2
e−y

Things become considerably more complicated when the support of the joint
density is not a rectangle with sides parallel to the axes. Then the domains of
integration depend on the values of the conditioning variable.

Example 3.4.4 (A Density with Weird Support).
Consider the function

h(x, y) =

{
x + y2, x > 0, y > 0, x + y < 1
0, otherwise

If we take this to be an unnormalized joint density, what is the conditional
density f(x | y)?

Integrating with respect to x gives∫ ∞

−∞
h(x, y) dx =

∫ 1−y

0

(x + y2) dx =
x2

2
+ xy2

∣∣∣∣1−y

0

= 1
2 (1 − y)(1 − y + 2y2)

What is tricky is that the formula x + y2 for h(x, y) is valid only when x > 0
and y > 0 and x + y < 1. This means 0 < x < 1 − y. For other values of x, the
integrand is zero. Hence the domain of integration in the second integral must
be 0 < x < 1 − y. If you miss this point about the domain of integration, you
make a complete mess of the problem. If you get this point, the rest is easy

f(x | y) =
f(x, y)∫
f(x, y) dx

=
2(x + y2)

(1 − y)(1 − y + 2y2)

3.4.4 Renormalization, Part II

This subsection drops the other shoe in regard to “conditional probability is
renormalization.” So is conditional expectation. Plugging the definition (3.21)
of conditional densities into (3.3) gives

E{g(Y ) | x} =
∫

g(y)f(x, y) dy∫
f(x, y) dy

(3.24)
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(and, of course, the discrete case is analogous with the integrals replaced by
sums). It is a useful mnemonic device to write (3.24) lining up the analogous
bits in the numerator and denominator

E{g(Y ) | x} =
∫

g(y)f(x, y) dy∫
f(x, y) dy

.

This looks a little funny, but it reminds us that the density in the numerator
and denominator is the same, and the variable of integration is the same. The
only difference between the numerator and denominator is the function g(y)
appearing in the numerator.

If we plug in (3.22) instead of (3.21) for f(y | x) we get

E{g(Y ) | x} =
∫

g(y)h(x, y) dy∫
h(x, y) dy

(3.25)

where h(x, y) is an unnormalized joint density.
These formulas make it clear that we are choosing the denominator so that

E(1 | x) = 1, which is the form the norm axiom takes when applied to condi-
tional probability. That is, when we take the special case in which the function
g(y) is equal to one for all y, the numerator and denominator are the same.

Example 3.4.5.
Suppose X and Y have the unnormalized joint density

h(x, y) = (x + y)e−x−y, x > 0, y > 0,

what is E(X | y)?
Using (3.25) with the roles of X and Y interchanged and g the identity

function we get

E(X | y) =
∫

xh(x, y) dx∫
h(x, y) dx

=
∫

x(x + y)e−x−y dx∫
(x + y)e−x−y dx

Using (3.23) the denominator is∫ ∞

0

(x + y)e−x−y dx = e−y

∫ ∞

0

xe−x dx + ye−y

∫ ∞

0

e−x dx

= (1 + y)e−y

and the numerator is∫ ∞

0

x(x + y)e−x−y dx = e−y

∫ ∞

0

x2e−x dx + ye−y

∫ ∞

0

xe−x dx

= (2 + y)e−y

Hence
E(X | y) =

2 + y

1 + y
, y > 0.
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Recall from p. 90 in these notes

Sanity Check: E(X | Y ) is a function of Y and is not a function
of X.

Good. We did get a function of y. If you get confused about which variable
to integrate with respect to, this sanity check will straighten you out. If you
through some mistake get a function of both variables, this sanity check will at
least tell you that you messed up somewhere.

3.4.5 Bayes Rule

Now we want to study the consequences of

joint = conditional × marginal (3.26)

Again we have the problem of remembering which marginal. If we recall our
analysis of

conditional =
joint

marginal

on p. 100 in these notes, we recall that it is the marginal of the variable “behind
the bar.”

Because “mathematics is invariant under changes of notation” (3.26) is also
true when we interchange the roles of the variables Hence we can “factor” a
joint density into marginal and conditional two different ways

f(x, y) = f(x | y)fY (y) (3.27)
f(x, y) = f(y | x)fX(x) (3.28)

Plugging (3.27) into (3.21) gives

f(y | x) =
f(x | y)fY (y)∫
f(x | y)fY (y) dy

(3.29)

This equation is called Bayes rule. It allows us to “turn around” conditional
probabilities. That is, it is useful for problems that say: given f(x | y), find
f(y | x). Or vice versa. Of course, because “mathematics is invariant under
changes of notation” (3.29) is also true with all the x’s and y’s interchanged.

Example 3.4.6.
Suppose that X and Y are positive real-valued random variables and

f(x | y) = 1
2x2y3e−xy

fY (y) = e−y

what is f(y | x)?
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Note that this is slightly tricky in that the conditional wanted is not the one
given by the Bayes rule formula (3.29). You need to interchange x’s and y’s in
(3.29) to get the formula needed to do this problem

f(y | x) =
f(x | y)fY (y)∫
f(x | y)fY (y) dy

The denominator is∫ ∞

0

x2y3e−xy−y dy = x2

∫ ∞

0

y3e−(1+x)y dy

The change of variable y = u/(1 + x) makes the right hand side

x2

(1 + x)4

∫ ∞

0

u3e−u du =
6x2

(1 + x)4

Thus
f(y | x) = 1

6 (1 + x)4y3e−(1+x)y, y > 0

Example 3.4.7 (Bayes and Brand Name Distributions).
Suppose

X ∼ Exp(λ)
Y | X ∼ Exp(X)

meaning the marginal distribution of X is Exp(λ) and the conditional distribu-
tion of Y given X is Exp(X), that is,

f(y | x) = xe−xy, y > 0. (3.30)

This is a bit tricky, so let’s go through it slowly. The formula for the density of
the exponential distribution given in Section B.2.2 in Appendix B is

f(x | λ) = λe−λx, x > 0. (3.31)

We want to change x to y and λ to x. Note that it matters which order we do
the substitution. If we change λ to x first, we get

f(x | x) = λe−x2
, x > 0.

but that’s nonsense. First, the right hand side isn’t a density. Second, the left
hand side is the density of X given X, but this distribution is concentrated at
X (if we know X, then we know X) and so isn’t even continuous. So change x
in (3.31) to y obtaining

f(y | λ) = λe−λy, y > 0.

and then change λ to x obtaining (3.30).



3.5. CONDITIONAL EXPECTATION AND PREDICTION 105

Of course, the joint is conditional times marginal

f(x, y) = f(y | x)fX(x) = xe−xy · λe−λx = λxe−(λ+y)x (3.32)

Question: What is the other marginal (of Y ) and the other conditional (of
X given Y )? Note that these two problems are related. If we answer one, the
answer to the other is easy, just a division

f(x | y) =
f(x, y)
fY (y)

or

fY (y) =
f(x, y)
f(x | y)

I find it a bit easier to get the conditional first. Note that the joint (3.32) is an
unnormalized conditional when thought of as a function of x alone. Checking
our inventory of “brand name” distributions, we see that the only one like
(3.32) in having both a power and an exponential of the variable is the gamma
distribution with density

f(x | α, λ) =
λα

Γ(α)
xα−1e−λx, x > 0. (3.33)

Comparing the analogous parts of (3.32) and (3.33), we see that we must match
up x with xα−1, which tells us we need α = 2, and we must match up e−(λ+y)x

with e−λx which tells us we need λ + y in (3.32) to be the λ in (3.33), which
is the second parameter of the gamma distribution. Thus (3.32) must be an
unnormalized Γ(2, λ + y) density, and the properly normalized density is

f(x | y) = (λ + y)2xe−(λ+y)x, x > 0 (3.34)

Again this is a bit tricky, so let’s go through it slowly. We want to change α to
2 and λ to λ + y in (3.33). That gives

f(x | y) =
(λ + y)2

Γ(2)
x2−1e−(λ+y)x, x > 0.

and this cleans up to give (3.34).

3.5 Conditional Expectation and Prediction

The parallel axis theorem (Theorem 2.11 in these notes)

E[(X − a)2] = var(X) + [a − E(X)]2

has an analog for conditional expectation. Just replace expectations by condi-
tional expectations (and variances by conditional variances) and, because func-
tions of the conditioning variable behave like constants, replace the constant by
a function of the conditioning variable.
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Theorem 3.5 (Conditional Parallel Axis Theorem). If Y ∈ L1

E{[Y − a(X)]2 | X} = var(Y | X) + [a(X) − E(Y | X)]2 (3.35)

The argument is exactly the same as that given for the unconditional version,
except for the need to use Axiom CE1 instead of Axiom E2 to pull a function
of the conditioning variable out of the conditional expectation. Otherwise, only
the notation changes.

If we take the unconditional expectation of both sides of (3.35), we get

E
(
E{[Y − a(X)]2 | X}) = E{var(Y | X)} + E{[a(X) − E(Y | X)]2}

and by the iterated expectation axiom, the left hand side is the the unconditional
expectation, that is,

E{[Y − a(X)]2} = E{var(Y | X)} + E{[a(X) − E(Y | X)]2} (3.36)

This relation has no special name, but it has two very important special cases.
The first is the prediction theorem.

Theorem 3.6. For predicting a random variable Y given the value of another
random variable X, the predictor function a(X) that minimizes the expected
squared prediction error

E{[Y − a(X)]2}
is the conditional expectation a(X) = E(Y | X).

The proof is extremely simple. The expected squared prediction error is
the left hand side of (3.36). On the right hand side of (3.36), the first term
does not contain a(X). The second term is the expectation of the square of
a(X) − E(Y | X). Since a square is nonnegative and the expectation of a
nonnegative random variable is nonnegative (Axiom E1), the second term is
always nonnegative and hence is minimized when it is zero. By Theorem 2.32,
that happens if and only if a(X) = E(Y | X) with probability one. (Yet
another place where redefinition on a set of probability zero changes nothing of
importance).

Example 3.5.1 (Best Prediction).
Suppose X and Y have the unnormalized joint density

h(x, y) = (x + y)e−x−y, x > 0, y > 0,

what function of Y is the best predictor of X in the sense of minimizing expected
squared prediction error?

The predictor that minimizes expected squared prediction error is the re-
gression function

a(Y ) = E(X | Y ) =
2 + Y

1 + Y

found in Example 3.4.5.
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The other important consequence of (3.36) is obtained by taking a(X) =
E(Y ) = µY (that is, a is the constant function equal to µY ). This gives

E{[Y − µY ]2} = E{var(Y | X)} + E{[µY − E(Y | X)]2} (3.37)

The left hand side of (3.37) is, by definition var(Y ). By the iterated expectation
axiom, E{E(Y | X)} = E(Y ) = µY , so the second term on the right hand side
is the expected squared deviation of E(Y | X) from its expectation, which is,
by definition, its variance. Thus we have obtained the following theorem.

Theorem 3.7 (Iterated Variance Formula). If Y ∈ L2,

var(Y ) = E{var(Y | X)} + var{E(Y | X)}.
Example 3.5.2 (Example 3.3.1 Continued).
Suppose X0, X1, . . . is an infinite sequence of identically distributed random
variables, having mean E(Xi) = µX and variance var(Xi) = σ2

X , and suppose N
is a nonnegative integer-valued random variable independent of the Xi having
mean E(N) = µN and variance var(N) = σ2

N . Note that we have now tied
up the loose end in Example 3.3.1. We now know from Theorem 3.4 that
independence of the Xi and N implies

E(Xi | N) = E(Xi) = µX .

and similarly
var(Xi | N) = var(Xi) = σ2

X .

Question: What is the variance of

SN = X1 + · · · + XN

expressed in terms of the means and variances of the Xi and N?
This is easy using the iterated variance formula. First, as we found in Ex-

ample 3.3.1,
E(SN | N) = NE(Xi | N) = NµX .

A similar calculation gives

var(SN | N) = N var(Xi | N) = Nσ2
X

(because of the assumed independence of the Xi and N). Hence

var(SN ) = E{var(SN | N)} + var{E(SN | N)}
= E(Nσ2

X) + var(NµX)

= σ2
XE(N) + µ2

X var(N)

= σ2
XµN + µ2

Xσ2
N

Again notice that it is impossible to do this problem any other way. There
is not enough information given to use any other approach.

Also notice that the answer is not exactly obvious. You might just guess,
using your intuition, the answer to Example 3.3.1. But you wouldn’t guess this.
You need the theory.
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Problems

3-1. In class we found the moment generating function of the geometric distri-
bution (Section B.1.3 in Appendix B) is defined by

ψ(t) =
1 − p

1 − pet

on some neighborhood of zero. Find the variance of this random variable.

3-2. Verify the details in (3.16a), (3.16b), and (3.16c).

3-3. Suppose X is a positive random variable and the density of Y given X is

f(y | x) =
2y

x2
, 0 < y < x.

(a) Find E(Y | X).

(b) Find var(Y | X).

3-4. For what real values of θ is

fθ(x) =
1

c(θ)
xθ, 0 < x < 1

a probability density, and what is the function c(θ)?

3-5. Suppose X, Y , and Z are random variables such that

E(X | Y,Z) = Y and var(X | Y,Z) = Z.

Find the (unconditional) mean and variance of X in terms of the means, vari-
ances, and covariance of Y and Z.

3-6. Suppose the random vector (X,Y ) is uniformly distributed on the disk

S = { (x, y) ∈ R2 : x2 + y2 < 4 }
that is, (X,Y ) has the U(S) distribution in the notation of Section B.2.1 of
Appendix B.

(a) Find the conditional distributions of X given Y and of Y given X.

(b) Find the marginal distributions of X and Y .

(c) Find E(Y | x).

(d) Find P (|Y | < 1 | x).

3-7. Suppose the conditional distribution of Y given X is N (0, 1/X) and the
marginal distribution of X is Gam(α, λ).

(a) What is the conditional density of X given Y ?



3.5. CONDITIONAL EXPECTATION AND PREDICTION 109

(b) What is the marginal density of Y ?

3-8. Suppose X and Z are independent random variables and E(Z) = 0. Define
Y = X + X2 + Z.

(a) Find E(Y | X).

(b) Find var(Y | X).

(c) What function of X is the best predictor of Y in the sense of minimizing
expected squared prediction error?

(d) What is the expected squared prediction error of this predictor?

Note: Any of the answers may involve moments of X and Z.



110 Stat 5101 (Geyer) Course Notes



Chapter 4

Parametric Families of
Distributions

The first thing the reader should do before reading the rest of this chapter
is go back and review Section 3.1, since that establishes the basic notation for
parametric families of distributions.

4.1 Location-Scale Families

Consider a probability density f of a real-valued random variable X. By the
theorem on linear changes of variables (Theorem 7 of Chapter 3 in Lindgren),
for any real number µ and any positive real number σ, the random variable
Y = µ + σX has the density

fµ,σ(y) =
1
σ

f

(
y − µ

σ

)
.

This generates a two-parameter family of densities called the location-scale fam-
ily generated by the reference density f . The parameter µ is called the location
parameter, and the parameter σ is called the scale parameter.

We could choose any distribution in the family as the reference distribution
with density f . This gives a different parameterization of the family, but the
same family. Suppose we choose fα,β as the reference density. The family it
generates has densities

fµ,σ(y) =
1
σ

fα,β

(
y − µ

σ

)
.

=
1

σβ
f

(
1
β

[
y − µ

σ
− α

])
=

1
σβ

f

(
y − µ − σα

σβ

)

111
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It is clear that as µ and σ run over all possible values we get the same family
of distributions as before. The parameter values that go with each particular
distribution have changed, but each density that appears in one family also
appears in the other. The correspondence between the parameters in the two
parameterizations is

µ ←→ µ + σα

σ ←→ σβ

If the reference random variable X has a variance, then every distribution in
the family has a variance (by Theorem 2.44 in these notes), and the distributions
of the family have every possible mean and variance. Since we are free to choose
the reference distribution as any distribution in the family, we may as well choose
so that E(X) = 0 and var(X) = 1, then µ is the mean and σ the standard
deviation of the variable Y with density fµ,σ.

But the distributions of the family do not have to have either means or vari-
ances. In that case we cannot call µ the mean or σ the standard deviation. That
is the reason why in general we call µ and σ the location and scale parameters.

Example 4.1.1 (Uniform Distributions).
The U(a, b) family of distribution defined in Section B.2.1 of Appendix B has
densities

f(x | a, b) =
1

b − a
, a < x < b (4.1)

and moments

E(X | a, b) =
a + b

2

var(X | a, b) =
(b − a)2

12

Therefore the parameters a and b of the distribution having mean zero and
standard deviation one is found by solving

a + b

2
= 0

(from which we see that b = −a) and

(b − a)2

12
= 1

which becomes, plugging in b = −a,

(2 · b)2
12

= 1

Hence b =
√

3. Giving the density

f(x) =
1

2
√

3
, −

√
3 < x < +

√
3
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Then use the formula for a general location-scale family, obtaining

f(y | µ, σ) =
1
σ

f

(
y − µ

σ

)
=

1
2σ

√
3

on the domain of definition, whatever that is. The change of variable is y =
µ+σx, so x = ±√

3 maps to µ±σ
√

3, and those are the endpoints of the domain
of definition. So

f(y | µ, σ) =
1

2σ
√

3
, µ − σ

√
3 < y < µ + σ

√
3 (4.2)

The reader may have lost track in all the formula smearing of how simple
this all is. We have another description of the same family of densities. The
correspondence between the two parameterizations is

a ←→ µ − σ
√

3

b ←→ µ + σ
√

3

It should be clear that (4.2) defines a density that is constant on an interval,
just like (4.1) does. Furthermore, it should also be clear that as µ and σ range
over all possible values we get distributions on all possible intervals. This is not
so obvious from the range specification in (4.2), but is clear from the definition
of µ and σ in terms of a and b

µ =
a + b

2

σ =

√
(b − a)2

12

The only virtue of the new parameterization (4.2) over the old one (4.1)
is that it explicitly describes the density in terms of the mean and standard
deviation (µ is the mean and σ is the standard deviation, as explained in the
comments immediately preceding the example). But for most people that is not
a good enough reason to use the more complicated parameterization. Hence
(4.1) is much more widely used.

Example 4.1.2 (Cauchy Distributions).
The function

f(x) =
1

π(1 + x2)
, −∞ < x < +∞

is a probability density, because∫ ∞

−∞

1
1 + x2

dx = tan−1 x

∣∣∣∣∞
−∞

= π

This density is called the standard Cauchy density (Section 6.12 in Lindgren).
This distribution has no mean or variance. If we try to calculate

E(|X|) =
∫ ∞

−∞

|x|
1 + x2

dx = 2
∫ ∞

0

x

1 + x2
dx
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we see that, because the integrand is bounded, only the behavior of the integrand
near infinity is important. And for large x

x

1 + x2
≈ 1

x

and so by Lemma 2.39 the integral does not exist. Hence by Theorem 2.44
neither does any moment of first or higher order. That is, no moments exist.

The Cauchy location-scale family has densities

fµ,σ(x) =
σ

π(σ2 + [x − µ]2)
, −∞ < x < +∞ (4.3)

Here µ is not the mean, because Cauchy distributions do not have means. It
is, however, the median because this distribution is symmetric with center of
symmetry µ. Neither is σ the standard deviation, because Cauchy distributions
do not have variances.

Example 4.1.3 (Blurfle Distributions).
All of the distributions in a location-scale family have the same shape. In fact we
could use the same curve as the graph of every density in the family. Changing µ
and σ only changes the scales on the axes, not the shape of the curve. Consider
the distribution with the density shown below, which is of no particular interest,
just an arbitrary p. d. f. Call it the “blurfle” distribution. It has been chosen
so to have mean zero and variance one, so we can refer to it as the standard
blurfle distribution.

x

f(
x)

-2 -1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Like any other distribution, it generates a location-scale family, which we
can call the blurfle family. Different blurfle distributions have the same shape,
just different location and scale parameters. Changing the location parameter,
but leaving the scale parameter unchanged just shifts the curve to the right or
left along the number line.
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Shown below are two different blurfle densities with same scale parameter
but different location parameters.

x

f(
x)

-2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

And shown below are two different blurfle densities with same location param-
eter but different scale parameters.

x

f(
x)

-5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

4.2 The Gamma Distribution

The gamma function is defined for all real α > 0 by

Γ(α) =
∫ ∞

0

xα−1e−x dx. (4.4)

Theorem 4.1 (Gamma Function Recursion Relation).

Γ(α + 1) = αΓ(α) (4.5)

holds for all α > 0.
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Proof. This can be proved using the integration by parts formula:
∫

u dv =
uv−∫

v du. Let u = xα and dv = e−x dx, so du = αxα−1 du and v = −e−x, and

Γ(α + 1) =
∫ ∞

0

xαe−x dx

= −xαe−x
∣∣∣∞
0

−
∫ ∞

0

αxα−1e−x dx

= αΓ(α)

The uv term in the integration by parts is zero, because xαe−x goes to zero as
x goes to either zero or infinity.

Since
Γ(1) =

∫ ∞

0

e−x dx = −e−x
∣∣∣∞
0

= 1,

the gamma function interpolates the factorials

Γ(2) = 1 · Γ(1) = 1!
Γ(3) = 2 · Γ(2) = 2!

...
Γ(n + 1) = n · Γ(n) = n!

In a later section, we will find out that Γ(1
2 ) =

√
π, which can be used with the

recursion relation (4.5) to find Γ(n
2 ) for odd positive integers n.

The integrand in the integral defining the gamma function (4.4) is non-
negative and integrates to a finite, nonzero constant. Hence, as we saw in
Example 3.4.2, dividing it by what it integrates to makes a probability density

f(x | α) =
1

Γ(α)
xα−1e−x, x > 0. (4.6)

The parameter α of the family is neither a location nor a scale parameter. Each
of these densities has a different shape. Hence we call it a shape parameter.

It is useful to enlarge the family of densities by adding a scale parameter. If
X has the density (4.6), then σX has the density

f(x | α, σ) =
1
σ

f
(x

σ

∣∣∣ α
)

=
1

σαΓ(α)
xα−1e−x/σ. (4.7)

For reasons that will become apparent later Lindgren prefers to use the recip-
rocal scale parameter λ = 1/σ. If the units of X are feet, then so are the units
of σ. The units of λ are reciprocal feet (ft−1). In this parameterization the
densities are

f(x | α, λ) =
λα

Γ(α)
xα−1e−λx. (4.8)

You should be warned that there is no generally accepted parameterization of
the gamma family of densities. Some books prefer one, some the other. In this
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course we will always use (4.8), and following Lindgren we will use the notation
Gam(α, λ) to denote the distribution with density (4.8). We will call λ the
inverse scale parameter or, for reasons to be explained later (Section 4.4.3), the
rate parameter. The fact that (4.8) must integrate to one tells us∫ ∞

0

xα−1e−λx dx =
Γ(α)
λα

.

We can find the mean and variance of the gamma using the trick of recog-
nizing a probability density (Section 2.5.7).

E(X) =
∫ ∞

0

xf(x | α, λ) dx

=
λα

Γ(α)

∫ ∞

0

xαe−λx dx

=
λα

Γ(α)
Γ(α + 1)

λα+1

=
α

λ

(we used the recursion (4.5) to simplify the ratio of gamma functions). Similarly

E(X2) =
∫ ∞

0

x2f(x | α, λ) dx

=
λα

Γ(α)

∫ ∞

0

xα+1e−λx dx

=
λα

Γ(α)
Γ(α + 2)

λα+2

=
(α + 1)α

λ2

(we used the recursion (4.5) twice). Hence

var(X) = E(X2) − E(X)2 =
(α + 1)α

λ2
−

(α

λ

)2

=
α

λ2

The sum of independent gamma random variables with the same scale pa-
rameter is also gamma. If X1, . . ., Xk are independent with Xi ∼ Gam(αi, λ),
then

X1 + · · · + Xk ∼ Gam(α1 + · · · + αk, λ).

This will be proved in the following section (Theorem 4.2).

4.3 The Beta Distribution

For any real numbers s > 0 and t > 0, the function

h(x) = xs−1(1 − x)t−1, 0 < x < 1
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is an unnormalized probability density. This is clear when s ≥ 1 and t ≥ 1,
because then it is bounded. When s < 1, it is unbounded near zero. When
t < 1, it is unbounded near one. But even when unbounded it is integrable. For
x near zero

h(x) ≈ xs−1

Hence h is integrable on (0, ε) for any ε > 0 by Lemmas 2.40 and 2.43 because
the exponent s−1 is greater than −1. The same argument (or just changing the
variable from x to 1 − x) shows that the unnormalized density h is integrable
near one.

The normalizing constant for h depends on s and t and is called the beta
function

B(s, t) =
∫ 1

0

xs−1(1 − x)t−1 dx.

Dividing by the normalizing constant gives normalized densities

f(x | s, t) =
1

B(s, t)
xs−1(1 − x)t−1, 0 < x < 1.

The probability distributions having these densities are called beta distributions
and are denoted Beta(s, t).

The next theorem gives the “addition rule” for gamma distributions men-
tioned in the preceding section and a connection between the gamma and beta
distributions.

Theorem 4.2. If X and Y are independent random variables

X ∼ Gam(s, λ)
Y ∼ Gam(t, λ)

Then

U = X + Y

V =
X

X + Y

are also independent random variables, and

U ∼ Gam(s + t, λ)
V ∼ Beta(s, t)

Proof. To use the multivariate change of variable formula, we first solve for the
old variables x and y in terms of the new

x = uv

y = u(1 − v)



4.4. THE POISSON PROCESS 119

Hence the Jacobian is

J(u, v) =

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣ =

∣∣∣∣∣∣ v u

1 − v −u

∣∣∣∣∣∣ = −u

The joint density of X and Y is fX(x)fY (y) by independence. By the change
of variable formula, the joint density of U and V is

fU,V (u, v) = fX,Y [uv, u(1 − v)]|J(u, v)|
= fX(uv)fY [u(1 − v)]u

=
λs

Γ(s)
(uv)s−1e−λuv λt

Γ(t)
[u(1 − v)]t−1e−λu(1−v)u

=
λs+t

Γ(s)Γ(t)
us+t−1e−λuvs−1(1 − v)t−1

Since the joint density factors into a function of u times a function of v, the
variables U and V are independent. Since these functions are proportional to
the gamma and beta densities asserted by the theorem, U and V must actually
have these distributions.

Corollary 4.3.

B(s, t) =
Γ(s)Γ(t)
Γ(s + t)

Proof. The constant in the joint density found in the proof of the theorem must
be the product of the constants for the beta and gamma densities. Hence

λs+t

Γ(s)Γ(t)
=

λs+t

Γ(s + t)
1

B(s, t)

Solving for B(s, t) gives the corollary.

For moments of the beta distribution, see Lindgren pp. 176–177.

