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Likelihood Inference

We have learned one very general method of estimation: the

method of moments.

Now we learn another: the method of maximum likelihood.
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Likelihood

Suppose have a parametric statistical model specified by a PMF

or PDF. Our convention of using boldface to distinguish between

scalar data x and vector data x and a scalar parameter θ and a

vector parameter θ becomes a nuisance here. To begin our

discussion we write the PMF or PDF as fθ(x). But it makes no

difference in likelihood inference if the data x is a vector. Nor

does it make a difference in the fundamental definitions if the

parameter θ is a vector.

You may consider x and θ to be scalars, but much of what we

say until further notice works equally well if either x or θ is a

vector or both are.
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Likelihood

The PMF or PDF, considered as a function of the unknown

parameter or parameters rather than of the data is called the

likelihood function

L(θ) = fθ(x)

Although L(θ) also depends on the data x, we suppress this in

the notation. If the data are considered random, then L(θ) is

a random variable, and the function L is a random function. If

the data are considered nonrandom, as when the observed value

of the data is plugged in, then L(θ) is a number, and L is an

ordinary mathematical function. Since the data X or x do not

appear in the notation L(θ), we cannot distinguish these cases

notationally and must do so by context.
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Likelihood (cont.)

For all purposes that likelihood gets used in statistics — it is

the key to both likelihood inference and Bayesian inference — it

does not matter if multiplicative terms not containing unknown

parameters are dropped from the likelihood function.

If L(θ) is a likelihood function for a given problem, then so is

L∗(θ) =
L(θ)

h(x)

where h is any strictly positive real-valued function.

5



Log Likelihood

In frequentist inference, the log likelihood function, which is the

logarithm of the likelihood function, is more useful. If L is the

likelihood function, we write

l(θ) = logL(θ)

for the log likelihood.

When discussing asymptotics, we often add a subscript denot-

ing sample size, so the likelihood becomes Ln(θ) and the log

likelihood becomes ln(θ).

Note: we have yet another capital and lower case convention:

capital L for likelihood and lower case l for log likelihood.
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Log Likelihood (cont.)

As we said before (slide 5), we may drop multiplicative terms not

containing unknown parameters from the likelihood function. If

L(θ) = h(x)g(x, θ)

we may drop the term h(x). Since

l(θ) = logh(x) + log g(x, θ)

this means we may drop additive terms not containing unknown

parameters from the log likelihood function.
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Examples

Suppose X is Bin(n, p), then the likelihood is

Ln(p) =
(n
x

)
px(1− p)n−x

but we may, if we like, drop the term that does not contain the

parameter, so

Ln(p) = px(1− p)n−x

is another (simpler) version of the likelihood.

The log likelihood is

ln(p) = x log(p) + (n− x) log(1− p)
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Examples (cont.)

Suppose X1, . . ., Xn are IID N (µ, ν), then the likelihood is

Ln(µ, ν) =
n∏
i=1

fθ(xi)

=
n∏
i=1

1√
2πν

e−(xi−µ)2/(2ν)

= (2π)−n/2ν−n/2 exp

− 1

2ν

n∑
i=1

(xi − µ)2


but we may, if we like, drop the term that does not contain
parameters, so

Ln(µ, ν) = ν−n/2 exp

− 1

2ν

n∑
i=1

(xi − µ)2
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Examples (cont.)

The log likelihood is

ln(µ, ν) = −
n

2
log(ν)−

1

2ν

n∑
i=1

(xi − µ)2

We can further simplify this using the empirical mean square

error formula (slide 7, deck 1)

1

n

n∑
i=1

(xi − µ)2 = vn + (x̄n − µ)2

where x̄n is the mean and vn the variance of the empirical distri-

bution. Hence

ln(µ, ν) = −
n

2
log(ν)−

nvn

2ν
−
n(x̄n − µ)2

2ν
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Log Likelihood (cont.)

What we consider the log likelihood may depend on what we
consider the unknown parameters.

If we say µ is unknown but ν is known in the preceding example,
then we may drop additive terms not containing µ from the log
likelihood, obtaining

ln(µ) = −
n(x̄n − µ)2

2ν
If we say ν is unknown but µ is known in the preceding example,
then every term contains ν so there is nothing to drop, but we
do change the argument of ln to be only the unknown parameter

ln(ν) = −
n

2
log(ν)−

1

2ν

n∑
i=1

(xi − µ)2
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Maximum Likelihood Estimation

The maximum likelihood estimate (MLE) of an unknown param-

eter θ (which may be a vector) is the value of θ that maximizes

the likelihood in some sense.

It is hard to find the global maximizer of the likelihood. Thus

a local maximizer is often used and also called an MLE. The

global maximizer can behave badly or fail to exist when the right

choice of local maximizer can behave well. More on this later.

θ̂n is a global maximizer of Ln if and only if it is a global maximizer

of ln. Same with local replacing global.
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Local Maxima

Suppose W is an open interval of R and f : W → R is a differen-

tiable function. From calculus, a necessary condition for a point

x ∈W to be a local maximum of f is

f ′(x) = 0 (∗)

Also from calculus, if f is twice differentiable and (∗) holds, then

f ′′(x) ≤ 0

is another necessary condition for x to be a local maximum and

f ′′(x) < 0

is a sufficient condition for x to be a local maximum.
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Global Maxima

Conditions for global maxima are, in general, very difficult. Every

known procedure requires exhaustive search over many possible

solutions.

There is one special case — concavity — that occurs in many

likelihood applications and guarantees global maximizers.
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Concavity

Suppose W is an open interval of R and f : W → R is a twice-

differentiable function. Then f is concave if

f ′′(x) ≤ 0, for all x ∈W

and f is strictly concave if

f ′′(x) < 0, for all x ∈W
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Concavity (cont.)

