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1 Discrete Uniform Distribution
Abbreviation DiscUnif(n).

Type Discrete.

Rationale Equally likely outcomes.

Sample Space The interval 1, 2, ..., n of the integers.

Probability Mass Function

1
f(x):ﬁ, xr=1,2,...,n
Moments
B(X) = n—2}— 1
n?—1
var(X) = 1

2 General Discrete Uniform Distribution

Type Discrete.

Sample Space Any finite set S.
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Probability Mass Function

fz) =

1
-, T €S,
n

where n is the number of elements of S.

3 Uniform Distribution

Abbreviation Unif(a,b).

Type Continuous.

Rationale Continuous analog of the discrete uniform distribution.
Parameters Real numbers a and b with a < b.

Sample Space The interval (a,b) of the real numbers.

Probability Density Function

f(x):bia, a<z<b
Moments
B(X) = a—2|—b
var(X) = (b I;)z

Relation to Other Distributions Beta(1, 1) = Unif(0,1).

4 General Uniform Distribution

Type Continuous.

Sample Space Any open set .S in R™.



Probability Density Function
f($) = res

where ¢ is the measure (length in one dimension, area in two, volume in
three, etc.) of the set S.

5 Bernoulli Distribution
Abbreviation Ber(p).

Type Discrete.

Rationale Any zero-or-one-valued random variable.
Parameter Real number 0 < p < 1.

Sample Space The two-element set {0, 1}.

Probability Mass Function

1—p, z=0
Moments
E(X)=p
var(X) = p(1 - p)
Addition Rule If X, ..., X are IID Ber(p) random variables, then

X1+ -+ X is a Bin(k, p) random variable.

Degeneracy If p = 0 the distribution is concentrated at 0. If p = 1 the
distribution is concentrated at 1.

Relation to Other Distributions Ber(p) = Bin(1,p).



6 Binomial Distribution

Abbreviation Bin(n,p).

Type Discrete.

Rationale Sum of n IID Bernoulli random variables.
Parameters Real number 0 < p < 1. Integer n > 1.
Sample Space The interval 0, 1, ..., n of the integers.

Probability Mass Function
n _
f(a:):()pm(l—p)” z, x=0,1,...,n

Moments

E(X)=np
var(X) = np(1 - p)

Addition Rule If X, ..., X} are independent random variables, X; being

Bin(n;, p) distributed, then X; 4 -+ + X} is a Bin(ny + - - - + ng, p) random
variable.

Normal Approximation If np and n(1 — p) are both large, then
Bin(n, p) ~ N(np, np(l — p))
Poisson Approximation If n is large but np is small, then
Bin(n, p) =~ Poi(np)

Theorem The fact that the probability mass function sums to one is
equivalent to the binomial theorem: for any real numbers a and b

Zn: (Z) a*b"F = (a + b)".

k=0



Degeneracy If p = 0 the distribution is concentrated at 0. If p = 1 the
distribution is concentrated at n.

Relation to Other Distributions Ber(p) = Bin(1,p).
7 Hypergeometric Distribution
Abbreviation Hypergeometric(A4, B,n).

Type Discrete.

Rationale Sample of size n without replacement from finite population of
B zeros and A ones.

Sample Space The interval max(0,n — B), ..., min(n, A) of the integers.

Probability Mass Function

() (.2)

f(z) = W, x =max(0,n — B),...,min(n, A)
Moments
E(X)=np
N-—n
var(X) =np(1l —p) - N1
where
A
N=A+1B

Binomial Approximation If n is small compared to either A or B, then
Hypergeometric(n, A, B) =~ Bin(n, p)

where p is given by (7.1).



Normal Approximation If n is large, but small compared to either A
or B, then
Hypergeometric(n, A, B) =~ N (np, np(1 — p))

where p is given by (7.1).

Theorem The fact that the probability mass function sums to one is

equivalent to
min(A,n)

> OG-

z=max(0,n—B)

8 Poisson Distribution

Abbreviation Poi(u)

Type Discrete.

Rationale Counts in a Poisson process.
Parameter Real number p > 0.

Sample Space The non-negative integers 0, 1, ....

Probability Mass Function

Moments

Addition Rule If Xy, ..., X} are independent random variables, X; being
Poi(u;) distributed, then X+ - -+ X} is a Poi(u1 +- - -+ %) random variable.