4.4 The Poisson Process

4.4.1 Spatial Point Processes

A spatial point process is a random pattern of points in a region of space.
The space can be any dimension.

A point process is simple if it never has points on top of each other so that
each point of the process is at a different location in space. A point process is
boundedly finite if with probability one it has only a finite number of points in
any bounded set.

Let NA denote the number of points in a region A. Since the point pattern
is random, NA is a random variable. Since it counts points, NA is a discrete
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random variable taking values 0, 1, 2, . . . . If A is a bounded set and the point
process is boundedly finite, then the event NA = ∞ has probability zero.

A point x is a fixed atom if P (N{x} > 0) > 0, that is, if there is positive
probability of seeing a point at the particular location x in every random pattern.
We are interested in point processes in which the locations of the points are
continuous random variables, in which case the probability of seeing a point at
any particular location is zero, so there are no fixed atoms.

For a general spatial point process, the joint distribution of the variables NA

for various sets A is very complicated. There is one process for which it is not
complicated. This is the Poisson process, which is a model for a “completely
random” pattern of points. One example of this process is given in Figure 4.1.

Figure 4.1: A single realization of a homogeneous Poisson process.

4.4.2 The Poisson Process

A Poisson process is a spatial point process characterized by a simple inde-
pendence property.
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Definition 4.4.1.
A Poisson process is a simple, boundedly finite spatial point process with
no fixed atoms having the property that NA1 , NA2 , . . ., NAk

are independent
random variables, whenever A1, A2, . . ., Ak are disjoint bounded sets.

In short, counts of points in disjoint regions are independent random vari-
ables. It is a remarkable fact that the independence property alone determines
the distribution of the counts.

Theorem 4.4. For a Poisson process, NA has a Poisson distribution for every
bounded set A. Conversely, a simple point process with no fixed atoms such that
NA has a Poisson distribution for every bounded set A is a Poisson process.

Write Λ(A) = E(NA). Since the parameter of the Poisson distribution is the
mean, the theorem says NA has the Poisson distribution with parameter Λ(A).
The function Λ(A) is called the intensity measure of the process.

An important special case of the Poisson process occurs when the intensity
measure is proportional to ordinary measure (length in one dimension, area in
two, volume in three, and so forth): if we denote the ordinary measure of a
region A by m(A), then

Λ(A) = λm(A) (4.9)

for some λ > 0. The parameter λ is called the rate parameter of the process. A
Poisson process for which (4.9) holds, the process is said to be a homogeneous
Poisson process. Otherwise it is inhomogeneous.

The space could be the three-dimensional space of our ordinary experience.
For example, the points could be the locations of raisins in a carrot cake. If
the process is homogeneous, that models the situation where regions of equal
volume have an equal number of raisins on average, as would happen if the
batter was stirred well and the raisins didn’t settle to the bottom of the cake
pan before baking. If the process is inhomogeneous, that models the situation
where some regions get more raisins per unit volume than others on average.
Either the batter wasn’t stirred well or the raisins settled or something of the
sort.

There are two important corollaries of the characterization theorem.

Corollary 4.5. The sum of independent Poisson random variables is a Poisson
random variable.

If Xi ∼ Poi(µi) then the Xi could be the counts NAi
in disjoint regions Ai

having measures m(Ai) = µi in a homogeneous Poisson process with unit rate
parameter. The sum is the count in the combined region

X1 + · · · + Xn = NA1∪···∪An

which has a Poisson distribution with mean

m(A1 ∪ · · · ∪ An) = m(A1) + · · ·m(An)



122 Stat 5101 (Geyer) Course Notes

because the measure of the union of disjoint regions is the sum of the measures.
This is also obvious from linearity of expectation. We must have

E(X1 + · · · + Xn) = E(X1) + · · · + E(Xn).

Corollary 4.6. The conditional distribution of a Poisson process in a region
Ac given the process in A is the same as the unconditional distribution of the
process in Ac.

In other words, finding the point pattern in A tells you nothing whatso-
ever about the pattern in Ac. The pattern in Ac has the same distribution
conditionally or unconditionally.

Proof. By Definition 4.4.1 and Theorem 4.4 NB is independent of NC when
B ⊂ Ac and C ⊂ A. Since this is true for all such C, the random variable NB

is independent of the whole pattern in A, and its conditional distribution given
the pattern in A is the same as its unconditional distribution. Theorem 4.4 says
Poisson distributions of the NB for all subsets B of Ac imply that the process
in Ac is a Poisson process.

4.4.3 One-Dimensional Poisson Processes

In this section we consider Poisson processes in one-dimensional space, that
is, on the real line. So a realization of the process is a pattern of points on the
line. For specificity, we will call the dimension along the line “time” because for
many applications it is time. For example, the calls arriving at a telephone ex-
change are often modeled by a Poisson process. So are the arrivals of customers
at a bank teller’s window, or at a toll plaza on an toll road. But you should
remember that there is nothing in the theory specific to time. The theory is the
same for all one-dimensional Poisson processes.

Continuing the time metaphor, the points of the process will always in the
rest of this section be called arrivals. The time from a fixed point to the next
arrival is called the waiting time until the arrival.

The special case of the gamma distribution with shape parameter one is
called the exponential distribution, denoted Exp(λ). Its density is

f(x) = λe−λx, x > 0. (4.10)

Theorem 4.7. The distribution of the waiting time in a homogeneous Poisson
process with rate parameter λ is Exp(λ). The distribution is the same uncon-
ditionally, or conditional on the past history up to and including the time we
start waiting.

Call the waiting time X and the point where we start waiting a. Fix an
x > 0, let A = (a, a + x), and let Y = N(a,a+x) be the number of arrivals in the
interval A. Then Y has a Poisson distribution with mean λm(A) = λx, since
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measure in one dimension is length. Then the c. d. f. of X is given by

F (x) = P (X ≤ x)
= P (there is at least one arrival in (a, a + x))
= P (Y ≥ 1)
= 1 − P (Y = 0)

= 1 − e−λx

Differentiating gives the density (4.10).
The assertion about the conditional and unconditional distributions being

the same is just the fact that the process on (−∞, a] is independent of the
process on (a,+∞). Hence the waiting time distribution is the same whether
or not we condition on the point pattern in (−∞, a].

The length of time between two consecutive arrivals is called the interarrival
time. Theorem 4.7 also gives the distribution of the interarrival times, because
it says the distribution is the same whether or not we condition on there being
an arrival at the time we start waiting. Finally, the theorem says an interarrival
time is independent of any past interarrival times. Since independence is a
symmetric property (X is independent of Y if and only if Y is independent of
X), this means all interarrival times are independent.

This means we can think of a one-dimensional Poisson process two different
ways.

• The number of arrivals in disjoint intervals are independent Poisson ran-
dom variables. The number of arrivals in an interval of length t is Poi(λt).

• Starting at an arbitrary point (say time zero), the waiting time to the
first arrival is Exp(λ). Then all the successive interarrival times are also
Exp(λ). And all the interarrival times are independent of each other and
the waiting time to the first arrival.

Thus if X1, X2, . . . are i. i. d. Exp(λ) random variables, the times T1, T2,
. . . defined by

Tn =
n∑

i=1

Xi (4.11)

form a Poisson process on (0,∞).

Note that by the addition rule for the gamma distribution, the time of the
nth arrival is the sum of n i. i. d. Gam(1, λ) random variables and hence has a
Gam(n, λ) distribution.

These two ways of thinking give us a c. d. f. for the Gam(n, λ) distribution
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of Tn.

F (x) = P (Tn ≤ x)
= P (there are at least n arrivals in (0, x))
= 1 − P (there are no more than n − 1 arrivals in (0, x))

= 1 −
n−1∑
k=0

(λx)k

k!
e−λx

Unfortunately, this trick does not work for gamma distributions with noninteger
shape parameters. There is no closed form expression for the c. d. f. of a general
gamma distribution.

In problems, it is best to use the way of thinking that makes the problem
easiest.

Example 4.4.1.
Assume the service times for a bank teller form a homogeneous Poisson process
with rate parameter λ. I arrive at the window, and am fifth in line with four
people in front of me. What is the expected time until I leave?

There are four interarrival times and the waiting time until the first person
in line is finished. All five times are i. i. d. Exp(λ) by the Poisson process
assumption. The times have mean 1/λ. The expectation of the sum is the sum
of the expectations 5/λ.

Alternatively, the distribution of the time I leave is the sum of the five
interarrival and waiting times, which is Gam(5, λ), which has mean 5/λ.

Example 4.4.2.
With the same assumptions in the preceding example, suppose λ = 10 per hour.
What is the probability that I get out in less than a half hour.

This is the probability that there are at least five points of the Poisson
process in the interval (0, 0.5), measuring time in hours (the time I leave is the
fifth point in the process). The number of points Y has a Poi(λt) distribution
with t = 0.5, hence λt = 5. From Table II in the back of Lindgren P (Y ≥ 5) =
1 − P (Y ≤ 4) = 1 − .44 = .56.

Problems

4-1. Prove Corollary 4.5 for the case of two Poisson random variables directly
using the convolution formula Theorem 1.7 from Chapter 1 of these notes. Note
that the two Poisson variables are allowed to have different means.
Hint: Use the binomial theorem (Problem 1-14 on p. 7 of Lindgren).

4-2. Suppose X1, X2, . . . are i. i. d. random variables with mean µ and variance
σ2, and N is a Geo(p) random variable independent of the Xi. What is the mean
and variance of

Y = X1 + X2 + · · · + XN

(note N is random).
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4-3. A brand of raisin bran averages 84.2 raisins per box. The boxes are filled
from large bins of well mixed raisin bran. What is the standard deviation of the
number of raisins per box.

4-4. Let X be the number of winners of a lottery. If we assume that players
pick their lottery numbers at random, then their choices are i. i. d. random
variables and X is binomially distributed. Since the mean number of winners
is small, the Poisson approximation is very good. Hence we may assume that
X ∼ Poi(µ) where µ is a constant that depends on the rules of the lottery and
the number of tickets sold.

Because of our independence assumption, what other players do is indepen-
dent of what you do. Hence the conditional distribution of the number of other
winners given that you win is also Poi(µ). If you are lucky enough to win, you
must split the prize with X other winners. You win A/(X + 1) where A is the
total prize money. Thus

E

(
A

X + 1

)
is your expected winnings given that you win. Calculate this expectation.

4-5. Suppose X and Y are independent, but not necessarily identically dis-
tributed Poisson random variables, and define N = X + Y .

(a) Show that
X | N ∼ Bin(N, p),

where p is some function of the parameters of the distributions of X, Y .
Specify the function.

(b) Assume
Z | N ∼ Bin(N, q),

where 0 < q < 1. Show that

Z ∼ Poi(µ),

where µ is some function of q and the parameters of the distribution of X,
Y . Specify the function.

4-6. Suppose X ∼ Gam(α, λ). Let Y = 1/X.

(a) For which values of α and λ does E(Y ) exist?

(b) What is E(Y ) when it exists?

4-7. Suppose that X, Y , and Z are independent N (2, 2) random variables.
What is P (X > Y + Z)? Hint: What is the distribution of X − Y − Z?
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Chapter 5

Multivariate Distribution
Theory

5.1 Random Vectors

5.1.1 Vectors, Scalars, and Matrices

It is common in linear algebra to refer to single numbers as scalars (in
contrast to vectors and matrices). So in this chapter a real variable x or a
real-valued random variable X will also be referred to as a scalar variable or a
scalar random variable, respectively.

A matrix (plural matrices) is a rectangular array of scalars, called called
the elements or components of the matrix, considered as a single mathematical
object. We use the convention that matrices are denoted by boldface capital
letters. The elements of a matrix are indicated by double subscripts, for example
the elements of a matrix A may be denoted aij . Conventionally, the array is
displayed as follows

A =


a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

...
. . .

...
am1 am2 am3 · · · amn

 (5.1)

The first index indicates the element’s row, and the second index indicates the
column. The matrix (5.1) has row dimension m and column dimension n, which
is indicated by saying it is an m × n matrix.

The transpose of a matrix A with elements aij is the matrix A′ with elements
aji, that is, A′ is obtained from A by making the rows columns and vice versa.

There are several ways to think of vectors. In the preceeding chapters of
these notes we wrote vectors as tuples x = (x1, . . . , xn). Now we will also

127
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consider vectors as special cases of matrices. A column vector is an n×1 matrix

x =


x1

x2

...
xn

 (5.2)

and a row vector is a 1 × n matrix

x′ =
(
x1 x2 · · · xn

)
(5.3)

Note that (5.2) is indeed the transpose of (5.3) as the notation x and x′ indicates.
Note that even when we consider vectors as special matrices we still use boldface
lower case letters for nonrandom vectors, as we always have, rather than the
boldface capital letters we use for matrices.

5.1.2 Random Vectors

A random vector is just a vector whose components are random scalars.
We have always denoted random vectors using boldface capital letters X =
(X1, . . . , Xn), which conflicts with the new convention that matrices are boldface
capital letters. So when you see a boldface capital letter, you must decide
whether this indicates a random vector or a constant (nonrandom) matrix. One
hint is that we usually use letters like X, Y and Z for random vectors, and we
will usually use letters earlier in the alphabet for matrices. If you are not sure
what is meant by this notation (or any notation), look at the context, it should
be defined nearby.

The expectation or mean of a random vector X = (X1, . . . , Xn) is defined
componentwise. The mean of X is the vector

µX = E(X) =
(
E(X1), . . . , E(Xn)

)
having components that are the expectations of the corresponding components
of X.

5.1.3 Random Matrices

Similarly, we define random matrix to be a matrix whose components are
random scalars. Let X denote a random matrix with elements Xij . We can see
that the boldface and capital letter conventions have now pooped out. There is
no “double bold” or “double capital” type face to indicate the difference between
a random vector and a random matrix.1 The reader will just have to remember
in this section X is a matrix not a vector.

1This is one reason to avoid the “vectors are bold” and “random objects are capitals”
conventions. They violate “mathematics is invariant under changes of notation.” The type
face conventions work in simple situations, but in complicated situations they are part of
the problem rather than part of the solution. That’s why modern advanced mathematics
doesn’t use the “vectors are bold” convention. It’s nineteenth century notation still surviving
in statistics.
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Again like random vectors, the expectation or mean of a random matrix is
a nonrandom matrix. If X is a random m × n matrix with elements Xij , then
the mean of X is the matrix M with elements

µij = E(Xij), (5.4)

and we also write E(X) = M to indicate all of the mn equations (5.4) with one
matrix equation.

5.1.4 Variance Matrices

In the preceding two sections we defined random vectors and random matri-
ces and their expectations. The next topic is variances. One might think that
the variance of a random vector should be similar to the mean, a vector having
components that are the variances of the corresponding components of X, but
it turns out that this notion is not useful. The reason is that variances and
covariances are inextricably entangled. We see this in the fact that the variance
of a sum involves both variances and covariances (Corollary 2.19 of these notes
and the following comments). Thus the following definition.

The variance matrix of an n-dimensional random vector X = (X1, . . . , Xn)
is the nonrandom n × n matrix M having elements

mij = cov(Xi, Xj). (5.5)

As with variances of random scalars, we also use the notation var(X) for the
variance matrix. Note that the diagonal elements of M are variances because
the covariance of a random scalar with itself is the variance, that is,

mii = cov(Xi, Xi) = var(Xi).

This concept is well established, but the name is not. Lindgren calls M
the covariance matrix of X, presumably because its elements are covariances.
Other authors call it the variance-covariance matrix, because some of its ele-
ments are variances too. Some authors, to avoid the confusion about variance,
covariance, or variance-covariance, call it the dispersion matrix. In my humble
opinion, “variance matrix” is the right name because it is the generalization of
the variance of a scalar random variable. But you’re entitled to call it what you
like. There is no standard terminology.

Example 5.1.1.
What are the mean vector and variance matrix of the random vector (X,X2),
where X is some random scalar? Let

αk = E(Xk)

denote the ordinary moments of X. Then, of course, the mean and variance of
X are µ = α1 and

σ2 = E(X2) − E(X)2 = α2 − α2
1,
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but it will be simpler if we stick to the notation using the α’s. The mean vector
is

µ =
(

E(X)
E(X2)

)
=

(
α1

α2

)
(5.6)

The moment matrix is the 2 × 2 matrix M with elements

m11 = var(X)

= α2 − α2
1

m22 = var(X2)

= E(X4) − E(X2)2

= α4 − α2
2

m12 = cov(X,X2)

= E(X3) − E(X)E(X2)
= α3 − α1α2

Putting this all together we get

M =
(

α2 − α2
1 α3 − α1α2

α3 − α1α2 α4 − α2
2

)
(5.7)

5.1.5 What is the Variance of a Random Matrix?

By analogy with random vectors, the variance of X should be a mathematical
object with four indexes, the elements being

vijkl = cov(Xij , Xkl).

Even naming such an object takes outside the realm of linear algebra. One
terminology for objects with more than two indices is tensors. So we can say
that the variance of a random matrix is a nonrandom tensor. But this doesn’t
get us anywhere because we don’t know anything about operations that apply
to tensors.

Thus we see that random matrices present no problem so long as we only are
interested in their means, but their variances are problematical. Fortunately, we
can avoid random matrices except when we are interested only in their means,
not their variances.2

2A solution to the problem of defining the variance of a random matrix that avoids tensors
is to change notation and consider the random matrix a random vector. For example, a
random m × n matrix X can be written as a vector

Y = (X11, X12, . . . X1n, X21, X22, . . . , X2n, . . . Xm1, Xm2, . . . Xmn)

So Y1 = X11, Y2 = X12, . . ., Yn+1 = X2n, and so forth. Now there is no problem defining the
variance matrix of Y, but this is unnatural and clumsy notation that will in most problems
make things exceedingly messy.
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5.1.6 Covariance Matrices

The covariance matrix of an m-dimensional random vector X and an n-
dimensional random vector Y is the nonrandom matrix C with elements

cij = cov(Xi, Yj), (5.8)

(where, as usual Xi is an element of X and Yj an element of Y). Note that if X is
an m-dimensional vector and Y is an n-dimensional vector, then C = cov(X,Y)
is an m×n matrix. Swapping the roles of X and Y we see that cov(Y,X) is an
n×m matrix. Thus it is obvious that the property cov(X,Y ) = cov(Y,X) that
holds for covariances of scalar random variables, does not hold for covariances
of random vectors. In fact, if we write

C = cov(X,Y)
D = cov(Y,X),

then the elements of C are given by (5.8) and the elements of D are

dij = cov(Yi, Xj) = cji

Thus the two matrices are transposes of each other: D = C′.
With these definitions, we can easily generalize most of the formulas about

variances and covariances of scalar random variables to vector random variables.
We won’t bother to go through all of them. The most important one is the
formula for the variance of a sum of random vectors.

var

(
n∑

i=1

Xi

)
=

n∑
i=1

n∑
j=1

cov(Xi,Xj) (5.9)

which is the same as Corollary 2.19, except that it applies to vector random
variables in place of scalar ones. The special case in which X1, . . ., Xn are
uncorrelated random vectors, meaning cov(Xi,Xj) = 0 when i 6= j, gives

var

(
n∑

i=1

Xi

)
=

n∑
i=1

var(Xi) (5.10)

that is, the variance of the sum is the sum of the variances, which is the same
as Corollary 2.21, except that it applies to vector random variables in place of
scalar ones.

As with random scalars, independence implies lack of correlation, because
C = cov(X,Y) has elements cij = cov(Xi, Yj) which are all zero by this property
for random scalars (Theorem 2.47). Hence (5.10) also holds when X1, . . ., Xn

are independent random vectors. This is by far the most important application
of (5.10). As in the scalar case, you should remember

Independent implies uncorrelated, but uncorrelated does not imply
independent.



132 Stat 5101 (Geyer) Course Notes

Thus independence is a sufficient but not necessary condition for (5.10) to hold.
It is enough that the variables be uncorrelated.

In statistics, our main interest is not in sums per se but rather in averages

Xn =
1
n

n∑
i=1

Xi. (5.11a)

The analogous formula for random vectors is just the same formula with boldface

Xn =
1
n

n∑
i=1

Xi. (5.11b)

Warning: the subscripts on the right hand side in (5.11b) do not indicate
components of a vector, rather X1, X2, . . . is simply a sequence of random
vectors just as in (5.11a) X1, X2, . . . is a sequence of random scalars. The
formulas for the mean and variance of a sum also give us the mean and variance
of an average.

Theorem 5.1. If X1, X2, . . . are random vectors having the same mean vector
µ, then

E(Xn) = µ. (5.12a)

If X1, X2, . . . also have the same variance matrix M and are uncorrelated, then

var(Xn) =
1
n
M. (5.12b)

This is exactly analogous to the scalar case

E(Xn) = µ (5.13a)

and

var(Xn) =
σ2

n
(5.13b)

Theorem 5.2 (Alternate Variance and Covariance Formulas). If X and
Y are random vectors with means µX and µY, then

cov(X,Y) = E{(X − µX)(Y − µY)′} (5.14a)
var(X) = E{(X − µX)(Y − µY)′} (5.14b)

This hardly deserves the name “theorem” since it is obvious once one inter-
prets the matrix notation. If X is m-dimensional and Y is n-dimensional, then
when we consider the vectors as matrices (“column vectors”) we see that the
dimensions are

(X − µX)
m × 1

(Y − µY)′

1 × n

so the “sum” implicit in the matrix multiplication has only one term. Thus
(5.14a) is the m × n matrix with i, j element

E{(Xi − µXi
)(Yj − µYj

)} = cov(Xi, Yj)

and hence is the covariance matrix cov(X,Y). Then we see that (5.14b) is just
the special case where Y = X.
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5.1.7 Linear Transformations

In this section, we derive the analogs of the formulas

E(a + bX) = a + bE(X) (5.15a)

var(a + bX) = b2 var(X) (5.15b)

(Corollary 2.2 and Theorem 2.13 in Chapter 2 of these notes) that describe
the moments of a linear transformation of a random variable. A general linear
transformation has the form

y = a + Bx

where y and a are m-dimensional vectors, B is an m × n matrix, and x is an
n-dimensional vector. The dimensions of each object, considering the vectors
as column vectors (that is, as matrices with just a single column), are

y
m × 1

= a
m × 1

+ B
m × n

a
n × 1

(5.16)

Note that the column dimension of B and the row dimension of x must agree,
as in any matrix multiplication. Also note that the dimensions of x and y are
not the same. We are mapping n-dimensional vectors to m-dimensional vectors.

Theorem 5.3. If Y = a + BX, where a is a constant vector, B is a constant
matrix, and X is a random vector, then

E(Y) = a + BE(X) (5.17a)
var(Y) = B var(X)B′ (5.17b)

If we write µX and MX for the mean and variance of X and similarly for
Y, then (5.17a) and (5.17b) become

µY = a + BµX (5.18a)
MY = BMXB′ (5.18b)

If we were to add dimension information to (5.18a), it would look much like
(5.16). If we add such information to (5.18b) it becomes

MY

m × m
= B

m × n
MX

n × n
B′

n × m

Note again that, as in any matrix multiplication, the column dimension of the
left hand factor agrees with row dimension of the right hand factor. In partic-
ular, the column dimension of B is the row dimension of MX, and the column
dimension of MX is the row dimension of B′. Indeed, this is the only way these
matrices can be multiplied together to get a result of the appropriate dimension.
So merely getting the dimensions right tells you what the formula has to be.
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Proof of Theorem 5.3. Since our only definition of the mean of a random vector
involves components, we will have to prove this componentwise. The component
equations of Y = a + BX are

Yi = ai +
n∑

j=1

bijXj

(where, as usual, the ai are the components of a, the bij are the components of
B, and so forth). Applying linearity of expectation for scalars gives

E(Yi) = ai +
n∑

j=1

bijE(Xj),

which are the component equations of (5.18a).
Now we can be a bit slicker about the second half of the proof using the

alternate variance formula (5.14b).

var(a + BX) = E{(a + BX − µa+BX)(a + BX − µa+BX)′}
= E{(BX − BµX)(BX − BµX)′}
= E{B(X − µX)(X − µX)′B′}
= BE{(X − µX)(X − µX)′}B′

Going from the first line to the second is just (5.18a). Going from the second
line to the third uses the fact that the transpose of a matrix product is the
product of the transposes in reverse order, that is, (BC)′ = C′B. And going
from the third line to the forth uses (5.18a) again to pull the constant matrices
outside the expectation.

Of particular interest is the special case in which the linear transformation
is scalar-valued, that is, m = 1 in (5.16). Then the matrix B must be 1 × n,
hence a row vector. We usually write row vectors as transposes, say c′, because
convention requires unadorned vectors like c to be column vectors. Thus we
write B = c′ and obtain

Corollary 5.4. If Y = a + c′X, where a is a constant scalar, c is a constant
vector, and X is a random vector, then

E(Y ) = a + c′E(X) (5.19a)
var(Y ) = c′ var(X)c (5.19b)

Or, if you prefer the other notation

µY = a + c′µX (5.20a)

σ2
Y = c′MXc (5.20b)

Note that, since m = 1, both Y and a are scalars (1 × 1 matrices), so we have
written them in normal (not boldface) type and used the usual notation σ2

Y for
the variance of a scalar. Also note that because B = c′ the transposes have
switched sides in going from (5.18b) to (5.20b).
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Example 5.1.2.
(This continues Example 5.1.1.) What are the mean and variance of X + X2,
where X is some random scalar? We don’t have to use an multivariate theory to
answer this question. We could just use the formulas for the mean and variance
of a sum of random variables from Chapter 2 of these notes. But here we want
to use the multivariate theory to illustrate how it works.

Write Y = X + X2 and let

Z =
(

X
X2

)
be the random vector whose mean vector and variance matrix were found in
Example 5.1.1. Then Y = u′Z, where

u =
(

1
1

)
Thus by (5.20a) and (5.6)

E(Y ) = u′µZ =
(
1 1

) (
α1

α2

)
= α1 + α2

And by (5.20b) and (5.7)

var(Y ) = u′MZu

=
(
1 1

) (
α2 − α2

1 α3 − α1α2

α3 − α1α2 α4 − α2
2

)(
1
1

)
= α2 − α2

1 + 2(α3 − α1α2) + α4 − α2
2

Alternate Solution We could also do this problem the “old fashioned way”
(without matrices)

var(X + X2) = var(X) + 2 cov(X,X2) + var(X2)

= (α2 − α2
1) + 2(α3 − α1α2) + (α4 − α2

2)

Of course, both ways must give the same answer. We’re just using matrices here
to illustrate the use of matrices.

5.1.8 Characterization of Variance Matrices

A matrix A is said to be positive semi-definite if

c′Ac ≥ 0, for every vector c (5.21)

and positive definite if

c′Ac > 0, for every nonzero vector c.
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Corollary 5.5. The variance matrix of any random vector is symmetric and
positive semi-definite.