From the fundamental theorem of calculus

f ′(y) = f ′(x) +
∫ y
x
f ′′(s) ds

Hence concavity implies f ′ is nonincreasing

f ′(x) ≥ f ′(y), whenever x < y

and strict concavity implies f ′ is decreasing

f ′(x) > f ′(y), whenever x < y
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Concavity (cont.)

Suppose f ′(x) = 0. Another application of the fundamental

theorem of calculus gives

f(y) = f(x) +
∫ y
x
f ′(s) ds

Suppose f is concave. If x < y, then 0 = f ′(x) ≥ f ′(s) when

s > x, hence ∫ y
x
f ′(s) ds ≤ 0

and f(y) ≤ f(x). If y < x, then f ′(s) ≥ f ′(x) = 0 when s < x,

hence

−
∫ y
x
f ′(s) ds =

∫ x
y
f ′(s) ds ≥ 0

and again f(y) ≤ f(x).
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Concavity (cont.)

Summarizing, if f ′(x) = 0 and f is concave, then

f(y) ≤ f(x), whenever y ∈W

hence x is a global maximizer of f .

By a similar argument, if f ′(x) = 0 and f is strictly concave,

then

f(y) < f(x), whenever y ∈W and y 6= x

hence x is the unique global maximizer of f .
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Concavity (cont.)

The first and second order conditions are almost the same with

and without concavity. Suppose we find a point x satisfying

f ′(x) = 0

This is a candidate local or global optimizer. We check the

second derivative.

f ′′(x) < 0

implies x is a local maximizer.

f ′′(y) < 0, for all y in the domain of f

implies x is a the unique global maximizer. The only difference is

whether we check the second derivative only at x or at all points.
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Examples (cont.)

For the binomial distribution the log likelihood

ln(p) = x log(p) + (n− x) log(1− p)

has derivatives

l′n(p) =
x

p
−
n− x
1− p

=
x− np
p(1− p)

l′′n(p) = −
x

p2
−

n− x
(1− p)2

Setting l′(p) = 0 and solving for p gives p = x/n. Since l′′(p) < 0

for all p we have strict concavity and p̂n = x/n is the unique

global maximizer of the log likelihood.
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Examples (cont.)

The analysis on the preceding slide doesn’t work when p̂n = 0 or

p̂n = 1 because the log likelihood and its derivatives are undefined

when p = 0 or p = 1. More on this later.
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Examples (cont.)

For IID normal data with known mean µ and unknown variance

ν the log likelihood

ln(ν) = −
n

2
log(ν)−

1

2ν

n∑
i=1

(xi − µ)2

has derivatives

l′n(ν) = −
n

2ν
+

1

2ν2

n∑
i=1

(xi − µ)2

l′′n(ν) =
n

2ν2
−

1

ν3

n∑
i=1

(xi − µ)2
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Examples (cont.)

Setting l′n(ν) = 0 and solving for ν we get

σ̂2
n = ν̂n =

1

n

n∑
i=1

(xi − µ)2

(recall that µ is supposed known, so this is a statistic).

Since

l′′n(ν̂n) =
n

2ν̂2
n
−

1

ν̂3
n

n∑
i=1

(xi − µ)2

= −
n

2ν̂2
n

we can say this MLE is a local maximizer of the log likelihood.
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Examples (cont.)

Since

l′′n(ν) =
n

2ν2
−

1

ν3

n∑
i=1

(xi − µ)2

=
n

2ν2
−
nν̂n

ν3

is not negative for all data and all ν > 0, we cannot say the MLE

is the unique global maximizer, at least not from this analysis.

More on this later.
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MLE on Boundary of Parameter Space

All of this goes out the window when we consider possible max-

ima that occur on the boundary of the domain of a function.

For a function whose domain is a one-dimensional interval, this

means the endpoints of the interval.
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MLE on Boundary of Parameter Space (cont.)

Suppose X1, . . ., Xn are IID Unif(0, θ). The likelihood is

Ln(θ) =
n∏
i=1

fθ(xi)

=
n∏
i=1

1

θ
I[0,θ](xi)

= θ−n
n∏
i=1

I[0,θ](xi)

= θ−nI[x(n),∞)(θ)

The indicator functions I[0,θ](xi) are all equal to one if and only if

xi ≤ θ for all i, which happens if and only if x(n) ≤ θ, a condition

that is captured in the indicator function on the bottom line.
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MLE on Boundary of Parameter Space (cont.)

θ

L n
(θ

)

x(n)

0

●

●●

Likelihood for Unif(0, θ) model.
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MLE on Boundary of Parameter Space (cont.)

It is clear from the picture that the unique global maximizer of

the likelihood is

θ̂n = x(n)

the n-th order statistic, which is the largest data value.

For those who want more math, it is often easier to work with

the likelihood rather than log likelihood when the MLE is on the

boundary. It is clear from the picture that θ 7→ θ−n is a decreasing

function, hence the maximum must occur at the lower end of

the range of validity of this formula, which is at θ = x(n).
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MLE on Boundary of Parameter Space (cont.)

If one doesn’t want to use the picture at all,

L′n(θ) = −nθ−(n+1), θ > x(n)

shows the derivative of Ln is negative, hence Ln is a decreasing

function when θ > x(n), which is the interesting part of the

domain.
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MLE on Boundary of Parameter Space (cont.)

Because of the way we defined the likelihood at θ = x(n), the

maximum is achieved. This came from the way we defined the

PDF

fθ(x) =
1

θ
I[0,θ](x)

Recall that the definition of a PDF at particular points is ar-

bitrary. In particular, we could have defined it arbitrarily at 0

and θ. We chose the definition we did so that the value of the

likelihood function at the discontinuity, which is at θ = x(n), is

the upper value as indicated by the solid and hollow dots in the

picture of the likelihood function.
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MLE on Boundary of Parameter Space (cont.)