Normal Approximation If y is large, then

Poi(u) ~ N (u, 1)



Theorem The fact that the probability mass function sums to one is
equivalent to the Maclaurin series for the exponential function: for any

real number z
© K
x xT
g — =e".
k!
k=0

9 Geometric Distribution

Abbreviation Geo(p).
Type Discrete.

Rationales
e Discrete lifetime of object that does not age.
e Waiting time or interarrival time in sequence of IID Bernoulli trials.
e Inverse sampling.

e Discrete analog of the exponential distribution.
Parameter Real number 0 < p <1.
Sample Space The non-negative integers 0, 1, ....

Probability Mass Function

flx)y=pl—p)* x=0,1,...

Moments
B(X) = =P
p
var(X) = 1p—2p
Addition Rule If Xj, ..., X} are IID Geo(p) random variables, then

X1+ -+ X is a NegBin(k, p) random variable.



Theorem The fact that the probability mass function sums to one is
equivalent to the geometric series: for any real number s such that |s| < 1

> 1
ZSk:l—s'

k=0

Degeneracy If p =1 the distribution is concentrated at 0.
10 Negative Binomial Distribution
Abbreviation NegBin(r,p).

Type Discrete.

Rationale
e Sum of IID geometric random variables.
e Inverse sampling.

e Gamma mixture of Poisson distributions.
Parameters Real number 0 < p < 1. Integer r > 1.
Sample Space The non-negative integers 0, 1, ....

Probability Mass Function

(@) = <T+x_1>pT(1—p)m, r=0,1,...

Moments
r(1—p)
BE(X) = p
r(l—
var(X) = ( e P)

Addition Rule If Xy, ..., X} are independent random variables, X; being
NegBin(r;, p) distributed, then X; + -+ 4+ X} is a NegBin(ry + - -+ + 7, p)
random variable.



Normal Approximation If r(1 — p) is large, then

NegBin(r, p) ~ N(T(l —p) Tl p)>

P p?

Degeneracy If p =1 the distribution is concentrated at 0.

Extended Definition The definition makes sense for noninteger r if bi-
nomial coefficients are defined by

(r) _7“-(7'—1)~-k-!(7"—k—|—1)

k

which for integer r agrees with the standard definition.

Also
<T+i_ 1> = (-1) C:) (10.1)

which explains the name “negative binomial.”

Theorem The fact that the probability mass function sums to one is
equivalent to the generalized binomial theorem: for any real number
s such that —1 < s < 1 and any real number m

go (Zf) sF = (14 s)™. (10.2)

If m is a nonnegative integer, then (ZL) is zero for k > m, and we get the
ordinary binomial theorem.

Changing variables from m to —m and from s to —s and using (10.1)
turns (10.2) into

S (7 f: (7)o =

k=0

which has a more obvious relationship to the negative binomial density sum-
ming to one.

11 Normal Distribution

Abbreviation N (p,o?).

10



Type Continuous.

Rationale

e Limiting distribution in the central limit theorem.

e Error distribution that turns the method of least squares into maxi-
mum likelihood estimation.

Parameters Real numbers p and o2 > 0.
Sample Space The real numbers.

Probability Density Function

1
flz) = 76_(”:_“)2/2”2, —00 < T < 00

\V2To

Moments
E(X)=p
var(X) = o?
E{(X — )’} =0
B{(X - '} = 30"

Linear Transformations If X is A(y,0?) distributed, then aX + b is
N(ap + b, a?0?) distributed.

Addition Rule If Xy, ..., X} are independent random variables, X; being
N (pi, 0?) distributed, then X1+ -+ Xg is a N(pg +- -+ pg, 08+ -+ 03)
random variable.

Theorem The fact that the probability density function integrates to one
is equivalent to the integral

/ e F/2dy = Vo

Relation to Other Distributions If Z is N/(0,1) distributed, then Z2
is Gam(3, 1) = chi*(1) distributed. Also related to Student ¢, Snedecor F,
and Cauchy distributions (for which see).
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12 Exponential Distribution

Abbreviation Exp(\).
Type Continuous.

Rationales
e Lifetime of object that does not age.
e Waiting time or interarrival time in Poisson process.

e Continuous analog of the geometric distribution.
Parameter Real number A > 0.
Sample Space The interval (0,00) of the real numbers.