Proof. Symmetry follows from the symmetry property of covariances of random
scalars: cov(Xi, Xj) = cov(Xj , Xi).

The random scalar Y in Corollary 5.4 must have nonnegative variance. Thus
(5.19b) implies c′ var(X)c ≥ 0. Since c was an arbitrary vector, this proves
var(X) is positive semi-definite.

The corollary says that a necessary condition for a matrix M to be the
variance matrix of some random vector X is that M be symmetric and positive
semi-definite. This raises the obvious question: is this a sufficient condition,
that is, for any symmetric and positive semi-definite matrix M does there exist
a random vector X such that M = var(X)? We can’t address this question now,
because we don’t have enough examples of random vectors for which we know
the distributions. It will turn out that the answer to the sufficiency question is
“yes.” When we come to the multivariate normal distribution (Section 5.2) we
will see that for any symmetric and positive semi-definite matrix M there is a
multivariate normal random vector X such that M = var(X).

A hyperplane in n-dimensional space Rn is a set of the form

H = {x ∈ Rn : c′x = a } (5.22)

for some nonzero vector c and some scalar a. We say a random vector X is
concentrated on the hyperplane H if P (X ∈ H) = 1. Another way of describing
the same phenomenon is to say that that H is a support of X.

Corollary 5.6. The variance matrix of a random vector X is positive definite
if and only if X is not concentrated on any hyperplane.

Proof. We will prove the equivalent statement that the variance matrix is not
positive definite if and only if is is concentrated on some hyperplane.

First, suppose that M = var(X) is not positive definite. Then there is some
nonzero vector c such that c′Mc = 0. Consider the random scalar Y = c′X.
By Corollary 5.4 var(Y ) = c′Mc = 0. Now by Corollary 2.34 of these notes
Y = µY with probability one. Since E(Y ) = c′µX by (5.19a), this says that X
is concentrated on the hyperplane (5.22) where a = c′µX.

Conversely, suppose that X is concentrated on the hyperplane (5.22). Then
the random scalar Y = c′x is concentrated at the point a, and hence has variance
zero, which is c′Mc by Corollary 5.4. Thus M is not positive definite.

5.1.9 Degenerate Random Vectors

Random vectors are sometimes called degenerate by those who believe in
the kindergarten principle of calling things we don’t like bad names. And why
wouldn’t we like a random vector concentrated on a hyperplane? Because it
doesn’t have a density. A hyperplane is a set of measure zero, hence any inte-
gral over the hyperplane is zero and cannot be used to define probabilities and
expectations.
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Example 5.1.3 (A Degenerate Random Vector).
Suppose U , V , and W are independent and identically distributed random vari-
ables having a distribution not concentrated at one point, so σ2 = var(U) =
var(V ) = var(W ) is strictly positive. Consider the random vector

X =

U − V
V − W
W − U

 (5.23)

Because of the assumed independence of U , V , and W , the diagonal elements
of var(X) are all equal to

var(U − V ) = var(U) + var(V ) = 2σ2

and the off-diagonal elements are all equal to

cov(U − V, V − W ) = cov(U, V ) − cov(U,W ) − var(V ) + cov(V,W ) = −σ2

Thus

var(X) = σ2

 2 −1 −1
−1 2 −1
−1 −1 2


Question Is X degenerate or non-degenerate? If degenerate, what hyperplane
or hyperplanes is it concentrated on?

Answer We give two different ways of finding this out. The first uses some
mathematical cleverness, the second brute force and ignorance (also called plug
and chug).

The first way starts with the observation that each of the variables U , V ,
and W occurs twice in the components of X, once with each sign, so the sum
of the components of X is zero, that is X1 + X2 + X3 = 0 with probability one.
But if we introduce the vector

u =

1
1
1


we see that X1 + X2 + X3 = u′X. Hence X is concentrated on the hyperplane
defined by

H = {x ∈ R3 : u′x = 0 }
or if you prefer

H = { (x1, x2, x3) ∈ R3 : x1 + x2 + x3 = 0 }.
Thus we see that X is indeed degenerate (concentrated on H). Is is concentrated
on any other hyperplanes? The answer is no, but our cleverness has run out.
It’s hard so show that there are no more except by the brute force approach.
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The brute force approach is to find the eigenvalues and eigenvectors of the
variance matrix. The random vector in question is concentrated on hyperplanes
defined by eigenvectors corresponding to zero eigenvalues (Lemma 5.7 below).
Eigenvalues and eigenvectors can be found by many numerical math packages.
Here we will just demonstrate doing it in R.

> M <- matrix(c(2, -1, -1, -1, 2, -1, -1, -1, 2), nrow=3)
> M

[,1] [,2] [,3]
[1,] 2 -1 -1
[2,] -1 2 -1
[3,] -1 -1 2
> eigen(M)
$values
[1] 3.000000e+00 3.000000e+00 -8.881784e-16

$vectors
[,1] [,2] [,3]

[1,] 0.8156595 0.0369637 0.5773503
[2,] -0.3758182 -0.7248637 0.5773503
[3,] -0.4398412 0.6879000 0.5773503

Each eigenvector corresponding to a zero eigenvalue is a vector c defining a
hyperplane by (5.22) on which the random vector is concentrated. There is just
one zero eigenvalue. The corresponding eigenvector is

c =

0.5773503
0.5773503
0.5773503


(the eigenvectors are the columns of the $vectors matrix returned by the eigen
function). Since c is a multiple of u in the first answer, they define the same
hyperplane. Since there is only one zero eigenvalue, there is only one hyperplane
supporting the random vector.

Lemma 5.7. A random vector X is concentrated on a hyperplane (5.22) if and
only if the vector c in (5.22) is an eigenvector of var(X) corresponding to a zero
eigenvalue.

Proof. First suppose c is an eigenvector of M = var(X) corresponding to a zero
eigenvalue. This means Mc = 0, which implies c′Mc = 0, which, as in the
proof of Corollary 5.6, implies that X is concentrated on the hyperplane defined
by (5.22).

Conversely, suppose X is concentrated on the hyperplane defined by (5.22),
which, as in the proof of Corollary 5.6, implies c′Mc = 0. Write, using the
spectral decomposition (Theorem E.4 in Appendix E) M = ODO′, where D is
diagonal and O is orthogonal. Then

0 = c′Mc = c′ODO′c = w′Dw
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where we have written w = O′c. Writing out the matrix multiplications with
subscripts

w′Dw =
∑

i

diiw
2
i = 0

which implies, since dii ≥ 0 for all i that

dii = 0 or wi = 0, for all i

and this implies that actually Dw = 0. Hence, plugging back in the definition
of w, that DO′c = 0, and, multiplying on the left by O, that

Mc = ODO′c = 0

which says that c is an eigenvector of M corresponding to a zero eigenvalue,
which is what we were proving.

Degeneracy is not solely a phenomenon of concentration on hyperplanes. We
say a random vector is degenerate if it is concentrated on any set of measure
zero.

Example 5.1.4.
In Example 2.7.2 we considered the random vector Z = (X,Y ), where Y = X2

and X was any nonconstant random variable having a distribution symmetric
about zero. It served there as an example of random variables X and Y that
were uncorrelated but not independent.

Here we merely point out that the random vector Z is degenerate, because
it is clearly concentrated on the parabola

S = { (x, y) ∈ R2 : y = x2 }

which is, being a one-dimensional curve in R2, a set of measure zero.

So how does one handle degenerate random vectors? If they don’t have
densities, and most of the methods we know involve densities, what do we do?
First let me remind you that we do know some useful methods that don’t involve
densities.

• The first part of Chapter 2 of these notes, through Section 2.4 never
mentions densities. The same goes for Sections 3.3 and 3.5 in Chapter 3.

• In order to calculate E(Y) where Y = g(X), you don’t need the density
of Y. You can use

E(Y) =
∫

g(x)fX(x) dx

instead. Thus even if Y is degenerate, but is a known function of some
non-degenerate random vector X, we are still in business.
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When a random vector X is degenerate, it is always possible in theory (not
necessarily in practice) to eliminate one of the variables. For example, if X is
concentrated on the hyperplane H defined by (5.22), then, since c is nonzero,
it has at least one nonzero component, say cj . Then rewriting c′x = a with an
explicit sum we get

n∑
i=1

ciXi = a,

which can be solved for Xj

Xj =
1
cj

a −
n∑

i=1
i6=j

ciXi


Thus we can eliminate Xj and work with the remaining variables. If the random
vector

X′ = (X1, . . . , Xj−1, Xj+1, . . . , Xn)

of the remaining variables is non-degenerate, then it has a density. If X′ is still
degenerate, then there is another variable we can eliminate. Eventually, unless
X is a constant random vector, we get to some subset of variables that have
a non-degenerate joint distribution and hence a density. Since the rest of the
variables are a function of this subset, that indirectly describes all the variables.

Example 5.1.5 (Example 5.1.3 Continued).
In Example 5.1.3 we considered the random vector

X =

X1

X2

X3

 =

U − V
V − W
W − U


where U , V , and W are independent and identically distributed random vari-
ables. Now suppose they are independent standard normal.

In Example 5.1.3 we saw that X was degenerate because X1 + X2 + X3 = 0
with probability one. We can eliminate X3, since

X3 = −(X1 + X2)

and consider the distribution of the vector (X1, X2), which we will see (in Sec-
tion 5.2 below) has a non-degenerate multivariate normal distribution.

5.1.10 Correlation Matrices

If X = (X1, . . . , Xn) is a random vector having no constant components,
that is, var(Xi) > 0 for all i, the correlation matrix of X is the n× n matrix C
with elements

cij =
cov(Xi, Xj)√

var(Xi) var(Xi)
= cor(Xi, Xj)
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If M = var(X) has elements mij , then

cij =
mij√

miimjj

Note that the diagonal elements cii of a correlation matrix are all equal to one,
because the correlation of any random variable with itself is one.

Theorem 5.8. Every correlation matrix is positive semi-definite. The correla-
tion matrix of a random vector X is positive definite if and only the variance
matrix of X is positive definite.

Proof. This follows from the analogous facts about variance matrices.

It is important to understand that the requirement that a variance matrix
(or correlation matrix) be positive semi-definite is a much stronger requirement
than the correlation inequality (correlations must be between −1 and +1). The
two requirements are related: positive semi-definiteness implies the correlation
inequality, but not vice versa. That positive semi-definiteness implies the cor-
relation inequality is left as an exercise (Problem 5-4). That the two conditions
are not equivalent is shown by the following example.

Example 5.1.6 (All Correlations the Same).
Suppose X = (X1, . . . , Xn) is a random vector and all the components have
the same correlation, as would be the case if the components are exchangeable
random variables, that is, cor(Xi, Xj) = ρ for all i and j with i 6= j. Then
the correlation matrix of X has one for all diagonal elements and ρ for all off-
diagonal elements. In Problem 2-22 it is shown that positive definiteness of the
correlation matrix requires

− 1
n − 1

≤ ρ.

This is an additional inequality not implied by the correlation inequality.

The example says there is a limit to how negatively correlated a sequence
of exchangeable random variables can be. But even more important than this
specific discovery, is the general message that there is more to know about
correlations than that they are always between −1 and +1. The requirement
that a correlation matrix (or a variance matrix) be positive semi-definite is much
stronger. It implies a lot of other inequalities. In fact it implies an infinite family
of inequalities: M is positive semi-definite only if c′Mc ≥ 0 for every vector
c. That’s a different inequality for every vector c and there are infinitely many
such vectors.

5.2 The Multivariate Normal Distribution

The standard multivariate normal distribution is the distribution of the ran-
dom vector Z = (Z1, . . . , Zn) having independent and identically N (0, 1) dis-
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tributed components. Its density is, of course,

fZ(z) =
n∏

i=1

1√
2π

e−z2
i /2 =

1
(2π)n/2

e−z′z/2, z ∈ Rn

Note for future reference that

E(Z) = 0
var(Z) = I

where I denotes an identity matrix. These are obvious from the definition of Z.
Its components are independent and standard normal, hence have mean zero,
variance one, and covariances zero. Thus the variance matrix has ones on the
diagonal and zeroes off the diagonal, which makes it an identity matrix.

As in the univariate case, we call a linear transformation of a standard normal
random vector a (general) normal random vector. If we define X = a + BZ,
then by Theorem 5.3

E(X) = a + BE(Z)
= a

var(X) = B var(Z)B′

= BB′

We say that X has the multivariate normal distribution with mean (vector) a
and variance (matrix) M = BB′, and abbreviate it as Nn(a,M) if we want
to emphasize the dimension n of the random vector, or just as N (a,M) if we
don’t want to explicitly note the dimension. No confusion should arise between
the univariate and multivariate case, because the parameters are scalars in the
univariate case and a vector and a matrix in the multivariate case and are clearly
distinguishable by capitalization and type face.

Lemma 5.9. If M is a positive semi-definite matrix, then there exists a normal
random vector X such that E(X) = µ and var(X) = M.

Proof. In Corollary E.7 in Appendix E the symmetric square root M1/2 of M is
defined. Now define X = µ+M1/2Z, where Z is multivariate standard normal.
Then by Theorem 5.3

E(X) = µ + M1/2E(Z) = µ

and

var(X) = M1/2 var(Z)M1/2 = M1/2IM1/2 = M1/2M1/2 = M
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5.2.1 The Density of a Non-Degenerate Normal Random
Vector

How about the density of the multivariate normal distribution? First we
have to say that it may not have a density. If the variance parameter M is not
positive definite, then the random vector will be concentrated on a hyperplane
(will be degenerate) by Theorem 5.6, in which case it won’t have a density.
Otherwise, it will.

Another approach to the same issue is to consider that X will have support
on the whole of Rn only if the transformation

g(z) = a + Bz

is invertible, in which case its inverse is

h(x) = B−1(x − a)

and has derivative matrix
∇h(x) = B−1

Thus we find the density of X by the multivariate change of variable theorem
(Corollary 1.6 of Chapter 1 of these notes)

fX(x) = fZ[h(x)] · ∣∣det
(∇h(x)

)∣∣ .

= fZ

(
B−1(x − a)

) · ∣∣det
(
B−1

)∣∣ .

=

∣∣det
(
B−1

)∣∣
(2π)n/2

exp
(− 1

2 [B−1(x − a)]′B−1(x − a)
)

=

∣∣det
(
B−1

)∣∣
(2π)n/2

exp
(− 1

2 (x − a)′(B−1)′B−1(x − a)
)

Now we need several facts about matrices and determinants to clean this up.
First, (B−1)′B−1 = M−1, where, as above, M = var(X) because of two facts
about inverses, transposes, and products.

• The inverse of a transpose is the transpose of the inverse.

Hence (B−1)′ = (B′)−1

• The inverse of a product is the product of the inverses in reverse order,
that is, (CD)−1 = D−1C−1 for any invertible matrices C and D.

Hence (B′)−1B−1 = (BB′)−1 = M−1.

Second, |det
(
B−1

)| = det(M)−1/2 because of two facts about determinants,
inverses, and products.

• The determinant of an inverse is the multiplicative inverse (reciprocal) of
the determinant.

Hence det
(
B−1

)
= det(B)−1.
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• The determinant of a matrix and its transpose are the same.

Hence det(B) = det(B′).

• The determinant of a product is the product of the determinants, that is,
det(CD) = det(C) det(D) for any matrices C and D.

Hence det(M) = det(BB′) = det(B)2.

Putting this all together, we get

fX(x) =
1

(2π)n/2 det(M)1/2
exp

(− 1
2 (x − a)′M−1(x − a)

)
, x ∈ Rn (5.24)

Note that the formula does not involve B. The distribution does indeed only
depend on the parameters a and M as the notation Nn(a,M) implies.

Recall from Lemma 5.9 that there exists a N (a,M) for every vector a and
every symmetric positive semi-definite matrix M. If M is not positive definite,
then the distribution is degenerate and has no density. Otherwise, it has the
density (5.24).

While we are on the subject, we want to point out that every density that
looks like even vaguely like (5.24) is multivariate normal. Of course, we will
have to be a bit more precise than “even vaguely like” to get a theorem. A
general quadratic form is a function q : Rn → R defined by

q(x) = 1
2x

′Ax + b′x + c (5.25)

where A is an n×n matrix, b is an n vector, and c is a scalar. There is no loss
of generality in assuming A is symmetric, because

1
2x

′Ax = 1
2x

′A′x = x′(A + A′)x,

the first equality following from the rule for the transpose of a product, and the
second equality coming from averaging the two sides of the first equality. The
matrix in the middle of the expression on the right hand side is symmetric. If
we replaced A in the definition of q by the symmetric matrix 1

2 (A + A′), we
would still be defining the same function. Thus we assume from here on that
the matrix in the definition of any quadratic form is symmetric.

Theorem 5.10. If q is a quadratic form defined by (5.25) and

f(x) = e−q(x), x ∈ Rn

is the probability density of a random variable X, then

(a) A is positive definite,

(b) X has a non-degenerate multivariate normal distribution,

(c) var(X) = A−1, and

(d) E(X) = −A−1b.
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Proof. The proof that A is positive definite has to do with the existence of the
integral

∫
f(x) dx = 1. We claim that unless A is positive definite the integral

does not exist and cannot define a probability density.
First note that, since the density is continuous, it is bounded on bounded

sets. We only need to worry about the behavior of the integrand near infinity.
Second, since

f(x)
e−x′Ax/2

→ 1, as x → ∞,

we may in determining when the integral exists consider only the quadratic
part in the definition of q. Let A = ODO′ be the spectral decomposition
(Theorem E.4 in Appendix E) of A, and consider the change of variables y =
O′x, which has inverse transformation x = Oy and Jacobian one. Using this
change of variables we see∫

e−x′Ax/2 dx =
∫

e−y′Dy/2 dy

=
∫∫

· · ·
∫

exp

(
−1

2

n∑
i=1

diiy
2
i

)
dy1 dy2 · · · dyn

=
n∏

i=1

(∫ ∞

−∞
e−diiy

2
i /2 dyi

)
It is obvious that all the integrals in the last line exist if and only if each dii

is strictly positive, which happens if and only if A is positive definite. That
proves (a).

Now we just “complete the square.” We want to put q(x) in the same form
as the quadratic form

1
2 (x − µ)′M−1(x − µ) (5.26)

in the exponent of the usual expression for the normal distribution. Expand
(5.26)

1
2 (x − µ)′M−1(x − µ) = 1

2x
′M−1x − 1

2x
′M−1µ − 1

2µ′M−1x + 1
2µ′M−1µ

= 1
2x

′M−1x − µ′M−1x + 1
2µ′M−1µ

(the second equality holding because of the rule for the transpose of a product).
Now the only way q(x) can match up with this is if the constants in the quadratic
and linear terms both match, that is,

A = M−1

and
b′ = −µ′M−1,

and these in turn imply

µ = −A−1b (5.27)

M = A−1 (5.28)
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which in turn are (c) and (d) if (b) is true. So all that remains is to prove (b).
We have now shown that the quadratic and linear terms of q(x) and (5.26)

match when we define µ and M by (5.27) and (5.28). Hence

q(x) = 1
2 (x − µ)′M−1(x − µ) + c − 1

2µ′M−1µ

and
f(x) = exp

(− 1
2 (x − µ)′M−1(x − µ)

)
exp

(
c − 1

2µ′M−1µ
)

Since the first term on the right hand side is an unnormalized density of the
N (µ,M) distribution, the second term must be the reciprocal of the normalizing
constant so that f(x) integrates to one. That proves (b), and we are done.

I call this the “e to a quadratic” theorem. If the density is the exponential
of a quadratic form, then the distribution must be non-degenerate multivariate
normal, and the mean and variance can be read off the density.

5.2.2 Marginals

Lemma 5.11. Every linear transformation of a multivariate normal random
vector is (multivariate or univariate) normal.

This obvious because a linear transformation of a linear transformation is
linear. If X is multivariate normal, then, by definition, it has the form X =
a+BZ, where Z is standard normal, a is a constant vector, and B is a constant
matrix. So if Y = c + DX, where c is a constant vector and D is a constant
matrix, then

Y = c + DX

= c + D(a + BZ)
= (c + Da) + (DB)Z,

which is clearly a linear transformation of Z, hence normal.

Corollary 5.12. Every marginal distribution of a multivariate normal distri-
bution is (multivariate or univariate) normal.

This is an obvious consequence of the lemma, because the operation of find-
ing a marginal defines a linear transformation, simply because of the definitions
of vector addition and scalar multiplication, that is, because the i-th component
of aX + bY is aXi + bYi.

5.2.3 Partitioned Matrices

This section has no probability theory, just an odd bit of matrix algebra.
The notation

B =
(
B11 B12

B21 B22

)
(5.29)



5.2. THE MULTIVARIATE NORMAL DISTRIBUTION 147

indicates a partitioned matrix. Here each of the Bij is itself a matrix. B is just
the matrix having the elements of B11 in its upper left corner, with the elements
of B12 to their right, and so forth. Of course the dimensions of the Bij must fit
together the right way.

One thing about partitioned matrices that makes them very useful is that
matrix multiplication looks “just like” matrix multiplication of non-partitioned
matrices. You just treat the matrices like scalar elements of an ordinary array(

B11 B12

B21 B22

)(
C11 C12

C21 C22

)
=

(
B11C11 + B12C21 B11C12 + B12C22

B21C11 + B22C21 B21C12 + B22C22

)
If one of the matrixes is a partitioned column vector, it looks like the mul-

tiplication of a vector by a matrix(
B11 B12

B21 B22

) (
x1

x2

)
=

(
B11x1 + B12x2

B21x1 + B22x2

)
and similarly for(

x1

x2

)′ (B11 B12

B21 B22

) (
x1

x2

)
=

(
x′

1 x′
2

) (
B11 B12

B21 B22

) (
x1

x2

)
=

(
x′

1 x′
2

) (
B11x1 + B12x2

B21x1 + B22x2

)
= x′

1B11x1 + x′
1B12x2 + x′

2B21x1 + x′
2B22x2

Of course, in all of these, the dimensions have be such that the matrix multi-
plications make sense.

If X is a partitioned random vector

X =
(
X1

X2

)
, (5.30a)

then its mean mean vector is

µ =
(

µ1

µ2

)
, (5.30b)

where
µi = E(Xi),

and its variance matrix is

M =
(
M11 M12

M21 M22

)
, (5.30c)

where
Mij = cov(Xi,Xj).

Again, every thing looks very analogous to the situation with scalar rather than
vector or matrix components.
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A partitioned matrix is called block diagonal if the “off-diagonal” matrices
are all zero. The partitioned matrix (5.29) is block diagonal if B12 = 0 and
B21 = 0. The partitioned matrix (5.30c) is block diagonal if X1 and X2 are
uncorrelated, that is, cov(X1,X2) = 0.

A block diagonal matrix with square blocks on the diagonal, is easy to invert,
just invert each block. For example, if (5.30c) is block diagonal, then

M−1 =
(
M11 0
0 M22

)−1

=
(
M−1

11 0
0 M−1

22

)
(5.31)

5.2.4 Conditionals and Independence

In this section we consider a normal random vector X partitioned as in
(5.30a) with variance matrix M, which must be partitioned as in (5.30c). We
will need a notation for the inverse variance matrix: we adopt W = M−1. Of
course, it can be partitioned in the same way

W =
(
W11 W12

W21 W22

)
(5.32)

Note from (5.31) that if M is block diagonal and invertible, then so is W and
Wii = M−1

ii . When M is not block diagonal, then neither is W and the relation
between the two is complicated.

Theorem 5.13. Random vectors that are jointly multivariate normal and un-
correlated are independent.

In notation, what the theorem says is that if X is multivariate normal and
partitioned as in (5.30a) with variance matrix (5.30c), then

M12 = cov(X1,X2) = 0

implies that X1 and X2 are actually independent random vectors.
Please note the contrast with the general case.

In general independent implies uncorrelated, but uncorrelated does
not imply independent.

Only when the random variables are jointly multivariate normal
does uncorrelated imply independent.

Proof. Without loss of generality, we may assume the means are zero, because
X1 and X2 are independent if and only if X1−µ1 and X2−µ2 are independent.

We first prove the special case in which X has a non-degenerate distribution.
Then the unnormalized density (ignoring constants) is

exp
(− 1

2x
′Wx

)
= exp

(− 1
2x

′
1W11x1

)
exp

(− 1
2x

′
2W22x2

)
In general, there is also a x′

1W12x2 term in the exponent, but it vanishes here
because W is block diagonal because of (5.31). Since the density factors, the
random vectors are independent.
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We now prove the general case by expressing some variables in terms of
the others. If X is concentrated on a hyperplane, then we can express one
variable as a linear combination of the remaining n − 1 variables. If these are
still concentrated on a hyperplane, then we can express another variable as a
linear combination of the remaining n− 2 and so forth. We stop when we have
expressed some variables as linear combinations of a set of k variables which
have a non-degenerate multivariate normal distribution. We can now partition
X as

X =


U1

V1

U2

V2


where (U1,U2) has a non-degenerate multivariate normal distribution and

V1 = B11U1 + B12U2

V2 = B21U1 + B22U2

for some matrix B partitioned as in (5.29), and Xi = (Ui,Vi). Note that the
assumption that X1 and X2 are uncorrelated implies that U1 and U2 are also
uncorrelated and hence, by what has already been proved independent (since
they are jointly non-degenerate multivariate normal).

Then, using the additional notation

var(U1) = S11

var(U2) = S22

we calculate that var(X) is
S11 S11B′

11 0 S11B′
21

B11S11 B11S11B′
11 + B12S22B′

12 B12S22 B11S11B′
21 + B12S22B′

22

0 S22B′
12 S22 S22B′

22

B21S11 B21S11B′
11 + B22S22B′

12 B22S22 B21S11B′
21 + B22S22B′

22


Now the assumption of the theorem is that this matrix is block diagonal, with the
blocks now 2 × 2. Since U1 and U2 are nondegenerate, their variance matrices
are invertible, thus the only way we can have B21S11 = 0 and B12S22 = 0 is if
B21 = 0 and B12 = 0. But this implies

Xi =
(

Ui

BiiUi

)
for i = 1, 2, and since these are functions of the independent random vectors
U1 and U2, they are independent.

Every conditional of a normal random vector is normal too, but it is hard for
us to give an explicit expression for the degenerate case. This is not surprising,
because all our methods for finding conditional distributions involve densities
and degenerate normal distributions don’t have densities.

First a lemma.
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Lemma 5.14. Suppose X is partitioned as in (5.30a) and has variance matrix
(5.30c), and suppose that M22 is positive definite. Then

X1 − M12M−1
22 X2 and X2

are uncorrelated.