For the binomial distribution, there were two cases we did not
do: x = 0 and x = n. If p̂n = x/n is also the correct MLE for
them, then the MLE is on the boundary.

Again we use the likelihood

Ln(p) = px(1− p)n−x, 0 < p < 1

In case x = 0, this becomes

Ln(p) = (1− p)n, 0 ≤ p ≤ 1

Now that we no longer have to worry about 00 being undefined,
we can extend the domain to 0 ≤ p ≤ 1. It is easy to check
that Ln is a decreasing function: draw the graph or check that
L′n(p) < 0 for 0 < p < 1. Hence the unique global maximum
occurs at p = 0. The case x = n is similar. In all cases p̂ = x/n.
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Usual Asymptotics of MLE

The method of maximum likelihood estimation is remarkable in

that we can determine the asymptotic distribution of estima-

tors that are defined only implicitly — the maximizer of the log

likelihood — and perhaps can only be calculated by computer op-

timization. In case we do have an explicit expression of the MLE,

the asymptotic distribution we now derive must agree with the

one calculated via the delta method, but is easier to calculate.
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Asymptotics for Log Likelihood Derivatives

Consider the identity ∫
fθ(x) dx = 1

or the analogous identity with summation replacing integration

for the discrete case. We assume we can differentiate with re-

spect to θ under the integral sign

d

dθ

∫
fθ(x) dx =

∫
d

dθ
fθ(x) dx

This operation is usually valid. We won’t worry about precise

technical conditions.
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Asymptotics for Log Likelihood Derivatives (cont.)

Since the derivative of a constant is zero, we have∫
d

dθ
fθ(x) dx = 0

Also

l′(θ) =
d

dθ
log fθ(x)

=
1

fθ(x)

d

dθ
fθ(x)

Hence
d

dθ
fθ(x) = l′(θ)fθ(x)

and

0 =
∫
l′(θ)fθ(x) dx = Eθ{l′(θ)}
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Asymptotics for Log Likelihood Derivatives (cont.)

This gives us the first log likelihood derivative identity

Eθ{l′n(θ)} = 0

which always holds whenever differentiation under the integral

sign is valid (which is usually).

Note that it is important that we write Eθ for expectation rather

than E. The identity holds when the θ in l′n(θ) and the θ in Eθ
are the same.
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Asymptotics for Log Likelihood Derivatives (cont.)

For our next trick we differentiate under the integral sign again∫
d2

dθ2
fθ(x) dx = 0

Also

l′′(θ) =
d

dθ

1

fθ(x)

d

dθ
fθ(x)

=
1

fθ(x)

d2

dθ2
fθ(x)−

1

fθ(x)2

(
d

dθ
fθ(x)

)2

Hence

d2

dθ2
fθ(x) = l′′(θ)fθ(x) + l′(θ)2fθ(x)

and

0 =
∫
l′′(θ)fθ(x) dx+

∫
l′(θ)2fθ(x) dx = Eθ{l′′(θ)}+ Eθ{l′(θ)2}
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Asymptotics for Log Likelihood Derivatives (cont.)

This gives us the second log likelihood derivative identity

varθ{l′n(θ)} = −Eθ{l′′n(θ)}

which always holds whenever differentiation under the integral

sign is valid (which is usually). The reason why

varθ{l′n(θ)} = Eθ{l′n(θ)2}

is the first log likelihood derivative identity Eθ{l′n(θ)} = 0.

Note that it is again important that we write Eθ for expectation

and varθ for variance rather then E and var.
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Asymptotics for Log Likelihood Derivatives (cont.)

Summary:

Eθ{l′n(θ)} = 0

varθ{l′n(θ)} = −Eθ{l′′n(θ)}

These hold whether the data is discrete or continuous (for dis-

crete data just replace integrals by sums in the preceding proofs).
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Fisher Information

Either side of the second log likelihood derivative identity is called

Fisher information

In(θ) = varθ{l′n(θ)}
= −Eθ{l′′n(θ)}
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Asymptotics for Log Likelihood Derivatives (cont.)

When the data are IID, then the log likelihood and its derivatives

are the sum of IID terms

ln(θ) =
n∑
i=1

log fθ(xi)

l′n(θ) =
n∑
i=1

d

dθ
log fθ(xi)

l′′n(θ) =
n∑
i=1

d2

dθ2
log fθ(xi)

From either of the last two equations we see that

In(θ) = nI1(θ)
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Asymptotics for Log Likelihood Derivatives (cont.)

If we divide either of the equations for likelihood derivatives on

the preceding overhead by n, the sums become averages of IID

random variables

n−1l′n(θ) =
1

n

n∑
i=1

d

dθ
log fθ(xi)

n−1l′′n(θ) =
1

n

n∑
i=1

d2

dθ2
log fθ(xi)

Hence the LLN and CLT apply to them.
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Asymptotics for Log Likelihood Derivatives (cont.)

To apply the LLN we need to know the expectation of the indi-

vidual terms

Eθ

{
d

dθ
log fθ(xi)

}
= Eθ{l′1(θ)}

= 0

Eθ

{
d2

dθ2
log fθ(xi)

}
= Eθ{l′′1(θ)}

= −I1(θ)
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Asymptotics for Log Likelihood Derivatives (cont.)

Hence the LLN applied to log likelihood derivatives says

n−1l′n(θ)
P−→ 0

n−1l′′n(θ)
P−→ −I1(θ)

It is assumed here that θ is the true unknown parameter value,

that is, X1, X2, . . . are IID with PDF or PMF fθ.
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Asymptotics for Log Likelihood Derivatives (cont.)

To apply the CLT we need to know the mean and variance of

the individual terms

Eθ

{
d

dθ
log fθ(xi)

}
= Eθ{l′1(θ)}

= 0

varθ

{
d

dθ
log fθ(xi)

}
= varθ{l′1(θ)}

= I1(θ)

We don’t know the variance of l′′n(θ) so we don’t obtain a CLT

for it.
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Asymptotics for Log Likelihood Derivatives (cont.)