Probability Density Function

f(z) = Xe 2, 0<z<oo

Cumulative Distribution Function

F(z)=1—e"2, 0<z<oo
Moments
1
B(X) =~
(X)=1
1
var(X) = 2
Addition Rule If Xj, ..., X} are IID Exp(\) random variables, then

X1+ -+ Xi is a Gam(k, \) random variable.

Relation to Other Distributions Exp(\) = Gam(1,\).

13 Gamma Distribution

Abbreviation Gam(a, \).

12



Type Continuous.

Rationales

e Sum of IID exponential random variables.

e Conjugate prior for exponential, Poisson, or normal precision family.
Parameter Real numbers a > 0 and A > 0.
Sample Space The interval (0,00) of the real numbers.

Probability Density Function

flx) = A e 0<z<oo

where I'(«) is defined by (13.1) below.

Moments

Addition Rule If Xy, ..., X} are independent random variables, X; being
Gam(a;, A) distributed, then Xy +---4 X}, is a Gam(ay +- - -+ oy, A) random
variable.

Normal Approximation If « is large, then

a «
Gam(a, \) ~ N()\’ )\2>

Theorem The fact that the probability density function integrates to one
is equivalent to the integral

/ xa—le—)\x dr = F(Oé)
0 A%

the case A = 1 is the definition of the gamma function

INa) = /000 e e da (13.1)

13



Relation to Other Distributions
e Exp(A\) = Gam(1, \).
e chi’*(v) = Gam(%, 3).

e If X and Y are independent, X is I'(cv, A) distributed and Y is I'(ag, A)
distributed, then X /(X +Y) is Beta(a1, a2) distributed.

e If Zis N(0,1) distributed, then Z? is Gam(3}, 1) distributed.

Facts About Gamma Functions Integration by parts in (13.1) estab-
lishes the gamma function recursion formula

MNa+1) =al(w), a>0 (13.2)
The relationship between the Exp(A) and Gam(1, \) distributions gives
ra)=1
and the relationship between the A'(0,1) and Gam(3, 3) distributions gives
r() = V7
Together with the recursion (13.2) these give for any positive integer n
Fn+1)=mn!

and

14 Beta Distribution

Abbreviation Beta(ag, as).
Type Continuous.

Rationales
e Ratio of gamma random variables.

e Conjugate prior for binomial or negative binomial family.

14



Parameter Real numbers o; > 0 and asy > 0.
Sample Space The interval (0,1) of the real numbers.

Probability Density Function

['(a1 + ag) o1

az—1 T
7I‘(041)F(042) (1—2x) O<z<l1

fz) =
where I'(«) is defined by (13.1) above.

Moments

a1

B(X) =

a1 + Qo
102

var(X) = (a1 + a2)2(a1 + as + 1)

Theorem The fact that the probability density function integrates to one
is equivalent to the integral

['(a)I(a2)

1
e (1 — )iy = =2
/0 ( ) [(a1 + asg)

Relation to Other Distributions

e If X and Y are independent, X is I'(aq, \) distributed and Y is I'(a2, A)
distributed, then X/(X +Y) is Beta(aq, a) distributed.

e Beta(1,1) = Unif(0,1).

15 Multinomial Distribution

Abbreviation Multi(n,p).
Type Discrete.

Rationale Multivariate analog of the binomial distribution.

15



Parameters Real vector p in the parameter space

k
{pGRk:OSpi,i—l,...,k, and Zpi—l} (15.1)
=1

(real vectors whose components are nonnegative and sum to one).

Sample Space The set of vectors
k
S:{XEZk:OSxi,izl,...,k, and szzn} (15.2)
i=1

(integer vectors whose components are nonnegative and sum to n).

Probability Mass Function

k
roo = () It xes
=1

n\ n!
x)  T1F . g
[Tz 2!

is called a multinomial coefficient.

where

Moments

E(X)=np
var(X) = nM
where
M =P —pp"

where P is the diagonal matrix whose vector of diagonal elements is p.
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Addition Rule If X;, ..., X} are independent random vectors, X; being
Multi(n;, p) distributed, then X; + -+ + Xy is a Multi(ny + - -+ + ng, p)
random variable.