And, we should note, by Theorem 5.13, if X is multivariate normal, then
X1 − M12M−1

22 X2 is independent of X2.

Proof. Obvious, just calculate the covariance

cov(X1 − M12M−1
22 X2,X2) = cov(X1,X2) − M12M−1

22 cov(X2,X2)

= M12 − M12M−1
22 M22

= 0

Every conditional of a normal random vector is also normal, but it is hard for
us to give an explicit expression for the degenerate case. This is not surprising,
because all our methods for finding conditional densities and degenerate normal
distributions don’t have densities. So here we will be satisfied with describing
the non-degenerate case.

Theorem 5.15. Every condition distribution of a non-degenerate multivariate
normal distribution is non-degenerate (multivariate or univariate) normal.

In particular, if X is partitioned as in (5.30a), has the multivariate normal
distribution with mean vector (5.30b) and variance matrix (5.30c), then

X1 | X2 ∼ N (µ1 + M12M−1
22 [X2 − µ2],M11 − M12M−1

22 M21). (5.33)

Proof. First note that the conditional distribution is multivariate normal by
Lemma 5.10, because the joint density is the exponential of a quadratic, hence
so is the conditional, which is just the joint density considered as a function of
x1 with x2 fixed renormalized.

So all that remains to be done is figuring out the conditional mean and
variance. For the conditional mean, we use Lemma 5.14 and the comment
following it. Because of the independence of X1 − M12M−1

22 X2 and X2,

E(X1 − M12M−1
22 X2 | X2) = E(X1 − M12M−1

22 X2)

but
E(X1 − M12M−1

22 X2 | X2) = E(X1 | X2) − M12M−1
22 X2

by linearity of expectations and functions of the conditioning variable behaving
like constants, and

E(X1 − M12M−1
22 X2) = µ1 − M12M−1

22 µ2.
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Thus
E(X1 | X2) − M12M−1

22 X2 = µ1 − M12M−1
22 µ2,

which establishes the conditional expectation given in (5.33).
To calculate the variance, we first observe that

var(X1 | X2) = W−1
11 (5.34)

where W = M−1 is partitioned as in (5.32), because the quadratic form in the
exponent of the density has quadratic term x1W11x1 and Theorem 5.10 says
that is the inverse variance matrix of the vector in question, which in this case
is x1 given x2. We don’t know what the form of W11 or it’s inverse it, but we
do know it is a constant matrix, which is all we need. The rest of the job can
be done by the vector version of the iterated variance formula (Theorem 3.7)

var(X1) = var{E(X1 | X2)} + E{var(X1 | X2)} (5.35)

(which we haven’t actually proved but is proved in exactly the same way as the
scalar formula). We know

var(X1) = M11

but

var{E(X1 | X2)} + E{var(X1 | X2)}
= var{µ1 + M12M−1

22 (X2 − µ2)} + E{W−1
11 }

= var(M12M−1
22 X2) + W−1

11

= M12M−1
22 var(X2)M−1

22 M′
12 + W−1

11

= M12M−1
22 M22M−1

22 M21 + W−1
11

= M12M−1
22 M21 + W−1

11

Equating the two gives

M11 = M12M−1
22 M21 + W−1

11

which along with (5.34) establishes the conditional variance given in (5.33).

5.3 Bernoulli Random Vectors

To start we generalize the notion of a Bernoulli random variables. One might
think that should be a vector with i. i. d. Bernoulli components, but something
quite different is in order. A (univariate) Bernoulli random variable is really
an indicator function. All zero-or-one valued random variables are indicator
functions: they indicate the set on which they are one. How do we generalize
the notion of an indicator function to the multivariate case? We consider a
vector of indicator functions.

We give three closely related definitions.
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Definition 5.3.1 (Bernoulli Random Vector).
A random vector X = (X1, . . . , Xk) is Bernoulli if the Xi are the indicators
of a partition of the sample space, that is,

Xi = IAi

where
Ai ∩ Aj = ∅, i 6= j

and
k⋃

i=1

Ai

is the whole sample space.

Definition 5.3.2 (Bernoulli Random Vector).
A random vector X = (X1, . . . , Xk) is Bernoulli if the Xi are zero-or-one-
valued random variables and

X1 + · · · + Xk = 1.

with probability one.

Definition 5.3.3 (Bernoulli Random Vector).
A random vector X = (X1, . . . , Xk) is Bernoulli if the Xi are zero-or-one-
valued random variables and with probability one exactly one of X1, . . ., Xk is
one and the rest are zero.

The equivalence of Definitions 5.3.2 and 5.3.3 is obvious. The only way a
bunch of zeros and ones can add to one is if there is exactly one one.

The equivalence of Definitions 5.3.1 and 5.3.3 is also obvious. If the Ai form
a partition, then exactly one of the

Xi(ω) = IAi
(ω)

is equal to one for any outcome ω, the one for which ω ∈ Ai. There is, of course,
exactly one i such that ω ∈ Ai just by definition of “partition.”

5.3.1 Categorical Random Variables

Bernoulli random vectors are closely related to categorical random variables
taking values in an arbitrary finite set. You may have gotten the impression
up to know that probability theorists have a heavy preference for numerical
random variables. That’s so. Our only “brand name” distribution that is not
necessarily numerical valued is the discrete uniform distribution. In principle,
though a random variable can take values in any set. So although we haven’t
done much with such variables so far, we haven’t ruled them out either. Of
course, if Y is a random variable taking values in the set

S = {strongly agree, agree,neutral,disagree, strongly disagree} (5.36)
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you can’t talk about expectations or moments, E(Y ) is defined only for numeri-
cal (or numerical vector) random variables, not for categorical random variables.

However, if we number the categories

S = {s1, s2, . . . , s5}

with s1 = strongly agree, and so forth, then we can identify the categorical
random variable Y with a Bernoulli random vector X

Xi = I{si}(Y )

that is
Xi = 1 if and only if Y = si.

Thus Bernoulli random variables are an artifice. They are introduced to
inject some numbers into categorical problems. We can’t talk about E(Y ),
but we can talk about E(X). A thorough analysis of the properties of the
distribution of the random vector X will also tell us everything we want to
know about the categorical random variable Y , and it will do so allowing us to
use the tools (moments, etc.) that we already know.

5.3.2 Moments

Each of the Xi is, of course, univariate Bernoulli, write

Xi ∼ Ber(pi)

and collect these parameters into a vector

p = (p1, . . . ,pk)

Then we abbreviate the distribution of X as

X ∼ Berk(p)

if we want to indicate the dimension k or just as X ∼ Ber(p) if the dimension is
clear from the context (the boldface type indicating a vector parameter makes
it clear this is not the univariate Bernoulli).

Since each Xi is univariate Bernoulli,

E(Xi) = pi

var(Xi) = pi(1 − pi)

That tells us
E(X) = p.

To find the variance matrix we need to calculate covariances. For i 6= j,

cov(Xi, Xj) = E(XiXj) − E(Xi)E(Xj) = −pipj ,
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because XiXj = 0 with probability one.
Hence var(X) = M has components

mij =

{
pi(1 − pi), i = j

−pipj i 6= j
(5.37)

We can also write this using more matrixy notation by introducing the diagonal
matrix P having diagonal elements pi and noting that the “outer product” pp′

has elements pipj , hence
var(X) = P − pp′

Question: Is var(X) positive definite? This is of course related to the question
of whether X is degenerate. We haven’t said anything explicit about either,
but the information needed to answer these questions is in the text above. It
should be obvious if you know what to look for (a good exercise testing your
understanding of degenerate random vectors).

5.4 The Multinomial Distribution

The multinomial distribution is the multivariate analog of the binomial dis-
tribution. It is sort of, but not quite, the multivariate generalization, that is, the
binomial distribution is sort of, but not precisely, a special case of the multi-
nomial distribution. Thus is unlike the normal, where the univariate normal
distribution is precisely the one-dimensional case of the multivariate normal.

Suppose X1, X2 are an i. i. d. sequence of Berk(p) random vectors (caution:
the subscripts on the Xi indicate elements of an infinite sequence of i. i. d.
random vectors, not components of one vector). Then

Y = X1 + · · · + Xn

has the multinomial distribution with sample size n and dimension k, abbrevi-
ated

Y ∼ Multik(n,p)

if we want to indicate the dimension in the notation or just Y ∼ Multi(n,p) if
the dimension is clear from the context.

Note the dimension is k, not n, that is, both Y and p are vectors of dimension
k.

5.4.1 Categorical Random Variables

Recall that a multinomial random vector is the sum of i. i. d. Bernoullis

Y = X1 + · + Xn

and that each Bernoulli is related to a categorical random variable: Xi,j = 1 if
and only if the i-th observation fell in the j-th category. Thus Yj =

∑
i Xi,j is

the number of individuals that fell in the j-th category.
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This gives us another distribution of multinomial random vectors. A random
vector Y = Multi(n, p) arises by observing a sequence of n independent random
variables (taking values in any set) and letting Yj be the number of observations
that fall in the j-th category. The parameter pj is the probability of any one
individual observation falling in the j-th category.

5.4.2 Moments

Obvious, just n times the moments of Ber(p)

E(X) = np

var(X) = n(P − pp′)

5.4.3 Degeneracy

Since the components of a Ber(p) random vector sum to one, the components
of a Multi(n,p) random vector sum to n. That is, if Y ∼ Multi(n,p), then

Y1 + · · ·Yk = n

with probability one. This can be written u′Y = n with probability one, where
u = (1, 1, . . . , 1). Thus Y is concentrated on the hyperplane

H = {y ∈ Rk : u′y = n }

Is Y concentrated on any other hyperplanes? Since the Berk(p) distribution
and the Multik(n,p) distribution have the same variance matrices except for a
constant of proportionality (M and nM, respectively), they both are supported
on the same hyperplanes. We might as well drop the n and ask the question
about the Bernoulli.

Let c = (c1, . . . , ck) be an arbitrary vector. Such a vector is associated with
a hyperplane supporting the distribution if

c′Mc =
k∑

i=1

k∑
j=1

mijcicj

=
k∑

i=1

pic
2
i −

k∑
i=1

k∑
j=1

pipjcicj

=
k∑

i=1

pic
2
i −

 k∑
j=1

pjcj

2

is zero. Thinking of this as a function of c for fixed p, write it as q(c). Being
a variance, it is nonnegative, hence it is zero only where it is achieving its
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minimum value, and where, since it is a smooth function, its derivative must be
zero, that is,

∂q(c)
∂ci

= 2pici − 2pi

 k∑
j=1

pjcj

 = 0

Now we do not know what the quantity in parentheses is, but it does not depend
on i or j, so we can write it as a single letter d with no subscripts. Thus we
have to solve

2pici − 2dpi = 0 (5.38)

for ci. This splits into two cases.
Case I. If none of the pi are zero, the only solution is ci = d. Thus the only

null eigenvectors are proportional to the vector u = (1, 1, . . . , 1). And all such
vectors determine the same hyperplane.

Case II. If any of the pi are zero, we get more solutions. Equation (5.38)
becomes 0 = 0 when pi = 0, and since this is the only equation containing ci,
the equations say nothing about ci, thus the solution is

ci = d, pi > 0
ci = arbitrary, pi = 0

In hindsight, case II was rather obvious too. If pi = 0 then Xi = 0 with
probability one, and that is another degeneracy. But our real interest is in
case I. If none of the success probabilities are zero, then the only degeneracy is
Y1 + · · · + Yk = n with probability one.

5.4.4 Density

Density? Don’t degenerate distribution have no densities? In the continuous
case, yes. Degenerate continuous random vectors have no densities. But discrete
random vectors always have densities, as always, f(x) = P (X = x).

The derivation of the density is exactly like the derivation of the binomial
density. First we look at one particular outcome, then collect the outcomes that
lead to the same Y values. Write Xi,j for the components of Xi, and note that
if we know Xi,m = 1, then we also know Xi,j = 0 for j 6= m, so it is enough to
determine the probability of an outcome if we simply record the Xij that are
equal to one. Then by the multiplication rule

P (X1,j1 = 1and · · · andXn,jn
= 1) =

n∏
i=1

P (Xi,ji
= 1)

=
n∏

i=1

pji

=
k∏

j=1

p
yj

j
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The last equality records the same kind of simplification we saw in deriving the
binomial density. The product from 1 to n in the next to last line may repeat
some of the p’s. How often are they repeated? There is one pj for each Xij that
is equal to one, and there are Yj =

∑
i Xij of them.

We are not done, however, because more than one outcome can lead to the
same right hand side here. How many ways are there to get exactly yj of the
Xij equal to one? This is the same as asking how many ways there are to assign
the numbers i = 1, . . ., n to one of k categories, so that there are yi in the i-th
category, and the answer is the multinomial coefficient(

n

y1, . . . , yk

)
=

n!
y1! · · · yk!

Thus the density is

f(y) =
(

n

y1, . . . , yk

) k∏
j=1

p
yj

j , y ∈ S

where the sample space S is defined by

S = {y ∈ Nk : y1 + · · · yk = n }
where N denotes the “natural numbers” 0, 1, 2, . . . . In other words, the sample
space S consists of vectors y having nonnegative integer coordinates that sum
to n.

5.4.5 Marginals and “Sort Of” Marginals

The univariate marginals are obvious. Since the univariate marginals of
Ber(p) are Ber(pi), the univariate marginals of Multi(n,p) are Bin(n, pi).

Strictly speaking, the multivariate marginals do not have a brand name dis-
tribution. Lindgren (Theorem 8 of Chapter 6) says the marginals of a multino-
mial are multinomial, but this is, strictly speaking, complete rubbish, given the
way he (and we) defined “marginal” and “multinomial.” It is obviously wrong.
If X = (X1, . . . , Xk) is multinomial, then it is degenerate. But (X1, . . . , Xk−1)
is not degenerate, hence not multinomial (all multinomial distributions are de-
generate). The same goes for any other subvector, (X2, X5, X10), for example.

Of course, Lindgren knows this as well as I do. He is just being sloppy
about terminology. What he means is clear from his discussion leading up to
the “theorem” (really a non-theorem). Here’s the correct statement.

Theorem 5.16. Suppose Y = Multik(n,p) and Z is a random vector formed
by collapsing some of the categories for Y, that is, each component of Z has the
form

Zj = Yi1 + · · · + Yimj

where each Yi contributes to exactly one Zj so that

Z1 + · · · + Zl = Y1 + · · · + Yk = n,
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then
Z ∼ Multil(n,q)

where the parameter vector q has components

qj = pi1 + · · · + pimj

is formed by collapsing the categories in the same way as in forming Z from Y.

No wonder Lindgren felt the urge to sloppiness here. The correct statement
is a really obnoxious mess of notation. But the idea is simple and obvious. If we
collapse some categories, that gives a different (coarser) partition of the sample
space and a multinomial distribution with fewer categories.

Example 5.4.1.
Consider the multinomial random vector Y associated with i. i. d. sampling of a
categorical random variable taking values in the set (5.36). Let Z be the multi-
nomial random vector associated with the categorical random variable obtained
by collapsing the categories on the ends, that is, we collapse the categories
“strongly agree” and “agree” and we collapse the categories “strongly disagree”
and “disagree.” Thus

Y ∼ Multi5(n,p)
Z ∼ Multi3(n,q)

where

Z1 = Y1 + Y2

Z2 = Y3

Z3 = Y4 + Y5

and

q1 = p1 + p2

q2 = p3

q3 = p4 + p5

The notation is simpler than in the theorem, but still messy, obscuring the
simple idea of collapsing categories. Maybe Lindgren has the right idea. Slop
is good here. The marginals of a multinomial are sort of, but not precisely,
multinomial. Or should that be the sort-of-but-not-precisely marginals of a
multinomial are multinomial?

Recall that we started this section with the observation that one-dimensional
marginal distributions of a multinomial are binomial (with no “sort of”). But
two-dimensional multinomial distributions must also be somehow related to the
binomial distribution. The k = 2 multinomial coefficients are binomial coeffi-
cients, that is, (

n

y1, y2

)
=

n!
y1!y2!

=
(

n

y1

)
=

(
n

y2

)



5.4. THE MULTINOMIAL DISTRIBUTION 159

because the multinomial coefficient is only defined when the numbers in the
second row add up to number in the first row, that is, here y1 + y2 = n.

And the relation between distributions is obvious too, just because the
marginals are binomial. If

Y = Multi2(n,p),

then
Yi = Bin(n, pi)

and
Y2 = n − Y1.

Conversely, if
X ∼ Bin(n, p),

then
(X,n − X) ∼ Multi2

(
n, (p, 1 − p)

)
So the two-dimensional multinomial is the distribution of (X,n − X) when X
is binomial. Recall the conventional terminology that X is the number of “suc-
cesses” in n Bernoulli “trials” and n − X is the number of “failures.” Either of
the successes or the failures considered by themselves are binomial. When we
paste them together in a two-dimensional vector, the vector is degenerate be-
cause the successes and failures sum to the number of trials, and that degenerate
random vector is the two-dimensional multinomial.

5.4.6 Conditionals

Theorem 5.17. Every conditional of a multinomial is multinomial. Suppose
Y ∼ Multik(n,p), then

(Y1, . . . , Yj) | (Yj+1, . . . , Yk) ∼ Multij(n − Yj+1 − · · · − Yk,q), (5.39a)

where
qi =

pi

p1 + · · · + pj
, i = 1, . . . , j. (5.39b)

In words, the variables that are still random (the ones “in front of the bar”)
are multinomial. The number of categories is the number (here j) of such
variables. The sample size is the number of observations still random, which is
the original sample size minus the observations in the variables now known (the
ones “behind the bar”). And the parameter vector q is the part of the original
parameter vector corresponding to the variables in front of the bar renormalized.

Renormalized? Why are we renormalizing parameters? The parameter vec-
tor for a multinomial distribution can be thought of as a probability density (it’s
numbers that are nonnegative and sum to one). When we take a subvector, we
need to renormalize to get another multinomial parameter vector (do what it
takes to make the numbers sum to one). That’s what’s going on in (5.39b).
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Proof of Theorem 5.17. Just calculate. The relevant marginal is the distribu-
tion of (Yj+1, . . . , Yk) but that isn’t a brand name distribution. Almost as good
is the marginal of

Z = (Y1 + · · · + Yj , Yj+1, . . . , Yk) = (n − Yj+1 − · · · − Yk, Yj+1, . . . , Yk) (5.40)

which is Multik−j+1(n,q) with

q = (p1 + · · · + pj , pj+1, . . . , pk) = (n − pj+1 − · · · − pk, pj+1, . . . , pk)

It’s almost the same thing really, because the right hand side of (5.40) is a
function of Yj+1, . . ., Yk alone, hence

P (Yi = yi, i = j + 1, . . . , k)

=
(

n

n − yj+1 − · · · − yk, yj+1, . . . , yk

)
× (1 − pj+1 − · · · − pk)n−yj+1−···−ykp

yj+1
j+1 · · · pyk

k

And, of course, conditional equals joint over marginal(
n

y1,...,yk

)
py1
1 · · · pyk

k(
n

n−yj+1−···−yk,yj+1,...,yk

)
(1 − pj+1 − · · · − pk)n−yj+1−···−ykp

yj+1
j+1 · · · pyk

k

=
n!

y1! · · · yk!
· (n − yj+1 − · · · − yk)!yj+1! · · · yk!

n!

× py1
1 · · · pyj

j

(1 − pj+1 − · · · − pk)n−yj+1−···yk

=
(n − yj+1 − · · · − yk)!

y1! · · · yj !

j∏
i=1

(
pi

1 − pj+1 − · · · pk

)yj

=
(

n − yj+1 − · · · − yk

y1, . . . , yj

) j∏
i=1

(
pi

p1 + · · · + pj

)yj

and that’s the conditional density asserted by the theorem.

Problems

5-1. Is  3 2 −1
2 3 2
−1 2 3


a covariance matrix? If not, why not?
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5-2. Is  3 2 −1/3
2 3 2

−1/3 2 3


a covariance matrix? If not, why not? If it is a covariance matrix, is a random
vector having this covariance matrix degenerate or non-degenerate?

5-3. Consider the degenerate random vector (X,Y ) in R2 defined by

X = sin(U)
Y = cos(U)

where U ∼ U(0, 2π). We say that (X,Y ) has the uniform distribution on the
unit circle. Find the mean vector and covariance matrix of (X,Y ).

5-4. Let M be any symmetric positive semi-definite matrix, and denote its
elements mij . Show that for any i and j

−1 ≤ mij√
miimjj

≤ 1 (5.41)

Hint: Consider w′Mw for vectors w having all elements zero except the i-th
and j-th.

The point of the problem (this isn’t part of the problem, just the explanation
of why it is interesting) is that if M is a variance, then the fraction in (5.41) is
cor(Xi, Xj). Thus positive semi-definiteness is a stronger requirement than the
correlation inequality, as claimed in Section 5.1.4.

5-5. Show that the usual formula for the univariate normal distribution is the
one-dimensional case of the formula for the multivariate normal distribution.

5-6. Show that a constant random vector (a random vector having a distribution
concentrated at one point) is a (degenerate) special case of the multivariate
normal distribution.

5-7. Suppose X = (X1, . . . , Xk) has the multinomial distribution with sample
size n and parameter vector p = (p1, . . . , pk), show that for i 6= j

var(Xi − Xj)
n

= pi + pj − (pi − pj)2

5-8. If X ∼ N (0,M) is a non-degenerate normal random vector, what is the
distribution of Y = M−1X?

5-9. Prove (5.35).
Hint: Write

X1 − µ1 = [X1 − E(X1 | X2)] + [E(X1 | X2) − µ1]

then use the alternate variance and covariance expressions in Theorem 5.2 and
linearity of expectation.
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5-10. Specialize the formula (5.24) for the non-degenerate multivariate normal
density to the two-dimensional case, obtaining

f(x, y) =
1

2πσXσY

√
1 − ρ2

×

exp
(
− 1

2(1 − ρ2)

[
(x − µX)2

σ2
X

− 2ρ(x − µX)(y − µY )
σXσY

+
(y − µY )2

σ2
Y

])
Hint: To do this you need to know how to invert a 2 × 2 matrix and calculate
its determinant. If

A =
(

a11 a12

a21 a22

)
then

det(A) = a11a22 − a12a21

and

A−1 =

(
a22 −a12

−a21 a11

)
det(A)

(This is a special case of Cramer’s rule. It can also be verified by just doing the
matrix multiplication. Verification of the formulas in the hint is not part of the
problem.)

5-11. Specialize the conditional mean and variance in Theorem 5.15 to the
two-dimensional case, obtaining

E(X | Y ) = µX + ρ
σX

σY
(Y − µY )

var(X | Y ) = σ2
X(1 − ρ2)

5-12 (Ellipsoids of Concentration). Suppose X is a non-degenerate normal
random variable with density (5.24), which we rewrite as

f(x) =
e−q(x)/2

(2π)n/2 det(M)1/2

A level set of the density, also called a highest density region is a set of the form

S = {x ∈ Rn : f(x) > c }
for some constant c. Show that this can also be written

S = {x ∈ Rn : q(x) < d }
for some other constant d. (A set like this, a level set of a positive definite
quadratic form, is called an ellipsoid.) Give a formula for P (X ∈ S) as a
function of the constant d in terms of the probabilities for a univariate brand
name distribution. (Hint: Use Problem 12-32 in Lindgren.)
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5-13. For the random vector X defined by (5.23) in Example 5.1.3 suppose U ,
V , and W are i. i. d. standard normal random variables.

(a) What is the joint distribution of the two-dimensional random vector whose
components are the first two components of X?

(b) What is the conditional distribution of the first component of X given the
second?

5-14. Suppose Z1, Z2, . . . are i. i. d. N (0, τ2) random variables and X1, X2,
. . . are defined recursively as follows.

• X1 is a N (0, σ2) random variable that is independent of all the Zi.

• for i > 1
Xi+1 = ρXi + Zi.

There are three unknown parameters, ρ, σ2, and τ2, in this model. Because
they are variances, we must have σ2 > 0 and τ2 > 0. The model is called an
autoregressive time series of order one or AR(1) for short. The model is said to
be stationary if Xi has the same marginal distribution for all i.

(a) Show that the joint distribution of X1, X2, . . ., Xn is multivariate normal.

(b) Show that E(Xi) = 0 for all i.

(c) Show that the model is stationary only if ρ2 < 1 and

σ2 =
τ2

1 − ρ2

Hint: Consider var(Xi).

(d) Show that
cov(Xi, Xi+k) = ρkσ2, k ≥ 0

in the stationary model.
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Chapter 6

Convergence Concepts

6.1 Univariate Theory

Chapter 5 in Lindgren is a jumble of convergence theory. Here we will follow
one thread through the jumble, ignoring many of the convergence concepts
discussed by Lindgren. The only ones widely used in statistics are convergence
in distribution and its special case convergence in probability to a constant. We
will concentrate on them.

6.1.1 Convergence in Distribution

Definition 6.1.1 (Convergence in Distribution).
A sequence of random variables X1, X2, . . . with Xn having distribution function
Fn converges in distribution to a random variable X with distribution function
F if

Fn(x) → F (x), as n → ∞
for every real number x that is a continuity point of F . We indicate this by
writing

Xn
D−→ X, as n → ∞.

“Continuity point” means a point x such that F is continuous at x (a point
where F does not jump). If the limiting random variable X is continuous,
then every point is a continuity point. If X is discrete or of mixed type, then
Fn(x) → F (x) must hold at points x where F does not jump but it does not
have to hold at the jumps.

From the definition it is clear that convergence in distribution is a state-
ment about distributions not variables. Though we write Xn

D−→ X, what this
means is that the distribution of Xn converges to the distribution of X. We
could dispense with the notion of convergence in distribution and always write
FXn

(x) → FX(x) for all continuity points x of FX in place of Xn
D−→ X, but

that would be terribly cumbersome.

165
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There is a much more general notion of convergence in distribution (also
called convergence in law or weak convergence) that is equivalent to the concept
defined in Definition 6.1.1.

Theorem 6.1 (Helly-Bray). A sequence of random variables X1, X2, . . .
converges in distribution to a random variable X if and only if

E{g(Xn)} → E{g(X)}

for every bounded continuous function g : R → R.

For comparison, Definition 6.1.1 says, when rewritten in analogous notation

E{I(−∞,x](Xn)} → E{I(−∞,x](X)}, whenever P (X = x) = 0. (6.1)

Theorem 6.1 doesn’t explicitly mention continuity points, but the continuity
issue is there implicitly. Note that

E{IA(Xn)} = P (Xn ∈ A)

may fail to converge to
E{IA(X)} = P (X ∈ A)

because indicator functions, though bounded, are not continuous. And (6.1)
says that expectations of some indicator functions converge and others don’t
(at least not necessarily).

Also note that E(Xn) may fail to converge to E(X) because the identity
function, though continuous, is unbounded. Nevertheless, the Theorem 6.1 does
imply convergence of expectations of many interesting functions.

How does one establish that a sequence of random variables converges in
distribution? By writing down the distribution functions and showing that
they converge? No. In the common applications of convergence in distribution
in statistics, convergence in distribution is a consequence of the central limit
theorem or the law of large numbers.