Hence the CLT applied to log likelihood first derivative says

√
n
(
n−1l′n(θ)− 0

) D−→ N
(
0, I1(θ)

)
or (cleaning this up a bit)

n−1/2l′n(θ)
D−→ N

(
0, I1(θ)

)
It is assumed here that θ is the true unknown parameter value,

that is, X1, X2, . . . are IID with PDF or PMF fθ.
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Asymptotics for MLE

The MLE θ̂n satisfies

l′n(θ̂n) = 0

because the MLE is a local maximizer (at least) of the log like-

lihood.

Expand the first derivative of the log likelihood in a Taylor series

about the true unknown parameter value, which we now start

calling θ0

l′n(θ) = l′n(θ0) + l′′n(θ0)(θ − θ0) + higher order terms
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Asymptotics for MLE

We rewrite this

n−1/2l′n(θ) = n−1/2l′n(θ0) + n−1l′′n(θ0)n1/2(θ − θ0)

+ higher order terms

because we know the asymptotics of n−1/2l′n(θ0) and n−1l′′n(θ0).

Then we assume the higher order terms are negligible when θ̂n

is plugged in for θ

0 = n−1/2l′n(θ0) + n−1l′′n(θ0)n1/2(θ̂n − θ0) + op(1)
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Asymptotics for MLE

This implies

√
n(θ̂n − θ0) = −

n−1/2l′n(θ0)

n−1l′′n(θ0)
+ op(1)

and by Slutsky’s theorem

√
n(θ̂n − θ0)

D−→ −
Y

I1(θ0)

where

Y ∼ N
(
0, I1(θ0)

)
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Asymptotics for MLE

Since

E

{
−

Y

I1(θ0)

}
= 0

var

{
−

Y

I1(θ0)

}
=

I1(θ0)

I1(θ0)2

= I1(θ0)−1

we get
√
n(θ̂n − θ0)

D−→ N
(
0, I1(θ0)−1

)
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Asymptotics for MLE

It is now safe to get sloppy

θ̂n ≈ N
(
θ0, n

−1I1(θ0)−1
)

or

θ̂n ≈ N
(
θ0, In(θ0)−1

)
This is a remarkable result. Without knowing anything about

the functional form of the MLE, we have derived its asymptotic

distribution.
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Examples (cont.)

We already know the asymptotic distribution for the MLE of the
binomial distribution, because it follows directly from the CLT
(5101, deck 7, slide 36)

√
n(p̂n − p)

D−→ N
(
0, p(1− p)

)
but let us calculate this using likelihood theory

In(p) = −Ep
{
l′′n(p)

}
= −Ep

{
−
X

p2
−

n−X
(1− p)2

}

=
np

p2
+

n− np
(1− p)2

=
n

p(1− p)

(the formula for l′′n(p) is from slide 20)
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Examples (cont.)

Hence

In(p)−1 =
p(1− p)

n

and

p̂n ≈ N
(
p,
p(1− p)

n

)
as we already knew.
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Examples (cont.)

For the IID normal data with known mean µ and unknown vari-
ance ν

In(ν) = −Eν
{
l′′n(ν)

}
= −Eν

 n

2ν2
−

1

ν3

n∑
i=1

(Xi − µ)2


= −

n

2ν2
+

1

ν3
· nν

=
n

2ν2

(the formula for l′′n(ν) is from slide 22). Hence

ν̂n ≈ N
(
ν,

2ν2

n

)
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Examples (cont.)

Or for IID normal data

σ̂2
n ≈ N

(
σ2,

2σ4

n

)

because ν = σ2.

We already knew this from homework problem 4-9.
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Examples (cont.)

Here’s an example we don’t know. Suppose X1, X2, . . . are IID

Gam(α, λ) where α is unknown and λ is known. Then

Ln(α) =
n∏
i=1

λα

Γ(α)
xα−1
i e−λxi

=

(
λα

Γ(α)

)n n∏
i=1

xα−1
i e−λxi

=

(
λα

Γ(α)

)n n∏
i=1

xi

α−1

exp

−λ n∑
i=1

xi


and we can drop the term that does not contain α.
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Examples (cont.)

The log likelihood is

ln(α) = nα logλ− n log Γ(α) + (α− 1) log

 n∏
i=1

xi


Every term except n log Γ(α) is linear in α and hence has second

derivative with respect to α equal to zero. Hence

l′′n(α) = −n
d2

dα2
log Γ(α)

and

In(α) = n
d2

dα2
log Γ(α)

because the expectation of a constant is a constant.
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Examples (cont.)

The second derivative of the logarithm of the gamma function

is not something we know how to do, but is a “brand name

function” called the trigamma function, which can be calculated

by R or Mathematica.

Again we say, this is a remarkable result. We have no closed form

expression for the MLE, but we know its asymptotic distribution

is

α̂n ≈ N
(
α,

1

n trigamma(α)

)
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Plug-In for Asymptotic Variance

Since we do not know the true unknown parameter value θ0, we

do not know the Fisher information I1(θ0) either. In order to use

the asymptotics of MLE for confidence intervals and hypothesis

tests, we need plug in. If θ 7→ I1(θ) is a continuous function,

then

I1(θ̂n)
P−→ I1(θ0)

by the continuous mapping theorem. Hence by the plug-in prin-

ciple (Slutsky’s theorem)

√
n ·

θ̂n − θ
I1(θ̂n)−1/2

= (θ̂n − θ)In(θ̂n)1/2 D−→ N (0,1)

is an asymptotically pivotal quantity that can be used to con-

struct confidence intervals and hypothesis tests.
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Plug-In for Asymptotic Variance (cont.)