Normal Approximation If n is large and p is not near the boundary of
the parameter space (15.1), then

Multi(n, p) = N (np,nM)

Theorem The fact that the probability mass function sums to one is
equivalent to the multinomial theorem: for any vector a of real num-

bers i
SO ra—

x€eS

Degeneracy If a vector a exists such that Ma = 0, then var(a’X) = 0.

In particular, the vector u = (1,1,...,1) always satisfies Mu = 0, so
var(u’'X) = 0. This is obvious, since u’ X = Zle X; = n by definition of
the multinomial distribution, and the variance of a constant is zero. This
means a multinomial random vector of dimension £ is “really” of dimension
no more than k — 1 because it is concentrated on a hyperplane containing
the sample space (15.2).

Marginal Distributions FEvery univariate marginal is binomial
X; ~ Bin(n, p;)

Not, strictly speaking marginals, but random vectors formed by col-

lapsing categories are multinomial. If Ay, ..., A,, is a partition of the set
{1,...,k} and
Yj:ZXi, j=1,....,m
’iEAj
qj:zpi’ jzl,...,m
I€A;

then the random vector Y has a Multi(n, q) distribution.

17



Conditional Distributions If {i;,... 4} and {iy41,...,0} partition
the set {1,...,k}, then the conditional distribution of X;,, ..., Xj;, given

KXippirs -+ Xy, is Multi(n — X5, — — Xi,,q), where the parameter
vector q has components
Di; .
q]:—J7 j:17"'7m
pil + e +pi'm

Relation to Other Distributions
e Each marginal of a multinomial is binomial.

e If X is Bin(n,p), then the vector (X,n — X) is Multi(n, (p,1 — p)).

16 Bivariate Normal Distribution

Abbreviation See multivariate normal below.
Type Continuous.
Rationales See multivariate normal below.

Parameters Real vector p of dimension 2, real symmetric positive semi-
definite matrix M of dimension 2 x 2 having the form

M — o % pPoO102
poioy O3
where g1 > 0, 09 > 0 and —1 < p < +1.
Sample Space The Euclidean space R2.
Probability Density Function

£ = 5 det(M) ™2 xp (3 (x — ) "M x — )

1 1 (xl —Ml)
= exp | —
27r\/1—p20102 2(1_/)2) g1
2
_Qp(xl Ml) (372 H2)+<$2 M2> ]), x € R2
o1 09 09

18




Moments

Linear Transformations See multivariate normal below.
Addition Rule See multivariate normal below.
Marginal Distributions X, is A/ (,ui,af) distributed, i = 1, 2.

Conditional Distributions The conditional distribution of X5 given X3
is

N (12 4+ 02 1 = ). (1= )03

17 Multivariate Normal Distribution

Abbreviation N (u, M)
Type Continuous.

Rationales
e Multivariate analog of the univariate normal distribution.

e Limiting distribution in the multivariate central limit theorem.

Parameters Real vector p of dimension k, real symmetric positive semi-
definite matrix M of dimension k x k.

Sample Space The Euclidean space R¥.

19



Probability Density Function If M is (strictly) positive definite,
F(x) = (2m) M2 det(M) 2 exp (< (x — )M N x - ), x € RE

Otherwise there is no density (X is concentrated on a hyperplane).

Moments (Vector Form)

EX)=p
var(X) =M

Linear Transformations If X is N(u, M) distributed, then a + BX,
where a is a constant vector and B is a constant matrix of dimensions

such that the vector addition and matrix multiplication make sense, has the
N(a+ Bu, BMBT) distribution.

Addition Rule If X;, ..., X} are independent random vectors, X; being
N (w;, M) distributed, then Xq+- - -+Xj is a N (g +- - -+ pog, M+ - -+My)
random variable.

Degeneracy If a vector a exists such that Ma = 0, then var(a’ X) = 0.

Partitioned Vectors and Matrices The random vector and parameters
are written in partitioned form

X = (2) (17.1a)
p= <Z;) (17.1b)
M = <x; 1;6;;) (17.1c¢)

when X; consists of the first r elements of X and Xy of the other k£ — r
elements and similarly for p; and p,.

Marginal Distributions FEvery marginal of a multivariate normal is nor-
mal (univariate or multivariate as the case may be). In partitioned form,
the (marginal) distribution of X; is N'(pq, My1).