6.1.2 The Central Limit Theorem

Theorem 6.2 (The Central Limit Theorem (CLT)). If X1, X2, . . . is a
sequence of independent, identically distributed random variables having mean
µ and variance σ2 and

Xn =
1
n

n∑
i=1

Xi (6.2)

is the sample mean for sample size n, then

√
n

(
Xn − µ

) D−→ Y, as n → ∞, (6.3)

where Y ∼ N (0, σ2).
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It simplifies notation if we are allowed to write a distribution on the right
hand side of a statement about convergence in distribution, simplifying (6.3)
and the rest of the sentence following it to

√
n

(
Xn − µ

) D−→ N (0, σ2), as n → ∞. (6.4)

There’s nothing wrong with this mixed notation because (to repeat something
said earlier) convergence in distribution is a statement about distributions of
random variables, not about the random variables themselves. So when we
replace a random variable with its distribution, the meaning is still clear.

The only requirement for the CLT to hold is that the variance σ2 exist (this
implies that the mean µ also exists by Theorem 2.44 of Chapter 2 of these notes.
No other property of the distribution of the Xi matters.

The left hand side of (6.3) always has mean zero and variance σ2 for all n,
regardless of the distribution of the Xi so long as the variance exists. Thus the
central limit theorem doesn’t say anything about means and variances, rather it
says that the shape of the distribution of Xn approaches the bell-shaped curve
of the normal distribution as n → ∞.

A sloppy way of rephrasing (6.3) is

Xn ≈ N
(
µ, σ2

n

)
for “large n.” Most of the time the sloppiness causes no harm and no one is
confused. The mean and variance of Xn are indeed µ and σ2/n and the shape
of the distribution is approximately normal if n is large. What one cannot do
is say Xn converges in distribution to Z where Z is N (µ, σ2/n). Having an n
in the supposed limit of a sequence is mathematical nonsense.

Example 6.1.1 (A Symmetric Bimodal Distribution).
Let us take a look at how the CLT works in practice. How large does n have to
be before the distribution of Xn is approximately normal?

density of X density of X10

On the left is a severely bimodal probability density function. On the right is
the density of (6.2), where n = 10 and the Xi are i. i. d. with the density on the
left. The wiggly curve is the density of X10 and the smooth curve is the normal
density with the same mean and variance. The two densities on the right are
not very close. The CLT doesn’t provide a good approximation at n = 10.
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density of X20 density of X30

At n = 20 and n = 30 we have much better results. The density of X30 is almost
indistinguishable from the normal density with the same mean and variance.
There is a bit of wiggle at the top of the curve, but everywhere else the fit is
terrific. It is this kind of behavior that leads to the rule of thumb propounded
in elementary statistics texts that n > 30 is “large sample” territory, thirty is
practically infinity.

The symmetric bimodal density we started with in this example is of no
practical importance. Its only virtue giving rise to a density for Xn that is easy
to calculate. If you are not interested in the details of this example, skip to the
next example. If you wish to play around with this example, varying different
aspects to see what happens, go to the web page

http://www.stat.umn.edu/geyer/5101/clt.html#bi

The symmetric bimodal density here is the density of X = Y + Z, where
Y ∼ Ber(p) and Z ∼ N (0, σ2), where p = 1

2 and σ = 0.1. If Yi and Zi are i. i. d.
sequences, then, of course

n∑
i=1

Yi ∼ Bin (n, p)

n∑
i=1

Zi ∼ N (
0, nσ2

)
So by the convolution theorem the density of their sum is

fX1+···+Xn
(s) =

n∑
k=0

f(k | n, p)φ(s − k | 0, nσ2)

where f(k | n, p) is the the Bin(n, p) density and φ(z | µ, σ2) is the N (µ, σ2)
density. The the distribution of Xn is given by

fXn
(w) = nfX1+···+Xn

(nw) = n

n∑
k=0

f(k | n, p)φ(nw − k | 0, nσ2) (6.5)

Example 6.1.2 (A Skewed Distribution).
The 30 = ∞ “rule” promulgated in introductory statistics texts does not hold
for skewed distributions. Consider X having the chi-square distribution with
one degree of freedom.
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density of X density of X30

The density of X is shown on the left. It is extremely skewed going to infinity at
zero. On the right is the density of X30 and the normal density with the same
mean and variance. The fit is not good. The density of X30, a rescaled chi2(30)
density, is still rather skewed and so cannot be close to a normal density, which
of course is symmetric.

density of X100 density of X300

The fit is better at n = 100 and n = 300, but still not as good as our bimodal
example at n = 30. The moral of the story is that skewness slows convergence
in the central limit theorem.

If you wish to play around with this example, varying different aspects to
see what happens, go to the web page

http://www.stat.umn.edu/geyer/5101/clt.html#expo

6.1.3 Convergence in Probability

A special case of convergence in distribution is convergence in distribution
to a degenerate random variable concentrated at one point, Xn

D−→ a where a
is a constant. Theorem 2 of Chapter 5 in Lindgren says that this is equivalent
to the following notion.

Definition 6.1.2 (Convergence in Probability to a Constant).
A sequence of random variables X1, X2, . . . converges in probability to a con-
stant a if for every ε > 0

P (|Xn − a| > ε) → 0, as n → ∞.

We indicate Xn converging in probability to a by writing

Xn
P−→ a, as n → ∞.
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Convergence in probability to a constant and convergence in distribution to
a constant are the same thing, so we could write Xn

D−→ a instead of Xn
P−→ a,

but the latter is traditional. There is also a more general notion of convergence
in probability to a random variable, but it has no application in statistics and
we shall ignore it.

6.1.4 The Law of Large Numbers

One place convergence in probability appears is in the law of large numbers.

Theorem 6.3 (Law of Large Numbers (LLN)). If X1, X2, . . . is a sequence
of independent, identically distributed random variables having mean µ, and

Xn =
1
n

n∑
i=1

Xi

is the sample mean for sample size n, then

Xn
P−→ µ, as n → ∞. (6.6)

The only requirement is that the mean µ exist. No other property of the
distribution of the Xi matters.

6.1.5 The Continuous Mapping Theorem

Theorem 6.4 (Continuous Mapping). If g is a function continuous at all
points of a set A, if Xn

D−→ X, and if P (X ∈ A) = 1, then g(Xn) D−→ g(X).

The main point of the theorem is the following two corollaries.

Corollary 6.5. If g is an everywhere continuous function and Xn
D−→ X, then

g(Xn) D−→ g(X).

Here the set A in the theorem is the whole real line. Hence the condition
P (X ∈ A) = 1 is trivial.

Corollary 6.6. If g is a function continuous at the point a and Xn
P−→ a, then

g(Xn) P−→ g(a).

Here the set A in the theorem is just the singleton set {a}, but the limit
variable in question is the constant random variable satisfying P (X = a) = 1.

These theorems say that convergence in distribution and convergence in
probability to a constant behave well under a continuous change of variable.
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Rewriting the CLT

The CLT can be written in a variety of slightly different forms. To start, let
us rewrite (6.3) as

√
n

(
Xn − µ

) D−→ σZ, as n → ∞,

where now Z is a standard normal random variable. If σ > 0, then we can
divide both sides by σ. This is a simple application of the continuous mapping
theorem, the function defined by g(x) = x/σ being continuous. It gives

√
n

Xn − µ

σ

D−→ Z

Moving the
√

n from the numerator to the denominator of the denominator
gives

Xn − µ

σ/
√

n

D−→ Z (6.7)

6.1.6 Slutsky’s Theorem

Theorem 6.7 (Slutsky). If g(x, y) is a function jointly continuous at every
point of the form (x, a) for some fixed a, and if Xn

D−→ X and Yn
P−→ a, then

g(Xn, Yn) D−→ g(X, a).

Corollary 6.8. If Xn
D−→ X and Yn

P−→ a, then

Xn + Yn
D−→ X + a,

YnXn
D−→ aX,

and if a 6= 0

Xn/Yn
D−→ X/a.

In other words, we have all the nice properties we expect of limits, the limit
of a sum is the sum of the limits, and so forth. The point of the theorem is
this is not true unless one of the limits is a constant. If we only had Xn

D−→ X

and Yn
D−→ Y , we couldn’t say anything about the limit of Xn + Yn without

knowing about the joint distribution of Xn and Yn. When Yn converges to a
constant, Slutsky’s theorem tells us that we don’t need to know anything about
joint distributions.

A special case of Slutsky’s theorem involves two sequences converging in
probability. If Xn

P−→ a and Yn
P−→ b, then Xn + Yn

P−→ a + b, and so forth.
This is a special case of Slutsky’s theorem because convergence in probability
to a constant is the same as convergence in distribution to a constant.
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6.1.7 Comparison of the LLN and the CLT

When X1, X2, . . . is an i. i. d. sequence of random variables having a variance,
both the law of large numbers and the central limit theorem apply, but the CLT
tells us much more than the LLN.

It could not tell us less, because the CLT implies the LLN. By Slutsky’s
theorem, the CLT (6.3) implies

Xn − µ =
1√
n
· √n

(
Xn − µ

) D−→ 0 · Y = 0

where Y ∼ N (0, σ2). Because convergence in distribution to a constant and
convergence in probability to a constant are the same thing, this implies the
LLN.

But the CLT gives much more information than the LLN. It says that the
size of the estimation error Xn − µ is about σ/

√
n and also gives us the shape

of the error distribution (i. e., normal).
So why do we even care about the law of large numbers? Is it because there

are lots of important probability models having a mean but no variance (so the
LLN holds but the CLT does not)? No, not any used for real data. The point is
that sometimes we don’t care about the information obtained from the central
limit theorem. When the only fact we want to use is Xn

P−→ µ, we refer to the
law of large numbers as our authority. Its statement is simpler, and there is no
point in dragging an unnecessary assumption about variance in where it’s not
needed.

6.1.8 Applying the CLT to Addition Rules

The central limit theorem says that the sum of i. i. d. random variables with
a variance is approximately normally distributed if the number of variables in
the sum is “large.” Applying this to the addition rules above gives several
normal approximations.

Binomial The Bin(n, p) distribution is approximately normal with mean np
and variance np(1 − p) if n is large.

Negative Binomial The NegBin(n, p) distribution is approximately normal
with mean n/p and variance n(1 − p)/p2 if n is large.

Poisson The Poi(µ) distribution is approximately normal with mean µ and
variance µ if µ is large.

Gamma The Gam(α, λ) distribution is approximately normal with mean α/λ
and variance α/λ2 if α is large.

Chi-Square The chi2(n) distribution is approximately normal with mean n
and variance 2n if n is large.
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Comment The rules containing n are obvious combinations of the relevant
addition rule and the CLT. The rules for the Poisson and gamma distributions
are a bit weird in that there is no n. To understand them we need the notion
of an infinitely divisible distribution.

Definition 6.1.3.
A probability distribution P is infinitely divisible if for every positive integer
n there exist independent and identically distributed random variables X1, . . .,
Xn such that X1 + · · · + Xn has the distribution P .

Example 6.1.3 (Infinite Divisibility of the Poisson).
By the addition rule for Poisson random variables, X1 + · · ·+Xn ∼ Poi(µ) when
the Xi are i. i. d. Poi(µ/n). Thus the Poi(µ) distribution is infinitely divisible
for any µ > 0.

Example 6.1.4 (Infinite Divisibility of the Gamma).
By the addition rule for gamma random variables, X1 + · · · + Xn ∼ Gam(α, λ)
when the Xi are i. i. d. Gam(α/n, λ). Thus the Gam(α, λ) distribution is in-
finitely divisible for any α > 0 and λ > 0.

The infinite divisibility of the Poisson and gamma distributions explains the
applicability of the CLT. But we have to be careful. Things are not quite as
simple as they look.

A Bogus Proof that Poisson is Normal Every Poisson random variable
is the sum of n i. i. d. random variables and n can be chosen as large as we
please. Thus by the CLT the Poisson distribution is arbitrarily close to normal.
Therefore it is normal.

Critique of the Bogus Proof For one thing, it is obviously wrong. The
Poisson discrete is discrete. The Normal distribution is continuous. They can’t
be equal. But what’s wrong with the proof?

The problem is in sloppy application of the CLT. It is often taken to say
what the bogus proof uses, and the sloppy notation (6.4) encourages this sloppy
use, which usually does no harm, but is the problem here.

A more careful statement of the CLT says that for any fixed µ and large
enough n the Poi(nµ) distribution is approximately normal. The n that is
required to get close to normal depends on µ. This does tell us that for sufficient
large values of the parameter, the Poisson distribution is approximately normal.
It does not tell us the Poisson distribution is approximately normal for any value
of the parameter, which the sloppy version seems to imply.

The argument for the gamma distribution is exactly analogous to the argu-
ment for the Poisson. For large enough values of the parameter α involved in
the infinite divisibility argument, the distribution is approximately normal. The
statement about the chi-square distribution is a special case of the statement
for the gamma distribution.
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6.1.9 The Cauchy Distribution

The Cauchy location-scale family, abbreviated Cauchy(µ, σ) is described in
Section B.2.7 of Appendix B an addition rule given by (C.11) in Appendix C,
which we repeat here

X1 + · · · + Xn ∼ Cauchy(nµ, nσ) (6.8)

from which we can derive the distribution of the sample mean

Xn ∼ Cauchy(µ, σ) (6.9)

(Problem 6-1).
The Cauchy family is not a useful model for real data, but it is theoretically

important as a source of counterexamples. A Cauchy(µ, σ) distribution has
center of symmetry µ. Hence µ is the median, but µ is not the mean because
the mean does not exist.

The rule for the mean (6.9) can be trivially restated as a convergence in
distribution result

Xn
D−→ Cauchy(µ, σ), as n → ∞ (6.10)

a “trivial” result because Xn actually has exactly the Cauchy(µ, σ) distribution
for all n, so the assertion that is gets close to that distribution for large n is
trivial (exactly correct is indeed a special case of “close”).

The reason for stating (6.10) is for contrast with the law of large numbers
(LLN), which can be stated as follows: if X1, X2, . . . are i. i. d. from a distri-
bution with mean µ, then

Xn
P−→ µ as n → ∞ (6.11)

The condition for the LLN, that the mean exist, does not hold for the Cauchy.
Furthermore, since µ does not exist, Xn cannot converge to it. But it is con-
ceivable that

Xn
P−→ c as n → ∞ (6.12)

for some constant c, even though this does not follow from the LLN. The result
(6.10) for the Cauchy rules this out. Convergence in probability to a constant is
the same as convergence in distribution to a constant (Theorem 2 of Chapter 5
in Lindgren). Thus (6.12) and (6.10) are contradictory. Since (6.10) is correct,
(6.12) must be wrong. For the Cauchy distribution Xn does not converge in
probability to anything.

Of course, the CLT also fails for the Cauchy distribution. The CLT implies
the LLN. Hence if the CLT held, the LLN would also hold. Since the LLN
doesn’t hold for the Cauchy, the CLT can’t hold either.
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Problems

6-1. Derive (6.9) from (6.8) using the change of variable theorem.

6-2. Suppose that S1, S2, . . . is any sequence of random variables such that
Sn

P−→ σ, and X1, X2, . . . are independent and identically distributed with
mean µ and variance σ2 and σ > 0. Show that

Xn − µ

Sn/
√

n

D−→ N (0, 1), as n → ∞,

where, as usual,

Xn =
1
n

n∑
i=1

Xi

6-3. Suppose X1, X2, . . . are i. i. d. with common probability measure P , and
define Yn = IA(Xn) for some event A, that is,

Yn =

{
1, Xn ∈ A

0, Xn /∈ A

Show that Y n
P−→ P (A).

6-4. Suppose the sequences X1, X2, . . . and Y1, Y2, . . . are defined as in Prob-
lem 6-3, and write P (A) = p. Show that

√
n(Y n − p) D−→ N (

0, p(1 − p)
)

and also show that
Y n − p√

Y n(1 − Y n)/n

D−→ N (0, 1)

Hint: What is the distribution of
∑

i Yi? Also use Problem 6-2.
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Chapter 7

Sampling Theory

7.1 Empirical Distributions

In statistics, we often deal with complicated data, but for learning it is best
to start simple. The simplest sort of data is just a set of numbers that are
measurements of one variable on a set of individuals. In the next section we will
see that it is important that these individuals be a random sample from some
population of interest. For now we will just treat the data as a set of numbers.

Example 7.1.1 (A Data Set).
The numbers below were generated by computer and are a random sample
from an Exp(1) distribution rounded to one significant figure. Because of the
rounding, there are duplicate values. If not rounded the values would all be
different, as would be the case for any sample from any continuous distribution.

0.12 3.15 0.77 1.02 0.08 0.35 0.29 1.05 0.49 0.81

A vector

x = (x1, . . . , xn) (7.1)

can be thought of as a function of the index variable i. To indicate this we can
write the components as x(i) instead of xi. Then x is a function on the index
set {1, . . . , n}. Sometimes we don’t even bother to change the notation but still
think of the vector as being the function i 7→ xi.

This idea is useful in probability theory because of the dogma “a random
variable is a function on the sample space.” So let us think of the index set
S = {1, . . . , n} as the sample space, and X as a random variable having values
X(i), also written xi. When we consider a uniform distribution on the sample
space, which means each point gets probability 1/n since there are n points,
then the distribution of X is called the empirical distribution associated with
the vector (7.1).

177
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By definition, the probability function of X is

f(x) = P (X = x) =
∑
i∈S

xi=x

1
n

=
card({ i ∈ S : xi = x })

n

where, as usual, card(A) denotes the cardinality of the set A. If all of the xi

are distinct, then the distribution of X is also uniform. Otherwise, it is not.
If the point x occurs m times among the xi, then f(x) = m/n. This makes
the definition of the empirical distribution in terms of its probability function
rather messy. So we won’t use it.

The description in terms of expectation is much simpler.

Definition 7.1.1 (Empirical Expectation).
The empirical expectation operator associated with the vector (x1, . . . , xn) is
denoted En and defined by

En{g(X)} =
1
n

n∑
i=1

g(xi). (7.2)

Example 7.1.2.
For the data in Example 7.1.1 we have for the function g(x) = x

En(X) =
1
n

n∑
i=1

xi = 0.813

and for the function g(x) = x2

En(X2) =
1
n

n∑
i=1

x2
i = 1.37819

The corresponding probability measure Pn is found by using “probability is
just expectation of indicator functions.”

Definition 7.1.2 (Empirical Probability Measure).
The empirical probability measure associated with the vector (x1, . . . , xn) is de-
noted Pn and defined by

Pn(A) =
1
n

n∑
i=1

IA(xi). (7.3)

Example 7.1.3.
For the data in Example 7.1.1 we have for the event X > 2

Pn(X > 2) =
1
n

n∑
i=1

I(2,∞)(xi) =
number of xi greater than 2

n
= 0.1

and for the event 1 < X < 2

Pn(1 < X < 2) =
1
n

n∑
i=1

I(1,2)(xi) =
number of xi between 1 and 2

n
= 0.2
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7.1.1 The Mean of the Empirical Distribution

For the rest of this section we consider the special case in which all of the
xi are real numbers.

The mean of the empirical distribution is conventionally denoted by x̄n and
is obtained by taking the case g(x) = x in (7.2)

x̄n = En(X) =
1
n

n∑
i=1

xi.

7.1.2 The Variance of the Empirical Distribution

The variance of the empirical distribution has no conventional notation, but
we will use both varn(X) and vn. Just like any other variance, it is the expected
squared deviation from the mean. The mean is x̄n, so

vn = varn(X) = En{(X − x̄n)2} =
1
n

n∑
i=1

(xi − x̄n)2 (7.4)

It is important that you think of the empirical distribution as a probability
distribution just like any other. This gives us many facts about empirical distri-
butions, that are derived from general facts about probability and expectation.
For example, the parallel axis theorem holds, just as it does for any probability
distribution. For ease of comparison, we repeat the general parallel axis theorem
(Theorem 2.11 of Chapter 2.27 of these notes).

If X is a real-valued random variable having finite variance and a is any real
number, then

E{(X − a)2} = var(X) + [a − E(X)]2 (7.5)

Corollary 7.1 (Empirical Parallel Axis Theorem).

En{(X − a)2} = varn(X) + [a − En(X)]2

or, in other notation,

1
n

n∑
i=1

(xi − a)2 = vn + (a − x̄n)2 (7.6)

In particular, the case a = 0 gives the empirical version of

var(X) = E(X2) − E(X)2

which is

varn(X) = En(X2) − En(X)2

or, in other notation,

vn =
1
n

n∑
i=1

x2
i − x̄2

n. (7.7)
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Example 7.1.4.
In Example 7.1.2 we found for the data in Example 7.1.1

x̄n = En(X) = 0.813

and
En(X2) = 1.37819.

Although we could use the definition (7.4) directly, we can also use the empirical
parallel axis theorem in the form (7.7)

vn = 1.37819 − 0.8132 = 0.717221.

7.1.3 Characterization of the Mean

Considering a as a variable in (7.5) or (7.6) gives the following pair of theo-
rems. The first one is just the corollary to the parallel axis theorem in Lindgren
(p. 107) in different language. It is also the special case of the characterization
of conditional expectation as best prediction (Theorem 3.6 in Chapter 3 of these
notes) when the conditional expectation is actually unconditional.

Corollary 7.2 (Characterization of the Mean). The mean of a real-valued
random variable X having finite variance is the value of a that minimizes the
function

g(a) = E{(X − a)2}
which is the expected squared deviation from a.

Corollary 7.3 (Characterization of the Empirical Mean). The mean of
the empirical distribution is the value of a that minimizes the function

g(a) = En{(X − a)2} =
1
n

n∑
i=1

(xi − a)2

which is the average squared deviation from a.

The point of these two corollaries is that they describe the sense in which the
mean is the “center” of a distribution. It is the point to which all other points
are closest on average, when “close” is defined in terms of squared differences.
The mean is the point from which the average squared deviation is the smallest.
We will contrast this characterization with an analogous characterization of the
median in Section 7.1.7.

7.1.4 Review of Quantiles

Recall from Section 3.2 in Lindgren the definition of a quantile of a proba-
bility distribution.
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Definition 7.1.3 (Quantile).
For 0 < p < 1, a point x is a p-th quantile of the distribution of a real-valued
random variable X if

P (X ≤ x) ≥ p and P (X ≥ x) ≥ 1 − p

If the c. d. f. of X is invertible, then there is a much simpler characterization
of quantiles. For 0 < p < 1, the p-th quantile is the unique solution x of the
equation

F (x) = p, (7.8a)

or in other notation
x = F−1(p). (7.8b)

The following lemma tells us we are usually in this situation when dealing with
continuous random variables

Lemma 7.4. A continuous random variable having a strictly positive p. d. f.
has an invertible c. d. f.

Proof. There exists a solution to (7.8a), by the intermediate value theorem from
calculus, because F is continuous and goes from zero to one as x goes from −∞
to +∞. The solution is unique because

F (x + h) = F (x) +
∫ x+h

x

f(x) dx

and the integral is not zero unless h = 0, because the integral of a strictly
positive function cannot be zero.

In general, the p-th quantile need not be unique and it need not be a point
satisfying F (x) = p (see Figure 3.3 in Lindgren for examples of each of these
phenomena). Hence the technical fussiness of Definition 7.1.3. That definition
can be rephrased in terms of c. d. f.’s as follows. A point x is a p-th quantile of
a random variable with c. d. f. F if

F (x) ≥ p and F (y) ≤ p, for all y < x

Here the asymmetry of the definition of c. d. f.’s (right continuous but not nec-
essarily left continuous) makes the two conditions asymmetric. Definition 7.1.3
makes the symmetry between left and right clear. If x is a p-th quantile of X,
then −x is also a q-th quantile of −X, where q = 1 − p.

7.1.5 Quantiles of the Empirical Distribution

Now we want to look at the quantiles of the empirical distribution associated
with a vector x. In order to discuss this, it helps to establish the following
notation. We denote the sorted values of the components of x by

x(1) ≤ x(2) ≤ · · · ≤ x(n).
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That is, when we put parentheses around the subscripts, that means we have put
the values in ascending order. For any real number x, the notation dxe denotes
the smallest integer greater than or equal to x, which is called the ceiling of x,
and the notation bxc denotes the largest integer less than or equal to x, which
is called the floor of x,

Theorem 7.5. If np is not an integer, then the p-th quantile of the empirical
distribution associated with the vector x is unique and is equal to x(dnpe).

When np is an integer, then any point x such that

x(np) ≤ x ≤ x(np+1) (7.9)

is a p-th quantile.

Proof. The p-th quantile must be a point x such that there are at least np of
the xi at or below x and at least n(1 − p) at or above x.

In the case that np is not an integer, let k = dnpe. Since np is not an integer,
and dnpe is the least integer greater than k, we have k > np > k − 1. What we
must show is that x(k) is the unique p-th quantile.

There are at least k > np data points

x(1) ≤ · · · ≤ x(k)

at or below x(k). Furthermore, if i < k, then i ≤ k − 1 < np so there are fewer
than np data points at or below x(i) unless x(i) happens to be equal to x(k).

Similarly, there are at least n − k + 1 > n(1 − p) data points

x(k) ≤ · · · ≤ x(n)

at or above x(k). Furthermore, if i > k, then n − i + 1 ≤ n − k < n(1 − p) so
there are fewer than n(1 − p) data points at or above x(i) unless x(i) happens
to be equal to x(k).

In the case np = k, let x be any point satisfying (7.9). Then there are at
least k = np data points

x(1) ≤ · · · ≤ x(k) ≤ x

at or below x, and there are at least n − k = n(1 − p) data points

x ≤ x(k+1) ≤ · · · ≤ x(n)

at or above x. Hence x is a p-th quantile.

Example 7.1.5.
The data in Example 7.1.1 have 10 data points. Thus by the theorem, the
empirical quantiles are uniquely defined when np is not an integer, that is,
when p is not a multiple of one-tenth.

The first step in figuring out empirical quantiles is always to sort the data.
Don’t forget this step. The sorted data are

0.08 0.12 0.29 0.35 0.49 0.77 0.81 1.02 1.05 3.15
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To find the 0.25 quantile, also called the 25-th percentile, the theorem says we
find dnpe, which is the integer above np = 2.5, which is 3, and then the empirical
quantile is the corresponding order statistic, that is x(3) = 0.29.

We remark in passing that if the 25-th percentile is 3 in from the left end of
the data in sorted order, then the 75-th percentile is 3 in from the right end, so
the definition behaves as we expect. Let’s check this. First np = 7.5. Rounding
up gives 8. And x(8) = 1.02 is indeed the third from the right.

The definition gets tricky is when np is an integer. If we want the 40-th
percentile, np = 4. Then the theorem says that any point x between x(4) = 0.35
and x(5) = 0.49 is a 40-th percentile (0.4 quantile) of these data. For example,
0.35, 0.39, 0.43, and 0.49 are all 40-th percentiles. A bit weird, but that’s how
the definition works.