If zα is the 1 − α quantile of the standard normal distribution,

then

θ̂n ± zα/2In(θ̂n)−1/2

is an asymptotic 100(1− α)% confidence interval for θ.

59



Plug-In for Asymptotic Variance (cont.)

The test statistic

T = (θ̂n − θ0)In(θ̂n)1/2

is asymptotically standard normal under the null hypothesis

H0 : θ = θ0

As usual, the approximate P -values for upper-tail, lower-tail, and

two-tail tests are, respectively,

Prθ0
(T ≥ t) ≈ 1−Φ(t)

Prθ0
(T ≤ t) ≈ Φ(t)

Prθ0
(|T | ≥ |t|) ≈ 2

(
1−Φ(|t|)

)
= 2Φ(−|t|)

where Φ is the DF of the standard normal distribution.
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Plug-In for Asymptotic Variance (cont.)

Sometimes the expectation involved in calculating Fisher infor-

mation is too hard to do. Then we use the following idea. The

LLN for the second derivative of the log likelihood (slide 45) says

n−1l′′n(θ0)
P−→ −I1(θ0)

which motivates the following definition:

Jn(θ) = −l′′n(θ)

is called observed Fisher information. For contrast In(θ) or I1(θ)

is called expected Fisher information, although, strictly speaking,

the “expected” is unnecessary.
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Plug-In for Asymptotic Variance (cont.)

The LLN for the second derivative of the log likelihood can be

written sloppily

Jn(θ) ≈ In(θ)

from which

Jn(θ̂n) ≈ In(θ̂n) ≈ In(θ0)

should also hold, and usually does (although this requires more

than just the continuous mapping theorem so we don’t give a

proof).
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Plug-In for Asymptotic Variance (cont.)

This gives us two asymptotic 100(1 − α)% confidence intervals

for θ

θ̂n ± zα/2In(θ̂n)−1/2

θ̂n ± zα/2Jn(θ̂n)−1/2

and the latter does not require any expectations. If we can write

down the log likelihood and differentiate it twice, then we can

make the latter confidence interval.
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Plug-In for Asymptotic Variance (cont.)

Similarly, we have two test statistics

T = (θ̂n − θ0)In(θ̂n)1/2

T = (θ̂n − θ0)Jn(θ̂n)1/2

which are asymptotically standard normal under the null hypoth-

esis

H0 : θ = θ0

and can be used to perform hypothesis tests (as described on

slide 60).

Again, if we can write down the log likelihood and differentiate

it twice, then we can perform the test using latter test statistic.
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Plug-In for Asymptotic Variance (cont.)

Sometimes even differentiating the log likelihood is too hard to

do. Then we use the following idea. Derivatives can be approx-

imated by “finite differences”

f ′(x) ≈
f(x+ h)− f(x)

h
, when h is small

When derivatives are too hard to do by calculus, they can be

approximated by finite differences.
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Plug-In for Asymptotic Variance (cont.)

The R code on the computer examples web page about maxi-

mum likelihood for the gamma distribution with shape parameter

α unknown and rate parameter λ = 1 known,

Rweb> n <- length(x)

Rweb> mlogl <- function(a) sum(- dgamma(x, a, log = TRUE))

Rweb> out <- nlm(mlogl, mean(x), hessian = TRUE, fscale = n)

Rweb> ahat <- out$estimate

Rweb> z <- qnorm(0.975)

Rweb> ahat + c(-1, 1) * z / sqrt(n * trigamma(ahat))

[1] 1.271824 2.065787

Rweb> ahat + c(-1, 1) * z / sqrt(out$hessian)

[1] 1.271798 2.065813
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The Information Inequality

Suppose θ̂n is any unbiased estimator of θ. Then

varθ(θ̂n) ≥ In(θ)−1

which is called the information inequality or the Cramér-Rao

lower bound.

Proof:

covθ{θ̂, l′(θ)} = Eθ{θ̂ · l′(θ)} − Eθ(θ̂)Eθ{l′(θ)}
= Eθ{θ̂ · l′(θ)}

because of the first log likelihood derivative identity.
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The Information Inequality (cont.)

And

Eθ{θ̂ · l′(θ)} =
∫
θ̂(x)

[
1

fθ(x)
·
d

dθ
fθ(x)

]
fθ(x) dx

=
∫
θ̂(x)

[
d

dθ
fθ(x)

]
dx

=
d

dθ

∫
θ̂(x)fθ(x) dx

=
d

dθ
Eθ(θ̂)

assuming differentiation under the integral sign is valid.
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The Information Inequality (cont.)

By assumption θ̂ is unbiased, which means

Eθ(θ̂) = θ

and
d

dθ
Eθ(θ̂) = 1

Hence

covθ{θ̂, l′(θ)} = 1
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The Information Inequality (cont.)

From the correlation inequality (5101, deck 4, slide 61)

1 ≥ corθ{θ̂, l′(θ)}2

=
covθ{θ̂, l′(θ)}2

varθ(θ̂) varθ{l′(θ)}

=
1

varθ(θ̂)I(θ)

from which the information inequality follows immediately.
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The Information Inequality (cont.)

The information inequality says no unbiased estimator can be

more efficient than the MLE. But what about biased estimators?

They can be more efficient.

An estimator that is better than the MLE in the ARE sense is

called superefficient, and such estimators do exist.

The Hájek convolution theorem says no estimator that is asymp-

totically unbiased in a certain sense can be superefficient.

The Le Cam convolution theorem says no estimator can be su-

perefficient except at a set of true unknown parameter points of

measure zero.
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The Information Inequality (cont.)

In summary, the MLE is as about as efficient as an estimator

can be.

For exact theory, we only know that no unbiased estimator can

be superefficient.