20



Conditional Distributions Every conditional of a multivariate normal
is normal (univariate or multivariate as the case may be). In partitioned
form, the conditional distribution of X given Xy is

N(py +Mi12Moy[Xo — po], Myy — Mi2M5p My )

where the notation M, denotes the inverse of the matrix M., if the matrix
is invertible and otherwise any generalized inverse.

18 Chi-Square Distribution
Abbreviation chi?(v) or x2(v).
Type Continuous.

Rationales
e Sum of squares of IID standard normal random variables.

e Sampling distribution of sample variance when data are IID normal.

Asymptotic distribution in Pearson chi-square test.

Asymptotic distribution of log likelihood ratio.
Parameter Real number v > 0 called “degrees of freedom.”
Sample Space The interval (0,00) of the real numbers.

Probability Density Function

(3)"/2
f(z) = 27ny/2_16_x/2, 0 <z < oo.
(%)
Moments
EX)=v
var(X) = 2v

Addition Rule If Xy, ..., X} are independent random variables, X; being
chi?(1;) distributed, then X+ - -4 X}, is a chi®(v; +- - -414,) random variable.

21



Normal Approximation If v is large, then

chi?(v) =~ N (v, 2v)

Relation to Other Distributions
e chi’*(v) = Gam(%, 3).
e If X is NV(0,1) distributed, then X? is chi®(1) distributed.

e If Z and Y are independent, X is AV'(0,1) distributed and Y is chi?(v)
distributed, then X/\/Y/v is t(v) distributed.

e If X and Y are independent and are chi?(u) and chi?(v) distributed,
respectively, then (X/u)/(Y/v) is F(u,v) distributed.

19 Student’s ¢t Distribution

Abbreviation t(v).
Type Continuous.

Rationales

e Sampling distribution of pivotal quantity /n(X, — u)/S, when data
are IID normal.

e Marginal for p in conjugate prior family for two-parameter normal
data.

Parameter Real number v > 0 called “degrees of freedom.”
Sample Space The real numbers.

Probability Density Function

—o0o <<+
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Moments If v > 1, then
E(X)=0.
Otherwise the mean does not exist. If v > 2, then

14

var(X) = 5

Otherwise the variance does not exist.

Normal Approximation If v is large, then

t(v) ~ N(0,1)

Relation to Other Distributions

e If X and Y are independent, X is AV(0,1) distributed and Y is chi?(v)
distributed, then X//Y/v is t(v) distributed.

e If X is t(v) distributed, then X? is F(1,v) distributed.
e t(1) = Cauchy(0,1).

20 Snedecor’s F' Distribution

Abbreviation F(u,v).
Type Continuous.

Rationale

e Ratio of sums of squares for normal data (test statistics in regression
and analysis of variance).

Parameters Real numbers ¢ > 0 and v > 0 called “numerator degrees of
freedom” and “denominator degrees of freedom,” respectively.

Sample Space The interval (0,00) of the real numbers.

Probability Density Function

F(NT-FV)MM/QVV/Q xu/?—l
T@) = "3 r@ o s o) en e
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Moments If v > 2, then

Otherwise the mean does not exist.

Relation to Other Distributions

e If X and Y are independent and are chi?(u) and chi?(v) distributed,
respectively, then (X/u)/(Y/v) is F(u,v) distributed.

e If X is t(v) distributed, then X? is F(1,v) distributed.

21 Cauchy Distribution

Abbreviation Cauchy(u,0).
Type Continuous.

Rationales
e Very heavy tailed distribution.

e Counterexample to law of large numbers.
Parameters Real numbers p and o > 0.
Sample Space The real numbers.
Probability Density Function

1 1
flx) = — —o00 < o < 400

oL (5E)
Moments No moments exist.

Addition Rule If X, ..., X} are IID Cauchy(u, o) random variables,
then X,, = (X1 + -+ + X})/n is also Cauchy(u, o).
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Relation to Other Distributions

e {(1) = Cauchy(0,1).

22 Laplace Distribution

Abbreviation Laplace(u, o).
Type Continuous.

Rationales The sample median is the maximum likelihood estimate of
the location parameter.

Parameters Real numbers 4 and ¢ > 0, called the mean and standard
deviation, respectively.

Sample Space The real numbers.

Probability Density Function

f(x):fexp<—\/§x_u‘>, —00 < T < 00
Moments
E(X)=pn
var(X) = o?
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