7.1.6 The Empirical Median

The median of the empirical distribution we denote by x̃n. It is the p-th
quantile for p = 1/2. By the theorem, the median is unique when np is not
an integer, which happens whenever n is an odd number. When n is an even
number, the empirical median is not unique. It is any point x satisfying (7.9),
where k = n/2. This nonuniqueness is unsettling to ordinary users of statistics,
so a convention has grown up of taking the empirical median to be the midpoint
of the interval given by (7.9).

Definition 7.1.4 (Empirical Median).
The median of the values x1, . . ., xn is the middle value in sorted order when
n is odd

x̃n = x(dn/2e)
and the average of the two middle values when n is even

x̃n =
x(n/2) + x(n/2+1)

2

Example 7.1.6.
The data in Example 7.1.1 have 10 data points. So we are in the “n even” case,
and the empirical median is the average of the two middle values of the data in
sorted order, that is,

x̃n =
x(5) + x(6)

2
=

0.49 + 0.77
2

= 0.63

7.1.7 Characterization of the Median

Corollary 7.6 (Characterization of the Median). If X is a real-valued
random variable having finite expectation, then a median of X is any value of
a that minimizes the function

g(a) = E{|X − a|}
which is the expected absolute deviation from a.
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Proof. What we need to show is that if m is a median, that is, if

P (X ≤ m) ≥ 1
2 and P (X ≥ m) ≥ 1

2

and a is any real number, then

E(|X − a|) ≥ E(|X − m|).
Without loss of generality, we may suppose a > m. (The case a = m is trivial.
The case a < m follows from the other case by considering the distribution of
−X.)

Define
g(x) = |x − a| − |x − m|

so, by linearity of expectation,

E(|X − a|) − E(|X − m|) = E(|X − a| − |X − m|) = E{g(X)}
So what must be shown is that E{g(X)} ≥ 0.

When x ≤ m < a,

g(x) = (a − x) − (m − x) = a − m.

Similarly, when m < a ≤ x,

g(x) = −(a − m).

When m < x < a,

g(x) = (x − a) − (m − x) = 2(x − m) − (a − m) ≥ −(a − m).

Thus g(x) ≥ h(x) for all x, where

h(x) =

{
a − m, x ≤ m

−(a − m), x > m

The point is that h can be written in terms of indicator functions

h(x) = (a − m)
[
I(−∞,m](x) − I(m,+∞)(x)

]
so by monotonicity of expectation, linearity of expectation, and “probability is
expectation of indicator functions”

E{g(X)} ≥ E{h(X)} = (a − m)
[
P (X ≤ m) − P (X > m)

]
Because m is a median, the quantity in the square brackets is nonnegative.

Corollary 7.7 (Characterization of the Empirical Median). A median
of the empirical distribution is a value of a that minimizes the function

g(a) = En{|X − a|} =
1
n

n∑
i=1

|xi − a| (7.10)

which is the average absolute deviation from a.
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There is no end to this game. Every notion that is defined for general
probability models, we can specialize to empirical distributions. We can define
empirical moments and central moments of all orders, and so forth and so on.
But we won’t do that in gory detail. What we’ve done so far is enough for now.

7.2 Samples and Populations

7.2.1 Finite Population Sampling

It is common to apply statistics to a sample from a population. The pop-
ulation can be any finite set of individuals. Examples are the population of
Minnesota today, the set of registered voters in Minneapolis on election day, the
set of wolves in Minnesota. A sample is any subset of the population. Exam-
ples are the set of voters called by an opinion poll and asked how they intend
to vote, the set of wolves fitted with radio collars for a biological experiment.
By convention we denote the population size by N and the sample size by n.
Typically n is much less than N . For an opinion poll, n is typically about a
thousand, and N is in the millions.

Random Sampling

A random sample is one drawn so that every individual in the population is
equally likely to be in the sample. There are two kinds.

Sampling without Replacement The model for sampling without replace-
ment is dealing from a well-shuffled deck of cards. If we deal n cards from a
deck of N cards, there are (N)n possible outcomes, all equally likely (here we
are considering that the order in which the cards are dealt matters). Similarly
there are (N)n possible samples without replacement of size n from a population
of size N . If the samples are drawn in such a way that all are equally likely we
say we have a random sample without replacement from the population.

Sampling with Replacement The model for sampling with replacement is
spinning a roulette wheel. If we do n spins and the wheel has N pockets, there
are Nn possible outcomes, all equally likely. Similarly there are Nn possible
samples with replacement of size n from a population of size N . If the samples
are drawn in such a way that all are equally likely we say we have a random
sample with replacement from the population.

Lindgren calls this a simple random sample, although there is no standard
meaning of the word “simple” here. Many statisticians would apply “simple” to
sampling either with or without replacement using it to mean that all samples
are equally likely in contrast to more complicated sampling schemes in which
the samples are not all equally likely.
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Random Variables

Suppose we are interested in a particular variable, which in principle could be
measured for each individual in the population. Write the vector of population
values

x = (x1, . . . , xN ).

Sometimes when x is the only variable of interest we think of this collection
of x values as being the population (as opposed to the population being the
collection of individuals on whom these measurements could be made).

The vector of population values is not a random vector.1 The population is
what it is, and the value xi for the i-th individual of the population is what it
is. Because x is not random, we use a lower case letter, following the “big X”
for random and “little x” for nonrandom convention.

When we take a random sample of size n from the population we obtain a
sequence X1, . . ., Xn of values of the variable. Each sample value Xi is one of
the population values xj , but which one is random. That is why we use capital
letters for the sample values. When we think of the sample as one thing rather
than n things, it is a vector

X = (X1, . . . , Xn).

Thus we can talk about the probability distributions of each Xi and the
joint distribution of all the Xi, which is the same thing as the distribution of
the random vector X.

Theorem 7.8 (Sampling Distributions). If X1, . . ., Xn are a random sam-
ple from a population of size n, then the marginal distribution of each Xi is the
empirical distribution associated with the population values x1, . . ., xN .

If the sampling is with replacement, then the Xi are independent and iden-
tically distributed. If the sampling is without replacement, then the Xi are ex-
changeable but not independent.

Proof. The Xi are exchangeable by definition: every permutation of the sample
is equally likely. Hence they are identically distributed, and the marginal dis-
tribution of the Xi is the marginal distribution of X1. Since every individual is
equally likely to be the first one drawn, X1 has the empirical distribution.

Under sampling with replacement, every sample has probability 1/Nn, which
is the product of the marginals. Hence the Xi are independent random variables.
Under sampling without replacement, every sample has probability 1/(N)n,
which is not the product of the marginals. Hence the Xi are dependent random
variables.

Thus, when we have sampling with replacement, we can use formulas that
require independence, the most important of these being

1When we get to the chapter on Bayesian inference we will see that this sentence carries
unexamined philosophical baggage. A Bayesian would say the population values are random
too. But we won’t worry about that for now.
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• the variance of a sum is the sum of the variances

var

(
n∑

i=1

Xi

)
=

n∑
i=1

var(Xi) = nσ2 (7.11)

where we have written σ2 for the variance of all of the Xi (they must have
the same variance because they are identically distributed), and

• the joint density is the product of the marginals

fX(x) =
n∏

i=1

fXi
(xi) =

n∏
i=1

f(xi) (7.12)

where we have written f for the marginal density of all of the Xi (they
must have the same density because they are identically distributed).

When we have sampling without replacement neither (7.11) nor (7.12) holds.
The analog of (7.11) is derived as follows.

Theorem 7.9 (Finite Population Correction). If X1, X2, . . ., Xn are a
random sample without replacement from a finite population of size N , then all
the Xi have the same variance σ2 and

var

(
n∑

i=1

Xi

)
= nσ2 · N − n

N − 1
(7.13)

The factor (N − n)/(N − 1) by which (7.13) differs from (7.11) is called the
finite population correction.

Proof. Since the Xi are exchangeable, each Xi has the same variance σ2 and
each pair Xi and Xj has the same correlation ρ. Thus

var

(
n∑

i=1

Xi

)
=

n∑
i=1

n∑
j=1

cov(Xi, Xj)

= nσ2 + n(n − 1)σ2ρ

= nσ2 [1 + (n − 1)ρ]

(7.14)

The correlation ρ does not depend on the sample size, because by exchangeabil-
ity it is the correlation of X1 and X2, and the marginal distribution of these two
individuals does not depend on what happens after they are drawn. Therefore
(a trick!) we can determine ρ by looking at the special case when N = n, when
the sample is the whole population and

n∑
i=1

Xi =
N∑

i=1

xi
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is not random (as is clear from the “little x” notation on the right hand side).
Hence when N = n the variance is zero, and we must have

1 + (N − 1)ρ = 0

which, solving for ρ, implies

ρ = − 1
N − 1

Plugging this into (7.14) gives (7.13).

7.2.2 Repeated Experiments

If X1, . . ., Xn are the outcomes of a series of random experiments which
are absolutely identical and have nothing to do with each other, then they are
independent and identically distributed, a phrase so widely used in statistics
that its abbreviation i. i. d. is universally recognized.

This situation is analogous to sampling with replacement in that the vari-
ables of interest are i. i. d. and all the consequences of the i. i. d. property, such
as (7.11) and (7.12), hold. The situation is so analogous that many people use
the language of random sampling to describe this situation too. Saying that X1,
. . ., Xn are a random sample from a hypothetical infinite population. There is
nothing wrong with this so long as everyone understands it is only an analogy.
There is no sense in which i. i. d. random variables actually are a random sample
from some population.

We will use the same language. It lends color to otherwise dry and dusty
discussions if you imagine we are sampling a population to answer some in-
teresting question. That may lead us into some language a pedant would call
sloppy, such as, “suppose we have a sample of size n from a population with
finite variance.” If the population is finite, then it automatically has a finite
variance. If the population is infinite, then the variance is not really defined,
since infinite populations don’t exist except as a vague analogy. What is meant,
of course, is “suppose X1, . . ., Xn are i. i. d. and have finite variance.” That’s
well defined.

7.3 Sampling Distributions of Sample Moments

7.3.1 Sample Moments

If X1, . . ., Xn are a random sample, the sample moments are the moments
of the empirical distribution associated with the vector X = (X1, . . . , Xn). The
first moment is the sample mean

Xn = En(X) =
1
n

n∑
i=1

Xi (7.15)
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The k-th moment is

Ak,n = En(Xk) =
1
n

n∑
i=1

Xk
i .

The central moments of this empirical distribution are

Mk,n = En

{
[X − En(X)]k

}
= En

{
(X − Xn)k

}
=

1
n

n∑
i=1

(Xi − Xn)k

As with any distribution, the first central moment is zero, and the second is

Vn = varn(X) = En

{
(X − Xn)2

}
=

1
n

n∑
i=1

(Xi − Xn)2. (7.16)

If there were any logic to statistics Vn would be called the “sample variance,”
but Lindgren, agreeing with most other textbooks, uses that term for something
slightly different

S2
n =

n

n − 1
Vn =

1
n − 1

n∑
i=1

(Xi − Xn)2. (7.17)

The n− 1 rather than n in the definition makes all of the formulas involving S2
n

ugly, and makes S2
n not satisfy any of the usual rules involving variances. So be

warned, and be careful! For example, Vn obeys the parallel axis theorem, hence

Vn = En(X2) − En(X)2 =
1
n

n∑
i=1

X2
i − X

2

n.

Clearly S2
n cannot satisfy the same rule or it would be Vn. The only way to

figure out the analogous rule for S2
n is to remember the rule for Vn (which makes

sense) and derive the one for S2
n.

S2
n =

n

n − 1
Vn

=
n

n − 1

[
1
n

n∑
i=1

X2
i − X

2

n

]

=
1

n − 1

n∑
i=1

X2
i − n

n − 1
X

2

n

No matter how you try to write it, it involves both n and n − 1, and makes no
sense.

Since S2
n is so ugly, why does anyone use it? The answer, as with so many

other things, is circular. Almost everyone uses it because it’s the standard,
and it’s the standard because almost everyone uses it. And “almost everyone”
includes a lot of people, because S2

n is a topic in most introductory statistics
courses.
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Our position is that it simply does not matter whether you use Vn or S2
n.

Since one is a constant times the other, any place you could use one, you could
use the other, so long as you make the appropriate changes in formulas. So the
only reason for using S2

n is to avoid fighting tradition. Sometimes it’s easier to
follow the herd.

7.3.2 Sampling Distributions

Since a sample moment is a random variable, it has a probability distri-
bution. We may not be able to give a formula for the density or distribution
function, but it does have a distribution. So we can talk about its distribution
and investigate its properties.

In a few specific cases we know the distribution of Xn. It is given implicitly
by what we call “addition rules” and which are summarized in Appendix C of
these notes. They give the distribution of Y =

∑
i Xi when the Xi are i. i. d.

• Binomial (including Bernoulli)

• Negative Binomial (including Geometric)

• Poisson

• Gamma (including Exponential and Chi-Square)

• Normal

• Cauchy

Given the distribution of Y , the distribution of Xn is found by a simple change
of scale. If the Xi are continuous random variables, then

fXn
(z) = nfY (nz). (7.18)

Example 7.3.1 (I. I. D. Exponential).
Let X1, . . ., Xn be i. i. d. Exp(λ). Then the distribution of Y = X1 + · · · + Xn

is Gam(n, λ) by the addition rule for Gamma distributions (Appendix C) and
the fact that the Exp(λ) is Gam(1, λ). Hence by Problem 7-10

Xn ∼ Gam(n, nλ).

Many statistics textbooks, including Lindgren, have no tables of the gamma
distribution. Thus we have to use the fact that gamma random variables hav-
ing integer and half-integer values of their shape parameters are proportional
to chi-square random variables, because chi2(n) = Gam(n

2 , 1
2 ) and the second

parameter of the gamma distribution is a shape parameter (Problem 7-10).

Lemma 7.10. Suppose
X ∼ Gam(n, λ)

where n is an integer, then

2λX ∼ chi2(2n).
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The proof is Exercise 7-2.

Example 7.3.2 (Table Look-Up).
(Continues Example 7.3.1). Using the lemma, we can calculate probabilities for
the sampling distribution of the sample mean of i. i. d. Exp(λ) data. Suppose
λ = 6.25 so µ = 1/λ = 0.16, and n = 9. What is P (Xn > 0.24).

In Example 7.3.1 we figured out that

Xn ∼ Gam(n, nλ)

so in this case
Xn ∼ Gam(9, 56.25) (7.19)

(nλ = 9 × 6.25 = 56.25).
But to use the tables in Lindgren, we must use the lemma, which says

2nλXn ∼ chi2(2n).

(there is an n on the left hand side, because the scale parameter of the gamma
distribution is nλ here rather than λ).

If Xn = 0.24, then 2nλXn = 2 · 9 · 6.25 · 0.24 = 27.0, and the answer to our
problem is P (Y > 27.0), where Y ∼ chi2(18). Looking this up in Table Va in
Lindgren, we get 0.079 for the answer.

Example 7.3.3 (Table Look-Up using Computers).
(Continues Example 7.3.1). The tables in Lindgren, or in other statistics books
are not adequate for many problems. For many problems you need either a huge
book of tables, commonly found in the reference section of a math library, or a
computer.

Many mathematics and statistics computer software packages do calculations
about probability distributions. In this course, we will only describe two of them:
the statistical computing language R and the symbolic mathematics language
Mathematica.

R In R the lookup is very simple. It uses the function pgamma which evaluates
the gamma c. d. f.

> 1 - pgamma(0.24, 9, 1 / 56.25)
[1] 0.07899549

This statement evaluates P (X ≤ x) when X ∼ Gam(9, 56.25) and x = 0.24,
as (7.19) requires. We don’t have to use the property that this gamma distri-
bution is also a chi-square distribution. One caution: both R and Mathematica
use a different parameterization of the gamma distribution than Lindgren. The
shape parameter is the same, but the scale parameter is the reciprocal of Lind-
gren’s scale parameter (See Problem 7-10). That’s why the third argument of
the pgamma function is 1/56.25 rather than 56.25.
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Mathematica Mathematica makes things a bit more complicated. First you
have to load a special package for probability distributions (always available, but
not loaded by default), then you have to tell Mathematica which distribution
you want, then you do the calculation

In[1]:= <<Statistics‘ContinuousDistributions‘

In[2]:= dist = GammaDistribution[9, 1 / 56.25]

Out[2]= GammaDistribution[9, 0.0177778]

In[3]:= F[x_] = CDF[dist, x]

Out[3]= GammaRegularized[9, 0, 56.25 x]

In[4]:= 1 - F[0.24]

Out[4]= 0.0789955

of course, the last three statements can be combined into one but just plug-
ging in definitions

In[5]:= 1 - CDF[GammaDistribution[9, 1 / 56.25], 0.24]

Out[5]= 0.0789955

but that’s a cluttered and obscure. For more on computing in general see the
course computing web page

http://www.stat.umn.edu/geyer/5101/compute

and the pages on Probability Distributions in R and Mathematica in particular
(follow the links from the main computing page).

Example 7.3.4 (I. I. D. Bernoulli).
If X1, . . ., Xn are i. i. d. Ber(p) random variables, then Y =

∑
i Xi is a Bin(n, p)

random variable, and since Xn = Y/n, we also have

nXn ∼ Bin(n, p).

Example 7.3.5 (Another Computer Table Look-Up).
(Continues Example 7.3.4). Suppose Xn is the sample mean of 10 i. i. d. Ber(0.2)
random variables. What is the probability P (Xn ≤ 0.1)?

By the preceding example, nXn ∼ Bin(10, 0.2) and here nXn = 10 · 0.1 = 1.
So we need to look up P (Y ≤ 1) when Y ∼ Bin(10, 0.2). In R this is

> pbinom(1, 10, 0.2)
[1] 0.3758096

In Mathematica it is
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In[1]:= <<Statistics‘DiscreteDistributions‘

In[2]:= dist = BinomialDistribution[10, 0.2]

Out[2]= BinomialDistribution[10, 0.2]

In[3]:= F[x_] = CDF[dist, x]

Out[3]= BetaRegularized[0.8, 10 - Floor[x], 1 + Floor[x]]

In[4]:= F[1]

Out[4]= 0.37581

Our textbook has no tables of the binomial distribution, so there is no way
to do this problem with pencil and paper except by evaluating the terms(

n

0

)
p0qn +

(
n

1

)
p1qn−1

(not so hard here, but very messy if there are many terms). You can’t use
the normal approximation because n is not large enough. Anyway, why use an
approximation when the computer gives you the exact answer?

We can calculate the density using the convolution theorem. Mathemati-
cal induction applied to the convolution formula (Theorem 23 of Chapter 4 in
Lindgren) gives the following result.

Theorem 7.11. If X1, . . ., Xn are i. i. d. continuous random variables with
common marginal density fX , then Y = X1 + · · · + Xn has density

fY (y) =
∫

· · ·
∫∫

fX(y − x2 − · · · − xn)fX(x2) · · · fX(xn) dx2 · · · dxn (7.20)

Then (7.18) gives the density of Xn. But this is no help if we can’t do the
integrals, which we usually can’t, with the notable exceptions of the “brand
name” distributions with “addition rules” (Appendix C).

Higher Moments So far we haven’t considered any sample moment except
Xn. For other sample moments, the situation is even more complicated.

It is a sad fact is that the methods discussed in this section don’t always
work. In fact they usually don’t work. Usually, nothing works, and you just
can’t find a closed form expression for the sampling distribution of a particular
sample moment.

What is important to understand, though, and understand clearly, is that
every sample moment does have a sampling distribution. Hence we can talk
about properties of that distribution. The properties exist in principle, so we
can talk about them whether or not we can calculate them.
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7.3.3 Moments

In this section we calculate moments of sample moments. At first this sounds
confusing, even bizarre, but sample moments are random variables and like any
random variables they have moments.

Theorem 7.12. If X1, . . ., Xn are identically distributed random variables with
mean µ and variance σ2, then

E(Xn) = µ. (7.21a)

If in addition, they are uncorrelated, then

var(Xn) =
σ2

n
. (7.21b)

If instead they are samples without replacement from a population of size N ,
then

var(Xn) =
σ2

n
· N − n

N − 1
. (7.21c)

Note in particular, that because independence implies lack of correlation,
(7.21a) and (7.21b) hold in the i. i. d. case.

Proof. By the usual rules for linear transformations, E(a + bX) = a + bE(X)
and var(a + bX) = b2 var(X)

E(Xn) =
1
n

E

(
n∑

i=1

Xi

)

and

var(Xn) =
1
n2

var

(
n∑

i=1

Xi

)

Now apply Corollary 1 of Theorem 9 of Chapter 4 in Lindgren and (7.11) and
(7.13).

Theorem 7.13. If X1, . . ., Xn are uncorrelated, identically distributed random
variables with variance σ2, then

E(Vn) =
n − 1

n
σ2, (7.22a)

and

E(S2
n) = σ2. (7.22b)
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Proof. The reason why (7.22a) doesn’t work out simply is that Vn involves devi-
ations from the sample mean Xn and σ2 involves deviations from the population
mean µ. So use the empirical parallel axis theorem to rewrite Vn in terms of
deviations from µ

En{(X − µ)2} = Vn + (Xn − µ)2. (7.23)

The left hand side is just Y n, where Yi = (Xi − µ)2. Taking expectations of
both sides of (7.23) gives

E(Y n) = E(Vn) + E{(Xn − µ)2}
On the left hand side we have

E(Y n) = E(Yi) = var(Xi) = σ2

And the second term on the right hand side is

var(Xn) =
σ2

n
.

Collecting terms gives (7.22a). Then linearity of expectation gives (7.22b).

The assertions (7.22a) and (7.22b) of this theorem are one place where S2
n

seems simpler than Vn. It’s why S2
n was invented, to make (7.22b) simple.

The sample moment formulas (7.21a), (7.21b), and (7.22b) are the ones most
commonly used in everyday statistics. Moments of other sample moments exist
but are mostly of theoretical interest.

Theorem 7.14. If X1, . . ., Xn are i. i. d. random variables having moments
of order k, then all sample moments of order k have expectation. If the Xi have
moments of order 2k, then sample moments of order k have finite variance. In
particular,

E(Ak,n) = αk

and

var(Ak,n) =
α2k − α2

k

n
,

where αk is the k-th population moment.

We do not give formulas for the central moments because they are a mess.
Even the formula for the variance of the sample variance given (though not
proved) in Theorem 7 of Chapter 7 in Lindgren is already a mess. The formulas
for higher moments are worse. They are, however, a straightforward mess. The
proof below shows how the calculation would start. Continuing the calculation
without making any mistakes would produce an explicit formula (a symbolic
mathematics computer package like Maple or Mathematica would help a lot).
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Proof. The k-th sample moment Ak,n is the sample average of the random
variables Yi = Xk

i . Since

E(Yi) = E(Xk
i ) = αk (7.24a)

and

var(Yi) = E(Y 2
i ) − E(Yi)2

= E(X2k
i ) − E(Xk

i )2

= α2k − α2
k

(7.24b)

the formulas in the theorem follow by the usual rules for the moments of a
sample mean.

The k-th central sample moment

Mk,n =
1
n

n∑
i=1

(
Xi − Xn

)k

=
1
n

n∑
i=1

n − 1
n

Xi −
∑
j 6=i

1
n

Xj

k

is a k-th degree polynomial in the Xi. A single term of such a polynomial has
the form

a

n∏
i=1

Xmi
i

where the mi are nonnegative integers such that m1 + · · · + mn = k, and a is
some constant (a different constant for each term of the polynomial, although
the notation doesn’t indicate that). By independence

E

(
a

n∏
i=1

Xmi
i

)
= a

n∏
i=1

E(Xmi
i ) = a

n∏
i=1

αmi
. (7.25)

If k-th moments exist, then all of the moments αmi
in (7.25) exist because

mi ≤ k.
Similarly, M2

k,n is a polynomial of degree 2k in the Xi and hence has expec-
tation if population moments of order 2k exist. Then var(Mk,n) = E(M2

k,n) −
E(Mk,n)2 also exists.

7.3.4 Asymptotic Distributions

Often we cannot calculate the exact sampling distribution of a sample mo-
ment, but we can always get large sample properties of the distribution from
law of large numbers, the central limit theorem, and Slutsky’s theorem.

Theorem 7.15. Under i. i. d. sampling every sample moment converges in
probability to the corresponding population moment provided the population mo-
ment exists.
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Proof. For ordinary moments, this was done as a homework problem (Prob-
lem 5-3 in Lindgren). If we let αk be the k-th ordinary population moment and
Ak,n be the corresponding ordinary sample moment for sample size n, then

Ak,n =
1
n

n∑
i=1

Xk
i

P−→ E(Xk
1 ) = αk.

Let µk be the k-th population central moment and Mk,n be the corresponding
sample central moment, then

Mk,n =
1
n

n∑
i=1

(Xi − Xn)k (7.26a)

=
1
n

n∑
i=1

k∑
j=0

(
k

j

)
(−1)j(Xn − µ)j(Xi − µ)k−j

=
k∑

j=0

(
k

j

)
(−1)j(Xn − µ)j 1

n

n∑
i=1

(Xi − µ)k−j

=
k∑

j=0

(
k

j

)
(−1)j(Xn − µ)jM ′

k−j,n (7.26b)

where we have introduced the notation

M ′
k,n =

1
n

n∑
i=1

(Xi − µ)k.

This is almost the same as (7.26a), the only difference being the replacement
of Xn by µ. The asymptotics of M ′

k,n are much simpler than those for Mk,n

because M ′
k,n is the sum of i. i. d. terms so the LLN and CLT apply directly to

it. In particular
M ′

k,n
P−→ E{(Xi − µ)k} = µk (7.27)

also
Xn − µ

P−→ 0 (7.28)

by the LLN and the continuous mapping theorem. Then (7.28) and Slutsky’s
theorem imply that every term of (7.26b) converges in probability to zero except
the j = 0 term, which is M ′

k,n. Thus (7.27) establishes

Mk,n
P−→ µk (7.29)

which is what was to be proved.

Theorem 7.16. Under i. i. d. sampling every sample k-th moment is asymp-
totically normal if population moments of order 2k exist. In particular,

√
n(Ak,n − αk) D−→ N (0, α2k − α2

k) (7.30)
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and

√
n(Mk,n − µk) D−→ N (0, µ2k − µ2

k − 2kµk−1µk+1 + k2µ2µ
2
k−1) (7.31)

For ordinary moments, this is a homework problem (Problem 7-17 in Lind-
gren). For central moments, the proof will have to wait until we have developed
multivariate convergence in distribution in the following chapter.

The special case k = 2 is worth noting.