For asymptotic theory, we know that no estimator can be super-

efficient except at a negligible set of true unknown parameter

values.
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Multiparameter Maximum Likelihood

The basic ideas are the same when there are multiple unknown
parameters rather than just one. We have to generalize each
topic

• conditions for local and global maxima,

• log likelihood derivative identities,

• Fisher information, and

• asymptotics and plug-in.
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Multivariate Differentiation

This topic was introduced last semester (5101, deck 7, slides 96–

98). Here we review and specialize to scalar-valued functions.

If W is an open region of Rp, then f : W → R is differentiable if

all partial derivatives exist and are continuous, in which case the

vector of partial derivatives evaluated at x is called the gradient

vector at x and is denoted ∇f(x).

∇f(x) =


∂f(x)/∂x1
∂f(x)/∂x2

...
∂f(x)/∂xp
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Multivariate Differentiation (cont.)

If W is an open region of Rp, then f : W → R is twice differen-

tiable if all second partial derivatives exist and are continuous,

in which case the matrix of second partial derivatives evaluated

at x is called the Hessian matrix at x and is denoted ∇2f(x).

∇2f(x) =



∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xp

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2

2
· · · ∂2f(x)

∂x2∂xp
... ... . . . ...

∂2f(x)
∂xp∂x1

∂2f(x)
∂xp∂x2

· · · ∂2f(x)
∂x2

p
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Local Maxima

Suppose W is an open region of Rp and f : W → R is a twice-

differentiable function. A necessary condition for a point x ∈ W
to be a local maximum of f is

∇f(x) = 0

and a sufficient condition for x to be a local maximum is

∇2f(x) is a negative definite matrix
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Positive Definite Matrices

A symmetric matrix M is positive semi-definite (5101, deck 2,

slides 67–68 and deck 5, slides 103–105) if

wTMw ≥ 0, for all vectors w

and positive definite if

wTMw > 0, for all nonzero vectors w.

A symmetric matrix M is negative semi-definite if −M is positive

semidefinite, and M is negative definite −M is positive definite.
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Positive Definite Matrices (cont.)

There are two ways to check that the Hessian matrix is negative
semi-definite.

First, one can try to verify that

p∑
i=1

p∑
j=1

wiwj
∂2f(x)

∂xi∂xj
< 0

holds for all real numbers w1, . . ., wp, at least one of which is
nonzero (5101, deck 2, slides 67–68). This is hard.

Second, one can verify that all the eigenvalues are negative
(5101, deck 5, slides 103–105). This can be done by computer,
but can only be applied to a numerical matrix that has particular
values plugged in for all variables and parameters.
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Local Maxima (cont.)

The first-order condition for a local maximum is not much harder

than before. Set all first partial derivatives to zero and solve for

the variables.

The second-order condition is harder when done by hand. The

computer check that all eigenvalues are negative is easy.
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Examples (cont.)

The log likelihood for the two-parameter normal model is

ln(µ, ν) = −
n

2
log(ν)−

nvn

2ν
−
n(x̄n − µ)2

2ν

(slide 10). The first partial derivatives are

∂ln(µ, ν)

∂µ
=
n(x̄n − µ)

ν

∂ln(µ, ν)

∂ν
= −

n

2ν
+
nvn

2ν2
+
n(x̄n − µ)2

2ν2
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Examples (cont.)

The second partial derivatives are

∂2ln(µ, ν)

∂µ2
= −

n

ν

∂2ln(µ, ν)

∂µ∂ν
= −

n(x̄n − µ)

ν2

∂2ln(µ, ν)

∂ν2
= +

n

2ν2
−
nvn

ν3
−
n(x̄n − µ)2

ν3

81



Examples (cont.)

Setting the first partial derivative with respect to µ equal to zero

and solving for µ gives

µ = x̄n

Plugging that into the first partial derivative with respect to ν

set equal to zero gives

−
n

2ν
+
nvn

2ν2
= 0

and solving for ν gives

ν = vn
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Examples (cont.)

Thus the MLE for the two-parameter normal model are

µ̂n = x̄n

ν̂n = vn

and we can also denote the latter

σ̂2
n = vn
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Examples (cont.)

Plugging the MLE into the second partial derivatives gives

∂2ln(µ̂n, ν̂n)

∂µ2
= −

n

ν̂n
∂2ln(µ̂n, ν̂n)

∂µ∂ν
= 0

∂2ln(µ̂n, ν̂n)

∂ν2
= +

n

2ν̂2
n
−
nvn

ν̂3
n

= −
n

2ν̂2
n

Hence the Hessian matrix is diagonal, and is negative definite if

each of the diagonal terms is negative (5101, deck 5, slide 106),

which they are. Thus the MLE is a local maximizer of the log

likelihood.
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Global Maxima

A region W of Rp is convex if

sx+ (1−s)y ∈W, whenever x ∈W and y ∈W and 0 < s < 1

Suppose W is an open convex region of Rp and f : W → R is a

twice-differentiable function. If

∇2f(y) is a negative definite matrix for all y ∈W,

then f is called strictly concave. In this case

∇f(x) = 0

is a sufficient condition for x to be the unique global maximum.
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Log Likelihood Derivative Identities

The same differentiation under the integral sign argument ap-

plied to partial derivatives results in

Eθ

{
∂ln(θ)

∂θi

}
= 0

Eθ

{
∂ln(θ)

∂θi
·
∂ln(θ)

∂θj

}
= −Eθ

{
∂2ln(θ)

∂θi∂θj

}
which can be rewritten in matrix notation as

Eθ{∇ln(θ)} = 0

varθ{∇ln(θ)} = −Eθ{∇2ln(θ)}

(compare with slide 38).
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Fisher Information

As in the uniparameter case, either side of the second log likeli-

hood derivative identity is called Fisher information

In(θ) = varθ{∇ln(θ)}
= −Eθ{∇2ln(θ)}

Being a variance matrix, the Fisher information matrix is sym-

metric and positive semi-definite.

Usually the Fisher information matrix is actually positive definite,

and we will always assume this.
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Examples (cont.)

Returning to the two-parameter normal model, and taking ex-
pectations of the second partial derivatives gives

Eµ,ν

{
∂2ln(µ, ν)

∂µ2

}
= −

n

ν

Eµ,ν

{
∂2ln(µ, ν)

∂µ∂ν

}
= −

nEµ,ν(Xn − µ)

ν2

= 0

Eµ,ν

{
∂2ln(µ, ν)

∂ν2

}
= +

n

2ν2
−
nEµ,ν(Vn)

ν3
−
nEµ,ν{(Xn − µ)2}

ν3

= +
n

2ν2
−

(n− 1)Eµ,ν(S2
n)

ν3
−
n varµ,ν(Xn)

ν3

= −
n

2ν2
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Examples (cont.)

Hence for the two-parameter normal model the Fisher informa-

tion matrix is

In(θ) =

(
n/ν 0

0 n/(2ν2)

)
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Asymptotics for Log Likelihood Derivatives (cont.)

The same CLT argument applied to the gradient vector gives

n−1/2∇ln(θ0)
D−→ N

(
0, I1(θ0)

)
and the same LLN argument applied to the Hessian matrix gives

−n−1∇2ln(θ0)
P−→ I1(θ0)

These are multivariate convergence in distribution and multi-

variate convergence in probability statements (5101, deck 7,

slides 73–78 and 79–85).
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Asymptotics for MLE (cont.)

The same argument — expand the gradient of the log likelihood

in a Taylor series, assume terms after the first two are negligible,

and apply Slutsky — used in the univariate case gives for the

asymptotics of the MLE

√
n(θ̂n − θ0)

D−→ N
(
0, I1(θ0)−1

)
or the sloppy version

θ̂n ≈ N
(
θ0, In(θ0)−1

)
(compare slides 49–50). Since Fisher information is a matrix,

In(θ0)−1 must be a matrix inverse.
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Examples (cont.)

Returning to the two-parameter normal model, inverse Fisher

information is

In(θ)−1 =

(
ν/n 0

0 2ν2/n

)
=

(
σ2/n 0

0 2σ4/n

)
Because the asymptotic covariance is zero, the two components

of the MLE are asymptotically independent (actually we know

they are exactly, not just asymptotically independent, deck 1,

slide 58 ff.) and their asymptotic distributions are

Xn ≈ N
(
µ,
σ2

n

)

Vn ≈ N
(
σ2,

2σ4

n

)
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Examples (cont.)

We already knew these asymptotic distributions of, the former

being the CLT and the latter being homework problem 4-9.
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Examples (cont.)

Now for something we didn’t already know. Taking logs in the

formula for the likelihood of the gamma distribution (slide 55)

gives

ln(α, λ) = nα logλ− n log Γ(α) + (α− 1) log

 n∏
i=1

xi

− λ n∑
i=1

xi

= nα logλ− n log Γ(α) + (α− 1)
n∑
i=1

log(xi)− λ
n∑
i=1

xi

= nα logλ− n log Γ(α) + n(α− 1)ȳn − nλx̄n

where

ȳn =
1

n

n∑
i=1

log(xi)
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Examples (cont.)

∂ln(α, λ)

∂α
= n logλ− ndigamma(α) + nȳn

∂ln(α, λ)

∂λ
=
nα

λ
− nx̄n

∂2ln(α, λ)

∂α2
= −n trigamma(α)

∂2ln(α, λ)

∂α∂λ
=
n

λ
∂2ln(α, λ)

∂λ2
= −

nα

λ2
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Examples (cont.)

If we set first partial derivatives equal to zero and solve for the

parameters, we find we cannot. The MLE can only be found by

the computer, maximizing the log likelihood for particular data.

We do, however, know the asymptotic distribution of the MLE(
α̂n
λ̂n

)
≈ N

(
0, In(θ)−1

)
where

In(θ) =

(
n trigamma(α) −n/λ

−n/λ nα/λ2

)
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Plug-In for Asymptotic Variance (cont.)

As always, since we don’t know θ, we must use a plug-in estimate

for asymptotic variance. As in the uniparameter case, we can

use either expected Fisher information.

θ̂n ≈ N
(
0, In(θ̂n)−1

)
or observed Fisher information.

θ̂n ≈ N
(
0,Jn(θ̂n)−1

)
where

Jn(θ) = −∇2ln(θ)
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Caution

There is a big difference between the Right Thing (standard
errors for MLE are square roots of diagonal elements of the
inverse Fisher information matrix) and the Wrong Thing (square
roots of inverses of square roots of diagonal elements of the
Fisher information matrix)

Rweb:> fish

[,1] [,2]

[1,] 24.15495 -29.71683

[2,] -29.71683 49.46866

Rweb:> 1 / sqrt(diag(fish)) # Wrong Thing

[1] 0.2034684 0.1421788

Rweb:> sqrt(diag(solve(fish))) # Right Thing

[1] 0.3983007 0.2783229
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Starting Points for Optimization

When a maximum likelihood problem is not concave, there can

be more than one local maximum. Theory says one of those

local maxima is the efficient estimator which has inverse Fisher

information for its asymptotic variance. The rest of the local

maxima are no good.

How to find the right one? Theory says that if the starting point

for optimization is a “root n consistent” estimator, that is, θ̃n
such that

θ̃n = θ0 +Op(n
−1/2)

and any CAN estimator satisfies this, for example, method of

moments estimators and sample quantiles.
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Invariance of Maximum Likelihood

If ψ = g(θ) is an invertible change-of-parameter, and θ̂n is the

MLE for θ, then ψ̂n = g(θ̂n) is the MLE for ψ.