Corollary 7.17. Suppose X1, X2, . . . are i. i. d. and have fourth moments.
Then √

n(Vn − σ2) D−→ N (0, µ4 − µ2
2)

where Vn is defined by (7.16).

This is the case Vn = M2,n of the theorem. The third and forth terms of the
asymptotic variance formula are zero because µ1 = 0 (Theorem 2.9 in Chapter 2
of these notes).

Example 7.3.6 (I. I. D. Normal).
Suppose X1, . . ., Xn are i. i. d. N (µ, σ2). What is the asymptotic distribution
of Xn, of Vn, of M3,n?

The CLT, of course, tells us the asymptotic distribution of Xn. Here we
just want to check that the k = 1 case of (7.30) agrees with the CLT. Note
that A1,n = Xn and α1 = µ, so the left hand side of (7.30) is the same as
the left hand side of the CLT (6.7). Also α2 − α2

1 = σ2 because this is just
var(X) = E(X2) − E(X)2 in different notation. So the k = 1 case of (7.30)
does agree with the CLT.

The asymptotic distribution of Vn = M2,n is given by the k = 2 case of (7.31)
or by Theorem 7.17. All we need to do is calculate the asymptotic variance
µ4 − µ2

2. The fourth central moment of the standard normal distribution is
given by the k = 2 case of equation (5) on p. 178 in Lindgren to be µ4 = 3.
A general normal random variable has the form X = µ + σZ, where Z is
standard normal, and this has fourth central moment 3σ4 by Problem 7-11.
Thus µ4 − µ2

2 = 3σ4 − σ4 = 2σ4, and finally we get

Vn ≈ N
(

σ2,
2σ4

n

)
Note this formula holds for i. i. d. normal data only. Other statistical models
can have rather different distributions (Problem 7-12).

The asymptotic distribution of M3,n is given by the k = 3 case of (7.31)

µ6 − µ2
3 − 2 · 3µ2µ4 + 32µ2 · µ2

2 = µ6 − µ2
3 − 6µ2µ4 + 9µ3

2

= µ6 − 6µ2µ4 + 9µ3
2

because odd central moments are zero (Theorem 2.10 of Chapter 2 of these
notes). We already know µ2 = σ2 and µ4 = 3σ2. Now we need to use the
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k = 3 case of equation (5) on p. 178 in Lindgren and Problem 7-11 to get to be
µ6 = 15σ2. Hence the asymptotic variance is

µ6 − 6µ2µ4 + 9µ3
2 = (15 − 6 · 1 · 3 + 9)σ6 = 6σ6

and

M3,n ≈ N
(

0,
6σ6

n

)
(the asymptotic mean is µ3 = 0).

7.3.5 The t Distribution

We now derive two other “brand name” distributions that arise as exact
sampling distributions of statistics derived from sampling normal populations.
The distributions are called the t and F distributions (whoever thought up those
names must have had a real imagination!)

Before we get to them, we want to generalize the notion of degrees of freedom
to noninteger values. This will be useful when we come to Bayesian inference.

Definition 7.3.1 (Chi-Square Distribution).
The chi-square with noninteger degrees of freedom ν > 0 is the Gam(ν

2 , 1
2 ) dis-

tribution.

This agrees with our previous definition when ν is an integer.

Definition 7.3.2 (Student’s t Distribution).
If Z and Y are independent random variables, Z is standard normal and Y is
chi2(ν), then the random variable

T =
Z√
Y/ν

is said to have a t-distribution with ν degrees of freedom, abbreviated t(ν). The
parameter ν can be any strictly positive real number.

The reason for the “Student” sometimes attached to the name of the distri-
bution is that the distribution was discovered and published by W. S. Gosset,
the chief statistician for the Guiness brewery in Ireland. The brewery had a
company policy that employees were not allowed to publish under their own
names, so Gosset used the pseudonym “Student” and this pseudonym is still
attached to the distribution by those who like eponyms.

Theorem 7.18. The p. d. f. of the t(ν) distribution is

fν(x) =
1√
νπ

· Γ(ν+1
2 )

Γ(ν
2 )

· 1(
1 + x2

ν

)(ν+1)/2
, −∞ < x < +∞ (7.32)
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The normalizing constant can also be written using a beta function because
Γ( 1

2 ) =
√

π. Thus
1√
νπ

· Γ(ν+1
2 )

Γ(ν
2 )

=
1√
ν
· 1
B(ν

2 , 1
2 )

The connection with the beta distribution is obscure but will be clear after we
finish this section and do Problem 7-3.

Proof. The joint distribution of Z and Y in the definition is

f(z, y) =
1√
2π

e−z2/2

(
1
2

)ν/2

Γ(ν/2)
yν/2−1e−y/2

Make the change of variables t = z/
√

y/ν and u = y, which has inverse trans-
formation

z = t
√

u/ν

y = u

and Jacobian ∣∣∣∣√u/ν t/2
√

uν
0 1

∣∣∣∣ =
√

u/ν

Thus the joint distribution of T and U given by the multivariate change of
variable formula is

f(t, u) =
1√
2π

e−(t
√

u/ν)2/2

(
1
2

)ν/2

Γ(ν/2)
uν/2−1e−u/2 ·

√
u/ν

=
1√
2π

(
1
2

)ν/2

Γ(ν/2)
1√
ν

uν/2−1/2 exp
{
−

(
1 +

t2

ν

)
u

2

}
Thought of as a function of u for fixed t, this is proportional to a gamma density
with shape parameter (ν + 1)/2 and inverse scale parameter 1

2 (1 + t2

ν ). Hence
we can use the “recognize the unnormalized density trick” (Section 2.5.7 in
Chapter 2 of these notes) to integrate out u getting the marginal of t

f(t) =
1√
2π

·
(

1
2

)ν/2

Γ(ν/2)
· 1√

ν
· Γ(ν+1

2 )

[12 (1 + t2

ν )](ν+1)/2

which, after changing t to x, simplifies to (7.32).

The formula for the density of the t distribution shows that it is symmetric
about zero. Hence the median is zero, and the mean is also zero when it exists.
In fact, all odd central moments are zero when they exist, because this is true
of any symmetric random variable (Theorem 2.10 of Chapter 2 of these notes).

The question of when moments exist is settled by the following theorem.
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Theorem 7.19. If X has a Student t distribution with ν degrees of freedom,
then moments of order k exist if and only if k < ν.

Proof. The density (7.32) is clearly bounded. Hence we only need to check
whether |x|kf(x) is integrable near infinity. Since the density is symmetric, we
only need to check one tail. For x near +∞

|x|kf(x) ≈ kxk−(ν+1)

for some constant k. From Lemma 2.39 of Chapter 2 of these notes the integral
is finite if and only if k − (ν + 1) < −1, which the same as ν > k.

We also want to know the variance of the t distribution.

Theorem 7.20. If ν > 2 and X ∼ t(ν), then

var(X) =
ν

ν − 2
.

The proof is a homework problem (7-5).
Another important property of the t distribution is given in the following

theorem, which we state without proof since it involves the Stirling approxima-
tion for the gamma function, which we have not developed, although we will
prove a weaker form of the second statement of the theorem in the next chapter
after we have developed some more tools.

Theorem 7.21. For every x ∈ R

fν(x) → φ(x), as ν → ∞,

where φ is the standard normal density, and

t(ν) D−→ N (0, 1), as ν → ∞.

Comparison of the t(1) density to the standard Cauchy density given by
equation (1) on p. 191 in Lindgren shows they are the same (it is obvious that
the part depending on x is the same, hence the normalizing constants must be
the same if both integrate to one, but in fact we already know that Γ(1

2 ) =
√

π
also shows the normalizing constants are equal). Thus t(1) is another name
for the standard Cauchy distribution. The theorem above says we can think
of t(∞) as another name for the standard normal distribution. Tables of the t
distribution, including Tables IIIa and IIIb in the Appendix of Lindgren include
the normal distribution labeled as ∞ degrees of freedom. Thus the t family of
distributions provides lots of examples between the best behaved distribution
of those we’ve studied, which is the normal, and the worst behaved, which is
the Cauchy. In particular, the t(2) distribution has a mean but no variance,
hence the sample mean of i. i. d. t(2) random variables obeys the LLN but not
the CLT. For ν > 2, The t(ν) distribution has both mean and variance, hence
the sample mean of i. i. d. t(ν) random variables obeys both LLN and CLT,
but the t(ν) distribution is much more heavy-tailed than other distributions we
have previously considered.
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7.3.6 The F Distribution

The letter F for the random variable having the “F distribution” was cho-
sen by Snedecor in honor of R. A. Fisher who more or less invented the F
distribution. Actually, he proposed a monotone transformation of this variable
Z = 1

2 log F , which has a better normal approximation.

Definition 7.3.3 (The F Distribution).
If Y1 and Y2 are independent random variables, and Yi ∼ chi2(νi), then the
random variable

U =
Y1/ν1

Y2/ν2

has an F distribution with ν1 numerator degrees of freedom and ν2 denominator
degrees of freedom, abbreviated F (ν1, ν2).

Theorem 7.22. If Y1 and Y2 are independent random variables, and Yi ∼
chi2(νi), then the random variable

W =
Y1

Y1 + Y2

has a Beta(ν1
2 , ν2

2 ) distribution.

Proof. Since we know that the chi-square distribution is a special case of the
gamma distribution chi2(k) = Gam(k

2 , 1
2 ), this is one of the conclusions of The-

orem 4.2 of Chapter 4 of these notes.

Corollary 7.23. If U ∼ F (ν1, ν2), then

W =
ν1
ν2

U

1 + ν1
ν2

U

has a Beta( ν1
2 , ν2

2 ) distribution.

Hence the F distribution is not really new, it is just a transformed beta
distribution. The only reason for defining the F distribution is convention.
Tables of the F distribution are common. There is one in the appendix of
Lindgren. Tables of the beta distribution are rare. So we mostly use F tables
rather than beta tables. When using a computer, the distinction doesn’t matter.
Mathematica and R have functions that evaluate either F or beta probabilities.

7.3.7 Sampling Distributions Related to the Normal

When the data are i. i. d. normal, the exact (not asymptotic) sampling
distributions are known for many quantities of interest.

Theorem 7.24. If X1, . . ., Xn are i. i. d. N (µ, σ2), then Xn and S2
n given by

(7.15) and (7.17) are independent random variables and

Xn ∼ N
(

µ,
σ2

n

)
(7.33a)

(n − 1)S2
n/σ2 ∼ chi2(n − 1) (7.33b)
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This is a combination of Theorems 9, 10, and 11 and the Corollary to The-
orem 10 in Section 7.5 of Lindgren.

Note that the theorem implicitly gives the distribution of S2
n, since chi2(n−1)

is just another name for Gam(n−1
2 , 1

2 ) and the second parameter of the gamma
is an upside down scale parameter, which implies

S2
n ∼ Gam

(
n − 1

2
,
n − 1
2σ2

)
(7.34)

The theorem is stated the way it is because chi-square tables are widely available
(including in the Appendix of Lindgren) and gamma tables are not. Hence
(7.33b) is a more useful description of the sampling distribution of S2

n than is
(7.34) when you are using tables (if you are using a computer, either works).

The main importance of the t distribution in statistics comes from the fol-
lowing corollary.

Corollary 7.25. If X1, . . ., Xn are i. i. d. N (µ, σ2), then

T =
Xn − µ

Sn/
√

n

has a t(n − 1) distribution.

Proof.

Z =
Xn − µ

σ/
√

n

is standard normal, and independent of Y = (n − 1)S2
n/σ2 which is chi2(n − 1)

by Theorem 7.24. Then Z/
√

Y/(n − 1) is T .

One use of the F distribution in statistics (not the most important) comes
from the following corollary.

Corollary 7.26. If X1, . . ., Xm are i. i. d. N (µX , σ2
X) and Y1, . . ., Yn are

i. i. d. N (µY , σ2
Y ), and all of the Xi are independent of all of the Yj, then

F =
S2

m,X

S2
n,Y

· σ2
Y

σ2
X

has an F (m − 1, n − 1) distribution, where S2
m,X is the sample variance of the

Xi and S2
n,Y is the sample variance of the Yi.

The proof is obvious from Theorem 7.24 and the definition of the F distri-
bution.

Example 7.3.7 (T Distribution).
Suppose X1, . . ., X20 are i. i. d. standard normal. Compare P (Xn > σ/

√
n)



204 Stat 5101 (Geyer) Course Notes

and P (Xn > Sn/
√

n). We know that

Xn

σ/
√

n
∼ N (0, 1)

Xn

Sn/
√

n
∼ t(19)

So we need to compare P (Z > 1) where Z is standard normal and P (T > 1)
where T ∼ t(19).

From Tables I and IIIa in Lindgren, these probabilities are .1587 and .165,
respectively. The following R commands do the same lookup

> 1 - pnorm(1)
[1] 0.1586553
> 1 - pt(1, 19)
[1] 0.1649384

Example 7.3.8 (F Distribution).
Suppose S2

1 and S2
2 are sample variances of two independent samples from two

normal populations with equal variances, and the sample sizes are n1 = 10 and
n2 = 20, respectively. What is P (S2

1 > 2S2
2)? We know that

S2
1

S2
2

∼ F (9, 19)

So the answer is P (Y > 2) where Y ∼ F (9, 19). Tables IVa and IVb in Lindgren
(his only tables of the F distribution) are useless for this problem. We must use
the computer. In R it’s simple

> 1 - pf(2, 9, 19)
[1] 0.0974132

For this example, we also show how to do it in Mathematica

In[1]:= <<Statistics‘ContinuousDistributions‘

In[2]:= dist = FRatioDistribution[9, 19]

Out[2]= FRatioDistribution[9, 19]

In[3]:= F[x_] = CDF[dist, x]

19 19 9
Out[3]= BetaRegularized[--------, 1, --, -]

19 + 9 x 2 2

In[4]:= 1 - F[2]
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19 19 9
Out[4]= 1 - BetaRegularized[--, 1, --, -]

37 2 2

In[5]:= N[%]

Out[5]= 0.0974132

(The last command tells Mathematica to evaluate the immediately preceding
expression giving a numerical result). This can be done more concisely if less
intelligibly as

In[6]:= N[1 - CDF[FRatioDistribution[9, 19], 2]]

Out[6]= 0.0974132

7.4 Sampling Distributions of Sample Quantiles

The sample quantiles are the quantiles of the empirical distribution associ-
ated with the data vector X = (X1, . . . , Xn). They are mostly of interest only
for continuous population distributions. A sample quantile can always be taken
to be an order statistic by Theorem 7.5. Hence the exact sampling distributions
of the empirical quantiles are given by the exact sampling distributions for order
statistics, which are given by equation (5) on p. 217 of Lindgren

fX(k)(y) =
n!

(k − 1)!(n − k)!
F (y)k−1[1 − F (y)]n−kf(y) (7.35)

when the population distribution is continuous, (where, as usual, F is the c. d. f.
of the Xi and f is their p. d. f.). Although this is a nice formula, it is fairly
useless. We can’t calculate any moments or other useful quantities, except in the
special case where the Xi have a U(0, 1) distribution, so F (y) = y and f(y) = 1
for all y and we recognize

fX(k)(y) =
n!

(k − 1)!(n − k)!
yk−1(1 − y)n−k (7.36)

as a Beta(k, n − k + 1) distribution.
Much more useful is the asymptotic distribution of the sample quantiles

given by the following. We will delay the proof of the theorem until the fol-
lowing chapter, where we will develop the tools of multivariate convergence in
distribution used in the proof.

Theorem 7.27. Suppose X1, X2, . . . are continuous random variables that are
independent and identically distributed with density f that is nonzero at the p-th
quantile xp, and suppose

√
n

(
kn

n
− p

)
→ 0, as n → ∞, (7.37)
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then √
n
(
X(kn) − xp

) D−→ N
(

0,
p(1 − p)
f(xp)2

)
, as n → ∞. (7.38)

Or the sloppy version

X(kn) ≈ N
(

xp,
p(1 − p)
nf(xp)2

)
.

In particular, if we define kn = dnpe, then X(kn) is a sample p-th quantile
by Theorem 7.5. The reason for the extra generality, is that the theorem makes
it clear that X(kn+1) also has the same asymptotic distribution. Since X(kn) ≤
X(kn+1) always holds by definition of order statistics, this can only happen if

√
n
(
X(kn+1) − X(kn)

) P−→ 0.

Hence the average

X̃n =
X(kn) + X(kn+1)

2
which is the conventional definition of the sample median, has the same asymp-
totic normal distribution as either X(kn) or X(kn+1).

Corollary 7.28. Suppose X1, X2, . . . are continuous random variables that
are independent and identically distributed with density f that is nonzero the
population median m, then

√
n
(
X̃n − m

) D−→ N
(

0,
1

4f(xp)2

)
, as n → ∞.

This is just the theorem with xp = m and p = 1/2. The sloppy version is

X̃n ≈ N
(

m,
1

4nf(m)2

)
.

Example 7.4.1 (Median, Normal Population).
If X1, X2, . . . are i. i. d. N (µ, σ2), then the population median is µ by symmetry
and the p. d. f. at the median is

f(µ) =
1

σ
√

2π

Hence

X̃n ≈ N
(

µ,
πσ2

2n

)
.

or, more precisely,
√

n(X̃n − µ) D−→ N
(

0,
πσ2

2

)



7.4. SAMPLING DISTRIBUTIONS OF SAMPLE QUANTILES 207

Problems

7-1. The median absolute deviation from the median (MAD) of a random vari-
able X with unique median m is the median of the random variable Y = |X−m|.
The MAD of the values x1, . . ., xn is the median of the values xi− x̃n, where x̃n

is the empirical median defined in Definition 7.1.4. This is much more widely
used than the “other MAD,” mean absolute deviation from the mean, discussed
in Lindgren.

(a) Show that for a symmetric continuous random variable with strictly posi-
tive p. d. f. the MAD is half the interquartile range. (The point of requiring
a strictly positive p. d. f. is that this makes all the quantiles unique and dis-
tinct. The phenomena illustrated in the middle and right panels of Figure
3-3 in Lindgren cannot occur.)

(b) Calculate the MAD for the standard normal distribution.

(c) Calculate the MAD for the data in Problem 7-4 in Lindgren.

7-2. Prove Lemma 7.10.

7-3. Show that if T ∼ t(ν), then T 2 ∼ F (1, ν).

7-4. Show that if X ∼ F (µ, ν) and ν > 2, then

E(X) =
ν

ν − 2

7-5. Prove Theorem 7.20.

7-6. Find the asymptotic distribution of the sample median of an i. i. d. sample
from the following distributions:

(a) Cauchy(µ, σ) with density fµ,σ given by

fµ,σ(x) =
σ

π(σ2 + [x − µ]2)
, −∞ < x < +∞

(b) The double exponential distribution (also called Laplace distribution) hav-
ing density

fµ,σ(x) =
1
2σ

e−|x−µ|/σ, −∞ < x < +∞

7-7. Suppose X1, X2, . . . are i. i. d. U(0, θ). As usual X(n) denotes the n-th
order statistic, which is the maximum of the Xi.

(a) Show that

X(n)
P−→ θ, as n → ∞.
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(b) Show that
n
(
θ − X(n)

) D−→ Exp(1/θ), as n → ∞.

Hints This is a rare problem (the only one of the kind we will meet in this
course) when we can’t use the LLN or the CLT to get convergence in probability
and convergence in distribution results (obvious because the problem is not
about Xn and the asymptotic distribution we seek isn’t normal). Thus we need
to derive convergence in distribution directly from the definition (Definition 6.1.1
in these notes or the definition on p. 135 in Lindgren).
Hint for Part (a): Show that the c. d. f. of X(n) converges to the c. d. f. of
the constant random variable θ. (Why does this do the job?)
Hint for Part (b): Define

Yn = n
(
θ − X(n)

)
(the random variable we’re trying to get an asymptotic distribution for). Derive
its c. d. f. FYn

(y). What you need to show is that

FYn
(y) → F (y), for all y

where F is the c. d. f. of the Exp(1/θ) distribution. The fact from calculus

lim
n→∞

(
1 +

x

n

)n

= ex

is useful in this.
You can derive the c. d. f. of Yn from the c. d. f. of X(n), which is given in

the first displayed equation (unnumbered) of Section 7.6 in Lindgren.

7-8. Suppose X1, . . ., Xn are i. i. d. N (µ, σ2). What is the probability that
|Xn − µ| > 2Sn/

√
n if n = 10?

7-9. Suppose X1, . . ., Xn are i. i. d. N (µ, σ2). What is the probability that
S2

n > 2σ2 if n = 10?

7-10. R and Mathematica and many textbooks use a different parameterization
of the gamma distribution. They write

f(x | α, β) =
1

βαΓ(α)
xα−1e−x/β (7.39)

rather than
f(x | α, λ) =

λα

Γ(α)
xα−1e−λx (7.40)

Clearly the two parameterizations have the same first parameter α, as the no-
tation suggests, and second parameters related by λ = 1/β.

(a) Show that β is the usual kind of scale parameter, that if X has p. d. f.
(7.39), then σX has p. d. f. f(x | α, σβ), where again the p. d. f. is defined
by (7.39).
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(b) Show that λ is an “upside down” scale parameter, that if X has p. d. f.
(7.40), then σX has p. d. f. f(x | α, λ/σ), where now the p. d. f. is defined
by (7.40).

7-11. Show if X has k-th central moment

µk = E{(X − µ)k}

where, as usual, µ = E(X), then Y = a + bX has k-th central moment bkµk.

7-12. What is the asymptotic distribution of the variance Vn of the empirical
distribution for an i. i. d. Exp(λ) sample?

7-13. Suppose X is standard normal (so µX = 0 and σX = 1).

(a) What is P (|X| > 2σX)?

In contrast, suppose X has a t(3) distribution (so µX = 0 and the variance σ2
X

is given by Problem 7-5)

(b) Now what is P (|X| > 2σX)?

7-14. With all the same assumptions as in Example 7.3.8, what are

(a) P (S2
2 > S2

1)?

(b) P (S2
2 > 2S2

1)?

7-15. Suppose X1, X2, X3, . . . is an i. i. d. sequence of random variables with
mean µ and variance σ2, and Xn is the sample mean. Show that

√
n

(
Xn − µ

)k P−→ 0

for any integer k > 1. (Hint: Use the CLT, the continuous mapping theorem
for convergence in distribution, and Slutsky’s theorem.)
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Appendix A

Greek Letters

Table A.1: Table of Greek Letters (Continued on following page.)

capital small
name letter letter pronunciation sound
alpha A α AL-fah short a
beta B β BAY-tah b
gamma Γ γ GAM-ah g
delta ∆ δ DEL-tah d
epsilon E ε EP-si-lon e
zeta Z ζ ZAY-tah z
eta H η AY-tah long a
theta Θ θ or ϑ THAY-thah soft th (as in thin)
iota I ι EYE-oh-tah i
kappa K κ KAP-ah k
lambda Λ λ LAM-dah l
mu M µ MYOO m
nu N ν NOO n
xi Ξ ξ KSEE x (as in box)
omicron O o OH-mi-kron o
pi Π π PIE p
rho R ρ RHOH rh1

sigma Σ σ SIG-mah s
tau T τ TAOW t
upsilon Υ υ UP-si-lon u

1The sound of the Greek letter ρ is not used in English. English words, like rhetoric and
rhinoceros that are descended from Greek words beginning with ρ have English pronunciations
beginning with an “r” sound rather than “rh” (though the spelling reminds us of the Greek
origin).
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Table A.2: Table of Greek Letters (Continued.)

capital small
name letter letter pronunciation sound
phi Φ φ or ϕ FIE f
chi X χ KIE guttural ch2

psi Ψ ψ PSY ps (as in stops)3

omega Ω ω oh-MEG-ah o

2The sound of the Greek letter χ is not used in English. It is heard in the German Buch
or Scottish loch. English words, like chemistry and chorus that are descended from Greek
words beginning with χ have English pronunciations beginning with a “k” sound rather than
“guttural ch” (though the spelling reminds us of the Greek origin).

3English words, like pseudonym and psychology that are descended from Greek words
beginning with ψ have English pronunciations beginning with an “s” sound rather than “ps”
(though the spelling reminds us of the Greek origin).



Appendix B

Summary of Brand-Name
Distributions

B.1 Discrete Distributions

B.1.1 The Discrete Uniform Distribution

The Abbreviation DU(S).

The Sample Space Any finite set S.

The Density

f(x) =
1
n

, x ∈ S,

where n = card(S).

Specialization The case in which the sample space consists of consecutive
integers S = {m,m + 1, . . . , n} is denoted DU(m,n).

Moments If X ∼ DU(1, n), then

E(X) =
n + 1

2

var(X) =
n2 − 1

12

B.1.2 The Binomial Distribution

The Abbreviation Bin(n, p)

The Sample Space The integers 0, . . ., n.
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The Parameter p such that 0 < p < 1.

The Density

f(x) =
(

n

x

)
px(1 − p)n−x, x = 0, . . . , n.

Moments

E(X) = np

var(X) = np(1 − p)

Specialization
Ber(p) = Bin(1, p)

B.1.3 The Geometric Distribution, Type II

Note This section has changed. The roles of p and 1 − p have been reversed,
and the abbreviation Geo(p) is no longer used to refer to this distribution but
the distribution defined in Section B.1.8. All of the changes are to match up
with Chapter 6 in Lindgren.

The Abbreviation No abbreviation to avoid confusion with the other type
defined in Section B.1.8.

Relation Between the Types If X ∼ Geo(p), then Y = X − 1 has the
distribution defined in this section.

X is the number of trials before the first success in an i. i. d. sequence of
Ber(p) random variables. Y is the number of failures before the first success.

The Sample Space The integers 0, 1, . . . .

The Parameter p such that 0 < p < 1.

The Density
f(x) = p(1 − p)x, x = 0, 1, . . . .

Moments

E(X) =
1
p
− 1 =

1 − p

p

var(X) =
1 − p

p2
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B.1.4 The Poisson Distribution

The Abbreviation Poi(µ)

The Sample Space The integers 0, 1, . . . .

The Parameter µ such that µ > 0.

The Density

f(x) =
µx

x!
e−µ, x = 0, 1, . . . .

Moments

E(X) = µ

var(X) = µ

B.1.5 The Bernoulli Distribution

The Abbreviation Ber(p)

The Sample Space The integers 0 and 1.

The Parameter p such that 0 < p < 1.

The Density

f(x) =

{
p, x = 1
1 − p x = 0

Moments

E(X) = p

var(X) = p(1 − p)

Generalization
Ber(p) = Bin(1, p)

B.1.6 The Negative Binomial Distribution, Type I

The Abbreviation NegBin(k, p)

The Sample Space The integers k, k + 1, . . . .

The Parameter p such that 0 < p < 1.
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The Density

f(x) =
(

x − 1
k − 1

)
pk(1 − p)x−k, x = k, k + 1, . . . .