This is obvious if one thinks of ψ and θ as locations in differ-

ent coordinate systems for the same geometric object, which

denotes a probability distribution. The likelihood function, while

defined as a function of the parameter, clearly only depends on

the distribution the parameter indicates. Hence this invariance.
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Invariance of Maximum Likelihood (cont.)

This invariance does not extend to derivatives of the log likeli-

hood.

If I(θ) is the Fisher information matrix for θ and Ĩ(ψ) is the Fisher

information matrix for ψ, then the chain rule and log likelihood

derivative identities give

In(θ) =
[
∇g(θ)

]T [
Ĩn(g(θ))

][
∇g(θ)

]
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Invariance of Maximum Likelihood (cont.)

We only do the one-parameter case.

ln(θ) = l̃n(g(θ))

l′n(θ) = l̃′n(g(θ))g′(θ)

l′′n(θ) = l̃′′n(g(θ))g′(θ)2 + l̃′n(g(θ))g′′(θ)

Taking expectations, the second term in the second derivative

is zero by the first log likelihood derivative identity. This leaves

the one-parameter case of what was to be proved.
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Non-Existence of Global Maxima

The web page about maximum likelihood does a normal mixture

model. The data are IID with PDF

f(x) = pφ

(
x− µ1

σ1

)
+ (1− p)φ

(
x− µ2

σ2

)
where φ is the standard normal PDF. Hence the log likelihood is

ln(θ) =
n∑
i=1

log

[
pφ

(
xi − µ1

σ1

)
+ (1− p)φ

(
xi − µ2

σ2

)]

=
n∑
i=1

log

[
p√

2πσ1
exp

(
−

(xi − µ1)2

2σ2
1

)

+
1− p√
2πσ2

exp

(
−

(xi − µ2)2

2σ2
2

)]
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Non-Existence of Global Maxima

If we set the µ1 = xi for some i, then the i-th term of the log

likelihood becomes

log

[
p√

2πσ1
+

1− p√
2πσ2

exp

(
−

(xi − µ2)2

2σ2
2

)]
and this goes to infinity as σ1 → 0. Hence the supremum of the

log likelihood is +∞ and no values of the parameters achieve the

supremum.

Nevertheless, the good local maximizer is the efficient estimator.
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Exponential Families of Distributions

A statistical model is called an exponential family if the log

likelihood has the form

l(θ) =
p∑

i=1

ti(x)gi(θ)− h(θ) + u(x)

and the last term can, of course, be dropped.

The only term in the log likelihood that contains both statistics

and parameters is a finite sum of terms that are a product of a

function of the data times a function of the parameter
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Exponential Families of Distributions (cont.)

Introduce new statistics and parameters

yi = ti(x)

ψi = gi(θ)

which are components of the natural statistic vector y and the

natural parameter vector ψ.

That ψ is actually a parameter is shown by the fact that the

PDF or PMF must integrate or sum to one for all θ. Hence h(θ)

must actually be a function of ψ.
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Exponential Families of Distributions (cont.)

The log likelihood in terms of natural parameters and statistics

has the simple form

l(ψ) = yTψ − c(ψ)

and derivatives

∇l(ψ) = y −∇c(ψ)

∇2l(ψ) = −∇2c(ψ)
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Exponential Families of Distributions (cont.)

The log likelihood derivative identities give

Eψ(Y) = ∇c(ψ)

varψ(Y) = ∇2c(ψ)

Hence the MLE is a method of moments estimator that sets
the observed value of the natural statistic vector equal to its
expected value.

The second derivative of the log likelihood is always nonrandom,
so observed and expected Fisher information for the natural pa-
rameter vector are the same, and the log likelihood for the nat-
ural parameter is always concave and strictly concave unless the
distribution of the natural statistic is degenerate. Hence any local
maximizer of the log likelihood is the unique global maximizer.
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Exponential Families of Distributions (cont.)

By invariance of maximum likelihood, the property that any

local maximizer is the unique global maximizer holds for any

parametrization.

Brand name distributions that are exponential families: Bernoulli,

binomial, Poisson, geometric, negative binomial (p unknown, r

known), normal, exponential, gamma, beta, multinomial, multi-

variate normal.
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Exponential Families of Distributions (cont.)

For binomial, the log likelihood is

l(p) = x log(p) + (n− x) log(1− p)

= x
[
log(p)− log(1− p)

]
+ n log(1− p)

hence is exponential family with natural statistic x and natural

parameter

θ = logit(p) = log(p)− log(1− p) = log

(
p

1− p

)
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Exponential Families of Distributions (cont.)

Suppose X1, . . ., Xn are IID from an exponential family distribu-
tion with log likelihood for sample size one

l1(θ) =
p∑

i=1

ti(x)gi(θ)− h(θ)

Then the log likelihood for sample size n is

ln(θ) =
p∑

i=1

 n∑
j=1

ti(xj)

 gi(θ)− nh(θ)

hence the distribution for sample size n is also an exponential
family with the same natural parameter vector as for sample size
one and natural statistic vector y with components

yi =
n∑

j=1

ti(xj)
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Exponential Families of Distributions (cont.)

For the two-parameter normal, the log likelihood for sample size

one is

l1(µ, σ2) = −
1

2
log(σ2)−

1

2σ2
(x− µ)2

= −
1

2
log(σ2)−

1

2σ2
(x2 − 2xµ+ µ2)

= −
1

2σ2
· x2 +

µ

σ2
· x−

1

2
log(σ2)−

µ2

2σ2

Since this is a two-parameter family, the natural parameter and

statistic must also be two dimensional. We can choose

y =

(
x

x2

)
θ =

(
µ/σ2

−1/(2σ2)

)
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Exponential Families of Distributions (cont.)

It seems weird to think of the natural statistic being two-dimensional

when we usually think of the normal distribution as being one-

dimensional.

But for sample size n, the natural statistics become

y1 =
n∑
i=1

xi

y2 =
n∑
i=1

x2
i

and it no longer seems weird.
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