Moments

E(X) =
k

p

var(X) =
k(1 − p)

p2

Specialization
Geo(p) = NegBin(1, p)

B.1.7 The Negative Binomial Distribution, Type II

The Abbreviation No abbreviation to avoid confusion with the other type
defined in Section B.1.6.

Relation Between the Types If X ∼ NegBin(k, p), then Y = X − k has
the distribution defined in this section.

X is the number of trials before the k-th success in an i. i. d. sequence of
Ber(p) random variables. Y is the number of failures before the k-th success.

The Sample Space The integers 0, 1, . . . .

The Parameter p such that 0 < p < 1.

The Density

f(x) =
(

x − 1
k − 1

)
pk(1 − p)x, x = 0, 1, . . . .

Moments

E(X) =
k

p
− k =

k(1 − p)
p

var(X) =
k(1 − p)

p2

B.1.8 The Geometric Distribution, Type I

The Abbreviation Geo(p)

The Sample Space The integers 1, 2, . . . .



B.2. CONTINUOUS DISTRIBUTIONS 217

The Parameter p such that 0 < p < 1.

The Density
f(x) = p(1 − p)x−1, x = 1, 2, . . . .

Moments

E(X) =
1
p

var(X) =
1 − p

p2

Generalization
Geo(p) = NegBin(1, p)

B.2 Continuous Distributions

B.2.1 The Uniform Distribution

The Abbreviation U(S).

The Sample Space Any subset S of Rd.

The Density

f(x) =
1
c
, x ∈ S,

where

c = m(S) =
∫

S

dx

is the measure of S (length in R1, area in R2, volume in R3, and so forth).

Specialization The case having S = (a, b) in R1 and density

f(x) =
1

b − a
, a < x < b

is denoted U(a, b).

Moments If X ∼ U(a, b), then

E(X) =
a + b

2

var(X) =
(b − a)2

12
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B.2.2 The Exponential Distribution

The Abbreviation Exp(λ).

The Sample Space The interval (0,∞) of the real numbers.

The Parameter λ such that λ > 0.

The Density
f(x) = λe−λx, x > 0.

Moments

E(X) =
1
λ

var(X) =
1
λ2

Generalization
Exp(λ) = Gam(1, λ)

B.2.3 The Gamma Distribution

The Abbreviation Gam(α, λ).

The Sample Space The interval (0,∞) of the real numbers.

The Parameters α and λ such that α > 0 and λ > 0.

The Density

f(x) =
λα

Γ(α)
xα−1e−λx, x > 0.

where Γ(α) is the gamma function (Section B.3.1 below).

Moments

E(X) =
α

λ

var(X) =
α

λ2

Specialization

Exp(λ) = Gam(1, λ)

chi2(k) = Gam
(

k
2 , 1

2

)
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B.2.4 The Beta Distribution

The Abbreviation Beta(s, t).

The Sample Space The interval (0, 1) of the real numbers.

The Parameters s and t such that s > 0 and t > 0.

The Density

f(x) =
1

B(s, t)
xs−1(1 − x)t−1 0 < x < 1.

where B(s, t) is the beta function defined by

B(s, t) =
Γ(s)Γ(t)
Γ(s + t)

(B.1)

Moments

E(X) =
s

s + t

var(X) =
st

(s + t)2(s + t + 1)

B.2.5 The Normal Distribution

The Abbreviation N (µ, σ2).

The Sample Space The real line R.

The Parameters µ and σ2 such that σ2 > 0.

The Density

f(x) =
1√
2πσ

exp
(
− (x − µ)2

2σ2

)
, x ∈ R.

Moments

E(X) = µ

var(X) = σ2

µ4 = 3σ4

B.2.6 The Chi-Square Distribution

The Abbreviation chi2(k).
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The Sample Space The interval (0,∞) of the real numbers.

The Parameter A positive integer k.

The Density

f(x) =
1

2k/2Γ(k/2)
xk/2−1e−x/2, x > 0.

Moments

E(X) = k

var(X) = 2k

Generalization
chi2(k) = Gam

(
k
2 , 1

2

)
B.2.7 The Cauchy Distribution

The Abbreviation Cauchy(µ, σ).

The Sample Space The real line R.

The Parameters µ and σ such that σ > 0.

The Density

f(x) =
1
π
· σ

σ2 + (x − µ)2
, x ∈ R.

Moments None: E(|X|) = ∞.

B.3 Special Functions

B.3.1 The Gamma Function

The Definition

Γ(α) =
∫ ∞

0

xα−1e−x dx, α > 0 (B.2)

The Recursion Relation

Γ(α + 1) = αΓ(α) (B.3)
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Known Values
Γ(1) = 1

and hence using the recursion relation

Γ(n + 1) = n!

for any nonnegative integer n.
Also

Γ( 1
2 ) =

√
π

and hence using the recursion relation

Γ( 3
2 ) = 1

2

√
π

Γ( 5
2 ) = 3

2 · 1
2

√
π

Γ( 7
2 ) = 5

2 · 3
2 · 1

2

√
π

and so forth.

B.3.2 The Beta Function

The function B(s, t) defined by (B.1).

B.4 Discrete Multivariate Distributions

B.4.1 The Multinomial Distribution

The Abbreviation Multik(n,p) or Multi(n,p) if the dimension k is clear
from context.

The Sample Space

S = {y ∈ Nk : y1 + · · · yk = n }

where N denotes the “natural numbers” 0, 1, 2, . . . .

The Parameter p = (p1, . . . , pk) such that pi ≥ 0 for all i and
∑

i pi = 1.

The Density

f(y) =
(

n

y1, . . . , yk

) k∏
j=1

p
yj

j , y ∈ S
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Moments

E(Y) = np

var(Y) = M

where M is the k × k matrix with elements

mij =

{
npi(1 − pi), i = j

−npipj i 6= j

Specialization The special case n = 1 is called the multivariate Bernoulli
distribution

Berk(p) = Bink(1,p)

but for once we will not spell out the details with a special section for the
multivariate Bernoulli. Just take n = 1 in this section.

Marginal Distributions Distributions obtained by collapsing categories are
again multinomial (Section 5.4.5 in these notes).

In particular, if Y ∼ Multik(n,p), then

(Y1, . . . , Yj , Yj+1 + · · · + Yk) ∼ Multij+1(n,q) (B.4)

where

qi = pi, i ≤ j

qj+1 = pj+1 + · · · pk

Because the random vector in (B.4) is degenerate, this equation also gives
implicitly the marginal distribution of Y1, . . ., Yj

f(y1, . . . , yj)

=
(

n

y1, . . . , yj , n − y1 − · · · − yj

)
py1
1 · · · pyj

j (1 − p1 − · · · − pj)n−y1−···−yj

Univariate Marginal Distributions If Y ∼ Multi(n,p), then

Yi ∼ Bin(n, pi).

Conditional Distributions If Y ∼ Multik(n,p), then

(Y1, . . . , Yj) | (Yj+1, . . . , Yk) ∼ Multij(n − Yj+1 − · · · − Yk,q),

where
qi =

pi

p1 + · · · + pj
, i = 1, . . . , j.
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B.5 Continuous Multivariate Distributions

B.5.1 The Uniform Distribution

The uniform distribution defined in Section B.2.1 actually made no mention
of dimension. If the set S on which the distribution is defined lies in Rn, then
this is a multivariate distribution.

Conditional Distributions Every conditional distribution of a multivariate
uniform distribution is uniform.

Marginal Distributions No regularity. Depends on the particular distribu-
tion. Marginals of the uniform distribution on a rectangle with sides parallel
to the coordinate axes are uniform. Marginals of the uniform distribution on a
disk or triangle are not uniform.

B.5.2 The Standard Normal Distribution

The distribution of a random vector Z = (Z1, . . . , Zk) with the Zi i. i. d.
standard normal.

Moments

E(Z) = 0
var(Z) = I,

where I denotes the k × k identity matrix.

B.5.3 The Multivariate Normal Distribution

The distribution of a random vector X = a + BZ, where Z is multivariate
standard normal.

Moments

E(X) = µ = a

var(X) = M = BB′

The Abbreviation N k(µ,M) or N (µ,M) if the dimension k is clear from
context.

The Sample Space If M is positive definite, the sample space is Rk.
Otherwise, X is concentrated on the intersection of hyperplanes determined

by null eigenvectors of M

S = {x ∈ Rk : z′x = z′µ whenever Mz = 0 }
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The Parameters The mean vector µ and variance matrix M.

The Density Only exists if the distribution is nondegenerate (M is positive
definite). Then

fX(x) =
1

(2π)n/2 det(M)1/2
exp

(− 1
2 (x − µ)′M−1(x − µ)

)
, x ∈ Rk

Marginal Distributions All are normal. If

X =
(
X1

X2

)
is a partitioned random vector with (partitioned) mean vector

E(X) = µ =
(

µ1

µ2

)
and (partitioned) variance matrix

var(X) = M =
(
M11 M12

M21 M22

)
and X ∼ N (µ,M), then

X1 ∼ N (µ1,M11).

Conditional Distributions All are normal. If X is as in the preceding sec-
tion and X2 is nondegenerate, then the conditional distribution of X1 given X2

is normal with

E(X1 | X2) = µ1 + M12M−1
22 (X2 − µ2)

var(X1 | X2) = M11 − M12M−1
22 M21

If X2 is degenerate so M22 is not invertible, then the conditional distribution
of X1 given X2 is still normal and the same formulas work if M−1

22 is replaced
by a generalized inverse.

B.5.4 The Bivariate Normal Distribution

The special case k = 2 of the preceeding section.

The Density

f(x, y) =
1

2πσXσY

√
1 − ρ2

×

exp
(
− 1

2(1 − ρ2)

[
(x − µX)2

σ2
X

− 2ρ(x − µX)(y − µY )
σXσY

+
(y − µY )2

σ2
Y

])
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Marginal Distributions
Y ∼ N (µY , σ2

Y )

Conditional Distributions The conditional distribution of X given Y is
normal with

E(X | Y ) = µX + ρ
σX

σY
(Y − µY )

var(X | Y ) = σ2
X(1 − ρ2)

where ρ = cor(X,Y ).



226 Stat 5101 (Geyer) Course Notes



Appendix C

Addition Rules for
Distributions

“Addition rules” for distributions are rules of the form: if X1, . . ., Xk are
independent with some specified distributions, then X1 + · · · + Xk has some
other specified distribution.

Bernoulli If X1, . . ., Xk are i. i. d. Ber(p), then

X1 + · · · + Xk ∼ Bin(k, p). (C.1)

• All the Bernoulli distributions must have the same success probability p.

Binomial If X1, . . ., Xk are independent with Xi ∼ Bin(ni, p), then

X1 + · · · + Xk ∼ Bin(n1 + · · · + nk, p). (C.2)

• All the binomial distributions must have the same success probability p.

• (C.1) is the special case of (C.2) obtained by setting n1 = · · · = nk = 1.

Geometric If X1, . . ., Xk are i. i. d. Geo(p), then

X1 + · · · + Xk ∼ NegBin(k, p). (C.3)

• All the geometric distributions must have the same success probability p.

Negative Binomial If X1, . . ., Xk are independent with Xi ∼ NegBin(ni, p),
then

X1 + · · · + Xk ∼ NegBin(n1 + · · · + nk, p). (C.4)

• All the negative binomial distributions must have the same success prob-
ability p.

• (C.3) is the special case of (C.4) obtained by setting n1 = · · · = nk = 1.
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Poisson If X1, . . ., Xk are independent with Xi ∼ Poi(µi), then

X1 + · · · + Xk ∼ Poi(µ1 + · · · + µk). (C.5)

Exponential If X1, . . ., Xk are i. i. d. Exp(λ), then

X1 + · · · + Xk ∼ Gam(n, λ). (C.6)

• All the exponential distributions must have the same rate parameter λ.

Gamma If X1, . . ., Xk are independent with Xi ∼ Gam(αi, λ), then

X1 + · · · + Xk ∼ Gam(α1 + · · · + αk, λ). (C.7)

• All the gamma distributions must have the same rate parameter λ.

• (C.6) is the special case of (C.7) obtained by setting α1 = · · · = αk = 1.

Chi-Square If X1, . . ., Xk are independent with Xi ∼ chi2(ni), then

X1 + · · · + Xk ∼ chi2(n1 + · · · + nk). (C.8)

• (C.8) is the special case of (C.7) obtained by setting

αi = ni/2 and λi = 1/2, i = 1, . . . , k.

Normal If X1, . . ., Xk are independent with Xi ∼ N (µi, σ
2
i ), then

X1 + · · · + Xk ∼ N (µ1 + · · · + µk, σ2
1 + · · · + σ2

k). (C.9)

Linear Combination of Normals If X1, . . ., Xk are independent with Xi ∼
N (µi, σ

2
i ) and a1, . . ., ak are constants, then

k∑
i=1

aiXi ∼ N
(

k∑
i=1

aiµi,
k∑

i=1

a2
i σ

2
i

)
. (C.10)

• (C.9) is the special case of (C.10) obtained by setting a1 = · · · = ak = 1.

Cauchy If X1, . . ., Xk are independent with Xi ∼ Cauchy(µ, σ), then

X1 + · · · + Xk ∼ Cauchy(nµ, nσ). (C.11)



Appendix D

Relations Among Brand
Name Distributions

D.1 Special Cases

First there are the special cases, which were also noted in Appendix B.

Ber(p) = Bin(1, p)
Geo(p) = NegBin(1, p)
Exp(λ) = Gam(1, λ)

chi2(k) = Gam
(

k
2 , 1

2

)
The main point of this appendix are the relationships that involve more

theoretical issues.

D.2 Relations Involving Bernoulli Sequences

Suppose X1, X2, . . . are i. i. d. Ber(p) random variables.
If n is a positive integer and

Y = X1 + · · · + Xn

is the number of “successes” in the n Bernoulli trials, then

Y ∼ Bin(n, p).

On the other hand, if y is positive integer and N is the trial at which the
y-th success occurs, that is the random number N such that

X1 + · · · + XN = y

X1 + · · · + Xk < y, k < N,

then
N ∼ NegBin(y, p).
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D.3 Relations Involving Poisson Processes

In a one-dimensional homogeneous Poisson process with rate parameter λ,
the counts are Poisson and the waiting and interarrival times are exponential.
Specifically, the number of points (arrivals) in an interval of length t has the
Poi(λt) distribution, and the waiting times and interarrival times are indepen-
dent and indentically Exp(λ) distributed.

Even more specifically, let X1, X2, . . . be i. i. d. Exp(λ) random variables.
Take these to be the waiting and interarrival times of a Poisson process. This
means the arrival times themselves are

Tk =
k∑

i=1

Xi

Note that
0 < T1 < T2 < · · ·

and
Xi = Ti − Ti−1, i > 1

so these are the interarrival times and X1 = T1 is the waiting time until the
first arrival.

The characteristic property of the Poisson process, that counts have the
Poisson distribution, says the number of points in the interval (0, t), that is, the
number of Ti such that Ti < t, has the Poi(λt) distribution.

D.4 Normal and Chi-Square

If Z1, Z2, . . . are i. i. d. N (0, 1), then

Z2
1 + . . . Z2

n ∼ chi2(n).



Appendix E

Eigenvalues and
Eigenvectors

E.1 Orthogonal and Orthonormal Vectors

If x and y are vectors of the same dimension, we say they are orthogonal
if x′y = 0. Since the transpose of a matrix product is the product of the
transposes in reverse order, an equivalent condition is y′x = 0. Orthogonality
is the n-dimensional generalization of perpendicularity. In a sense, it says that
two vectors make a right angle.

The length or norm of a vector x = (x1, . . . , xn) is defined to be

‖x‖ =
√

x′x =

√√√√ n∑
i=1

x2
i .

Squaring both sides gives

‖x‖2 =
n∑

i=1

x2
i ,

which is one version of the Pythagorean theorem, as it appears in analytic
geometry.

Orthogonal vectors give another generalization of the Pythagorean theorem.
We say a set of vectors {x1, . . . ,xk} is orthogonal if

x′
ixj = 0, i 6= j. (E.1)
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Then

‖x1 + · · · + xk‖2 = (x1 + · · · + xk)′(x1 + · · · + xk)

=
k∑

i=1

k∑
j=1

x′
ixj

=
k∑

i=1

x′
ixi

=
k∑

i=1

‖xi‖2

because, by definition of orthogonality, all terms in the second line with i 6= j
are zero.

We say an orthogonal set of vectors is orthonormal if

x′
ixi = 1. (E.2)

That is, a set of vectors {x1, . . . ,xk} is orthonormal if it satisfies both (E.1) and
(E.2).

An orthonormal set is automatically linearly independent because if

k∑
i=1

cixi = 0,

then

0 = x′
j

(
k∑

i=1

cixi

)
= cjx′

jxj = cj

holds for all j. Hence the only linear combination that is zero is the one with
all coefficients zero, which is the definition of linear independence.

Being linearly independent, an orthonormal set is always a basis for whatever
subspace it spans. If we are working in n-dimensional space, and there are n
vectors in the orthonormal set, then they make up a basis for the whole space.
If there are k < n vectors in the set, then they make up a basis for some proper
subspace.

It is always possible to choose an orthogonal basis for any vector space or
subspace. One way to do this is the Gram-Schmidt orthogonalization procedure,
which converts an arbitrary basis y1, . . ., yn to an orthonormal basis x1, . . .,
xn as follows. First let

x1 =
y1

‖y1‖ .

Then define the xi in order. After x1, . . ., xk−1 have been defined, let

zk = yk −
k−1∑
i=1

xix′
iy



E.2. EIGENVALUES AND EIGENVECTORS 233

and
xk =

zk

‖zk‖ .

It is easily verified that this does produce an orthonormal set, and it is only
slightly harder to prove that none of the xi are zero because that would imply
linear dependence of the yi.

E.2 Eigenvalues and Eigenvectors

If A is any matrix, we say that λ is a right eigenvalue corresponding to a
right eigenvector x if

Ax = λx

Left eigenvalues and eigenvectors are defined analogously with “left multiplica-
tion” x′A = λx′, which is equivalent to A′x = λx. So the right eigenvalues
and eigenvectors of A′ are the left eigenvalues and eigenvectors of A. When
A is symmetric (A′ = A), the “left” and “right” concepts are the same and
the adjectives “left” and “right” are unnecessary. Fortunately, this is the most
interesting case, and the only one in which we will be interested. From now on
we discuss only eigenvalues and eigenvectors of symmetric matrices.

There are three important facts about eigenvalues and eigenvectors. Two
elementary and one very deep. Here’s the first (one of the elementary facts).

Lemma E.1. Eigenvectors corresponding to distinct eigenvalues are orthogonal.

This means that if
Axi = λixi (E.3)

then
λi 6= λj implies x′

ixj = 0.

Proof. Suppose λi 6= λj , then at least one of the two is not zero, say λj . Then

x′
ixj =

x′
iAxj

λj
=

(Axi)′xj

λj
=

λix′
ixj

λj
=

λi

λj
· x′

ixj

and since λi 6= λj the only way this can happen is if x′
ixj = 0.

Here’s the second important fact (also elementary).

Lemma E.2. Every linear combination of eigenvectors corresponding to the
same eigenvalue is another eigenvector corresponding to that eigenvalue.

This means that if
Axi = λxi

then

A

(
k∑

i=1

cixi

)
= λ

(
k∑

i=1

cixi

)
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Proof. This is just linearity of matrix multiplication.

The second property means that all the eigenvectors corresponding to one
eigenvalue constitute a subspace. If the dimension of that subspace is k, then
it is possible to choose an orthonormal basis of k vectors that span the sub-
space. Since the first property of eigenvalues and eigenvectors says that (E.1)
is also satisfied by eigenvectors corresponding to different eigenvalues, all of the
eigenvectors chosen this way form an orthonormal set.

Thus our orthonormal set of eigenvectors spans a subspace of dimension m
which contains all eigenvectors of the matrix in question. The question then
arises whether this set is complete, that is, whether it is a basis for the whole
space, or in symbols whether m = n, where n is the dimension of the whole
space (A is an n × n matrix and the xi are vectors of dimension n). It turns
out that the set is always complete, and this is the third important fact about
eigenvalues and eigenvectors.

Lemma E.3. Every real symmetric matrix has an orthonormal set of eigenvec-
tors that form a basis for the space.

In contrast to the first two facts, this is deep, and we shall not say anything
about its proof, other than that about half of the typical linear algebra book is
given over to building up to the proof of this one fact.

The “third important fact” says that any vector can be written as a linear
combination of eigenvectors

y =
n∑

i=1

cixi

and this allows a very simple description of the action of the linear operator
described by the matrix

Ay =
n∑

i=1

ciAxi =
n∑

i=1

ciλixi (E.4)

So this says that when we use an orthonormal eigenvector basis, if y has the
representation (c1, . . . , cn), then Ay has the representation (c1λ1, . . . , cnλn).
Let D be the representation in the orthonormal eigenvector basis of the linear
operator represented by A in the standard basis. Then our analysis above says
the i-the element of Dc is ciλi, that is,

n∑
j=1

dijcj = λici.

In order for this to hold for all real numbers ci, it must be that D is diagonal

dii = λi

dij = 0, i 6= j
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In short, using the orthonormal eigenvector basis diagonalizes the linear opera-
tor represented by the matrix in question.

There is another way to describe this same fact without mentioning bases.
Many people find it a simpler description, though its relation to eigenvalues and
eigenvectors is hidden in the notation, no longer immediately apparent. Let O
denote the matrix whose columns are the orthonormal eigenvector basis (x1,
. . ., xn), that is, if oij are the elements of O, then

xi = (o1i, . . . , oni).

Now (E.1) and (E.2) can be combined as one matrix equation

O′O = I (E.5)

(where, as usual, I is the n × n identity matrix). A matrix O satisfying this
property is said to be orthogonal. Another way to read (E.5) is that it says
O′ = O−1 (an orthogonal matrix is one whose inverse is its transpose). The
fact that inverses are two-sided (AA−1 = A−1A = I for any invertible matrix
A) implies that OO′ = I as well.

Furthermore, the eigenvalue-eigenvector equation (E.3) can be written out
with explicit subscripts and summations as

n∑
j=1

aijojk = λkoik = oikdkk =
n∑

j=1

oijdjk

(where D is the the diagonal matrix with eigenvalues on the diagonal defined
above). Going back to matrix notation gives

AO = OD (E.6)

The two equations (E.3) and (E.6) may not look much alike, but as we have
just seen, they say exactly the same thing in different notation. Using the
orthogonality property (O′ = O−1) we can rewrite (E.6) in two different ways.

Theorem E.4 (Spectral Decomposition). Any real symmetric matrix A
can be written

A = ODO′ (E.7)

where D is diagonal and O is orthogonal.
Conversely, for any real symmetric matrix A there exists an orthogonal ma-

trix O such that
D = O′AO

is diagonal.

(The reason for the name of the theorem is that the set of eigenvalues is
sometimes called the spectrum of A). The spectral decomposition theorem says
nothing about eigenvalues and eigenvectors, but we know from the discussion
above that the diagonal elements of D are the eigenvalues of A, and the columns
of O are the corresponding eigenvectors.
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E.3 Positive Definite Matrices

Using the spectral theorem, we can prove several interesting things about
positive definite matrices.

Corollary E.5. A real symmetric matrix A is positive semi-definite if and only
if its spectrum is nonnegative. A real symmetric matrix A is positive definite if
and only if its spectrum is strictly positive.

Proof. First suppose that A is positive semi-definite with spectral decomposi-
tion (E.7). Let ei denote the vector having elements that are all zero except the
i-th, which is one, and define w = Oei, so

0 ≤ w′Aw = e′iO
′ODO′Oei = e′iDei = dii (E.8)

using O′O = I. Hence the spectrum is nonnegative.
Conversely, suppose the dii are nonnegative. Then for any vector w define

z = O′w, so
w′Aw = w′ODO′w = z′Dz =

∑
i
diiz

2
i ≥ 0

Hence A is positive semi-definite.
The assertions about positive definiteness are proved in almost the same

way. Suppose that A is positive definite. Since ei is nonzero, w in (E.8) is also
nonzero because ei = O′w would be zero (and it isn’t) if w were zero. Thus the
inequality in (E.8) is actually strict. Hence the spectrum of is strictly positive.

Conversely, suppose the dii are strictly positive. Then for any nonzero vector
w define z = O′w as before, and again note that z is nonzero because w = Oz
and w is nonzero. Thus w′Aw = z′Dz > 0, and hence A is positive definite.

Corollary E.6. A positive semi-definite matrix is invertible if and only if it is
positive definite.

Proof. It is easily verified that the product of diagonal matrices is diagonal and
the diagonal elements of the product are the products of the diagonal elements
of the multiplicands. Thus a diagonal matrix D is invertible if and only if all its
diagonal elements dii are nonzero, in which case D−1 is diagonal with diagonal
elements 1/dii.

Since O and O′ in the spectral decomposition (E.7) are invertible, A is
invertible if and only if D is, hence if and only if its spectrum is nonzero, in
which case

A−1 = OD−1O′.

By the preceding corollary the spectrum of a positive semi-definite matrix is
nonnegative, hence nonzero if and only if strictly positive, which (again by the
preceding corollary) occurs if and only if the matrix is positive definite.

Corollary E.7. Every real symmetric positive semi-definite matrix A has a
symmetric square root

A1/2 = OD1/2O′ (E.9)
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where (E.7) is the spectral decomposition of A and where D1/2 is defined to be
the diagonal matrix whose diagonal elements are

√
dii, where dii are the diagonal

elements of D.
Moreover, A1/2 is positive definite if and only if A is positive definite.

Note that by Corollary E.5 all of the diagonal elements of D are nonnegative
and hence have real square roots.

Proof.

A1/2A1/2 = OD1/2O′OD1/2O′ = OD1/2D1/2O′ = ODO′ = A

because O′O = I and D1/2D1/2 = D.
From Corollary E.5 we know that A is positive definite if and only if all the

dii are strictly positive. Since (E.9) is the spectral decomposition of A1/2, we
see that A1/2 is positive definite if and only if all the

√
dii are strictly positive.

Clearly dii > 0 if and only if
√

dii > 0.
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Appendix F

Normal Approximations for
Distributions

F.1 Binomial Distribution

The Bin(n, p) distribution is approximately normal with mean np and vari-
ance np(1 − p) if n is large.

F.2 Negative Binomial Distribution

The NegBin(n, p) distribution is approximately normal with mean n/p and
variance n(1 − p)/p2 if n is large.

F.3 Poisson Distribution

The Poi(µ) distribution is approximately normal with mean µ and variance
µ if µ is large.

F.4 Gamma Distribution

The Gam(α, λ) distribution is approximately normal with mean α/λ and
variance α/λ2 if α is large.

F.5 Chi-Square Distribution

The chi2(n) distribution is approximately normal with mean n and variance
2n if n is large.
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